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ON SERIES OF DILATED FUNCTIONS

ISTVÁN BERKES AND MICHEL WEBER

Abstract. Given a periodic function f , we study the almost everywhere and norm
convergence of series

∑
∞

k=1
ckf(kx). As the classical theory shows, the behavior

of such series is determined by a combination of analytic and number theoretic
factors, but precise results exist only in a few special cases. In this paper we use
connections with orthogonal function theory and GCD sums to prove several new
results, improve old ones and also to simplify and unify the theory.

1. Introduction and preliminary results

Let T = R/Z ≃ [0, 1[, e(x) = exp(2iπx), en(x) = e(nx), n ∈ Z. Let f(x) =
∑

ℓ∈Z
aℓeℓ, a0 = 0,

∑

ℓ∈Z
|aℓ|2 < ∞. The convergence and asymptotic properties of

sums

(1.1)

∞
∑

k=1

ckf(kx)

have been studied extensively in the literature and turned out to be, in general, quite
different from the trigonometric case f(x) = e(x). (For history and recent results, see
e.g. Berkes and Weber [4].) For f(x) = e(x) (and consequently, if f is a trigonometric
polynomial), Carleson’s theorem states the almost everywhere convergence of (1.1)
provided c = {ck, k ≥ 0} ∈ ℓ2(N). Using a simple approximation argument, Gaposhkin
[7] showed that this remains valid if the Fourier series of f is absolutely convergent,
i.e. if

∑

ℓ∈Z
|aℓ| < ∞. In particular, this is the case if f belongs to the Lipα(T) class

for some α > 1/2. For
∑

ℓ∈Z
|aℓ| = ∞ the convergence properties of the sum (1.1) are

much more complicated and satisfactory results exist only in special situations. If the
Fourier series of f is lacunary, i.e. if f(x) =

∑∞
ℓ=1 aℓe(nℓx), where nℓ+1/nℓ ≥ q > 1,

ℓ = 1, 2, . . ., then by a theorem of [7], the analogue of Carleson’s theorem holds for
(1.1) provided the L2 modulus of continuity ω2(f, h) of f satisfies

∞
∑

k=1

ω2(f, 2
−k)√
k

<∞

and this result is sharp. For general f , this criterion becomes false: if the Fourier series
f =

∑

p ape(px) (
∑

p |ap| = ∞) contains only prime frequencies, then the analogue of

Carleson’s theorem is false, even though this class contains Lip (1/2) functions f , see

Berkes [3]. It is also known that the asymptotic distribution of sums
∑N

k=1 ckf(nkx) de-
pends sensitively on the Diophantine properties of the sequence (nk), see e.g. Gaposhkin
[8]. These results, together with Wintner’s classical criterion [28] connecting the be-
havior of (1.1) with boundedness properties of the Dirichet series

∑∞
n=1 an/n

s, show
that the convergence properties of (1.1) are determined by an interplay of analytic and
number theoretic factors. Recent results of Weber [26] and Brémont [5] shed a new
light on the arithmetic background of the problem and led to much improved conver-
gence results. Weber showed that assuming a condition for f only slightly stronger
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2 ISTVÁN BERKES AND MICHEL WEBER

than f ∈ L2, the series (1.1) converges a.e. provided

∞
∑

r=1

( 2r+1
∑

j=2r+1

c2jd(j)(log j)
2

)1/2

<∞,

where d(k) =
∑

d|k 1 is the divisor function. Brémont showed that under |an| =

O(n−s), 1/2 < s ≤ 1, a.e. convergence holds if that the series
∑

k ckfk converges
almost everywhere if for some ε > 0

(1.2)
∑

k

c2k exp
{ (1 + ε)(log k)2(1−s)

2(1− s) log log k

}

<∞,

when 1/2 < s < 1, and if for some ε > 0

(1.3)
∑

k

c2k(log k)
3(log log k)2+ε <∞,

when s = 1.

The purpose of the present paper to give a detailed study of the series (1.1), using
connections with orthogonal function theory and asymptotic estimates for GCD sums
in Diophantine approximation theory. This will not only lead to an extension and
improvement of earlier results, but will also simplify and unify the convergence theory.

The convergence behavior of (1.1) is naturally closely connected with estimating the
quadratic form

(1.4)
∥

∥

n
∑

k=1

ckfk
∥

∥

2

2
=

n
∑

k,ℓ=1

ckcℓ〈fk, fℓ〉.

Let us first study it on a simple class of examples. We follow [18]. Consider the function

(1.5) f(x) =

∞
∑

j=1

sin 2πjx

js
,

where s > 1/2. When s = 1, f(x) = x − [x] − 1/2, where [x] is the integer part of x.
It is known (see [15]) that the corresponding system {fn, n ≥ 1} possesses properties
going at the opposite of those of the trigonometrical system.

A simple calculation yields

〈fk, fℓ〉 =
∞
∑

i,j=1
ik=jℓ

1

isjs
=

(

∞
∑

ν=1

1

ν2s

) (k, ℓ)2s

ksℓs
= ζ(2s)

(k, ℓ)2s

ksℓs
,(1.6)

where ζ is Riemann’s zeta function, and (a, b) denotes the greatest common divisor of
the positive integers a and b. It follows that

∥

∥

n
∑

k=1

ckfk
∥

∥

2

2
= ζ(2s)

n
∑

k,ℓ=1

(k, ℓ)2s

ksℓs
ckcℓ.

Subsequently, the GCD matrix

Mn(s) =
((k, ℓ)2s

ksℓs

)

n×n

is positive definite when s > 1/2. The study of this important class of matrices is much
older, and goes back to Smith’s seminal paper published in 1876 (see [10] and references
therein). Let λn(s) (resp. Λn(s)) denote the smallest (resp. largest) eigenvalue of the
matrix Mn(s). We have the sharp estimate ([18], p. 152), the constants being optimal,

(1.7)
ζ(2s)

ζ(s)2
≤ λn(s) ≤ Λn(s) ≤

ζ(s)2

ζ(2s)
,
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when s > 1. Consequently,

(1.8)
ζ(2s)

ζ(s)2

n
∑

k=1

c2k ≤
∥

∥

n
∑

k=1

ckfk
∥

∥

2

2
≤ ζ(s)2

ζ(2s)

n
∑

k=1

c2k,

when s > 1. This implies that the series
∑

k ckfk converges in mean if
∑

k c
2
k < ∞.

In fact, it follows from Gaposhkin’s theorem cited above (see also [5], p. 826) that this
series converges almost everywhere. Concerning eigenvalues, Wintner ([28], p. 578) has
shown that lim supn→∞ Λn(s) <∞ if and only if s > 1. Further, when 1/2 < s ≤ 1, it
is known that ([18], p. 152)

(1.9) lim inf
n→∞

λn(s) = 0, lim sup
n→∞

Λn(s) = ∞.

Our first observation is that the quadratic form (1.4) can be for s > 0 more conve-
niently reformulated.

Lemma 1.1. Let S = {x1, . . . , xn} be a set of distinct positive integers. We assume
that S is factor closed (d|xi ⇒ d = xj for some j = 1, . . . , n). Let s > 0. Then for all
real y1, . . . , yn,

n
∑

k,ℓ=1

ykyℓ
(xk, xℓ)

2s

xskx
s
ℓ

=

n
∑

i=1

J2s(xi)

{ n
∑

k=1

1xi|xk

yk
xsk

}2

,

where Jε = ξε ∗ µ is the generalized Jordan totient function, ξε(k) = kε for all k ∈ Z,
µ being the Möbius function.

