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Abstract
Moderation and optimization of the photosynthetic function of higher plants by nanomaterials is under intensive investigation, 
but remain still far from practical utilization. We have previously demonstrated that foliar spraying of Pluronic P85-grafted 
single-walled carbon nanotubes (P85-SWCNT) affects the functionality and structural organization of the photosynthetic 
thylakoid membranes in pea plants. In the present work, we further study in more details the structural changes in the pho-
tosynthetic machinery induced by P85-SWCNT treatment. Evidences are provided that P85-SWCNT induces thylakoid 
membrane remodeling, namely—partial membrane unstacking, thermal stabilization of the major light-harvesting complex 
of photosystem II and its migration toward the stroma lamellae. The observed effects are most pronounced for the highest 
used concentration of 300 mg/L P85-SWCNT. Our results reveal that P85-SWCNT in concentrations below 300 mg/L is an 
interesting object for further investigation of the potential application of nanomaterials in plant science, e.g., as nanocarriers 
of beneficial substances reaching the photosynthetic apparatus.

Keywords  Photosynthetic apparatus · Major light-harvesting complex of photosystem II · Thermal stability · Grana 
membranes

Introduction

The development of novel technologies for targeted trans-
portation of nanomaterials to the photosynthetic apparatus 
in vivo is a hot topic in plant bio- and nanotechnology but 
still far from practical realization. Based on in vitro and in 
silico studies revealing the possibility for direct interac-
tion (electron and exciton transfer, formation of chemical 

bonds) between photosynthetic reaction centers and single-
walled carbon nanotubes (SWCNT), demonstrated in several 
studies (Dorogi et al. 2006; Mackowski et al. 2010; Hajdu 
et al. 2011; Nagy et al. 2014; Wiwatowski et al. 2016; Gha-
semi‑Kooch et al. 2018; Orlanducci et al. 2020), we can 
envisage protocols for manufacturing nanocarriers loaded 
with antioxidants, essential microelements or other benefi-
cial substances that are delivered to the chloroplasts. This 
would help the photosynthetic apparatus, and thus the whole 
plant, to cope with extreme environmental events, ensure 
survival and improve yields.

To obtain fundamental knowledge on the effect of foliar 
application of SWCNT on plant development (with empha-
sis on photosynthetic performance) in our previous work, 
we exploited poly(ethylene oxide)26-block-poly(propylene 
oxide)40-block-poly(ethylene oxide)26 triblock copolymer 
(Pluronic P85)-grafted SWCNT, denoted hereon P85-
SWCNT. We revealed that the application of 300 mg/L P85-
SWCNT induced changes in the functionality of the photo-
synthetic apparatus, as well as an alteration in the thylakoid 
membrane structure manifested as increased lumenal space 
throughout the grana and stroma regions of the thylakoid 
system (Velikova et al. 2021). On the contrary, application 
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solely of Pluronic P85 led to features that were very simi-
lar to the control untreated variants (Velikova et al. 2021). 
Therefore, to further explore the P85-SWCNT-induced 
structural changes, here we investigate thylakoid membranes 
isolated from pea plants treated with those nanomaterials in 
the same manner as reported in Velikova et al. (2021).

The ultrastructure of thylakoid membranes is largely 
determined by the extent of stacking of confined membrane 
domains into grana structures, highly enriched in photosys-
tem II (PSII) and its major and minor antennae complexes. 
The study of thylakoid membrane ordering in lateral (mac-
roorganization) and vertical (stacking) direction is of high 
interest, since it is not static but dynamically responds to 
a variety of environmental and stress factors, and hence is 
involved in plants’ adaptation and response mechanisms 
(Lambrev and Akhtar 2019; Rantala et al. 2020; Johnson and 
Wientjes 2020; Gu et al. 2022). The major light-harvesting 
complex of photosystem II (LHCII) is known to be a key 
factor in those processes (Kouřil et al. 2012; Albanese et al. 
2020; Rantala et al. 2020; Mazur et al. 2021).

