DECOMPOSITIONS OF COMPLETE GRAPHS INTO FORESTS

by
LOWELL W. BEINEKE!

The arboricity a(@) of a graph G is the minimum number of forests whose
union is G. In a recent paper [2], NAsE—WiILL1AMS determined the arboricity
of all graphs. In this note we provide explicit constructions for the fewest
forests needed for two classes of graphs. These are the complete graphs K,,
having p points with every pair adjacent, and the complete bipartite graphs
K, », having m light points and »n dark points with every light point adjacent
to every dark one.

Theorem 1. The arboricity of the complete graph K, is

fp+1
a(K,)) =|——-|.
&) =|*] ]
Proof. Since K, has p points and %p(p — 1) lines, a(K,) ;%; that
is, a(K,) ;[ﬁ? .

In providing constructions for the reverse inequality, we first let p be
even. Take p points as the vertices of a regular polygon, and label them clock-
wise 1,2,...,p — 1,0. Form 7', as the path whose consecutive points are

1,0,2,p—1,3,.. .,% p,%p + 1. This is illustrated in Figure 1 for the case

=85 Hor 4 =123 .,é p, form the path 7'; from the path 7';_, by leaving

the points fixed and rotating the lines one position clockwise. Again, see
Figure 1. The path 7'; can be defined more explicitly as follows: If #; denotes
the j’th point of 7';, then the j'th point of 7';is ¢; 4 ¢ (mod p). It is quite clear

that every line of K, appears in exactly one of the % paths formed in this

way. Hence, a(K,) = ~—.
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To formp il

forests whose union is K, when p is odd, first form the

paths as described above for K g From these, construct Sl

forests by

adding an isolated p’th point; then construct another graph by placing each
of the original p — 1 points adjacent to the p’th point, forming a tree. See
Figure 2 for p = 9. This completes the constructions.
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As a corollary to this proof, we note that K, is the union of 2 Yine-

disjoint paths when p is even, and that K, is the union of ' ; . line-disjoint

cycles when p is odd. This last assertion follows from the proof by adding
a p’th point adjacent to the end points of the paths formed for K,_;.
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Our second theorem gives the arboricity of complete bipartite graphs,
and the devices used in the proof are similar to those in [1]. We find it helpful
to begin by developing some preliminary results.

Lemma 1. Let m and k be fixed positive integers with 1 < —72’1 <k <m.

k(m — 1) -1
m — k andf(x)—m+x_1

value of x for which {f(x)} = k.

Proof. Since m > 2 by hypothesis, f(z) is a strictly increasing function

of the positive real variable z. If f(x) =%, then x = ]f(m—_l) Hence,
m —

m(m — 1)

{fr)} <k and{f(r + 1)} =k + 1. Since f(r +1) —f(r) = T

< 1, it follows that {f(r + 1)} — {f(r)} =< 1, so {f(r)} =k and {f(r + 1)}=
= k + 1. The lemma now follows immediately from the fact that {f(x)}is a
nondecreasing function of z.

Let m, k, and r be as in the lemma. We define an m X r array 4 whose
cells contain finite sequences of positive integers in the following way. Let

{-fes-of)

be the length of the sequence in the (2, j) cell of 4. Let the entries in the first
row be consecutive positive integers; that is, the entries in the (1, 1) cell are
1,2,...¢(1,1), in the (1, 2) cell are c(1, 1) +1,...,¢(1, 1) 4 ¢(1, 2); and so
on. Now define the entries in the j’th column inductively : Assuming the-
entries in the (¢ — 1,7) cell are given, let the (7, j) cell contain (¢, j) conse-
cutive integers beginning with the last entry in the ( — 1, j) cell. Now reduce
all entries modulo ». We illustrate with m = 6, k = 4, r =10:

mx

Let r = . Then r is the greatest integral

i, §) = {(z‘ &g

123 45 678 90
34 567 89 012
456 78 901 23
67 890 12 345|
789 01 234 56
90 123 45 678

Lemma 2. The array A has the following two properties :
(i) The entries in each row are r consecutive integers modulo 7.