Proof. Immediate since (xk, xℓ)
2s =

∑n
i=1 J2s(xi)1xi|xk

1xi|xℓ
. �

Remark 1.2. Let G and A be n × n matrices, with entries respectively defined by
(G)i,j = (xi, xj)

2s and (A)i,j =
√

J2s(xi)1xi|xj
. By Lemma 4.1 of [13], G = tAA. It

follows that tUGU = tV V where V = AU , namely

(V )i =

n
∑

k=1

(A)i,kuk =
√

J2s(xi)

n
∑

k=1

1xi|xk
uk.

This is another more constructive way to obtain Lemma 1.1.

The set [1, n] being factor closed, by taking y1 = . . . = ym−1 = 0 in the above
Lemma, we get for any s > 0 and all real ym, . . . , yn,

(1.10)
∥

∥

∥

n
∑

k=m

ykfk

∥

∥

∥

2

2
= ζ(2s)

n
∑

i=1

J2s(i)

{ n
∑

k=m

1i|k
yk
ks

}2

.

The theorem below is Brémont’s recent result ([5], Theorem 1.1 (ii)) with only a
slightly better formulation. Let σs(k) =

∑

d|k d
s.

Theorem 1.3. Let 1/2 < s ≤ 1. Let ϕ(k) > 0 and non decreasing. Assume that both
series

∑

k

1

kϕ(k)
,

∑

k

c2kϕ(k)(log k)
2σ1−2s(k)

are convergent. Then the series
∑

k ckfk converges almost everywhere.

By using Gronwall’s estimates ([9] p. 119–122),

(1.11) lim sup
x→∞

σ1(x)

x log log x
= eλ, lim sup

x→∞

log
(σα(x)

xα

)

(log x)1−α

log log x

=
1

1− α
, (0 < α < 1)

where λ is Euler’s constant, and the fact that σ−α(x) = x−ασα(x), we easily recover
(1.2) and (1.3). As we shall see later, the condition in Theorem 1.3 can still be weak-
ened.

Brémont’s proof is based onMöbius orthogonalization and an adaptation of Rademacher-
Menshov’s theorem. Schur’s theorem and the previous lemma allow to get it shortly.



4 ISTVÁN BERKES AND MICHEL WEBER

Proof. Let n ≥ m ≥ 1. In the following calculation concerning the norm
∥

∥

∑n
k=m ckfk

∥

∥

2
,

we may let ck = 0 if k /∈ [m,n]. Then

ζ(2s)−1
∥

∥

n
∑

k=m

ckfk
∥

∥

2

2
=

n
∑

i=1

J2s(i)

{ n
∑

k=m

1i|k
ck
ks

}2

.

≤
n
∑

k,ℓ=1

1

ksℓs

{ n
∑

i=1

J2s(i)

i2s
|cki||cℓi|

}

≤
n
∑

k,ℓ=1

1

ksℓs

(

n
∑

i=1

J2s(i)

i2s
c2ki

)1/2( n
∑

i=1

J2s(i)

i2s
c2ℓi

)1/2

=

{ n
∑

k=m

1

ks

(

n
∑

i=1

J2s(i)

i2s
c2ki

)1/2
}2

≤
{ n
∑

k=1

1

ksψ(k)

}{ n
∑

k=m

ψ(k)

ks

(

n
∑

i=1

J2s(i)

i2s
c2ki

)

}

.

Now, choosing ψ(k) = k1−sϕ(k), we have

n
∑

k=m

ψ(k)

ks

n
∑

i=1

J2s(i)

i2s
c2ki =

∑

1≤ν≤n2

c2ν
∑

k|ν
m≤k≤n

ψ(ν/k)

(ν/k)s
J2s(i)

i2s

≤
∑

m≤ν≤n

c2ν
∑

κ|ν
ϕ(κ)κ1−2s ≤

∑

m≤ν≤n

c2νϕ(ν)σ1−2s(ν).

By combining, we find for all n ≥ m ≥ 1,

∥

∥

n
∑

k=m

ckfk
∥

∥

2

2
≤ ζ(2s)

{ n
∑

k=1

1

kϕ(k)

}{ n
∑

k=m

c2kϕ(k)σ1−2s(k)

}

,(1.12)

Assume that the series
∑

k
1

kϕ(k) converges. Let f̃k = fk/(Cs,ϕϕ(k)σ1−2s(k))
1/2

where Cs,ϕ = ζ(2s)
∑

k≥1
1

kϕ(k) . Then
∥

∥

∑n
k=m ckf̃k

∥

∥

2

2
≤ ∑n

k=m c2k. In view of Schur’s

Lemma (Lemma 3.10), this implies that these functions can be extended to an or-
thonormal system on a bounded interval X of the real line including [0, 1[, and en-
dowed with the normalized Lebesgue measure. By Rademacher-Menshov’s theorem,
the series

∑

k ckf̃k converges almost everywhere once the series
∑

k c
2
k(log k)

2 con-
verges. Equivalently, the series

∑

k γkfk converges almost everywhere once the series
∑

k γ
2
kϕ(k)(log k)

2σ1−2s(k) converges, as claimed. �

Remark 1.4. The monotonicity of the L2 norm with respect to Fourier coefficients
yields that Theorem 1.3 remains valid for f(x) =

∑∞
j=1 aj sin 2πjx, assuming that

|aj | = O(j−s), 1/2 < s ≤ 1.

Remark 1.5. Schur’s Lemma implies much more. The series
∑

k ckfk converges almost
everywhere for any coefficient sequence {ck, k ≥ 1} such that

{

ck
(

ϕ(k)σ1−2s(k)
)1/2

, k ≥ 1
}

(1.13)

is universal, according to Definition 2.3.

Remark 1.6. Estimate (1.12) indicates that

∣

∣

∣

n
∑

k,ℓ=m

ckcℓ
(k, ℓ)2s

ksℓs

∣

∣

∣
≤ C(ϕ)

n
∑

k=m

c2kϕ(k)σ1−2s(k),

assuming C(ϕ) =
∑∞

k=1
1

kϕ(k) < ∞. Take s = 1 and let 1 ≤ κ1 < κ2 < . . . < κr be

integers. Choose m = κ1, n = κr and ck = 1, if k = κj for some 1 ≤ j ≤ r, and ck = 0
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otherwise. Letting also ϕ(x) = (log x)(log log x)1+ε, ε > 0, and using (1.11), we find
that

r
∑

i,j=1

(κi, κj)
2

κiκj
≤ Cε

r
∑

i=1

(log κi)(log log ki)
2+ε.

However, this is far from being optimal. Gál’s estimate ([7], Theorem 2) indeed implies

(1.14)

r
∑

i,j=1

(κi, κj)
2

κiκj
≤ Cr(log log r)2.

Before going further, recall that by Wintner’s fundamental theorem, the series
∑∞

n=1 cnf(nx) converges in the mean for all c ∈ ℓ2 iff

(1.15)

∞
∑

n=1

an/n
s and

∞
∑

n=1

bn/n
s are regular and bounded for ℜs > 0.

The following result ([4], Theorem 3.1) concerns the situation when condition (1.15)
fails.

Theorem 1.7. Let f ∈ Lipα(T), 0 < α ≤ 1,
∫

T
f(t)dt = 0 and assume that (1.15)

is not valid. Then for any εk ↓ 0 there exists c ∈ ℓ2 and a sequence (nk) of positive
integers satisfying

nk+1/nk ≥ 1 + εk (k ≥ k0)

such that the series
∑

k ckf(nkx) is a.e. divergent.

Remark 1.8. If (nk) grows exponentially (i.e. nk+1/nk ≥ q > 1), then
∑∞

k=1 ckf(nkx)
converges a.e. for any c ∈ ℓ2 by Kac’s theorem [16]. Thus Theorem 1.7 is sharp. It
also remains true with minor modifications in the proof, if instead of f ∈ Lipα(T)
we assume only f ∈ L2(T). For the class of functions defined in (1.5), Brémont has
recently showed a similar result in [5].

