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by
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Introduction

In one-dimensional symmetric random walk it is interesting to note how
often the particle intersects a given line and also how often it remains above it.
I. Vincze and E. Csixi [3] have determined in connection with a statistical
problem regarding the GarToN-test the distribution of the number of inter-
sections and also the joint distribution of the number of intersections and of
the positive steps in the case the particle returns at the end to the origin.
In another paper E. Csikr [4] has given the distribution of the number of
intersections without assuming to which point the particle returns at the end.
In the following paper, I should like to determine the above distributions when
the particle reaches at the end some fixed point other than the origin.

This problem may be interpreted as: Two players A and B play a coin
tossing game in which player 4 wins or loses a unit amount according to
whether the result of the coin tossing is “head’ or ‘“tail”’. Assuming that at
the end of the game A leads over B by certain fixed units, we are interested
in investigating how often one overtakes the other and also how often 4 has
been leading over B.

In this paper, we shall consider the sequences ¢ = (¢, &, . . ., #,,) of
n-+k (+1)sand n —k (—1)’s, each possible array has the same probability

(2n =L 1, on
nth n+k

si=h+%h+...4+8,@=12,...,2%n), =0 and 8, =2%k.

-1
) . The partial sum of #,’s is denoted by s;, i.e.,

We shall call the array {sy, s, . - -, S, - - -, S3n} the path of the particle. Thus
each array (&, &, ..., 9y, ..., §5n) corresponds to a random path of the
particle starting at the origin and reaching after 2 n steps the point (2 n, 2 k)
(0 < k£ < n). Each path has the same probability. If the points (z, s;) are repre-
sented in a plane and each of them is connected with the next one, then we
obtain a figure illustrating the path of the particle. In the following, we shall
consider the distributions of A (number of intersections) and y (number of
positive steps).

! Dept. of Mathematics and Statistics, University of Delhi (India). This work was
done while the author attended the course on probability theory, mathematical statistics
and their applications held at the Mathematical Institute of the Hungarian Academy of
Sciences, Budapest in 1963 —64, sponsored by the UNESCO.
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Notations :

Eypn o : apath {s), 8, ..., 8i...,8:}withs;, =2k, 0<k 0, By ,=
=FH,,. A point (24, s,;) of the path K,, . for which s,; = 0 and 8,;—; * 834y =
= —1 is called the intersection point or 7'-point.

T®M-point: a point (2 4, s,;) of the path H,,,. for which either (sy;i_, =

=r—1 &i=7r Siu=r+1) or (hiq=r+1, &i=r 8y, =1r—1)
holds. This is called the intersection point in the height », 7@ = 7T
A): number of T™-points of the path {sy, s}, - . ., $3n} , 4Y = A,,.

B,y okt an By, -path with exactly 7 T-points; B, , = B},

E}n ok, an By qp-path with exactly I TO-points; Ef, o = Bbnyy -

Fi,,: a path {sg, sy, ..., 8.} with exactly I 7(")-points and without
assuming where it terminates; Fj,, = Fj,, F,,: a path {s,, s, ..., 8}
without knowing where it terminates.

EGED .- an B o -path with 2 g steps above the height r; B8], =
— BgH), BGRD, — EGED, ESED, — BSS: an By.gepath with 24 steps
above the axis.

F@&D: an Fi, -path with 2 g steps above the height r; F@8D = FQe.

B38, o an By, ,-path with 2 g steps above the height 7.

FE2: apath {s,, s, . .., 8, } with 2 g steps above the height » and with-
out assuming where it terminates; F@£) = F@9.

2 y{): number of steps of the path {sy, s, ..., $,,} above the height r,
290 =2 yyn.

HY: a path {s,, sy, ..., sn} starting at the origin and reaching for the
first time the height ¢ at the m-th step.

Ef,: a path {s, sy, ..., 8} from (0,0) to (x,y) such that s, =0,
3,10, 8= 0,000 80 > 07 (8; =7 1 =10),

N(-): number of all possible paths whose type is given in the brackets

e.g. N(Eyny) 2{ ) (n + k]]

§ 1. The number of intersections

We shall give two proofs for the following
Theorem 1.1.

(1) N(Ejn )

MIWZJFI T N WS e
2n + 1 n—k—1

and 0 <k < n,

First proof. Let {sy, 8, ... i - .- Sn} be a path of N(Bi,,) with
(217,0) the last or the /-th 7-point (see fig. 1). It means that the section
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{Sais Sgit1s « - - Son} Of the path is such that it does not cross the axis. Thus
the total number of such paths is given by (FELLER [1] p. 71 and [3])

N(Eznzk) N(Eznzk I s =41 or —1)=
a=Kk ]

_2 — N(E5) N(E;Z—ziﬂ,zkﬂ) s
__","__l_(2z : 2k +1 2n — 214+ 1
=t ¢ e —1 2n—2i+1_n—-i+k+1]

(8, = +1 or —1 according to / even or odd; I = 0,1,...,n — k.)

