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MOTIVATION Generative construction of novel training samples has been shown to improve the test accu-
racy of segmentation networks in the medical image analysis domain. However, only one or a few objects
(e.g., organs, malignant tumors) are segmented in medical images, and thus semantic segmentation is typi-
cally used. In contrast, in bioimage analysis, several objects (e.g., single cells) should be retrieved, and thus
instance segmentation methods are employed. We sought to adapt the previously proposed methods for
generative augmentation in medical image analysis to bioimage analysis by learning discrete object masks
and the corresponding microscopy images directly from the data itself.
SUMMARY
We introduce a generative data augmentation strategy to improve the accuracy of instance segmentation of
microscopy data for complex tissue structures. Our pipeline uses regular and conditional generative adver-
sarial networks (GANs) for image-to-image translation to construct synthetic microscopy images along with
their corresponding masks to simulate the distribution and shape of the objects and their appearance. The
synthetic samples are then used for training an instance segmentation network (for example, StarDist or Cell-
pose). We show on two single-cell-resolution tissue datasets that our method improves the accuracy of
downstream instance segmentation tasks compared with traditional training strategies using either the
raw data or basic augmentations. We also compare the quality of the object masks with those generated
by a traditional cell population simulation method, finding that our synthesized masks are closer to the
ground truth considering Fréchet inception distances.
INTRODUCTION

Data augmentation is one of the simplest ways to improve the

generalization capability of convolutional neural networks. The

motivation behind data augmentation is the fact that, using the

appropriate transformations, one can generate artificial elements

from the original dataset that can improve the generalizationcapa-

bility of themodelwhen jointly usedwith the raw trainingdata.Data

augmentation is particularly relevant for biological andmedical im-

ageanalysis,whereprimarydatamaybe limitedorcostly toobtain.

Common transformationsused for dataaugmentation inbiological

image analysis are simple affine transformations like rotation,

translation, scaling, and nonlinear transformations, for example,

elastic deformations that equally affect both the input and target

images.Other transformations like the additionof (Gaussian) noise
Cell Repor
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or intensity transformations affect the input image only and leave

the segmentation untouched.

To simulate microscopy images and masks of cell populations,

severalmethodshavebeenproposed. TheSIMCEP1methodaims

to generate realistic-looking cell populations in two steps. In the

first step, the vertices of a regular polygon are perturbed by nor-

mally distributed displacements. Then, a cubic spline is fitted to

the vertices of the transformed polygon. The instances are then

placed on an empty canvas. Each object is assigned to a cluster

with uniform probability, while the in-cluster object-centroid dis-

tances are distributed normally and the location of the centroids

are uniformly distributed in the image. Another related tool is the

Cytopacq2,3 method, which aims to simulate the whole imaging

pipeline. The approach is also capable of generating 2D/3D

digital ‘‘phantoms’’ of HL-60 cells (among others) by deforming a
ts Methods 3, 100592, September 25, 2023 ª 2023 The Authors. 1
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procedure GENERATE-SYNTHETIC-SAMPLES(S, K)

ðficj g; fmc
j gÞMj = 1

= EXTRACT-CROPS(S)

mStyleGAN2� ada = STYLEGAN2-ADA-TRAIN(ENCODE (fmc
j g))

fms
kgKk = 1= DECODE(STYLEGAN2-ADA-GENERATE

(mStyleGAN2� ada, K)

mpix2pix = PIX2PIX-TRAIN(fmc
j g, ficj g)

fiskg = PIX2PIX-GENERATE(mpix2pix, fms
kg)

return fiskg,fms
kg

end procedure
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sphere or ellipsoid using fast level set methods with random

noise. Although these approaches can model simple cell popula-

tions, the positions of the objects are still drawn from simple para-

metric distributions, and thus they cannot capture more complex

layouts.

