REMARKS ON BETA DISTRIBUTED RANDOM NUMBERS

by
Axpris BEKESSY

1. Introduction. According to M. D. JOBNK [1], algorithms for generat-
ing both beta and gamma distributed random numbers can be based on random
numbers 7, from the probability distribution

0 for x <0

(1) F.(x) ={a" for 0 <z <1
1 forxm=1,
where a is real and positive.

JOHNK’s method for generating beta distributed random numbers in
case of non-integral parameters has two serious difficulties, (i) the method is
inefficient for larger values of the parameters, and (ii) the usual method for
producing random numbers from the distribution (1), i.e. the transformation
of uniform random numbers by root extracting is rather slow. In order to make
the process more advantageous, G. BANKOVI [2] suggested an approximative
method which seems to be satisfactory in many cases. In the first part of this
paperI intend to show that BANKOVI's method can be improved so as to become
exact not only in practical but also in strict theoretical sense, moreover, the
second method suggested here may serve to speed up BANKOVI's procedure.
Both methods affect random numbers from (1). In the second part some im-
provements are introduced to JOHNK’s original method, which increase effi-
ciency and speed up the whole process.

2. A corrected variant of BANKOVI’s method. Let us assume that the
method described in [2] is sufficiently fast for producing random numbers
ng from Fg(x) = af, whereas our problem is to generate such ones but from
(1). Suppose further that a differs from f§ only by a small amount, the relative
difference being

(2) o<e=ﬁ_a<<1.
B
Consider now the identity
o B
(3) x“:(l—e)x”+su,
B—a
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21 A Matematikai Kutato Intézet Kozleményei IX. 3.



566 BEKESSY

which shows that a” can be represented as a mixture of two probability distri-
bution functions, one of which is F(z), the other being

Bx® — axf
p— a

Thus, the usual random selection technique can be applied: choose either
Fg(x) or E(x) with probabilities given by the weights in (3), and, if the result
happens to be Fy(z), take a random number 7,z from the distribution #g(x),
but take one from Z(z) in the opposite case. Having supposed ¢ << 1, the result
will be F4(x) for almost all trials. Sometimes, however, the result will be £(x).
Now, it is easy to see that #(«) is the probability distribution function of the
product of two independent random variables having distributions # (x) and
F g(x) respectively, so that whenever the result of the trial is E(x), we have
to generate two independent random numbers 7, and ng; from the mentioned
distributions and take their product. As to the number n,, at first sight it
seems that there is no other way for producing this than that to perform
a root extraction procedure we wanted to avoid, but it is not a serious time-

loss in the present case, since only the e-th part of the total set of numbers
must be generated by this tedious way.

(4) E(x) =

3. A second improvement to BANKOVI’s method. As it was just men-
tioned, in the course of generating random numbers n, by the presented
method, with probability ¢ one has to produce a random number 7, from the
distribution # (z). For doing this the identity (3) and the same random selec-
tion principle can be applied again with the result that root extracting becomes
necessary only with probability &* in total, and iterating this process, we can
get rid of it altogether. Moreover, the random selections, which were to be
performed step by step, can be unified. Summarizing the ideas sketched here,
the method may be presented as follows.

Since the identity

. o k v 1)\¥
(5) Fi=a2= 3% [xf’ p (log 7 ] (¢ = (B — a)/B)
i—o B s=o ! x
with the probability distributions
k‘ ﬁv 1)\
(6) Fg(x) = 2 > —|log — O<z<1)
=0 z
expresses 2” as a mixture, and since Fg(x) (k= 0,1,...) is the distribution

function of the product of % independent random variables from the distri-
bution Fy(x) = «F, let us choose a function #,(a) at random with probability

= ¢*, and, if the result happens to be x = %, then produce » random numbers

ng independently of each other and accept their product.

Suppose now that the algorithm for producing a single number =
requires N uniform random numbers using BANKOVI’s method. The efficiency
E,;, measured by the reciprocal of this number is then 1/N, — if the numbers
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ng are accepted as satisfactory approximations of the », numbers. The effi-
ciency of the presented method, measured similarly, can be calculated from
(5) with the result

a a a e ) —1

(7) E/f:[(~N+—8'2N—|—~£2-3N+...J—}—1 =—N+1] :
Be B p a

Supposing ¢ to be small, the loss of efficiency does not seem to be of any im-

portance.

If 7' denotes operating time needed for producing one number by method
of BANKOVI, a similar calculation shows that the operating time required by
our algorithm will approximately be

(8) 7 =L@y em),

where M is the time for a multiplication, although the fact that the general
machine program will be longer, and that the selection procedure needs an
extra and not at all negligible amount of time, is disregarded here.

The main advantage of the presented method, however, lies not in its
theoretical correctness, but rather in the speeding up of the generating proced-
ure. Let us begin with an example, which represents a somewhat extreme
case. Let us take a = 0,9 + u, where u is practically negligible small, to be
concrete, put |u| < 0,01. When applying BANKOVI's method, the first task
we have is to find integer numbers a, for which

N
0,9= > —
k=1 Qk

with an error less than 0,01. If the number 0,9 is given in binary representa-
tion, then we obtain

1 1| 1 1
P R TR HE TR T
2 4 8 64

The efficiency will be 0,25 and the number §), of the required multiplications
for each number n; amounts to 12. One may try another representations, e.g.