In the general case the following quadratic form appears:

∑

k,ℓ∈K

ckcℓ
(k, ℓ)

ℓ ∨ k .

Since (k,ℓ)
ℓ∨k ≤ (k,ℓ)√

kℓ
, this may be regarded as a continuation of the limiting case s = 1/2.

Recall some basic facts concerning quadratic forms. Let Un denote the unit sphere
of Rn and let A = {ai,j}ni,j=1 be an n × n real symmetric matrix with characteristic
roots λ1, . . . , λn. It is well-known that the set of values assumed by the quadratic form
Q(x) =

∑n
i,j=1 xixjai,j when x = (x1, . . . , xn) ∈ Un, coincides with the set of values

assumed by
∑n

i=1 λiy
2
i on Un. See [2], p. 39 and Chapter 4.

Hence we get

(1.16)
(

n

inf
i=1

λi
)

n
∑

i=1

x2i ≤
∣

∣Q(x)
∣

∣ ≤
( n
sup
i=1

λi
)

n
∑

i=1

x2i .

This way to estimate Q(x) strongly relies on a good knewledge of the extremal eigen-
values. The classical weighted estimate below is often more convenient.

Lemma 1.9. For any system of complex numbers {xi} and {αi,j},
∣

∣

∣

∑

1≤i,j≤n
i6=j

xixjαi,j

∣

∣

∣
≤ 1

2

n
∑

i=1

x2i

(

n
∑

ℓ=1
ℓ 6=i

(|αi,ℓ|+ |αℓ,i|)
)

.
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Proof. We have

∣

∣

∣

∑

1≤i<j≤n

xixjαi,j

∣

∣

∣
≤

∑

1≤i<j≤n

(x2i + x2j
2

)

|αi,j | ≤
1

2

n
∑

i=1

x2i

(

∑

i<ℓ≤n

|αi,ℓ|+
∑

1≤ℓ<i

|αℓ,i|
)

.

Operating similarly for the sum
∑

1≤j<i≤n xixjαi,j gives the result. �

This suggests to attach to K a function ϑK defined by

(1.17) ϑK(k) =
∑

ℓ∈K
ℓ 6=k

(ℓ, k)

ℓ ∨ k .

The associated coefficient

ϑK = sup
k∈K

ϑK(k)

will serve as a measure of the arithmetical complexity of K. For instance, ϑK is small
if K is a set of prime numbers, and uniformly bounded over all subsets K of a given
chain, as we shall see. A sequence N = {nk, k ≥ 1} is a called a chain if nk|nk+1 for
all k. There are examples for which ϑK(k) = o(1), if k is large.

Example 1. (Prime sequence) Take K = P ∩ [N/2, N ] where P denotes the sequence
of consecutive primes. Let π(n) = ♯{p prime, p ≤ n} be the prime numbers function.
Then

∑

N/2≤ℓ<k
ℓ∈P

(ℓ, k)

ℓ ∨ k ≤ π(k)

k
≤ C

log k
,

and
∑

k<ℓ≤N
ℓ∈P

(ℓ, k)

ℓ
=

∑

k<ℓ≤N
ℓ∈P

1

ℓ
≤ 2

π(N)

N
≤ C

logN
≤ C

log k
.

So that for all k ∈ K,

(1.18) ϑP∩[N/2,N ](k) ≤ C/log k.

It is easy to extrapolate from this that ϑK can be on examples as small as wished.
There are also important classes of sequences for which ϑK is uniformly bounded over
all of its finite parts K.

Example 2. (Hadamard gap sequences) Consider a sequence N = {nk, k ≥ 1} satisfying
the Hadamard gap condition

(1.19)
nk+1

nk
≥ q > 1.

Let K = {nk, k ∈ K}. Then
(1.20) sup

K
sup
ℓ∈K

ϑK(ℓ) = τ(q) <∞.

Indeed, for ℓ ∈ K,

∑

k∈K
k<ℓ

(nk, nℓ)

nℓ ∨ nk
≤

∑

k<ℓ

nk ∧ nℓ

nℓ ∨ nk
=

∑

k<ℓ

nk

nℓ
≤

∑

k<ℓ

q−(ℓ−k) ≤ Cq <∞.

Similarly
∑

k∈K
k>ℓ

(nk,nℓ)
nℓ∨nk

≤ ∑

k>ℓ
nk∧nℓ

nℓ∨nk
=

∑

k>ℓ
nℓ

nk
≤ ∑

k>ℓ q
−(k−ℓ) ≤ Cq < ∞. As Cq

depends on q only. This yields (1.20).

Example 3. (Squarefree numbers) Let G be the set of squarefree numbers generated by
some increasing sequence 2 ≤ p1 < p2 < . . . of prime integers satisfying the following
condition

(1.21) µ =

∞
∑

i=1

1

pi
< 1.
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Take K ⊂ G. Writing in what follows ℓ = λd, k = κd with d = (ℓ, k), we easily get

(1.22) ϑK(k) =
∑

ℓ∈K
ℓ 6=k

(ℓ, k)

ℓ ∨ k ≤ 1

κ

∑

λ≤κ

1 +
∑

λ∈G
λ>k

1

λ
≤ C +

∑

pi>k

1

pi
+

∑

pipj>k

1

pipj
+ . . . ,

since the number of squarefree integers less than x is of order 6x/π2. Now

∑

pi>k

1

pi
+

∑

pipj>k

1

pipj
+ . . . ≤ µ+ µ2 + . . . <∞.

Hence

sup
K⊂G

ϑK <∞.

A first basic mean estimate obtained in this work (the proof will be given in Section 3)
is the following.

Lemma 1.10. For any finite sequences of reals {aj, j ∈ J}, {ck, k ∈ K},
∥

∥

∑

k∈K

ck
∑

j∈J

ajekj
∥

∥

2

2
≤ C|J | sup

j∈J
|aj |2

∑

k∈K

c2k max(1, ϑK(k)).

A general bound for ϑK(k) can be provided by using Pillai’s arithmetical func-

tion P (k), which is defined by P (k) =
∑k

d=1(d, k). Recall that we have P (k) =
∑

d|k dφ(k/d), so that the arithmetic mean of (1, k), . . . , (k, k) is given by

(1.23) A(k) =
P (k)

k
=

∑

κ|k

φ(κ)

κ
.

Lemma 1.11. For all finite sets K of integers and all k ∈ K,

(1.24) ϑK(k) ≤ C log(
eK+

k
)A(k).

where C is an absolute constant, and K+ (resp. K−) denotes the largest (resp. small-
est) term of K.

This follows immediately from Lemma 3.1 below. Example 1 shows that (1.24) is
not always optimal. Estimate (1.24), however, implies that if M = {mk, k ≥ 1} is a
sequence of mutually coprime integers, then

sup
N

sup
K⊂[ρN,N ]

ϑK = Cρ <∞.

Remark 1.12. The main orders of A(k) are well known. As C k
log log k ≤ φ(k) ≤ k, the

function A(k) always satisfies

d(k)

log log k
≤ A(k) ≤ d(k),

where d(k) denotes the number of divisors of k. As to the maximal order, we have
Chidambaraswamy and Sitaramachandrarao estimate,

(1.25) lim sup
n→∞

logA(n) log logn

logn
= log 2.

This is well-known for the function d(n) instead of A(n). We refer to Tóth’s recent
survey [25] on Pillai’s function.

For the class of examples previously considered, we have the following
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Proposition 1.13. Let K be a finite set of integers. For any k ∈ K,

∑

ℓ∈K
ℓ 6=k

(k, ℓ)2s

ksℓs
≤

{

2
(

log K+

K−

)

σ−1(k) if s = 1,

Cs2
sks−1

( ∫K+

K−

du
us

)

σ1−2s(k) if s < 1.