Materials and methods

Thylakoid membrane preparation

Thylakoid membranes were prepared from 14-day-old 
pea plants (Pisum sativum cv. RAN 1) sprayed with 
H2O (control) or 10, 100 or 300 mg/L of P85-SWCNT 
(polymer:SWCNT ratio of 100:1 w/w), as described in 
Velikova et al. (2021). For the isolation procedure, the pro-
tocol described in Petrova et al. (2018) was utilized and the 
samples were stored at − 20 °C until further use. Before each 
experiment, the membranes were washed twice with buffer 
containing 20 mM tricine, 250 mM sorbitol, 5 mM MgCl2 
(pH 7.6) and adjusted to the respective chlorophyll (Chl) 
concentration required for the analyses carried out.

Digitonin fractionation

The extent of grana stacking was determined by the method 
of membrane fractionation with digitonin (Chow et  al. 
1980). Thylakoid suspension (with concentration of 100 μg 
Chl/ml) was treated with 0.5% digitonin and incubated for 
15 min. The % of grana in the thylakoid membranes was 
estimated by determining the Chl concentration of the dig-
itonin-solubilized pellet, relative to the total Chl content of 
the thylakoid suspension before the digitonin treatment.

Differential scanning calorimetry

Thylakoid membranes (with a concentration of 700 μg Chl/
ml) were linearly heated at a scan rate of 0.5 °C/min and the 

change in their excess heat capacity as a function of tempera-
ture was recorded by DASM 4 calorimeter (Puschino, Rus-
sia). The original differential scanning calorimetry (DSC) 
scans were smoothed, corrected for buffer–buffer baseline 
and normalized to the Chl content.

Malondialdehide concentration determination

The extent of peroxidation of the thylakoid lipids was deter-
mined on the basis of malondialdehide (MDA) level in iso-
lated thylakoid membranes. The MDA content of thylakoid 
suspensions with Chl concentration of 50 µg Chl/ml was 
determined according to a protocol described in Mishra and 
Singhal (1992).

Statistical evaluation

The obtained data are presented as mean values and standard 
deviation (SD). Student’s t test was applied to define the 
statistically significant differences between control (H2O) 
and P85-SWCNT-treated plants.

Results and discussion

To precisely quantify the changes in the extent of grana 
stacking in thylakoids derived from leaves treated with P85-
SWCNT, we utilized the mild detergent digitonin, which 
splits the thylakoid membrane at the grana/stroma margin 
(Chow et al. 1980). The data presented in Fig. 1a show that 
there are no statistically significant changes in grana stack-
ing in the studied treatments as compared to the control. 
These results confirm the hypothesis stated in Velikova et al. 
(2021) that the observed changes in the chloroplast ultras-
tructure of 100 and 300 mg/L P85-SWCNT-treated variants 
are not associated with alteration of the relative abundance 
of grana and stroma lamellae but most probably are due 
to changes in the macroorganization of the photosynthetic 
complexes.

To explore further this possibility, as a next step we meas-
ured the Chl a/b ratio in intact thylakoids as well as in iso-
lated grana membranes. This parameter is a realistic measure 
of the abundance of LHCII relative to the photosynthetic 
core complexes since LHCII is by far the most abundant 
membrane protein that binds the vast majority of Chl b in the 
thylakoid membranes of higher plants, while the photosyn-
thetic core complexes bind only Chl a (Peter and Thornber 
1991; Kirchhoff et al. 2002). We found out that the applied 
P85-SWCNT treatments did not induce change in Chl a/b 
ratio in intact thylakoids (it remained in the range of 2.5–2.7 
for all samples). However, we detected significantly higher 
Chl a/b in the grana membranes of P85-SWCNT-treated 
leaves than of control ones, and the observed effects were 
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proportional to the applied P85-SWCNT concentrations 
(Fig. 1b). Thus, we assume that although the overall LHCII 
content of the thylakoid membranes remains unchanged, 
P85-SWCNT treatment leads to reorganization of the PSII-
LHCII supercomplexes, i.e. application of P85-SWCNT 
concentrations in the range 10–300 mg/L induce migration 
of LHCII outside the grana regions and subsequent loca-
tion in the stroma lamellae. This leaves a portion of LHCII-
depleted PSII complexes in the grana membranes. This 
process would require at least partial membrane unstacking 
that would facilitate LHCII diffusion. It is apparently differ-
ent from the migration of LHCII toward stroma associated 
with the transition from state I (PSII bound LHCII) to state 
II (PSI bound LHCII) that results in gross swelling of the 
thylakoid lumen and the whole thylakoid membrane system 
(Chuartzman et al. 2008).

