DECOMPOSITIONS OF COMPLETE GRAPHS INTO FORESTS

by LOWELL W. BEINEKE¹

The arboricity a(G) of a graph G is the minimum number of forests whose union is G. In a recent paper [2], Nash—Williams determined the arboricity of all graphs. In this note we provide explicit constructions for the fewest forests needed for two classes of graphs. These are the complete graphs K_p , having p points with every pair adjacent, and the complete bipartite graphs $K_{m,n}$, having m light points and n dark points with every light point adjacent to every dark one.

Theorem 1. The arboricity of the complete graph K_p is

$$a(K_p) = \left\lceil \frac{p+1}{2} \right\rceil.$$

Proof. Since K_p has p points and $\frac{1}{2}$ p(p-1) lines, $a(K_p) \ge \frac{p}{2}$; that is, $a(K_p) \ge \left|\frac{p+1}{2}\right|$.

In providing constructions for the reverse inequality, we first let p be even. Take p points as the vertices of a regular polygon, and label them clockwise $1, 2, \ldots, p-1, 0$. Form T_1 as the path whose consecutive points are $1, 0, 2, p-1, 3, \ldots, \frac{1}{2}$ $p, \frac{1}{2}$ p+1. This is illustrated in Figure 1 for the case p=8. For $i=2,3,\ldots, \frac{1}{2}$ p, form the path T_i from the path T_{i-1} by leaving the points fixed and rotating the lines one position clockwise. Again, see Figure 1. The path T_i can be defined more explicitly as follows: If t_j denotes the j'th point of T_i , then the j'th point of T_i is $t_j+i\pmod{p}$. It is quite clear that every line of K_p appears in exactly one of the $\frac{p}{2}$ paths formed in this

way. Hence, $a(K_p) = \frac{p}{2}$.

¹ University of Michigan.

590 BEINEKE

To form $\frac{p+1}{2}$ forests whose union is K_p when p is odd, first form the paths as described above for K_{p-1} . From these, construct $\frac{p-1}{2}$ forests by adding an isolated p'th point; then construct another graph by placing each of the original p-1 points adjacent to the p'th point, forming a tree. See Figure 2 for p=9. This completes the constructions.

As a corollary to this proof, we note that K_p is the union of $\frac{p}{2}$ line-disjoint paths when p is even, and that K_p is the union of $\frac{p-1}{2}$ line-disjoint cycles when p is odd. This last assertion follows from the proof by adding a p'th point adjacent to the end points of the paths formed for K_{p-1} .

Our second theorem gives the arboricity of complete bipartite graphs, and the devices used in the proof are similar to those in [1]. We find it helpful to begin by developing some preliminary results.

Lemma 1. Let m and k be fixed positive integers with $1 \le \frac{m}{2} < k < m$.

Let $r = \left\lceil \frac{k(m-1)}{m-k} \right
vert$ and $f(x) = \frac{mx}{m+x-1}$. Then r is the greatest integral

Proof. Since $m \ge 2$ by hypothesis, f(x) is a strictly increasing function

of the positive real variable
$$x$$
. If $f(x) = k$, then $x = \frac{k(m-1)}{m-k}$. Hence, $\{f(r)\} \le k$ and $\{f(r+1)\} \ge k+1$. Since $f(r+1)-f(r) = \frac{m(m-1)}{(m+r)(m+r-1)} < 1$, it follows that $\{f(r+1)\} - \{f(r)\} \le 1$, so $\{f(r)\} = k$ and $\{f(r+1)\} = k+1$. The lemma now follows immediately from the fact that $\{f(x)\}$ is a nondecreasing function of x .

Let m, k, and r be as in the lemma. We define an $m \times r$ array A whose cells contain finite sequences of positive integers in the following way. Let

$$c(i,j) = \left\{ (i+j) \left(\frac{r}{k}\right) \right\} - \left\{ (i+j-1) \left(\frac{r}{k}\right) \right\}$$

be the length of the sequence in the (i,j) cell of A. Let the entries in the first row be consecutive positive integers; that is, the entries in the (1, 1) cell are $1, 2, \ldots, c(1, 1)$, in the (1, 2) cell are $c(1, 1) + 1, \ldots, c(1, 1) + c(1, 2)$; and so on. Now define the entries in the j'th column inductively: Assuming the entries in the (i-1,j) cell are given, let the (i,j) cell contain c(i,j) consecutive integers beginning with the last entry in the (i-1,j) cell. Now reduce all entries modulo r. We illustrate with m = 6, k = 4, r = 10:

Lemma 2. The array A has the following two properties:

(i) The entries in each row are r consecutive integers modulo r.

(ii) In each column, if the first entry of all cells except the first is excluded, the remaining entries are consecutive integers modulo r and there are at most r of them.