Thus
∑

ℓ∈K
ℓ 6=k

(k,ℓ)2s

ksℓs ≤ 2sM1−sσ1−2s(k), if K+ ≤MK−.

Proof. Let s = 1. As for λ ≥ 1, 1
λ ≤ min

( ∫ λ

λ−1
dt
t , 2

∫ λ+1

λ
dt
t ), we have

∑

ℓ∈K
ℓ 6=k

(k, ℓ)2

kℓ
≤

∑

d|k

1

(k/d)

∑

K−/d≤λ≤K+/d

ℓ 6=k

1

λ

=
∑

d|k

1

(k/d)

{

∑

K−/d≤λ<k/d

1

λ
+

∑

k/d<λ≤K+/d

1

λ

}

≤
∑

d|k

1

(k/d)

{

2

∫ k/d

K−/d

dt

t
+

∫ K+/d

k/d

dt

t

}

=
∑

d|k

1

(k/d)

{

2

∫ k

K−

du

u
+

∫ K+

k

du

u

}

≤ 2
∑

d|k

1

(k/d)

∫ K+

K−

du

u
.

Similarly, when 0 < s < 1,

∑

ℓ∈K
ℓ 6=k

(k, ℓ)2s

ksℓs
≤

∑

d|k

1

(k/d)s

{

∑

K−/d≤λ<k/d

1

λs
+

∑

k/d<λ≤K+/d

1

λs

}

≤
∑

d|k

1

(k/d)s

{

2sds−1

∫ k

K−

du

us
+ ds−1

∫ K+

k

du

us

}

≤ 2s
{
∫ K+

K−

du

us

}

∑

κ|k

(k/κ)s−1

κs
= 2sks−1

{
∫ K+

K−

du

us

}

σ1−2s(k).

�

This implies when combined with Lemma 1.9, if K+ ≤ CK−,
∥

∥

∑

k∈K

ckfk
∥

∥

2

2
≤ Cs

∑

k∈K

σ1−2s(k)c
2
k,(1.26)

when 1/2 < s ≤ 1, which is slightly more precise than (1.12). In the case s = 1/2, not
covered by the class of functions (1.5), it also gives

(1.27)
∑

k,ℓ∈K

ckcℓ
(k, ℓ)√
kℓ

≤ C
∑

k∈K

d(k)c2k.

2. Main Results

We now state the main results of this paper. We first consider mean convergence.
Let f ∈ L2. Define for t > 0, and any sequence c = {ck, k ≥ 0} of reals,

St(c) =
∑

k∈N
k≤t

ckfk.

Theorem 2.1. Let f ∼ ∑

j ajej and assume that the following condition is satisfied:
For some real M > 1,

(2.1) L =

∞
∑

v=0

Mv
(

sup
Mv≤j<Mv+1

a2j
)

<∞.
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a) Let N = {nk, k ≥ 1} be an increasing sequence of positive integers satisfying for
any µ > 1,

sup
j≥0

ϑN∩[µj ,µj+1[ <∞.(2.2)

Then there exists a constant C such that for any c ∈ ℓ2,

(

∑

j≥0

∥

∥Sµj+1 (c)− Sµj (c)
∥

∥

2

2

)1/2

≤ C‖c‖2.

b) Assume that for any µ > 1,

ϑN∩[µj ,µj+1[ = o(1) j → ∞.(2.3)

If the coefficient sequences a, c have each constant signs, then

‖c‖2 ≤
(

∑

j≥0

∥

∥Sµj+1 (c)− Sµj (c)
∥

∥

2

2

)1/2

≤ C‖c‖2.

Remark 2.2. By (1.24), condition (2.2) is satisfied as soon as

sup
k∈N

A(k) <∞.

We also establish new almost everywhere convergence results.

Definition 2.3. We say that a sequence of coefficients c is universal if for any or-
thonormal system Φ on a bounded interval, the series

∑∞
k=1 ckϕk converges a.e.

Typically, c is universal if the series
∑

k c
2
k log

2 k converges (Rademacher-Menshov

theorem), or if the series
∑

k c
2
k(log |ck|−1)1+h(log k)1−h converges for some 0 ≤ h < 1

(Tandori’s theorem [22]). And the condition
∑

k c
2
k(log |ck|−1)2 < ∞, with ck 6= 0,

ck → 0 is necessary for c to be universal, see [21].

Theorem 2.4. Assume that there exist a non-increasing sequence of positive reals
{ε(j), j ≥ 1} and an increasing sequence of positive integers {jr, r ≥ 1}, such that

A =
∑

|aℓ|>ε(ℓ)

|aℓ| <∞, B =
∑

r

j
1/2
r+1ε(jr) <∞.(2.4)

Let 1 ≤ k1 < k2 < . . . be an increasing sequence of integers, which we denote by K.
Then the series

∑

n≥1 cnfkn converges a.e. for any coefficient sequence {cn, n ≥ 1}
such that

{

cn max
(

1, ϑK(kn)
1/2

)

, n ≥ 1
}

(2.5)

is universal.

b) In particular, the same conclusion holds if

A =
∑

|aℓ|>ε(ℓ)

|aℓ| <∞, B1 =
∑

j

ε2(j) <∞.(2.6)

in place of (2.4).

Remark 2.5.
(i) If condition (2.4) is satisfied for jr = M r, for some M > 1, then B < ∞ means
∑

rM
r/2ε(M r) <∞, which is a stronger requirement than

∑

rM
rε2(M r) < ∞. And

this is equivalent to B1 <∞ in (2.6). Hence (2.4) can be replaced by the much weaker
condition (2.6) when jr is geometrically growing.
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(ii) Suppose now that f satisfies assumption (2.1). Then (2.6) is fulfilled. Indeed,
choose

εℓ = sup
Mr≤|j|≤Mr+1

|aj |, M r ≤ ℓ ≤M r+1, r = 0, 1, . . .

The first requirement in (2.6) is trivially satisfied since the summation index is empty,
whereas the second is, by (i), equivalent to (2.1).

(iii) Let f ∈ Lipα(T), α > 1/4. Then f satisfies condition (2.6). Indeed, it is well-
known that if f ∈ Lipα(T), 0 < α ≤ 1, then

∑

2r<j≤2r+1 a2j ≤ C2−2rα. See [29],

inequalities (3·3) p. 241. Pick a real β such that 2α > β > 1/2 and take ε(j) = j−β ,
M = 2. Condition (2.6) is satisfied with this choice since

∑

j ε
2(j) <∞ and

∑

2r<j≤2r+1

|aj |>ε(j)

|aj | ≤
∑

2r<j≤2r+1

|aj |2
ε(j)

≤ C2rβ2−2rα = C2−r(2α−β),

so that A <∞.

(iv) For any α > 0, there exists f ∈ L2(T),
∫

T
f = 0, such that f /∈ Lipα(T) but f

satisfies condition (2.6). Such an f can be built as follows. Let ψ : R+ → R
+ be such

that
{

ψ(r)2−r/2 ↓ 0 , ψ(r)2αr ↑ ∞ as r ↑ ∞,
∑

r ψ
2(r) <∞.

Let ε : R+ → R
+ be decreasing and defined by

ε(x) =

{

ψ(r)2−r/2 if 2r < j ≤ 2r+1, r even,

linear otherwise.

We choose f such that its Fourier coefficients satisfy










aj = ψ(r)2−r/2 if 2r < |j| ≤ 2r+1, r even,
∑

r odd

∑

2r<|j|≤2r+1

|aj| <∞.

Clearly
∑

2r<|j|≤2r+1 |aj |
2r(

1
2−α)

= C
ψ(r)2

r
2

2r(
1
2−α)

= ψ(r)2αr ↑ ∞.