(0,05 ? gy(zw) (2n,0)

Fig. 1.

If we denote the generating function of the N(£Ej,,,)’s by F(v), it can
be shown that

(2)

- = k42041
Fo)= 3 NBingor*= > T2 T
i) Mo 2 e T g

which proves the theorem 1.1.
Second proof. There holds the following

2n
n—k—1

,Un—k-—.

Lemma 1.1.
(3) N(Byn, o) = N(HZEE)

For the known relation (see FELLER [1] p. 71)

2k+2l+l[ 2n+1 ]

N(HZk2+1) —
(H3nii™) e WG e
the proof of the lemma gives us the proof of the theorem 1.1.

To prove the lemma, we have to establish a one-to-one correspondence
between the two types of paths b, , and H3E'3*1 which can be set up in
the following way:

Let us consider the path {s;, s;, ..., S - - -, San} (see fig. 1). According
to a proof given in [3] the section {s,, s,, ..., 8,;} corresponds to a path start-
ing at the origin and reaching after 2 ¢ steps for the first time the height 2 /.
Concerning the section between (24, 0) and (2 n, 2 k), let us first alter the
signs and then the direction, i.e. we replace &,;, Byity, . - ., Fgn by —by,
—Byn—ys - - ., —By; and let us attach this transformed section to the end of the
previous one (fig. 2).
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Finally, let us now insert éfter #yn & (+1). Thus we obtain a H3k:31-
path. By reversing this procedure it may be seen that this transformation is
a one-to-one. Then our theorem 1.1 gives immediately the following

(0.0)
(2n+1,0)

Fig. 2
Theorem 1.1%.
[2n—|—l}
P()‘Zn:llEznzk)=2k+2l+1 ® n_k~l,l=0,1,.‘.,n—k,
i 2n+ 1 (2n
n—k
(4) or
( 2n
n—k—1
P(22n<l}E~2n,3k):1—T.
'n—k)
We can easily see that
i 5 n—k—1 2n
Bt Bnon)  —m e =M,
(Ran | B, ¢ (M] Ao(r
n—k
(5) and
2 9 n—k:l 2n
D*(An | Byn o) = [2(n — k) — M — 11 M — on = )
( r=1 %
n—k

For the limiting distribution we have: for & ~a |2 n

llm P()'zn < y Vﬂ l Ezmzk) = 1 i e-—2(a'+y?)’ a \é 0 bl ?/ ; O ’

Nn—>co

k=0 or a =0 gives the result proved in [3].
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Theorem 1.2.

2k+ 21+ 2 2n 4+ 2

6 N(Bin i, 0641) =
(6) (Bzn1, 9k+1) ant+2 ‘ndktl42

J,l:O,l,...,n——Ic.

The proof of this theorem is similar to that of theorem 1.1 and it can
easily be seen that the results corresponding to those given in theorem 1.1” are
the following

2n+ 2
2k +21+ 2 'n—l—k+l—f—2
A — = :
P 2n+1 1| Byniy oktr) 20+ 2 (2n+1) ’
n—k
(7) or
(2n+1)
n—k—1
P(Agnsy <U| Byniy, onr) =1 — (2n+1)
(nhk
Also
1] n—k—1,2 9 41
E(izn+1lE2n+1,zk+1):{2n—+1] ,7ol ; J:Ml’
| — &/
and
n—k-1 @p41
D*(23n4y | Baniy on41) :[2("-k)-_M1_1] (27&-{-1 ,2 T( ]
n —k

For k ~a)/2n we obtain the limiting distribution as in theorem 1.1".

I should like to mention that by writing | £ | instead of % the above
formulae are valid in the case of negative & as well.

When the condition that the particle reaches the point (2 n, 2 k) at the
2 n-th step is disregarded, the number of paths with exactly / intersections on
the axis is given by

N(Fl) = 2 5 N(Bln ) + N(By) =
k=1

2 1 1 2(1 1 2
(8) k+ 21+ (2n—l— )+_(+ )’ n ]___
=i 2n -+ 1 2 — o — 1 n n—1—1
:4[2”“1], SR S S
n 41

which is the same obtained in [4].
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§ 2. Distribution of the number of intersections in the height »

Theorem 2.1. For r < 2k

e

P(}‘({rz =1] -Ezn,zk) — N(Elzmzk,r) —

2n

(9) (”“k
2n 4+ 2

_k+l‘n—k—l+J
—n—{—l. (2%]

1,3,...,n —Fk, if n — k is odd,
L,3,..,n— k4 1,if n — k is even,
152

5
l
r e e 2=

(I

n—k :
The proof of this theorem is trivial which follows from Lemma 1.1 by

establishing the one-to-one correspondence between the two types of paths

B0k, and H3%1%. Tt is interesting to note that this result is independent of 7.
For the limiting distribution we obtain: for &£ ~a |22

(r)
(10) limP|y=< V);—n <y+dy| By o] = 4y + a)e?T 20t Vdy , a,y =0

n—>co n

which is equal to the result obtained in theorem 2.1’ in [3] £ =0 or a = 0
gives the result (6) given in [3].

