ON THE THEORY OF RELATIONS

by
A. MÁTɹ

Let E be a given set and suppose that to every element x of E there corresponds a subset S(x) of E such that $x \notin S(x)$. For every subset M of E let

$$S(M) = \bigcup_{x \in M} S(x) .$$

A subset M of E is called independent, if

$$M \cap S(M) = \emptyset$$
.

Let E be a separable topological space of the second category without isolated points. For any $x \in E$, let S(x) be nowhere dense in E. P. Erdős has proved that there exists an independent set of power \aleph_0 . It is not known the existence of an independent set of power \aleph_1 .

We shall prove the following theorem which is a generalization of the

theorem of P. Erdős.

Theorem. Let E be a separable topological space of the second category without isolated points. Suppose that the elements of E are arranged in a given wellordering. If for every $x \in E$ the set S(x) is nowhere dense in E, then there exists for every $a < \omega_1$ an independent subset of the type a of E in the given well-ordering.

Proof. Let H be a subset of the second category of E and let $\eta(H) \neq \emptyset$ be a subset of H with the following property (T): For any open subset K of E satisfying $\eta(H) \cap K \neq \emptyset$ the set $\eta(H) \cap K$ is of the second category. It is known that there exists such a subset $\eta(H)$ of H. Thus we have associated to every subset H of the second category of E a non-empty subset of H with the property (T). If the set H has the property (T), then we put $\eta(H) = H$. It is clear that a subset M of $\eta(H)$ is nowhere dense or of the first category in $\eta(H)$ if and only if M is nowhere dense or of the first category in E.

Consider now the ordinal numbers of the subsets of the second category of E with respect to the given wellordering of E. Let φ be the smallest such ordinal number. It is clear that φ is not confinal to an ordinal number which is smaller than ω_1 . Let B be a subset of the second category of the type φ of

E and $A = \eta(B)$. It is obvious that A has the type φ .

¹ Szeged.

332 MÁTÉ

For each subset M of A let W(M) denote the set of all elements of A which are not exceeding all the elements of M in the given wellordering of E [thus $M \subseteq W(M)$]. It is obvious that W(M) is of the first category if and only if M is not confinal to A. For example if M is a countable set, then W(M) is of the first category.

Suppose now that in every set $K \subseteq A$ of the second category there is an independent set of the type a, where $a < \xi < \omega_1$. We prove that there exists in every set $P \subseteq A$ of the second category an independent set of the type ξ .

Put $Q = \eta(P)$.

We consider two cases

a) ξ is an ordinal number of the first kind, i.e. $\xi = \alpha + 1$,

b) ξ is an ordinal number of the second kind.

Ad a Let $\{Q_{\mathfrak{d}}\}_{\mathfrak{d}<\mathfrak{d}}$ be a countable base of Q. Then there exists in every $Q_{\mathfrak{d}}$ an independent set $H_{\mathfrak{d}}$ of the type a. Put $H=\bigcup H_{\mathfrak{d}}$. It is obvious that

H is a countable set and $H \subset A$ holds, thus W(H) and S(H) are of the first category; i.e. the set $Q^1 = Q - (W(H) \cup S(H))$ is not empty. Let $t \in Q^1$. As S(t) is nowhere dense, there exists an ordinal number $\vartheta < \omega$, such that $S(t) \cap Q_{\vartheta} = \emptyset$. It is easy to verify that $H_{\vartheta} \cup \{t\}$ is an independent set with the type $a + 1 = \xi$.

Ad b In this case put $\xi = \sum_{\lambda} \xi_{\lambda}$, where $\xi_{\lambda} < \xi$ for every $\lambda < \omega$. First

prove the following

Lemma. Let $\{Q_{\vartheta}^0\}_{\vartheta<\omega}$ be a countable base of $Q=Q^0$ and assume that there exists in every Q_{ϑ}^0 an independent set H_{ϑ}^0 of the type ξ_0 . Then there exists a set Q^1 of the second category and an ordinal number $\tau_0<\omega$, such that $\eta(Q^1)=Q^1\subseteq Q^0$, and $W(H_{\tau_0}^0)\cap Q^1=H_{\tau_0}^0\cap S(Q^1)=S(H_{\tau_0}^0)\cap Q^1=\emptyset$.