Hence, in view of [29], inequality (3·4) p. 241, f /∈ Lipα(T). Further,
∑

2r<|j|≤2r+1

|aj |2 = 2rψ2(r)2−r = ψ2(r),

when r is even. Thus
∑

j∈Z∗
|aj |2 =

∑

r≥0

∑

2r<|j|≤2r+1

|aj |2 ≤
∑

r even

ψ2(r) +
∑

r odd

∑

2r<|j|≤2r+1

|aj | <∞,

by assumption. Moreover, by construction,
∑

2r<|j|≤2r+1

|aj |>ε(j)

|aj | = 0,

when r is even. It follows that
∑

|aj |>ε(j)

|aj | =
∑

r odd

∑

2r<|j|≤2r+1

|aj |>ε(j)

|aj | ≤
∑

r odd

∑

2r<|j|≤2r+1

|aj | <∞,

by assumption. Now
∑

j

ε(j)2 ≤ 3
∑

r even

2rψ2(r)2−r = 3
∑

r even

ψ2(r) <∞.



ON SERIES OF DILATED FUNCTIONS 11

Therefore condition (2.6) is satisfied, as claimed.

We will also obtain the following useful result, as a combination of the above Theo-
rem with Lemma 1.11.

Corollary 2.6. Let 1 ≤ k1 < k2 < . . . be an increasing sequence of integers. Assume
that (2.6) is satisfied and that

∑

n

c2nA(kn)(log n)
2 <∞.(2.7)

Then the series
∑

n cnfkn converges a.e.

By Remark 2.5-ii), the same conclusions are reached if f satisfies assumption (2.1).

Remark 2.7. As A(k) ≤ d(k), (2.12) is satisfied whenever
∑

n

c2nd(kn)(log n)
2 <∞.(2.8)

Consequently, under condition (2.8) the series
∑

n≥1 cnfn converges a.e. for any f ∈
Lipα(T), α > 1/4. The presence of the factor d(kn) is important. Replacing d(j) by
the classical bound: for some c0 > 2,

(2.9) d(j) = O
(

c
log j/ log log j
0

)

,

gives rise to a much weaker result. This strictly includes a recent result obtained
by Aistleitner [1] who proved by using a fine diophantine estimate due to Dyer and
Harman, that the condition

∞
∑

k=1

c2k exp
( 2 log k

log log k

)

<∞,

is sufficient for the convergence almost everwhere of the series
∑∞

k=0 ckf(kx). It is
interesting to compare the multiplicative factor of c2k in the above with the shape of
the bound of the divisor function in (2.9). This can also be deduced from Theorem 1.1
in [26] published shortly afterward, and which was based on properties of the Erdös-
Hooley function

∆(v) = sup
u∈R

∑

d|v
x<d≤ex

1.

In place of condition (2.4), we assumed that f satisfies

(2.10)
∑

ν≥1

a2ν∆(ν) <∞.

This is fulfilled if f ∈ Lipα(T), α > 1/4, but also if aν = O(ν−β), β > 1/2. Conditions
(2.4) and (2.10) are, however, hardly comparable. As is well known, ∆ has a slower
mean behavior than d. Indeed,

1

x

∑

v≤x

d(v) ∼ x, while
1

x

∑

n≤x

∆(n) = O
(

ec
√
log log x·log log log x

)

for a suitable constant c > 0; see [23]. Hence it follows by partial summation that if
f has monotonic Fourier coefficient sequence, condition (2.10) can be replaced by the
considerably much weaker condition

(2.11)
∑

ν≥1

a2νe
c
√
log log ν·log log log ν <∞.

When |aj | = O(j−s), s > 1/2, the above corollary can be much improved.
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Theorem 2.8. Let 1 ≤ k1 < k2 < . . . be an increasing sequence of integers. Let
f(x) =

∑∞
j=1 aj sin 2πjx and assume that |aj | = O(j−s), s > 1/2. Assume that

∑

n

c2nσ1−2s(kn)(log n)
2 <∞.(2.12)

Then the series
∑

n cnfkn converges a.e.

Our paper is organized as follows. In Section 3, we collect estimates of number
theoretical type, some estimates for quadratic forms and tools from the theory of
orthogonal sums. The remainding sections are devoted to the proofs of the main
results.

3. Auxiliary Results

Lemma 3.1. For any positive integers k ≤ N ,

∑

1≤ℓ≤N
ℓ 6=k

(ℓ, k)

ℓ ∨ k ≤ C log(
eN

k
)
∑

κ|k

φ(κ)

κ
,

where C is an absolute constant.

Proof. Let k < ℓ ≤ N . Then,

∑

k<ℓ≤N

(ℓ, k)

ℓ
≤

∑

d|k

∑

k/d<λ<N/d
(λ,k/d)=1

1

λ
,

where we write ℓ = λd, k = κd, (ℓ, k) = d. To estimate the inner sum, we use van Lint
and Richert estimate ([17], Lemma 2): for x ≥ 1 and k such that P+(k) ≤ x, where
P+(k) is the largest prime factor of k, we have

(3.1)
∑

1≤m≤x
(m,k)=1

1 ≤ C
φ(k)

k
x.

By [24] p. 3, if an are complex numbers, A(t) =
∑

n≤t an and b ∈ C1([1, x]),

(3.2)
∑

1≤n≤x

anb(n) = A(x)b(x) −
∫ x

1

A(t)b′(t)dt,

Take aλ = 0 if 1 ≤ λ < k/d and aλ = χ{(λ, k/d) = 1} if λ ≥ k/d, b(t) = t−1. Then
A(t) = 0 if t < k/d. Now if k/d ≤ t ≤ N/d, obviously P (k/d) ≤ t. And (3.1) applies
to give

A(t) ≤ C
φ(k/d)

(k/d)
t.

Therefore

∑

k/d<λ<N/d
(λ,k/d)=1

1

λ
=

A(N/d)

(N/d)
+ s

∫ N/d

k/d

A(t)
dt

t2

≤ A(N/d)

(N/d)
+ C

φ(k/d)

(k/d)

∫ N/d

k/d

dt

t

≤ C
( 1

(N/d)

φ(k/d)

(k/d)
(N/d) +

φ(k/d)

(k/d)
log(N/k)

)

≤ C
φ(k/d)

(k/d)
log(

eN

k
).(3.3)
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Henceforth,
∑

k<ℓ≤N

(ℓ, k)

ℓ
≤ C log(

eN

k
)
∑

d|k

φ(k/d)

(k/d)
= C log(

eN

k
)
∑

κ|k

φ(κ)

κ
.(3.4)

Now, similarly by writing ℓ = λd, k = κd, (ℓ, k) = d, we get

∑

1≤ℓ<k

(ℓ, k)

ℓ ∨ k =
∑

d|k

1

(k/d)

∑

1
d
≤λ<k/d

(λ,κ)=1

1 ≤
∑

d|k

φ(k/d)

k/d
=

∑

κ|k

φ(κ)

κ
.

Consequently,
∑

1≤ℓ≤N
ℓ 6=k

(ℓ, k)

ℓ ∨ k ≤ C log(
eN

k
)
∑

κ|k

φ(κ)

κ
.

The proof is now complete. �

We pass to mean estimates. Lemma 1.9 implies

∣

∣

∣

n
∑

i,j=1

xixjαi,j −
n
∑

i=1

x2iαi,i

∣

∣

∣
≤ 1

2

n
∑

i=1

x2i

(

n
∑

ℓ=1
ℓ 6=i

(|αi,ℓ|+ |αℓ,i|)
)

,

which is extremely useful. Another simple consequence concerns Riesz sequences.