Another class of methods utilize generative adversarial

networks (GANs) for automatic data augmentation. Many of

the related methods aim to solve segmentation or classifica-

tion tasks for medical images4–10 or biological images.11–14

Methods developed for medical image classification learn a

model for each class8,10,15 and then draw examples from the

learned distribution to solve class imbalance problems. It has

been demonstrated that a single model is also effective if

conditioned on the class labels.9 Unpaired image-to-image

translation can be also exploited to bridge the domain shift

(contrast and noncontrast images) between the training and

test sets.7 Other methods developed for segmentation of med-

ical images learn the joint distribution of the actual image and

the corresponding segmentation. The simplest way is to train a

GAN model on the initial training set and then draw samples

from the learnt distribution.4,6 A semi-supervised approach ex-

tends this model by predicting geometric and intensity trans-

formations to be applied on the training set to synthesize ele-

ments more similar to the distribution of the test set.5 Learning

the joint distribution of the images and masks is shown to be

effective in medical images, where usually one or a few target

objects are segmented. In contrast, in biological images, usu-

ally many distinct objects should be simulated, and the goal is

to reproduce discrete instance masks. Nevertheless, the naive

approach is proposed for synthesizing binary nuclei masks for

microscopy images.13 Other methods, however, synthesize

instance masks using simple parametric methods and then

use an image-to-image translation model to generate the cor-

responding microscopy images. An unpaired image-to-image

translation model can be trained directly on the synthesized

masks and the microscopy images found in the test set.12

Another method trains a paired image-to-image translation

model using weak segmentations generated to the test.11 If

the instance masks are not required, then a style transfer

model can be directly applied on the feature level.14 The

main limitation of the latter group of methods is that these

are not easily applicable to datasets where global tissue struc-

tures result in complex object layouts since the masks are

simulated using simple parametric methods. We therefore

sought to design a method that learns instance masks from

the data directly and that can synthesize masks where the

layout of the objects has a unique structure that cannot be

captured with previous methods using parametric cell popula-

tion simulation.

We thereforedevelopedaGAN to learn instancemasksdirectly

from the training data. An image-to-image translation task is then

solved to transform the synthesized masks into the correspond-

ing microscopy images. We show that in order to learn discrete

masks directly from the training data with convolutional neural

networks, employing a proper encoding technique is essential,

even in simpler images like object masks of nuclei instances in

cell cultures. The resulting synthetic samples can be combined

with the starting dataset and used to train an instance segmenta-
2 Cell Reports Methods 3, 100592, September 25, 2023
tion network (Figure 2). Because our method explicitly returns

instance masks, it can also be a drop-in replacement for tradi-

tional cell population simulation methods. It offers increased

expressive power, as it can capture distributions that cannot be

otherwise captured using simple parametric methods.

We use two single-cell datasets (Figure 1) to design and vali-

date our method. The first is extracted from a salivary gland tu-

mor sample, and the second is a fallopian tube biopsy. The

cell boundaries are annotated by a field expert. Both datasets

have a particular global structure considering the layout of the

cells. We found that these complex global structures cannot

be easily captured using previous methods, while our convolu-

tional neural network-based approach can deal with these types

of data.

RESULTS

Our approach uses a GAN and image-to-image translation to

synthesize novel samples that mimic the original dataset; there-

fore, it can be considered a fully data-driven approach. First, a

state-of-the-art GAN is used (StyleGAN2-ada16 in our case) to

learn the distribution and shape of the instances in the mask im-

ages of the training set after applying a general encoding tech-

nique to encode the masks in order to be able to be successfully

learnt by the network. We show that an encoding technique is

crucial when learning themasks because of their discrete nature.

For the encoding, we use the Cellpose’s heat-flow encoding.17

Then, synthetic heat flows are generated using the learnt GAN

model, which are decoded in a subsequent step to discrete

masks. In parallel to the GAN training, an image-to-image trans-

lation task is solved using the pix2pix18 method to learn the

translation from the masks to the microscopy images in the

training dataset. Then, the learnt pix2pix models are used to

construct the corresponding synthetic microscopy image for

each synthesized mask. The resulting synthetic samples can

be combined with the starting dataset and used to train a seg-

mentation network (Figure 2). Our method, however, can not

only be used for data augmentation but can replace traditional

cell population methods when only the masks are needed (Fig-

ure 2; Pseudocode 1).