1 1 i
099 =—+4+ — 4+ — Ber — 118 =S o i—T7)
S s (Hy=1] M )
or
1 1 1
0,9 ~ — — 4 — Her =13 nSve =),
2+3+16 (& / M )

but these, though better, are too tricky for a machine to find them out. Despite
of this, let us accept E, = 1/3, S); = 7 as best characteristics.

When applying our method, put g =1, then & becomes 0,1 approxi-
mately and for E;; and S,; we have 0,47 and 0,11 respectively.

The results of further examples, some of which is taken from BANKGVI's
paper, are summarized in Table 1 below. Representations, which are better
approximations of the numbers a in Table 1 are not treated there, since both
E;; and S,; would be even much worser for BANKOVI’s method..

21*
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Table 1
BANKOVI’s method Improved method
a | & Si B e | By Sy
njh~2-1 2-2 | 95 0,33 8 1 0,215 | 0,44 0,27
1—n/4 ~ 51 | 68— 0,50 10 2% 0,142 P 0,46 2,6
el 2-2 | 2-3 0,50 5 2-1 0,264 0,42 17
l1—e-1~ 271 | 2-3 0,50 4 1 0,368 0,39 0,58
10 + 2-3 + 2-1 0,083 7 11 0,073 0,078 0,079
10,2 ~
10 4+ 5-1 0,091 4 | 1042-2 0,005 0,083 2,0
3 0,300 0,19 0,43
21~ 24 2-% +2-5 | 0,25 9 21 2-3 0,012 0,25 3,05
2 0,450 0,22 0,82
14-2-1 0,267 0,27 1.7
~ = Lig=a 3
1t S e 0,83 b 1422 0,120 | 0,31 2,4
14 2-3 0,022 | 0,33 3
9-2 4 2- 0,5 6 9-1 0,340 0,40 2,03
0,33 ~
3=1 1 2 3-t 0,010 0,50 2,03
0,l~ 2-1 4 9-8 0,5 9 9-3 0,200 0,44 4,0
0,03 ~ 258 1 5 22 0,040 0,49 5,3

Table 1 shows (in so far as any general conclusions may be drawn from
such a small collection of examples) that for a < 1 the simplest and in many
cases the best strategy is to put f equal to the nearest integer power of 27! ex-
ceeding a. Accepting this as a general principle, we obtain a simplified form
of the method having nothing common with that of BANKOVI, because its
basic idea of using ordered samples is left out. As an advantage, there is no
need for a comparison algorithm. For a > 1, however, putting f equal to the
nearest integer exceeding a, we obtain another reduced algorithm, since now
the ordered sample will consist of simple uniform random numbers.

Returning to the random selection procedure, it was tacitly assumed that
this can be performed by using a single uniform random number, involving
that the probabilities in question are previously computed and stored for
each a. Instead of storing probabilities, one may apply the following simple
algorithm: Take uniform random numbers one after another until one happens
to be smaller than a/f. If this is the £-th one, then take the product of &
independent random numbers n; from the distribution 2.

4. Two variants of JOHNK’s method for generating beta distributed random
numbers. The efficiency of JOHENK’s method strongly decreases with increasing
parameter values. Let the density function be

qu(x) = Cpqpr 1(1 ST x)q_l ’
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where
_Lip+ g
" I’
then the efficiency of the quoted method, being equal to the probability of
acceptance, turns out to be!
i

L e - q
9 — |- g2~ Y1 — z)¥ ldx =
(9) Jq ( ) Opq

0

(for non-integral values of the parameters p and ¢). Not only the inefficiency
in itself makes the method tedious for larger values of p and ¢, but also that
the random numbers needed are not simple uniform random ones; these must
be taken from a distribution of type (1). Though root extraction can be avoided
as we have seen above, the procedure seems to be too lengthy.

Let us write the density function as

fota, g+8(®) = Cpig gip * WP Y1 — x)HP-2,

where now both a and f are non-negative real numbers smaller than 1, and
both p and ¢ are positive integers. Let b,, be a random number from a beta
distribution with parameters p, ¢, and let s be a uniform random number
generated independently of b,

Accept bpq, if

(10) s < (a+ )+ B3, (1 — B,,)°

a® - Bf
and reject it in the opposite case. It is easy to show that the b,,’s will be beta
distributed but with parameters p + a, ¢ + f if selected by this rejection
condition (10). The total efficiency is given by
(a + p)et? c 1

rq i
a’ - ﬂﬂ 0p+a,q+ﬁ P +q

since the numbers b,, can be generated by ordered sets of p 4+ ¢ — 1 uniform
random numbers, as described in [1].

Condition (10) is inconvenient in general, because it involves root ex-
traction. However, for special values of the parameters the algorithm may
work fairly well. Let us put e.g. a = f =1/,, then the condition (10) takes
the form

Efl -

2 < d by (1~ b,

and efficiency will approximately be

qu
B .~ 2- 1% 1

calculated by Stirling’s formula.