Theorem 2.2. For »r = 2k

P(A%k) =1 | Ezm2k) ==

(11) (2m + 1
- Sb-EULy .(n—k—lJ

2n + 1 2n
n—=k

The proof is trivial and follows from lemma 1.1 by showing a one-to-one
correspondence between the paths B}, .. o and H3H3H1 .
For the limiting distribution

A =10,"Ls0 oo — K

(2k)
(12) limP|y < 123— <y-+dy| E’z,,'.z,\.] = 4(y + a) 2 -20+a)’ gy |

n-—>eo [/2 n

holds for & ~a|/2n, a,y = 0. which is equal to the result obtained in (10).
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Theorem 2.3. For »r > 2k

P(AD =1| Byn i) =

(13) hﬁw

( 2n + 2 )
bt r—k —l=r+k+1

o HEBEE LSRR s,
n+ 1 2n 10, 8,4, ..t R=¥ 8 ndBr
n—k 1S even or
1=0,2,4,..,0+k—r+1, if
4 k — r ts odd.

For & = 0, we get the result obtained in theorem 2.1” [3] for / intersec-
tions in the height 7.

The proof is similar to that of theorems 2.1 and 2.2 and can be given by
establishing the one-to-one correspondence between the paths E, , ., and
R

For the limiting distribution we obtain: for k~a |2 n, and r~b /2 =,

(r)
IimPy< A <y+dy| By or| =4y + b — a)e@-20+0-a'qdy, a,b,y > 0.
N> V2n '

(14)

It is clear from (6), (9) and (13) that there is a one-to-one correspondence
between the paths Bl o1, Eonor,, and B, o .

When the condition that the particle reaches the point (2 n, 2 k) at the
2 n-th step is disregarded, the number of paths with exactly / 7"-points is
given as below according to 7 is even or odd:

For a fixed positive even integer »

n
er N(E‘lzn,zk, " N(E;n,zk,zk) , I odd,
N, )= k=5 +1
gk Y
2
‘\J N(Eén,zk,r) + N(E{zn‘zk,zk) 5 ! even.

=—n
But it can easily be verified that
25 : 2n + 1
= NBno,) = 2 NBino,) =, _7_"|
g k=7 +1 2

Substituting the value of N(£}, 5 o) from (11), we have

f 2n
(15) N(F’z,,.,)=2(n+l+%),l=l,2,...,n—%.

T A Matematikai Kutat6 Intézet Kozleményei IX. 3.
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Similarly, when r is a fixed positive odd integer

n
> KB 5), 1 pdd,
_r+l

N(FL. ) =1, F

r—1

2
2 Ein or,,), 1 even.

It can easily be seen that

- = 2n + 1
2 N(Eémzk,r) = kZ N(EIZN,Zk,r) = (’)’L |- l - Fobid

=—n

il
2
so, for a fixed positive odd 7

2n + 1
r+1

r—1
2

),l=1,2,...,n—

/

(16) N(Fin,,) = (

The results in (15) and (16) lead to the following

Theorem 2.4. For a fixed positive even r

‘ 2n
A7 PO T B e e E b B 2 o =
2n,r 2!1-1 2 ’ ) g8 ey ’

and for the limiting distribution

(r)

lim P'y =

n-—>oco

<y+dy|F2n,]—2 dy.

- _@ey+a)?
] B 7
for r ~alf2n,a,y =0,

Theorem 2.5. For a fizxed positive odd r

(18) P(}‘g‘l)—_—llfénr)_i( 2n+1 )yl:1,2»~--)n_r—1,

DL +l+r+l 9

and for r ~ a)/2 n we get the same limiting distribution as in Theorem 2.4.
The results in (17) and (18) are same as obtained in [4].
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§ 3. The joint distribution of the number of intersections
and the number of positive steps
Theorem 3.1.
(2k+1+1) 29 2(n — g)
l l A
2(n — [ g 1] el (n— —_-)
(v —g)g + e I\ s %
leven, | +2k<2g9<2n—1,

N(EgE) =

(19) C+1)(2k+1) ( 2¢ )( 2(n — g) )

l 1 1
S RATRLER | PRI EL]| R £

lodd, 2k+1—1<2g<2n—1—1.