(ii) I each column, if the first entry of all cells except the first is excluded,
the remaining entries are consecutive integers modulo r and there are at most r of
them.

Proof. Since the terms being summed telescope, for each 7,

]; oli, ) = [(z’ + k) [II;” = {, (%J} e
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Hence each row contains » integers. That these are consecutive integers
follows from the obvious fact that

o5:9) = ¢l — 1,5+ 1), for' 2 =2,3,...,m and 4 =1, 2,...,k~—1,

and from our choice of the first entry in each cell. This proves that 4 has
property (i).

The total number of entries in the j°th column is, using the telescoping
property of the terms,

So(i,j>={(m+j)%}~lj%}§{’%’}émw_1,
=]

Ty T L by Lemma 1. Subtracting the m entries, correspond-

m —{— r —1
ing to those first integers in each cell appearing in the preceding cell, we have
no more than » — 1 entries remaining in column j. That these are consecutive
residue classes is immediate. Hence, 4 also has property (ii).

Theorem. 7The arboricity of the complete m by n bipartite graph K mn 18
mn
(K, = { l}
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Figure 3.

Let m and » be given. If m = 1, then the graph is already a forest.
If n> (m — 1), then a(Km .) = m, by Lemma 1. That a(K,, ,) = m in this
case follows from m copies of the graph K, n. Hence we assume 2 < m <

=n<(m—1)% Set k= "R |, Then 2 < k< m. Define r=
m—+n—1 2
= [ as in Lemma 1. We will use the array 4 to show that

a(m,r) < k from which it will follow that a(m, n) = k, since a(m, n) = k.
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Define k graphs G, G,, . . ., G; using the % columns of the array. Each
graph G; has m light points u,, u,, . . ., %, and r dark points vy, v, . . ., v,_y, ¥,.
In G, let u; be adjacent to v, if and only if the integer 4 is in the (z, j) cell
of A. That @, is acyclic follows immediately from property (ii) since no cycle
can occur. That the union of the graphs G; is K,,, follows from (i), because it
implies that each u; (¢ =1, 2,...,m) is adjacent to each v,, (A =0,1,...,
¢ — 1) since in the ¢"th row A appears in some column j. Therefore a(K ,, ,), and
hence a(K , »), is at most k. But since a tree contained in K, ,hasm +n — 1

lines and K,, , has mn lines, a(K,, ,) = {—ﬂm—} = k. This proves
’ ' m-+n—1
the theorem.
We illustrate G, for the array given above in Figure 3.
In the table below we have listed, for small m and %, the value r. That is,
given m and £, » is such that K, , is the largest complete bipartite graph with
arboricity k.

YZ'3456789101112
N

4. "3 2 2. 2 2 2
9 6 5 5 4 4

16 10 8 7 ' 6

25 15 12 10

36 21 15 18 12 11

49 28 21 17 15

64 36 26 22
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The definition and problems involved in this note were proposed by
Professor A. RENYI in a seminar conducted by Professor F. HARARY, who
conjectured the results. I wish to also thank Professor R. READ for this version
of the proof of Theorem 1.

(Received October 1, 1964.)
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PA3JI0O)KEHUE IIOJIHBIX I'PA®OB HA JIECA

L. W. BEINEKE

Pe3iome

Jlecom MBI HasblBaeM coelMHeHHUe JiepeBbeB 0e3 06WMX ToyeK. ABTOp jpaeT
MeTO/1 3pheKTUBHOTO KOHCMPYUPOSaHUS KAK IS TIPeJICTaBJIeHUsT TIOJIHBIX IpadoB
TaK U JUIS MpeJICTaBJIeHUsT MOJHbIX I'padoB ¢ CYETHBIM YMCJIOM 00XO0JI0B B BUJIE
COeJIMHeHUs1 MUHMMAJILHOTO Yucia JiecoB. Cywecmeosanue pa3noryKeHnst Ha MUHU-
MaJibHOe YUCJIO JIecOB OblJI0 B TepBble J0KazaHO NASH-oM U WILLIAMS-OM.
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