Next, we explored the effect of P85-SWCNT treatment 
on the thermotropic properties of the thylakoid membranes, 
which also reflect the membrane structural features. For 
each of the studied variants, six thermally induced transi-
tions (denoted as T1–T6) were clearly observed (Fig. 2a). 
The first calorimetric transition was detected at ca. 47 °C 

in the control and 10 and 100 mg/L P85-SWCNT-treated 
plans; however, it was absent in the 300 mg/L P85-SWCNT 
sample. This thermal transition is of special interest, since 
it is related to membrane stacking and macroorganization, 
in particular it is due to heat-induced disassembly of chi-
rally organized LHCII-containing macrodomains in stacked 
thylakoid membranes (Dobrikova et al. 2003). The thermal 
denaturation transition of LCHII within its native membrane 
environment was clearly resolved at about 70 °C in similar-
ity to our previous report (Petrova et al. 2018). Its dena-
turation temperature, however, varied as a function of the 
applied P85-SWCNT concentrations. The data presented in 
Fig. 2b reveal that the increase in P85-SWCNT concentra-
tion results in statistically significant upshift of the transi-
tion temperature of LHCII, from 68.5 ± 0.9 °C for the con-
trol to 70.9 ± 0.5 °C for 300 mg/L P85-SWCNT treatment. 
The observed changes in T1 and T4 calorimetric transitions 
in 300 mg/L P85-SWCNT-treated plants resembled those 
obtained in chemically unstacked thylakoid membranes 
in vitro (Petrova et al. 2018), but are expressed at a lower 
extent, evidencing that partial unstacking process occurs 
in vivo in the plants treated with 300 mg/L P85-SWCNT.

Fig. 1   Abundance of grana membranes, as determined by the relative 
Chl concentration of digitonin-fractionated thylakoids obtained from 
control (H2O) plants and plants treated with different concentrations 
of P85-SWCNT (a). Chl a/b ratio determined for the isolated grana 

fragments (b). Data are presented as mean ± SD. *Statistically signifi-
cant difference from the control at P < 0.02 according to Student’s t 
test
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To detect any plausible harmful effects of P85-SWCNT 
on the thylakoid lipid matrix, we tested the level of MDA, 
which is generally considered as an indicator of lipid per-
oxidation in biological membranes (Mishra and Singhal 
1992). In the case of thylakoids isolated from healthy 
plants, however, this parameter also  correlated with 
the level of polyunsaturated fatty acids (Velikova et al. 
2015). We found that MDA was 1.08 ± 0.21 μM in control 
and remained similar in 10 and 100 mg/L P85-SWCNT 
sprayed plants (1.16 ± 0.10 and 0.92 ± 0.20 μM, respec-
tively). On the contrary, MDA amount was lower in thyla-
koids isolated from 300 mg/L P85-SWCNT-treated leaves 
(0.65 ± 0.06 μM), most probably due to a lower concen-
tration of polyunsaturated fatty acids (and consequently 
reduced thylakoid membrane fluidity) in these samples. 
MDA is primarily derived from triunsaturated fatty acids 
in chloroplasts (Yamauchi et al. 2008; Schmid-Siegert 
et al. 2012) and serves to adsorb a portion of the reactive 
oxygen species (Mène-Saffrané et al. 2009) formed during 
the normal cell life as a part of the cell protection system. 
Therefore, the lower level of MDA in thylakoids isolated 
from 300 mg/L P85-SWCNT-treated leaves might in fact 
be related to decreased amount of polyunsaturated fatty 
acids rather than to oxidative stress.

Finally, we explored the correlation between the observed 
effects by means of Pearson’s correlation analysis. We 
established that T4 temperature shift in the different P85-
SWCNT treatments correlated very strongly with Chl a/b 
concentration in the grana [Pearson’s R = 0.94, R-square 
(COD) = 0.88] and with MDA concentration [Pearson’s 
R = − 0.98, R-Square (COD) = 0.96].