Proof. Let us consider the path taken in theorem 1.1 (fig. 1) where
(2 ¢, 0) is the last or the /-th intersection point. It is clear that if / is even, then
the first step of the path E$%)) should be positive and if 7is odd, then it should
be negative. Thus, it can be seen (see [3]) that when 7 is even

N(BSED) = N(EGH)| 8 = +1)=

— 2 N(EGe+i-mi-D) | g = +1)-N(EF _gi 41,0011 =

1=n—g+7
1 ok & g Fi—m) \[ 2n—g)
A= I R —8) ! i |
i=n—g+~ g+i—(n—-§ n—g——2—
2k+1 (2n—2i+1
2n — 27+ 1 n—i+k+l’

which, by using the method of generating functions, gives the required result.
Similarly, when 7 is odd, the result follows easily. Thus the results in
(19) lead to the joint distribution given in the following
Theorem 3.1'.

(20) P(Vzn =5 Azn =1 [Ezn,zk) —

1 { k-1 141 29 \[( 2(n—y9) D
| PRI PR RELS | PRERE
(fn—lc [ g(g 2 ,g 2 ¥ 2
1 | d+1nek+d) 29 \( 2—=9 \]i0ad
2n l+1( l—l( l+1)]’ ;
7y ol s T =L et
Lh_J2m ofo +E+-1) 2 \n—o -

7‘
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and for the limiting case we obtain : for k ~ al/2 n

lim P

n—>oco V

. Qatyyr oy
- y(2a+y) [2" 22 z(l—z)]dydz, gy =001,
E3 {zl—z}“/“

an,ok| =

k= 0 or a = 0 gives the result (11) in [3].
The joint distribution of Ayniy and yyny, s given by the following

Theorem 3.2.
- 2(n —g)
n—g—i ,
2
leven, | +2k<2g<2n-—1,

1 [ (=132 b 7 1 1) r 2g 41 2(n —g)
Wl (n—g)[g+k+—+1]( —k~——1)(n ’“)]
n—k)L 2 |

(21) P(yana =9, 12n+1 =1]| E2n+1,2k+1) =
1 [ 2k +1+ 2) (2g—l—l)

2n + 1
o 2(%—9)[g+k+—l+2)
n—k 2

l
=
~g 2

S —

e

lodd, 2k +1—-1<2g<2n—-1—1.

\

(Here the no. of positive steps is given by 2 vy, + 1)

The proof of this theorem is quite simple which is similar to that of
theorem 3.1. S~

For k& ~ a}/2n, we obtain the same limiting distribution as in theorem
a.17,

§ 4. Joint distribution of A{) and »{)

We shall prove the following
Theorem 4.1. For r < 2k

(r+DEk—r+1

N(ED ) = X
4 I4+1 l4+1
n—gt— +L)[ gk +]
2 2
X( 29 ; )( 2(”—9)l :
r —1 r —1
g—k+?~—2— . I T
(22) ! odd, r even,
1=13,..., odd (n—k, w» —k+1)

2k—r4+(0l—-1)<2g9g<2n—r—(1—1),
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(22) and
r+l2lc—r+l
NEggy = — AR
2(%—9)[9 J
2
><' 29+ 1 2(n — g)
T 1 o o TE Ay G
(———— -t
! odd, » odd,
l=13,...,0dd (n — k,n —k+ 1)

2k—r+1—-222g=22n—1r—1.
Proof Case I: r even,
Let {s5,8), .-, 8, ..., 8,} be the path of the type EZ%4), and let
P(ry, r) be the flrst T(’)-pomt of the path (fig. 3). Then the section between
P(r, r) and Q(2 », 2 k) is a path of EZY), .

Q(2n,2k)

P(r, r)/\/\

3 R

0(0,0) (ry,0) (2n,0)
Fig. 3.

Attaching a +1 to the end of the section between 0 and P we obtain
a path of H[ 't type. Thus,

2n—-2g—(l1-1)
N(Eé?fz’;l = . N(H;ﬁ ) N(ngg’lrllz)k r) =

]
ry=r
L meigcli=he L D ye - 1Y (—1)2k—r+1
““(ﬁi)(zn—n—m[ +k——+l+1
2 2
2¢ - 2n—r—2¢
= e ol s ol
. +2 2 ¥ 2 2

Using the method of generating functions we obtain the desired result. Similar-
ly, when 7 is odd, the result follows easily. The only interesting point to note
is that the number of steps above the height » will be odd.
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Theorem 4.2. When r = 2 k
(23) N(E(zzrf’zl}c,zk) =

l(2k+l+1; ( 2gl)( 2(n — g) Z)’ N
2gim —g+k+—+1 —— ) —9g—Fk ——
g g 2+]9 2 g 2
- l1=29g<2n—2k—1,

C+1)2k+ 1)) 2¢ 2(n — g)
7 7 , 1 odd,
2gln —g+k+ ]g

l+1<29<2n—2k—1+41.
Proof Case I: [ even. ,
Let {sg, 8, ..., 8, - - -, Sn} be the path of the type EZ&4), and let
P(ry, 2 k) be the first 7™-point (fig. 4). Then the section between P(r,, 2 k)
and Q(2n, 2 k) is a path of the type (B8, | s = +1).