1 The factor Y4, takes account of the fact that one needs always a pair of random
numbers for each trial.
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Root extraction can be avoided altogether when using a rejection
technique with double acceptance condition. Let us take two uniform random
numbers s, and s,, and let b,, generated from the beta distribution as above.
For a > B accept b, if

glf e d bl — b ) G0 b,
and in the opposite case a < f accept b,, if
et sl B [l —bp ) Pl b, .

As for a = f, the second condition involving s, should simply be omitted.
Since both s}/ and s§©@~# are random numbers from distributions of type (1),
root extraction will be not necessary when the former described method is
applied.

The efficiency of this second variant is smaller than that of the first one,
and bot variants become practically useless for pairs of values p,g with

plg K1 or plg> 1.

5. Another form of improvement. It is well known ([3], p. 153, Theo-
rem 5) that the random variable

(11) E el
' = np + nq

is beta distributed if 7,, 7, are independent gamma variates. In possession of
a fast algorithm for generating gamma distributed random numbers the rela-
tion (11) offers a possibility to produce beta distributed ones. As to the random
numbers from a gamma distribution with non-integral parameter value, the
method of M. S1BuvA [4] completed by that of I. TARAHASHI [5] may be used.
TarAHASHI'S rejection method however, though very efficient, has the dis-
advantage that it needs logarithms when the acceptance condition will be
tested. Our proposition is therefore to use JOHNK’s second method instead of
that given by TAKAHASHI.

Thus, the suggested algorithm consists of four steps as follows.

1. Produce two independent random numbers g, and g, from the gamma
distributions

X

i 7

I(g) .

0

X
—1— J tP~le~td¢t and

I'(p) ;

9 le t dt

respectively, generated e.g. by SiBuvaA’s method. Alternatively, BANKOVI's
method [6] for generating exponential random numbers may also be applied.
2. Generate two independent exponential random numbers e, e,.
3. Generate two independent beta distributed random numbers b, ; ,
and by, 4 by JOHNK’s second method.
4. Compute
gp + elbu,l—a

gp € T g, + 6 - bﬁ,l—ﬂ

which gives the required number b, ;.4 -




REMARKS ON BETA DISTRIBUTED RANDOM NUMBERS 571

All this may appear to be rather complicated, but, on the other side,
JOBNK’s original procedure needs over 130 (2*-distributed) random numbers
for a single beta distributed one, when the parameters p + a, ¢ + f are as
small as 4,5. Our method requires in average

1 2 2
S 1
it A Mat+)I2—a TE+1)TE—p

A

16
SETrdTeT

uniform random numbers, if root extractions and logarithmic transformations
are admitted, and it demands only slightly more when improved techniques
are used. For p = ¢ = 4, a = = 0,5 equation (12) gives 1/E,, = 15,1.

(Received October 1, 1964.)
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3AMEUYAHUSA K MPOBJIEME MOJIYUEHHUSI CJIYUAWHBIX UUCEJ
C BETA — PACIPEJJEJIEHUEM

A. BEKESSY
Pe3ome

Hacrostimas pa6ora cBsizana ¢ cratbsimu M. D. JOENK [1] u G. BANKOVI
[2]. BANKOVI yKasan NpuOInsuTesbHBIA criocod Juist MoJyuyeHus: cayvaiHbix
umuces ¢ 3aKOHOM paclpejieieHust &%, UMeloluil NPenMyIiecTBo, YTo B ero ajro-
pUTMe HeT M3BJeYeHUs] KOpHU. B 1. 2 Hactosueir padboThl MoKa3bBaeTCst, UTO
JIONOJIHUB €110c00 BANKOVI HEKOTOPBIM aJTrOPUTMOM, OH CTAHOBUTCSI TEOPETH-
YeCKM TOYHBIM; a B 1. 3 mpejuaraetrcsi 0OoJiee 0o0wuii, onupawmuiicss Ha MeTox
BANKGVI cniocof, KOTOpbIf OKasblBaeTcsi TOUHBIM M BO MHOTMX cliyyasix 0oJee
CKOPBIM.

B cBoeil BbimeynomsinyToit pabore JOHNK yKaspiBaeT jBa crocoba s
TNOJIyYeHUs1 CJIyyaiiHbIX umces1 ¢ feta — pacrpejieieHueM, HO 9TH MeTO/(bl OKasbl-
BAIOTCS MaJ1oa()GeKTUBHBIMY, €CJIM MapameTpbl paclnpejeseHust sBISATCS 00JIb-
UMK W He LeJbiMu yuciamu. B nm. 4 u 5 Hactosieit paboTel mpejiararorest
pasHple, onuparwomuecss Ha crnocod JOHNK MeTO/bl, HO B yINOMSHYTBIX CJIydasix
OHM SIBJISAIOTCS ropasjlo 0oJjiee 3GGeKTUBHBIMU OPUTMHAJILHOIO aJrOpUTMA.
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