The proposed model for synthetic sample generation
Our method implements the GENERATE-SYNTHETIC-

SAMPLES procedure (Pseudocode 1). It operates on the training

dataset S = ðfiig; fmigÞNi = 1, where fiig is themicroscopy images

and fmig is the corresponding segmentation masks. Each pixel

in the segmentation mask encodes the instance with the inten-

sity, while the intensity 0 encodes the background.



Figure 1. Datasets

Top: salivary gland; bottom: fallopian. The datasets are fromMund et al.21 The right side shows the input image crops, the corresponding labeled masks, and the

structure representation of the masks first proposed in the Cellpose article.17
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Pseudocode1: the pseudocode of ourmethod. It cropsM over-

lappingpatches fromthe input samples (M is determinedautomat-

ically) and then synthesizes and returns K samples that are

assumed to be similar to the crops extracted from the N input im-

ages. TheENCODE functionconverts the labeledmasks intoheat-

flow representation, and the STYLEGAN2-ADA-TRAIN function

represents the training on the heat flows resulting in a GANmodel,

mStyleGAN2� ada. The resulting GAN model is used to synthesize

flows using STYLEGAN2-ADA-GENERATE, which will be con-

verted back to labeled masks using DECODE. The function

PIX2PIX-TRAIN learns the transformation fmc
j g/ficj g, resulting

in an image-to-image translation model, mpix2pix, that will be

used to synthesize the corresponding microscopy images to the

already synthesized masks using PIX2PIX-GENERATE. In the up-

per indices, s stands for the synthesized crop image, and c is a

crop from the starting dataset.

We first extract overlapping crops of size 2563256 from the

input images and masks using the EXTRACT-CROPS function

(Pseudocode 1). A crop (with the corresponding image) is kept
if it contains at least a few distinct objects; otherwise, it is dis-

carded (K is the maximum number of crops successfully ex-

tracted). We also add the orthogonally rotated transformations

of each crop to the dataset.

To generate the synthetic masks, we learn the distribution of

the instances in the original dataset and then use the learned

model to generate objects from the distribution. Previous works

generate the synthetic masks by sampling objects from a cell

database and then placing them on an empty canvas after

applying random transformations on them (rotation, resize,

etc.).11,12 However, this type of approach may not be able to

model complex distributions where the instances follow unique

global tissue structures as in our case (Figure 1). This is often

the case in tissue samples. Therefore, we train a GAN on the

masks to model not only the shape of the objects but their rela-

tive locations and orientations. As our method is intended to

work on small, annotated datasets, we have to train a GAN

with a limited number of samples. Fortunately, recent GANs offer

nonleaking data augmentation to learn from limited-size
Cell Reports Methods 3, 100592, September 25, 2023 3



Figure 2. The proposed model

(A) The crops from the original dataset with the input microscopy images and their corresponding ground-truth masks that are the result of EXTRACT-CROPS(S).

(B) Learning an image-to-image translation model, mpix2pix , to translate the masks into the microscopy images in the training set: the result of the function call

PIX2PIX-TRAIN(fmc
j g, ficj g).

(C) A StyleGAN2-ada model, mStyleGAN2� ada, is trained on the heat-flow representations of the masks in the training set: the result of STYLEGAN2-ADA-

TRAIN(ENCODE (fmc
j g)).

(D) The learned StyleGAN2-ada model is then used to generate heat flows from the distribution learned from the training set, which are then converted back into

labeled masks: DECODE(STYLEGAN2-ADA-GENERATE(mStyleGAN2� ada, K).

(E) The learned style transform model (the result of B) is then applied on the synthetic masks by calling PIX2PIX-GENERATE(mpix2pix , fms
kg).

(F) The synthetic dataset with the synthetic masks and the corresponding microscopy images (noncurated images). See Pseudocode 1 for the details.
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datasets.16 In our proposed pipeline, we use the StyleGAN2-ada

framework for all the experiments: first, a mask model,

mStyleGAN2� ada, is learned using the STYLEGAN2-ADA-TRAIN

function, and then the synthetic masks are drawn using the

learned model.