Definition 3.2. A sequence of vectors {vi, i ≥ 1} in a Hilbert space H is called a Riesz
sequence if there exist positive constants C1, C2 such that

C1

(

n
∑

i=1

|xi|2
)

≤
∥

∥

∥

n
∑

i=1

xivi

∥

∥

∥

2

≤ C2

(

n
∑

i=1

|xi|2
)

,

for all sequences of scalars {xi, 1 ≤ i ≤ n}.
Theorem 3.3. Let v = {vi, i ≥ 1} be a sequence of vectors in a Hilbert space H such
that

(3.5) sup
i≥1

∑

j 6=i

|〈vi, vj〉| < inf
i≥1

‖vi‖2.

Then {vi, i ≥ 1} is a Riesz sequence.

Proof. Put

b(v) = sup
i≥1

∑

j≥1
j 6=i

|〈vi, vj〉|.

By taking αi,j = 〈vi, vj〉 in Lemma 1.9, we get

∣

∣

∣

∥

∥

∥

n
∑

i=1

xivi

∥

∥

∥

2

−
n
∑

i=1

x2i ‖vi‖2
∣

∣

∣
≤ 1

2

n
∑

i=1

x2i

(

n
∑

ℓ=1
ℓ 6=i

(|αi,ℓ|+ |αℓ,i|)
)

≤ b(v)

n
∑

i=1

x2i .

Hence,

(

inf
i≥1

‖vi‖2 − b(v)
)

n
∑

i=1

x2i ≤
∥

∥

∥

n
∑

i=1

xivi

∥

∥

∥

2

≤
(

sup
i≥1

‖vi‖2 + b(v)
)

n
∑

i=1

x2i .

�

Hedenmalm, Lindquist and Seip [11], [12] proved that if g(t) ∼ ∑∞
k=1 ϕk cos 2πkt,

g ∈ L2(T), then {gn, n ≥ 1} (recall that gn(x) = g(nx)) is a Riesz sequence in L2(T)
if and only if the Dirichlet series

∑∞
n=1 ϕnn

−s is analytic and bounded away from 0
and ∞ in the whole right half-plane ℜz > 0, i.e.

(3.6) δ ≤
∣

∣

∣

∞
∑

n=1

ϕnn
−σ−it

∣

∣

∣
≤ ∆, for σ > 0,
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with some positive constants δ and ∆.

In view of Theorem 3.3, we deduce that a sufficient condition for (3.6) to be satisfied
is

(3.7) sup
i≥1

∑

j≥1
j 6=i

|〈gi, gj〉| < ‖g‖2.

Concerning the class of examples considered in the Introduction, we deduce

Corollary 3.4. Let f be defined as in (1.5) with 1/2 < s ≤ 1. Let {ni, i ≥ 1} be
increasing and satisfying

sup
i≥1

∑

j≥1
j 6=i

(ni, nj)
2s

ns
in

s
j

< 1.(3.8)

Then {fni , i ≥ 1} is a Riesz sequence in L2(T).

Remark 3.5. Brémont ([5] Theorem 1.2-i)) showed, using Möbius orthogonalization,
that the sequence {fnk

, k ≥ 1} is a Riesz sequence in L2(T) whenever

nk+1/nk ≥ c > 1.

If c > 3, this follows immediately from Corollary 3.4 since

∑

j≥1
j 6=i

(ni, nj)
2s

ns
in

s
j

= 2
∑

j>i

(ni, nj)
2s

ns
in

s
j

≤ 2
∑

j>i

(ni

nj

)s ≤ 2
∑

j>i

c−(j−i) =
2

c− 1
< 1.

For c > 1, this is however a special case of Kac’s result [16] later extended by Gaposhkin,
since the square modulus of continuity of f

ω2(δ, f) = sup
0<h≤δ

{

∫ 1

0

|f(x+ h)− f(x)|2dx
}1/2

satisfies ω2(δ, f) = O(δε) for some ε > 0. Let indeed f(x) =
∑∞

m=1
sin 2πmx

ms , where
s > 1/2. Using formula (3.2) in [29] p.241, gives

∫ 1

0

|f(x+ h)− f(x)|2dx = C

∞
∑

m=1

sin2(πmh)

m2s
≤ C

∞
∑

m=1

(mh ∧ 1)

m2s
≤ Ch2s−1.

We now give the

Proof of Lemma 1.10. Putting Zj =
∑

k∈K ckejk, we have
∥

∥

∑

j∈J

aj
∑

k∈K

ckejk
∥

∥

2

2
=

∥

∥

∑

j∈J

ajZj

∥

∥

2

2
=

∑

j∈J

a2j
∥

∥Zj

∥

∥

2

2
+

∑

i6=j
i,j∈J

aiaj〈Zi, Zj〉

=
∑

j∈J

∑

k∈K

a2jc
2
k +

∑

k,ℓ∈K

ckcℓ
∑

i6=j
i,j∈J

aiaj1{jk=iℓ}.(3.9)

Let a = J−, b = J+. Fix k, ℓ ∈ K. The equation jk = iℓ, i 6= j, i, j ∈ J , being
impossible for k = ℓ, let k < ℓ. Writing d = (k, ℓ), k = k′d, ℓ = ℓ′d, the equation
becomes jn′

k = iℓ′. General solutions are j = uℓ′, i = uk′. Then

a ≤ j ≤ b ⇒ ad

ℓ
=
a

ℓ′
≤ u ≤ b

ℓ′
=
bd

ℓ
.

Operating similarly for i, it follows that

(k, ℓ)

k
a ≤ u ≤ (k, ℓ)

ℓ
b.

Thus solutions exist only if ℓ and k are such that

ℓ

k
≤ b

a
.



ON SERIES OF DILATED FUNCTIONS 15

And in that case, their number is bounded by

(k, ℓ)
(b

ℓ
− a

k

)

.

Thus
∣

∣

∣

∑

i6=j
i,j∈J

aiaj1{jk=iℓ}
∣

∣

∣
≤ sup

j∈J
a2j(k, ℓ)

(b

ℓ
− a

k

)

≤ (b− a) sup
j∈J

a2j
(k, ℓ)

ℓ
.

But this bound remains trivially valid if ℓ
k >

b
a , since the sum in the left term is empty.

The case ℓ < k being identical, it follows that
∣

∣

∣

∑

i6=j
i,j∈J

aiaj1{jk=iℓ}
∣

∣

∣
≤ sup

j∈J
a2j

( (k, ℓ)

ℓ ∨ k b−
(k, ℓ)

ℓ ∧ k a
)

≤ (b− a) sup
j∈J

a2j
(k, ℓ)

ℓ ∨ k .

By reporting in (3.9), next using Lemma 1.9, we get
∣

∣

∣

∥

∥

∑

j∈J

aj
∑

k∈K

ckejk
∥

∥

2

2
−
∑

j∈J

∑

k∈K

a2jc
2
k

∣

∣

∣
≤ (b− a) sup

j∈J
a2j

∑

k,ℓ∈K

|ck||cℓ|
(k, ℓ)

ℓ ∨ k
≤ (b− a) sup

j∈J
a2j

∑

k∈K

c2k max(1, ϑK(k)).(3.10)

�

By combining Lemma 1.11 with estimate b) of Lemma 1.10, we immediately get

Corollary 3.6. Under assumptions of Lemma 1.10,
∣

∣

∣

∥

∥

∑

k∈K

ck
(

∑

j∈J

ajejk
)∥

∥

2

2
−
∑

j∈J

a2j
∑

k∈K

c2k

∣

∣

∣
≤ C|J |

(

sup
j∈J

a2j
)

∑

k∈K

c2k log(
eK+

k
)A(k).

Remark 3.7. The factor log( eK+

k ) appearing in Lemma 3.1 and in Corollary 3.6 is
very restrictive, but seems unavoidable. However, when the coefficients ck, k ∈ K are
commensurable, it can be removed. We indeed also have,

∣

∣

∣

∥

∥

∑

k∈K

ck
(

∑

j∈J

ajejk
)∥

∥

2

2
−
∑

j∈J

a2j
∑

k∈K

c2k

∣

∣

∣
≤ sup

k∈K
c2k

(

∑

k∈K

A(k)
)

|J | sup
j∈J

a2j .