Attaching a +1 to the end of the section between 0 and P we obtain
a path of H2<H!

5 bl DS

D(/‘,Zk)
2k | 0(2/7 2k)

1

e

0
Fig. 4.
Thus
2n—2g—

N(ES k) = 2 N(H?fjll) * N(BGED |84 = + 1) =
=2k

At 29‘2"3{-’2&:—{—1 r+1 l 2n —2g—n
29(9—%) reze 141 (T—l—k) 2(n—%~g (n—g—r—l—i)

2

But by using the method of generating functions we obtain the desired
result.

Similarly, it is easy to show that the desired result follows for odd /.

Theorem 4.3. For r > 2 k

N(BgEY, ) — l(2r—2k+l)l ( 2gl\)( 2n—2g—|—1l )
2¢g|n — r—k+—+1 ——|ln—g—r+k——+41
(24) g( ¥ 2+]g 2\ g + 2+
l even,
1=0,2,4,...,even (n+k —r,n+k—r—+41)

r=2k+1,2k42,...
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For k = 0, i.e. when the particle starting at the origin returns to the origin

at the 2(21,-1:)h step U2 r 4+ 1) ' 2g 2n —2g+1
N(EZT%O,I‘) = 7 ( l\)( 1 ’
2¢g|n — —I—r-{———{—l' g——||ln—9g—r——+1
(25) Ll e 2 2\ >
1=0,2,4,...,even (n —r,n —r + 1)
=l 20

The result (25) is the simpler form of the same result obtained in (14) of [3].
Proof. To prove this theorem we shall consider the path {sy, s, ...,
87, + - +» Syn} Of the type B8] and let P(ry, r) be the first 7")-point (fig. 5).
Then the section between P(r,, r) and Q(2n, 2k) is an BG4 4D path start-
ing in the negative direction. The first section corresponds to an H}'!,-path.

e e T
i
! L
; Q(2n,2k)
Thus @ "1 Fig. 5. 2n
- 2n—2g+2k—r—1+2
N(BGE k) = B N(HFY) - N(BG22 Y |8 = —1) =
r=r
! 2 q 2n—2g+2k—r—1+2 4 1/r 1
29 g == r=r 71+1 G mmh) i
2 2
: (r—2k+1—1) 2fn—2g—r1 '
r r l
n—g—k—24—+— — g —— S
2 2 2 ‘ + 2 +

By using the method of generating functions we obtain the des1red result.
Theorems 4.1, 4.2 and 4.3 lead to the following
Theorem 4.1'. »r < 2 %, 1 odd
PR =g, 0 = 1| Byn, 1) =

1 (r+02k—7r+1 29
2n][( B—gt— +L—|2——1](g+k——+li-l,(g‘k+%*l;1)x

n—k
2(n —9g)
(26) X (n_ o ;l__l)J’ r even,
= g 2 2
[ (T+l)(2k—"+) f 29 +1 i
2n —1 l+1( r 41 l—l)x
L i
' 2 2)9 L 2
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For the limiting distribution we obtain : for k NaVﬁ, r o~ bl/ﬁ

. 9 o
hmP(yé 2y +dy, zx B z+dzlEMk]—

J2n

SR RS MO B P
A

N-—>co

@, b =1050=z=<1\

r =0 or b = 0 gives the result obtained in theorem 3.1".

Theorem 4.2. r =2k

PR =g, 20 = 1| Eyn,0) =

; . (2k+1+1) 2g 2(n — g) -
1) = 7 ] L l even,
29("—9T/»+2+1) 9—5 Bl sl e

LS

n—k 2
el SN L 2lg+1) 2(n — g)l_lﬂ,lodd.
S
- For k ~ a)/2n we obtain the same limiting form as obtained in theorem
o Theorem 4.3'. For r > 2k, | even
(28) POy =g, 20 = 1| Byn ) =