Proof. Since H^0_{θ} is a countable set and $H^0_{\theta} \subset A$ holds, the sets $W(H^0_{\theta})$ and $S(H^0_{\theta})$ are of the first category; hence the set $F^0 = \bigcup_{\theta \in \Theta} (W(H^0_{\theta}) \cup S(H^0_{\theta}))$

is also of the first category. Thus the set $M^1=Q^0-F^0$ is of the second category. For every $\vartheta<\omega$ let

 $R_{\vartheta} = \{ x \in M^1 : S(x) \cap Q^0_{\vartheta} = \emptyset \} .$

Since the set S(x) is nowhere dense for every $x \in E$, we get that $M^1 = \bigcup_{\emptyset < m} R_{\emptyset}$.

Thus there exists an ordinal number $\vartheta_0 < \omega$, such that R_{ϑ_0} is of the second category. Let $\tau_0 = \vartheta_0$ and $\eta(R_{\vartheta_0}) = Q^1$. It is easy to see that the sets $H^0_{\tau_0}$ and

 Q^1 satisfy the requirements of the lemma.

If we start with Q^1 instead of Q^0 , then we get by the application of the lemma the set Q^2 , the ordinal number τ_1 and the set $H^1_{\tau_1}$ with the corresponding properties . . ., etc. Repeat this ad infinitum we get successively the sets Q^0 , Q^1 , . . ., Q^{λ} , . . .; the ordinal numbers τ_0 , τ_1 , . . ., τ_{λ} , . . . and the sets $H^0_{\tau_0}$, $H^1_{\tau_1}$, . . ., $H^{\lambda}_{\tau_{\lambda}}$, . . . ($\lambda < \omega$), such that for every $\lambda < \omega$ the set Q^{λ} is of the second category, $Q^{\lambda-1} \supseteq Q^{\lambda}$, $\eta(Q^{\lambda}) = Q^{\lambda}$ further $H^{\lambda}_{\tau_{\lambda}}$ is an independent set of the type ξ_{λ} with the properties $(\lambda < \gamma < \omega)$:

- $(1) \ W(H_{\tau_{\lambda}}^{\lambda}) \cap H_{\tau_{\gamma}}^{\gamma} = \emptyset$
- (2) $H_{\tau_{\lambda}}^{\lambda} \cap S(H_{\tau_{\gamma}}^{\gamma}) = \emptyset$
- (3) $S(H_{\tau_{\lambda}}^{\lambda}) \cap H_{\tau_{\gamma}}^{\gamma} = \emptyset$.

Put $H = \bigcup_{\substack{\lambda < \omega \\ \\ j < m}} H^{\lambda}_{\tau_{\lambda}}$. It is easy to verify that the set H is an independent set of the type $\xi = \sum_{\substack{\lambda < \omega \\ \\ j < m}} \xi_{\lambda}$.

REFERENCE

Erdős, P.: "Some remarks on set theory III." Michigan Math. Journ. 2 (1953) 51-57.

об одной проблеме теории отношений

A. MÁTÉ

Резюме

Пусть E — топологическое пространство второй категории, не содержащее изолированные точки. Каждому $x \in E$ поставим в соответствие некоторое множество $(x \notin)S(x) \subseteq E$, нигде не плотное в E. Пусть M — любое подмножество E и положим

$$S(M) = \bigcup_{x \in M} S(x).$$

Множество M называется независимым, если $M \cap S(M) = \emptyset$. По одной теореме P. Евроѕ-а существует независимое счетное множество. Автор доказывает, что

если дана некоторая вполне-упорядоченость множества E, то каждому порядковому числу $\alpha < \omega_1$ существует независимое множество, порядковый тип которого в вполне-упорядоченности E есть α .

Вопрос о том, что существует — ли независимое несчетное множество, пока не решен.