To synthesize the masks, a naive solution would be to feed the

binarized version of the instance masks (fmc
j g) directly into the

GAN,where all of the cells share the same label,13while the back-

ground is marked with zeros (that is, the ENCODE function in

Pseudocode 1 is the threshold function with an appropriate

threshold parameter). This strategy is suitable for tasks where

only one or a few objects should be segmented, but in instance

segmentation, especially in single-cell segmentation of tissues

where objects densely located, this strategy has twomain limita-

tions: (1) instances that shareboundarieswith other instances are

indistinguishable from each other, and therefore touching cells

cannot be modeled. (2) We observed that if a model is trained

on thebinarizedmasks, thenetworkgenerates lots of fragmented

objects, similarly to the presented graphical results in the refer-

enced paper, where the authors also usedbinarymask represen-

tation.11 We also observed this error, and this particular failure

mode is presented in Figure 3A.

We also experimented by feeding the GAN with raw labeled

masks where each object is encoded with a unique intensity

value (the ENCODE function is identity). Although, this way, the

generated cell instances are not fragmented, small intensity vari-

ance can be observed in almost each generated object that is

nearly impossible to fix, and consequently, touching objects

cannot be modeled. This happens because the input has an

inherently discrete property that is not respected by the
4 Cell Reports Methods 3, 100592, September 25, 2023
StyleGAN2-ada, as it learns the proper (continuous) distribution

of pixels that results in perceptually appealing results, but no

terms in the loss forces the dynamics of the learning to respect

the discrete nature of the dataset. Results and common failure

modes of these naive approaches are presented in Figure 3.

To overcome the issues above, we choose to encode our

labeled masks into a dense and continuous structure representa-

tion to solve bothproblems. In theory,many representations could

work (see the note below), but we found Cellpose’s17 heat-flow

simulation to be the most robust for our task: in the encoding pro-

cess, thecentroidofeachcell isdetermined, andaconstantheat is

applied to that point in an iterativemanner (Figure 1, rightmost col-

umn). The heat distribution is captured at the end of this iterative

process, and the objects are represented using the gradients of

the final heat distribution. Reconstruction (decoding) is done by

following the gradients for each pixel: if two different pixels

converge to the same position, then they are representing the

same object.We convert eachmask into their corresponding vec-

tor-flow representation and feed them to the StyleGAN2-ada dur-

ing training. The converted masks are encoded in three channels:

two channels represent the gradient of the flow (dx and dy) in each

pixel, and the third channel encodes the object probability. The

main advantage of this representation is that the instance masks

can be represented as 3-channel images, and there is no need

for architectural changes in the StyleGAN2-ada to feed the masks

in the vector-flow format. The vector-flow representation naturally

solves problem 1 since the pixels near the touching region

converge to the reference points (centroids) of the objects they

are part of. Our experiments show that StyleGAN2-ada can learn

the vector flows and that the synthesized images can be decoded



Figure 3. Common errors when training StyleGAN2-ada directly on the masks

Top: (A) the StyleGAN2-adawas trained on the binarizedmasks from the DSB201820 dataset (intensity 0marks the background, while 255marks the foreground).

(B) Trained on the labels of the salivary gland dataset directly. We did not do any preprocessing on the labeled masks; we just trained the network on them.

Bottom: common issues when training directly on the binarized masks: (a) the objects cannot be separated; the StyleGAN2-ada generates blobs instead of

instances, (b) holes between the objects, and (c) fragmented objects with blurry boundaries. When training on the labels, the common issues are (a0) holes in the

objects, (b0) nonuniform intensities represent an object, and therefore the reconstruction is nearly impossible, and (c0) nuclei blobs, containing mixed intensities

(the input is grayscale in the labeled case, and the colors are only added for better visualization).
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by the simple algorithm above. Based on our experiments, prob-

lem2 is also solved, aswedid not observe the fragmentedobjects

in the generated vector flows (Figure 3). After training theGANwith

the flows, we generate synthetic flows and decode them with the

mentioned tracking algorithm, and thus we get synthesized dis-

crete masks.