= - 02r— 2k -+ 1) 29 \( 2n—2g+1
Sl T ][2 " — —}—r—k—i——l—l-l)( ~—Z)(fn~ ﬁr—{-k*“l“*‘l\)],
(n»—k g( g 2 2 \g 2 g 2 J

and for the limiting joint distribution we obtain : for k ~ a2 n, r ~ bJ/2n

29 T , Y (2b—2a+y)
( ) —= 3 . y(2 b—2a + y) 6[20 ?;LZ— 2(122)}} ] dy dz,
R —

%) e
P(y_<__ R eytdy, 252 <z+dz'E2n,2k) e
/2w n )

a0 =05 0251,
k=0 or a = 0 gives the result as obtained in theorem 2.2” [3]. It may be
mentioned that the limiting joint distributions of (4,0, Yon | o o),
(AED, Y2 | Byp o), and (A), y$) | B,n) are the same as seen in theorem
31° and (29).
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§ 5. Joint Distribution of 4,, and y,, for an F, -path
We shall prove the following

Theorem 5.1.
(29 +1+4+2) 29 )( 2(n — 9) )+
1

[4g(n~g) g_i_
il

+l(2n—29+l+2)( 29 )( 2(n — g)

349

4g(n —g) 2.
2
l even,
(30) N(Fgh) = £ F
e —le
D2 9
(+Dm+1+1) 2g 2(n — g)
2 g(n — g) ((kl—i—l( l+1
=l
{ odd,
I/ 2 b

Proof. It can be seen from (19) and [3] that when [ is even

n n
N(FGED) =2 N (BSED oy - (BGEPy) + N(EGED),

But it is easy to see that there is a one-to-one correspondence between the
paths EQ#D, and B0, Thus, on substituting the values of different

types of paths, we get the desired result.

The proof for odd / can be given analogously. From (30) there follows

the following

Theorem 5.1'. For the random variables Ay, and y,, the joint distribution

law
(31) P(yzn =10 )‘2n == ll an) ==

LMeg+i+2)( 29 \f2n—g) )\
2| 4g(n — g) ( ! 1)( l)
+l(2n—2g—l—l+2) 29 \( 2n—9g) , 1 even,
- 4 g(n —g) il o B Sy
1[(l+1)(n+l+l) 29 \( 2n—y9) ] l odd
22" 29(n —g) il i+1f)’ |
(Q“T)(""Q‘T)
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holds and for the limiting joint distribution we obtain

limPyg—)E"—<y—{—dy, z§@<z+dz|F2n i
n—sco [/2n n
(32)
1

yl
IR M~ =) 5 e
= {z(l—z)}3/2e dydz - =050 2

lIA

1

)

which is similar to the result obtained by E. Csikr and I. VINCZE (see [6]).
Integration with respect to y from 0 to o leads to the arc sin law [1].

§ 6. Joint distribution of 1{) and »{) for an F,, -path

Theorem 6.1. For r even

i 29 A= ,leven,gzi,—l——f—l,...,
g l r l 2 2
25 ) 4 o T

r+02g+1+1)

28 2 =9 \ 1odd
141 1+ 1 1—1f ’
e,

(33) N(FEED) =

2 Tar
g__l—}—% 1+ 3
Ty Wit
and for r odd
N(F(fng’r")=—l p A st e P
' 2q ! r—1 l
w7 el e e
A
g:;,;—{—l, . ey
(34)
N(Fglgjl,t)):_u 29 +1 2(n —g) , | odd,
’ e —g)}  t—1 r—1 141 :
I | L TR TR
s il
2 b 2 . SR
Proof. » even

when [ is even, it follows from (23) and (24) that

7 —1

> N(EGE),) + N(BSED o0)-
k=g—n+r+ é -1

N(FE) =
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After simplification we can get the required result. Similarly, when 7 is odd;
it can be seen from (22) and (23) that

r -1
L4 T )
N(F@ED) > NEE)) + NESE) )
k=— +1
2

which on simplifying proves the result.
When r is odd
It is clear from (22) and (24) that

r—1

2

N(F3Eh) = N(EZE),) , 1 even,
k=g—n+r+—é— 1
and

r+1 1-1
&8+ 5 — 5

N(FgEh) = 3 N(ESESL), 1 odd.

r+1
e 2

After simplification we obtain the required results. These results lead to the
following

Theorem 6.1’. For r even
PpyR=g, 2 =1| Fy) =

17l 29g\( 2n—2¢g
- 98 é;; I , ] , | even,
(35) g—— |l —g—— ——

2, g 2
;J (r+l)(2g+l_;+)1 2ngr 1)( 2”:291_1)],l0dd.
2g9|n — — N L R s (U o
gfn—g+Z+2 ]g ' s =
From [6] it follows that
r
2 2n
PR =0, X) =0]| Fp) =— ]
o, | Fy) 22,,[ Z;n—{—]] n

and for the limiting joint distribution we obtain: for r~b )2 n

] A0 'y(')
llmP(y§ 2L<y+dy,z§—2"—<z—{—dz|F2n]=
N V2n n

o bh L (Ol0) ,
:l.me 2 2(-dydz b,y=0,0=<z2<1.
a  {z(1—2)}¥

Integration with respect to y from 0 to oo leads to

b2
() 1 T 2(1-2)
Z§Q<z+dZIF2n =—'£—‘_:dz
n Y2l —2)

which corresponds to the result obtained by E. CsAxr and I. VINczE (see [6]).

lim P

n-—>oo
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The result for odd values of » can be written analogously and it is easy
to see that the limiting joint distribution of »{) and ) is equivalent to the
one just obtained above for even r.