We omit the proof.

We pass to orthogonality results. Let M ≥ µ > 1. Let K,L, I, J be sets of positive
integers such that: For some integers B, u, v ≥ 0 with |v − u| > 1,

(3.11) K ∪ L ⊂ [µBµB+1[ and I ⊂ [Mu,Mu+1[, J ⊂ [Mv,Mv+1[.

Put
TH(G) =

∑

k∈H

ck
∑

j∈G

ajekj , H ∈ {K,L}, G ∈ {I, J}.

Lemma 3.8. Under assumption (3.11), 〈TK(J), TL(I)〉 = 0.

Proof. First notice that for any k ∈ K, ℓ ∈ L, the ratio ℓ/k satisfies 1/µ < ℓ/k < µ.
Now plainly,

〈TK(J), TL(I)〉 =
∑

k∈K
ℓ∈L

ckcℓ
∑

|i|∈I
|j|∈J

ajaiδjk=iℓ.

Suppose v > u + 1. Then |j|
|i| ≥ Mv−(u+1) ≥ M . The equation jk = iℓ is impossible.

Indeed,
j

i
=
ℓ

k
⇒ M ≤ ℓ

k
< µ.

Hence a contradiction since we assumedM ≥ µ. If u > v+1, then |i|
|j| ≥Mu−(v+1) ≥M ,

and we arrive similarly to M ≤ k
ℓ < µ. �
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Put for any finite set K of integers,

TK(v) := TK([Mv,Mv+1[).

Corollary 3.9.

∥

∥

∑

k∈K

ckfk
∥

∥

2

2
≤ 3

∞
∑

u=0

∥

∥TK(u)
∥

∥

2

2
.

When further the coefficients a, c have each constant signs, we also have

∞
∑

u=0

∥

∥TK(u)
∥

∥

2

2
≤

∥

∥

∑

k∈K

ckfk
∥

∥

2

2
≤ 3

∞
∑

u=0

∥

∥TK(u)
∥

∥

2

2
.

Proof. Set ∆(v) =
∑

Mv≤|j|<Mv+1 ajej , v ≥ 0. As f =
∑∞

u=0 ∆(u), Lemma 3.8 implies

∥

∥

∑

k∈K

ckfk
∥

∥

2

2
=

∥

∥

∥

∞
∑

u=0

∑

k∈K

ck∆k(u)
∥

∥

∥

2

2
=

∥

∥

∥

∞
∑

u=0

TK(u)
∥

∥

∥

2

2

=
∞
∑

u=0

∥

∥TK(u)
∥

∥

2

2
+ 2

∞
∑

u=0

〈TK(u), TK(u+ 1)〉,(3.12)

which easily allows to conclude. �

Now recall Schur’s Theorem ([19], p. 56).

Lemma 3.10. Let X be a bounded interval of the real line endowed with the normalized
Lebesgue measure. Let {fk, 1 ≤ k ≤ n} be measurable functions on a measurable set
E ⊂ X, λ(X\E) > 0. These functions can be extended to an orthonormal system on
X if and only if the following condition is satisfied

(3.13)
∥

∥

∥

n
∑

k=1

ckfk

∥

∥

∥

2

2
≤

n
∑

k=1

c2k (∀c1, . . . , cn).

It is true by induction for infinite sequences. The main argument of the proof is that
I − G, where G is the Gram matrix of the system i.e. G = (γk,ℓ), γk,ℓ =

∫

E
fkfℓdx,

is nonnegative definite. Hence, it is possible to construct on Ec a system of functions
having I −G as Gram matrix.

Remark 3.11. More generally, if for positive reals {δk, 1 ≤ k ≤ n} we have

(3.14)
∥

∥

∥

n
∑

k=1

ckfk

∥

∥

∥

2

2
≤

n
∑

k=1

δk c
2
k (∀c1, . . . , cn),

then {fk, 1 ≤ k ≤ n} can be extended to an orthogonal system {ξk, 1 ≤ k ≤ n} on

X satisfying ‖ξk‖2 =
√
δk for all k. Therefore the series

∑

k ckfk converges almost

everywhere for all sequences {ck, k ≥ 1} such that {ck
√
δk, k ≥ 1} is universal.

A complete characterization of universal coefficient sequences has been recently ob-
tained in [20] by Paszkiewicz, solving a long standing open problem. Let

A∞ =
{

∑

k≥m

c2k;m = 1, 2, . . .
}

Theorem 3.12. A sequence of coefficients {ck, k ≥ 1}, ∑k c
2
k ≤ 1 is universal if and

only if there exists a finite measure m on A∞ such that

(3.15) sup
t∈A∞

∫ 1

0

dε
√

m((t− ε2, t+ ε2))
<∞.
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A measure m such that (3.15) holds is called a majorizing measure. Paszkiewicz
showed with this deep result the great success of the majorizing measure approach,
a technic which has been considerably developed over the years by Talagrand, more
recently by Bednorz, and also applied by the second named author to some convergence
problems in analysis. Paszkiewicz further obtained other characterizations involving
convolution powers of some natural operator.

4. Proof of Theorem 2.1

Let N = {nk, k ≥ 1} be an increasing sequence of positive integers. Let µ > 1 and
consider the ”trace” of N over the geometric partition of N associated to the sequence
{µj , j ≥ 0}, namely the sets

Nj = N ∩ [µj , µj+1[, j = 0, 1, . . .

Some of them may be empty, so let {N∗
j , j ≥ 0} denote the subsequence obtained after

having removed all empty sets. By assumption,

sup
j≥0

ϑN∩[µj ,µj+1[ <∞.

Let K ⊂ N∗
j for some j. Let M > µ. Applying Lemma 1.10 to

TK(v) =
∑

k∈K

ck
∑

Mv≤j≤Mv+1

ajekj ,

gives
∣

∣

∣

∥

∥TK(v)
∥

∥

2

2
−

∑

Mv≤j≤Mv+1

a2j
∑

k∈K

c2k

∣

∣

∣
≤ CϑKM

v+1
(

sup
Mv≤j≤Mv+1

a2j
)(

∑

k∈K

c2k
)

.(4.1)

Using Corollary 3.9, we can bound as follows

∥

∥

∑

k∈K

ckfk
∥

∥

2

2
≤ 3

∞
∑

v=0

∥

∥TK(v)
∥

∥

2

2

≤ C(1 + ϑK)
(

∑

k∈K

c2k
)

∞
∑

v=0

Mv+1
(

sup
Mv≤j≤Mv+1

a2j
)

≤ CN ,µ,f

(

∑

k∈K

c2k
)

.(4.2)

By taking K = N∗
j and summing over j, we get

∑

j≥0

∥

∥

∑

k∈N∗
j

ckfk
∥

∥

2

2
≤ CN ,µ‖f‖22

∑

j≥0

∑

k∈N∗
j

c2k ≤ CN ,µ‖f‖22
∑

k≥0

c2k,

as claimed. Now, in the case the coefficient sequences have each constant signs, we
appeal to the second part of Corollary 3.9 and use the fact that ϑN∩[µj ,µj+1[ = o(1),
by assumption (2.3) to conclude.

5. Proof of Theorem 2.4

We decompose f into a regular part and an irregular part, f = f ♭ + f ♯. Here
f ♭ =

∑

ℓ a
♭
ℓeℓ, a

♭
ℓ = aℓχ{|aℓ| > εℓ} is the regular component of f and will be directly

controlled by means of Carleson-Hunt’s theorem [14]. For the control of the irregular
component f ♯, arithmetical considerations are needed.