Proof. Since the terms being summed telescope, for each i,

$$\sum_{j=1}^{k} c(i,j) = \left\{ (i+k) \left(\frac{r}{k} \right) \right\} - \left\{ i \left(\frac{r}{k} \right) \right\} = r.$$

592 BEINEKE

Hence each row contains r integers. That these are consecutive integers follows from the obvious fact that

$$c(i, j) = c(i - 1, j + 1)$$
, for $i = 2, 3, ..., m$ and $j = 1, 2, ..., k - 1$,

and from our choice of the first entry in each cell. This proves that A has property (i).

The total number of entries in the j'th column is, using the telescoping

property of the terms,

$$\sum_{i=1}^m c(i,j) = \left\{ (m+j) \, \frac{r}{k} \right\} - \left\{ j \, \frac{r}{k} \right\} \leq \left\{ \frac{mr}{k} \right\} \leq m \, + \, r \, - \, 1 \; ,$$

since $k = \left\{\frac{mr}{m+r-1}\right\}$ by Lemma 1. Subtracting the m entries, corresponding to those first integers in each cell appearing in the preceding cell, we have no more than r-1 entries remaining in column j. That these are consecutive residue classes is immediate. Hence, A also has property (ii).

Theorem. The arboricity of the complete m by n bipartite graph $K_{m,n}$ is $a(K_{m,n}) = \left\{\frac{mn}{m+n-1}\right\}$.

Figure 3.

Let m and n be given. If m=1, then the graph is already a forest. If $n>(m-1)^2$, then $a(K_{m,n})\geq m$, by Lemma 1. That $a(K_{m,n})=m$ in this case follows from m copies of the graph $K_{1,m}$. Hence we assume $2\leq m\leq (m-1)^2$. Set $k=\left\{\frac{mn}{m+n-1}\right\}$. Then $\frac{m}{2}< k< m$. Define $r=\left[\frac{k(m-1)}{m-k}\right]$ as in Lemma 1. We will use the array A to show that $a(m,r)\leq k$, from which it will follow that a(m,n)=k, since $a(m,n)\geq k$.

Define k graphs G_1, G_2, \ldots, G_k using the k columns of the array. Each graph G_j has m light points u_1, u_2, \ldots, u_m and r dark points $v_1, v_2, \ldots, v_{r-1}, v_0$. In G_i , let u_i be adjacent to v_h if and only if the integer h is in the (i,j) cell of A. That G_i is acyclic follows immediately from property (ii) since no cycle can occur. That the union of the graphs G_i is $K_{m,r}$ follows from (i), because it implies that each u_i , (i = 1, 2, ..., m) is adjacent to each v_h , (h = 0, 1, ..., m)r-1) since in the *i*'th row *h* appears in some column *j*. Therefore $a(K_{m,r})$, and hence $a(K_{m,n})$, is at most *k*. But since a tree contained in $K_{m,n}$ has m+n-1

lines and $K_{m,n}$ has mn lines, $a(K_{m,n}) \ge \left\{\frac{mn}{m+n-1}\right\} = k$. This proves the theorem.

We illustrate G_1 for the array given above in Figure 3.

In the table below we have listed, for small m and k, the value r. That is, given m and k, r is such that $K_{m,r}$ is the largest complete bipartite graph with arboricity k.

k	3	4	5	6	7	8	9	.10	11	12	
2	4	3	2	2	2	2	2	2	2	2	
3		9	6	5	5	4	4	3	3	3	
4			16	10	8	7	6	6	5	5	
5				25	15	12	10	9	8	7	
6					36	21	15	13	12	11	
7						49	28	21	17	15	
8							64	36	26	22	
4											

The definition and problems involved in this note were proposed by Professor A. Rényi in a seminar conducted by Professor F. Harary, who conjectured the results. I wish to also thank Professor R. Read for this version of the proof of Theorem 1.

(Received October 1, 1964.)

REFERENCES

Beineke, L. W.—Harary, F.—Moon, J. W.: "On the thickness of the complete bipartite graph." Proc. Camb. Phil. Soc. 60 (1964) 1—5.
 Nash—Williams, C. St. J. A.: "Decomposition of finite graphs into forests." Journal

London Math. Soc. 39 (1964) 12.

РАЗЛОЖЕНИЕ ПОЛНЫХ ГРАФОВ НА ЛЕСА

L. W. BEINEKE

Резюме

Лесом мы называем соединение деревьев без общих точек. Автор дает метод эффективного конструирования как для представления полных графов так и для представления полных графов с счетным числом обходов в виде соединения минимального числа лесов. Существование разложения на минимальное число лесов было в первые доказано Nash-ом и Williams-ом.