§ 7. Distribution of y,, for an £, ,, -path

In 1949, CrUNG and FELLER [7] proved that

k g

2n Jiﬁk
n—k

21

P(ysn = g | Bynyq) = P

2n — 214 ) 1
( n—i ] -1’

But we shall prove the following theorem in an alternative and easier way.
Theorem 7.1.

L SR R 2k (20— 274
(36) N(EGR) = 3 Mreryl "gzk,k+ L.
i i=n2_gi+1 i) 2n—2iln—i—
Proof. Let us consider {so, s, .. ., Sy;» - - -, Syn} an EG#y,-path starting at

the origin and reaching the point (2 n, 2 k) after 2 n steps (see fig. 6).

Q(2n,2k)

0 Nt \\/\/ P(2i0) (2n,0)

Fig. 6.

Let P(2 7, 0) be the last point where the path either touches or crosses the axis.
Then the section from (22, 0) to (27, 2 k) is a path of the type H3k_,;. The
number of paths with any number of positive steps from 0 to 24 is given by

1 21
Lini— ; FELLER [1], p. 72).
= 1(@) ( 11, p. 72)
Thus
n—k
N(EQE,) = 2 Ly - N(H¥,)
i=n—g

proving our theorem 7.1. This leads to the following

1

")

(37) P(yan = g | Bynyor) = N(E%g,%k) .
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For the limiting case we obtain the following: for k~a}2n, e ~y
n

1

Y DI a D 20s
limPlz < 2 <2z + dz | Bypy o] = —J ———¢ (-Ndydz;
noe | n n ) {y(1 —y)}3?

2

making use of the transformation

2a?

it follows that

HmP |z < 2" < 2 + dz | Bynyo 20 —v gy .

n—>oo n

- f v .
V) {v — 2a2}32
2a?
2z
k = 0 or a = 0 gives the uniform distribution (FELLER [1]).

§ 8. Distribution of () for an E,, ,.-path

The following
Theorem 8.1. For r < 2k

r

2(r+2i+1)(2k—r+2i+1)(' 2g +1 )x
q )

c—-k+
N(EEy,) =

i—o 2g9g+1)(2n—2g+ 1) k—}«i_
2
BN . el et s we
n——gwihi 2 2
2
(38) and
gty ek ) .
(26+1)) Z(r4+2i+1)2k—r+ 22+ 1) Dg 42
N(E2n,2k,r) =5 g X
i=0 4(n — g)(g + 1) g—k—}—r_; . q
. 2n — 2¢ ,rodd,g:k—r+l,_,,,n_r+l’
2
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The proof follows from (22) and this leads to

(—2—lh~ - N(EZ8),. ), r even,
n — Ic]
P(?’(zrrz =g | Ezn,zk) = 1
5— - NEGED) , r odd,
| ‘n —k

and for the limiting distribution we obtain: for &~ a)/2 n, r ~b)/2n

(r)
lim P|z < 72n <z-+ dz[Ezn'zk) =
n-—>eo n
(39) 09 _@abiy
V J<b Y(@a—0b+y) =52 | P
2(1 — z)}3/2
a,by=0,0=<z<1,
which can also be seen from (26).
When r = 2k, it follows from (23) that
N(BER) = 3 Rk ( i1 e R B
§&"y = r . _ .
' ‘gn—g+;+z+1] 77V —g—S—i+1
' r
=2 s ———
4 2
which gives
1
(40) POy@h =g | B ) = n N(Egn Sk,ak) -
n—k
It is easy to see that
(41) p(y(2k) =0 | Banai) = _%H—l :
: n+k-+1

by showing the one-to-one correspondence between the paths of the types
EQ) o o and HZtL. For the limiting distribution we obtain: for k~al2n

(2k) _(y+2az2)*
ImiPlz=< Yan_ <z + dz| By o V—— J y -2 ay) e 20-3 dy dz,
N—>oco n 2 {Z(l }3/2
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k=0 or a =0 gives

limP(zéZZ—"<z+dz|E'2n =z
n

n—oo

showing that 7% has an uniform distribution (FELLER [1]).
When r > 2 k, it follows from (24) that
ir—k+d) ([ 29 2n — 29+ 2
e e )
g=12,..,n—r+k,

which gives
1

(42) PO = g | Bang) = —5— N(ES,)
(n ~ kJ
and
o ia
n—r+k—1
P(V‘22=0!E2n,zk)=l— D
(n — k)
which can be proved by showing that
2n 2n
NIED,. ) = - .