Plainly,

sup
V ≤u≤v≤W

∣

∣

∑

u≤n≤v

cnf
♭
kn

∣

∣ = sup
V ≤u≤v≤W

∣

∣

∑

ℓ

a♭ℓ
∑

u≤n≤v

cneℓkn

∣

∣
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≤ sup
V≤u≤v≤W

∑

ℓ

|a♭ℓ|
∣

∣

∑

u≤n≤v

cneℓkn

∣

∣

≤
∑

ℓ

|a♭ℓ| sup
V ≤u≤v≤W

∣

∣

∑

u≤n≤v

cneℓkn

∣

∣.(5.1)

By using Carleson-Hunt’s theorem [14],

∥

∥

∥
sup

V≤u≤v≤W

∣

∣

v
∑

n=u

cnf
♭
kn

∣

∣

∥

∥

∥

2
≤

∑

ℓ

|a♭ℓ|
∥

∥

∥
sup

V ≤u≤v≤W

∣

∣

∑

u≤n≤v

cneℓkn

∣

∣

∥

∥

∥

2

≤ A sup
ℓ

∥

∥

∥
sup

V≤u≤v≤W

∣

∣

∑

u≤n≤v

cneℓkn

∣

∣

∥

∥

∥

2
≤ CA

(

W
∑

k=V

c2k

)1/2

.(5.2)

Therefore, the sequence
{
∑N

n=1 cnf
♭
kn
, N ≥ 1

}

has oscillation near infinity tending to

zero a.e. In other words, the series
∑

n cnf
♭
kn

converges a.e.

To control the sums related to the irregular component we need an extra lemma.

Lemma 5.1. For any finite set K,

∥

∥

∥

∑

k∈K

ckf
♯
k

∥

∥

∥

2
≤ CB

(

∑

k∈K

c2kϑK(k)
)1/2

,

where B is defined in assumption (2.4). If js = M s for some M > 1, let B1 =
∑

sM
s+1ε2Ms. Then,

∥

∥

∥

∑

k∈K

ckf
♯
k

∥

∥

∥

2
≤ CB

1/2
1

(

∑

k∈K

c2kϑK(k)
)1/2

,

Proof. Let Js = [js, js+1[. By Lemma 1.10,

‖
∑

k∈K

ck
∑

j∈Js

a♯jekj‖22 ≤
∑

j∈Js

∑

k∈K

a♯j
2
c2k + C(js+1 − js)ε

2
js

∑

k∈K

c2kϑK(k)

≤ C(js+1 − js)ε
2
js

(

∑

k∈K

c2k max(1, ϑK(k))
)

.

Thus

∥

∥

∑

k∈K

ckf
♯
k

∥

∥

2
≤

∑

s

∥

∥

∑

k∈K

ck
∑

j∈Js

a♯jekj
∥

∥

2
≤ C

(

∑

s

j
1/2
s+1εjs

)(

∑

k∈K

c2kϑK(k)
)1/2

= CB
(

∑

k∈K

c2kϑK(k)
)1/2

Further, when js =M s for some M > 1, by Corollary 3.9, next Lemma 1.10,

∥

∥

∑

k∈K

ckf
♯
k

∥

∥

2

2
≤ C

∑

s

∥

∥

∑

k∈K

ck
∑

j∈Js

a♯jekj
∥

∥

2

2
≤ C

(

∑

s

js+1ε
2
js

)(

∑

k∈K

c2kϑK(k)
)

= CB1

(

∑

k∈K

c2kϑK(k)
)

.(5.3)

�

Now we can finish the proof of Theorem 2.4. By Remark 3.11, the series
∑

n≥1 cnf
♯
kn
,

converges a.e. for any coefficient sequence {cn, n ≥ 1} such that {cn
√

ϑK(kn), n ≥ 1}
is universal. And this follows from assumption (2.5). Since we have seen that the series
∑

n cnf
♭
kn

converges a.e., we deduce that the series
∑

n cnfkn converges a.e.
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6. Proof of Corollary 2.6

By Rademacher-Menshov’s Theorem, the sequence {cn
√

ϑK(kn), n ≥ 1} is universal
if
∑

n c
2
nϑK(kn)(logn)

2 <∞. But by Lemma 1.11,
∑

v

∑

2v<n≤2v+1

c2nϑK(kn)(logn)
2 ≤ C

∑

v

∑

2v<n≤2v+1

c2nAK(kn)(log n)
2

= C
∑

n

c2nAK(kn)(log n)
2 <∞,

by assumption. Hence, by Theorem 2.4 the series
∑

n cnfkn converges a.e. Taking in
particular K = N, yields that

∑

n cnfn converges a.e., whenever
∑

n c
2
nA(n)(log n)

2 <
∞.

Remark 6.1. Let {kn, n ≥ 1} be an arbitrary increasing sequence of integers. The part
of the proof concerning f ♭ also implies that the series

∑

n cnfkn converges a.e. whenever
f ∈ Lipα(T) with α > 1/2, and for any coefficient sequence such that

∑

n c
2
n < ∞,

which much improves upon Corollaries 2.3, 2.3*, 2.5*, 2.6 in [4].

7. Proof of Theorem 2.8

We produce it for kn = n, the case of an arbitrary increasing sequence kn being
treated identically. By specializing (1.26) for K = [2r, 2r+1], we get

∥

∥

∑

2r≤k<2r+1

ckfk
∥

∥

2

2
≤ Cs

∑

2r≤k<2r+1

σ1−2s(k)c
2
k,(7.1)

when 1/2 < s ≤ 1. Thus by assumption (2.12)

∞
∑

r=1

∫ 1

0

r2
∣

∣

∣

2r+1
∑

j=2r+1

cjfj(x)
∣

∣

∣

2

dx ≤ Cs

∞
∑

r=1

r2
2r+1
∑

k=2r+1

σ1−2s(k)c
2
k

≤ Cs

∞
∑

r=1

2r+1
∑

j=2r+1

σ1−2s(k)c
2
k(log k)

2 <∞.

Therefore
∞
∑

r=1

r2
∣

∣

∣

2r+1
∑

j=2r+1

cjfj(x)
∣

∣

∣

2

<∞ a.e.

And the Cauchy-Schwarz inequality yields for any 1 ≤M < N

∣

∣

∣

2N
∑

j=2M+1

cjfj(x)
∣

∣

∣

2

≤
( N−1

∑

k=M

∣

∣

∣

2k+1
∑

j=2k+1

cjfj(x)
∣

∣

∣

)2

≤
( N−1

∑

k=M

1

k2

)( N−1
∑

k=M

k2
∣

∣

∣

2k+1
∑

j=2k+1

cjfj(x)
∣

∣

∣

2
)

≤ 2

∞
∑

k=M

k2
∣

∣

∣

2k+1
∑

j=2k+1

cjfj(x)
∣

∣

∣

2

→ 0,

as M → ∞. This implies that
∑2m

j=1 cjfj(x) converges a.e. as m → ∞. Now by using

again (1.26) and standard maximal inequalities (see e.g. [27], Lemma 8.3.4) we get

∞
∑

k=1

∥

∥

∥

∥

max
2k+1≤i≤j≤2k+1

|
j

∑

ℓ=i

cℓfℓ|
∥

∥

∥

∥

2

≤ Cs

∞
∑

k=1

k2
( 2k+1

∑

ℓ=2k+1

σ1−2s(ℓ)c
2
ℓ

)

≤ Cs

∞
∑

ℓ=1

σ1−2s(ℓ)c
2
ℓ (log ℓ)

2 <∞,



20 ISTVÁN BERKES AND MICHEL WEBER

which implies

(7.2) max
2k+1≤i≤j≤2k+1

∣

∣

∣

j
∑

ℓ=i

cℓfℓ(x)
∣

∣

∣
→ 0 a.e.

completing the proof of the theorem.
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