The obtained results on grana abundance, grana Chl 
a/b ratio and thylakoid membrane thermal stability pro-
vide clear evidence that foliar application of P85-SWCNT 
affects strongly the structural organization of the photosyn-
thetic machinery, most pronounced at 300 mg/L. Thylakoid 
swelling observed in our earlier work on P85-SWCNT-
treated plants (Velikova et al. 2021) allows major reorgani-
zation of the photosynthetic complexes and thus serves as 
a crucial prerequisite for the regulation of photosynthesis 
by state transitions and NPQ (Lambrev and Akhtar 2019; 
Gu et al. 2022). Indeed, preserved relative grana abundance 
along with the increased Chl a/b ratio in grana, as well as 
the thermally induced changes in P85-SWCNT-treated thy-
lakoids, strongly suggests that partial membrane unstacking 
and LHCII migration toward the stroma regions take place 
without full disassembly of the stacked membrane organiza-
tion. The structural organization of the thylakoid membrane 

Fig. 2   Series of DSC scans of thylakoids isolated from pea leaves 
sprayed with different concentrations of P85-SWCNT. For clarity, the 
individual thermal transitions are indicated by T1–T6 (a). The transi-
tion temperatures (mean ± SD) of T1 (open black circles) and T4 (full 

blue circles), as a function of SWCNT concentration, are presented in 
(b). *Statistically significant difference from the control (H2O treated) 
at P < 0.02 according to Student’s t test
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in the 100 and 300 mg/L P85-SWCNT variants resembles 
the one observed for high light-adapted Arabidopsis leaves, 
characterized by expanded luminal space that facilitates pro-
tein diffusion and thus PSII repair (Kirchhoff et al. 2011; Li 
et al. 2020). This must also be associated with osmotic water 
and ionic fluxes (as proposed by Guo et al. 2022), which 
however are still not thoroughly studied.

Normally thylakoid swelling is reversible in the dark; 
however in our experiments, the 100 and 300 mg/L P85-
SWCNT variants seem to be trapped in the light-adapted 
state and do not revert to the stacked configuration in the 
dark. This membrane remodeling might be a consequence 
of generation of a number of damaged PSII centers that 
need repair. Indeed, the lower number of active PSII centers, 
the lower extent of de-epoxidation, and the lack of the fast 
NPQ development phase, as previously reported in Velikova 
et al. (2021) could be associated with damaged PSII cent-
ers. The fact that a pool of LHCII migrates to the stroma 
regions (as judged by the change in Chl a/b ratio of grana) 
also means that less PSII-associated LHCII complexes are 
available for efficient NPQ formation and violaxanthin 
de-epoxidation in the grana (Johnson et al. 2011), which 
would explain why the fast phase of NPQ development is 
essentially lacking in the 100 and 300 mg/L P85-SWCNT 
samples (Velikova et al. 2021). Alternatively, NPQ develop-
ment might be obstructed due to the diluted concentration of 
protons and proteins involved in photoprotection (by violax-
anthin de-epoxidase) and protein repair (by DEG proteases) 
in the lumen induced by osmotic water influx as suggested 
by Li et al. (2020) and Guo et al. (2022).

However, as noted before, the effects induced by P85-
SWCNT treatments in concentration lower than 300 mg/L 
are far from detrimental for the overall plants fitness and 
might even prove beneficial at certain environmental condi-
tions, which however is yet to be explored. In support of 
this notion, here we did not find indication for generation 
of harmful active oxygen species; further detailed fatty 
acid composition analysis is needed to confirm this find-
ing. Nevertheless, the presented data open up the possibility 
for future exploration of P85-SWCNT as cargo material for 
delivery of beneficial substances directly to the photosyn-
thetic apparatus that would enhance its operation and func-
tionality in a variety of stress conditions.

Conclusion

For the first time, we demonstrate that foliar application of 
P85-SWCNT in the concentration range 10–300 mg/L on 
intact pea plants induces structural remodeling of the thy-
lakoid membrane system. In particular, the presented data 
indicate partial membrane unstacking, accompanied by ther-
mal stabilization of LHCII and its migration from the grana 

toward stroma membrane regions, most pronounced at the 
highest used P85-SWCNT concentration.
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