For the limiting case we obtain: if k~a|/2n, r~b)/2n

. .},(r)
lim P(Z =<zt dz| Ezn.zk’ =
n—>eo n
= .Y (2b-2atyy
:VEJ y(26—2a+y)e[2a 227 21-2) ]dydz
7 {z(1 — 2)}32

0

&by=0, 0=2=51,
which can also be seen from (29).

§ 9. Distribution of y{) for an F,, -path

For a fixed positive even » I. Vincze [6] has proved that

2n —2¢g
#
("‘”5)

which, in our case, follows easily from (33) by writing
N(F§) = 3 N(FGEP) + 3 N(FGEP).
1 (odd)

I (even)

2
N(FEs) = ( gg
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But, for a fixed positive odd r, we shall prove the following

Theorem 9.1.

gy AW I SR
=1 glg — 1 r—1 :
e R
(43) and '
N(Fge) — 2137'—{—2@—1)( 2g+1 2n —2g¢
2n,r ~ n—g) g_i_i_.l n_g—r__l—i

2

The proof is simple and follows from (34) by putting
N(PgR) = 3 N(FGED),

I (even)
and
N(FgEHD) = > N(FEE) .
1 (odd)
This leads to

1
P(y§) =g | Fyn) =—2;-N(F§?§3),

and

1

Py$) =g| F,) = e N(Fglg’;‘rl)) .

In the second case there are 2 () 4 1 steps above the height .
For the limiting distribution we obtain: for » ~b /2%

(r)
limP z<™ <2 | 42| F,,

Nn—>oo n

B (y+b2)
= 1 e 2 J (y + b2) o0 21:(1—2) dy dz
n {ell —z) Pe

which on putting » = 0 or b = 0 leads to the arc sin law [1].
(Received April 2, 1964)
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0 HEKOTOPbIX KOMBMHATOPHbIX OTHOLIEHHUAX,
CBSI3AHHbIX CUMMETPUUECKHUM CJIYYAWHBIM BJIY)KJIAHUEM

KANWAR SEN

Pe3iome

IMycte # = (#,, ¥, . . .) 10OCHIE0BATEILHOCTh HE3aBUCUMBIX CJIyYaiiHbIX
BeJIMUMH, NPUHUMAIOLMX 3HayeHUst + 1 mu — 1 ¢ paBHBIMU . BePOSITHOCTSIMH.
[lycts, nanee =0 u ;=% + ...+ 9, 1=1,2,....

M3syualores ciaeayromiye BeJIMYMHBI:

A% — uncso Tex uHjeKcoB ¢ < N JUIsl KOTOPBIX MIA 8jq =7 — 1, 8; =7,
Siy=r+1laomg _;=r+18=r84y=r—1;

2 y}? — YHCJIO TeX MHJEKCOB ¢ < N 151 KOTOPBIX Uy 8; > 0 nin 8; =0
HO 8j— > 0.

B §-ax 1, 2, 3 u 4 uccieayiorcsi yCJIOBHbIe pacrpejiesieHust 9TUX BeJIMYnH,
NPU YCIIOBUM 8y = 2k UM 8y = 2k 4 1.

Pacrnipesienenne A onpepensiercst ¢ gopmynamu 4, 7, 9, 11 u 13.

CoBMecTHOe pacrpejiesienie BeJMUYUH A U y BbIBoauTes u3 popmyn 20, 21,
26, 27 u 28.

[NepexojuB K Ipejiesly B TOYHBIX (hopMyJax pacrpejie/ieHuid, MOJyveHbl
npejiesibHble pacrpe/eseHusl.

Otnowenust 31 u 35 §-0B 5 u 6 BKIouawr cebe Oe3ycI0OBHbIE pacrpe/iesieHust
BeJIMUUH A U p. [IpUBOJAATCS: U COOTBETCTBYIOLIME TIpeJiesibHbie pachpeiesieHust.

B §-ax 7 u 8 uccnenyercsi ycnoBHOe pacnpejiesieHue y, a B §-e 9 ee 6e3ycJioB-
HOe W TIIpeJiesibHOe pacIpejiesieHue. -

OjHa yacTb Pe3yJIbTAaTOB MOJyYaloTCsl ¢ MOMOILIO MPOCTOr0 KOMOUHATOP-
1HOT0 MeTOJa M 0JJHO3HAYHOI'0 0TOOpa)KkeHus, a pyrasi 4acTb ¢ MOMOLIbIO MPOU3-
BOJIsIILeH (DYHKIMH.

8 A Matematikai Kutat6 Intézet Kozleményei IX. 3.
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