Our method does not explicitly depend on the Cellpose repre-

sentation. In theory, any representation may work that can

encode a labeled mask into a dense image. We also experi-

mented with gradient vector-flow representation19 but found

that the Cellpose representation has higher tolerance on the in-

accuracies generated by the GAN.

Parallel to training theStyleGAN2-adamodel,we learnmpix2pix us-

ing image-to-image translation on the training set18 that will be later

used to transform the synthesized masks into their corresponding

synthetic microscopy images. One can learn the mapping of the

vector-flow representation of the microscopy images directly (the

first parameter of PIX2PIX-TRAIN is the raw output of STY

LEGAN2-ADA-GENERATE), but we observed that learning the

translation from the raw labeledmasks into their correspondingmi-

croscopy images leads tobetter imagequality in thedatasetsweare

working on. After both the image-to-image translation task and the

syntheticmask generation task are completed, the pix2pixmodel is

used to translate the synthetic masks into the corresponding syn-

thetic microscopy images, and both sets are returned. The whole

pipeline is shown in Figure 2 and summarized in Pseudocode 1.

The synthesized images and masks returned by the method

can be used to augment the initial training set. We use the

StarDist and Cellpose instance segmentation methods to

demonstrate that the synthesized samples can improve the
generalization capability of these networks. Although we tested

the effectiveness of our augmentation policy with the networks

above, our method does not depend on any particular instance

segmentation method.

Performance evaluation
We first qualitatively show that training on the binarized masks or

the labels lead to poor mask quality. We trained StyleGAN2-ada

on binary and labeledmasks (the ENCODE function is the thresh-

olding or identity, respectively). The binary training is tested on

the masks of the DSB 2018 dataset,20 where only a few in-

stances touch each other per image. We also tested the quality

of the synthetic masks when the network was trained on the raw

labeled images of the salivary gland dataset. In the latter, the in-

stances follow a denser layout (compared to the DSB 2018 con-

taining mainly cell cultures), and most of the instances share

boundaries with others. Figure 3 presents themost common fail-

ure modes when training the network with these strategies.

Next, we compare the masks generated using the SIMCEP

method with those generated with our GAN-based generation

strategy by first transforming each dataset (generated by

SIMCEP and ours) to the structure representation and then

compute the Fréchet inception distance (fID) of the generated

flows to the ground-truth flows. We adjusted each possible hy-

perparameter of the SIMCEP to the parameters of the ground-

truth dataset (mean number of cells in each mask, min/max

cell radius, estimated number of clusters) and generated a data-

set of similar size to the ground truth. Based on the results, we

observe that the SIMCEP generator can achieve substantially

better scores if the masks have simple structure, but it still fails
Cell Reports Methods 3, 100592, September 25, 2023 5



Figure 4. Synthesized flows, the reconstructed masks, and their corresponding microscopy images generated by our method
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to generate complex structures. This is obvious from the fIDs

reached by the method and by visually inspecting the generated

masks. When using the GAN-based mask generation approach,

the increase in the fID score is 3-fold on the salivary gland data-

set, and it is still 23when comparing the fallopian tube masks to

the ground truth (Figures 4 and 5). This is not surprising, as the

salivary gland dataset has a richer global structure (Figure 1).

We also compare the quality of the generated microscopy im-

ages when the learned style models are applied to the masks

generated by SIMCEP and to the masks generated by our

GAN-based method. Again, the fID score is substantially better

on the fallopian tube dataset when using SIMCEP, as the cell

structures found in this dataset are less complex. On the other

hand, the fID scores are much worse when comparing the gener-

ated images from the salivary gland dataset to its ground truth.

Whenusing themasksgenerated byourmethod, a 2-fold increase

can be observed in the fID scores for both datasets (Figures 4

and 5).

Our quantitative and qualitative results (Figures 4 and 5) show

that our approach is useful when the layout of the objects follows

a complex distribution, and it cannot be easily approximatedusing

the SIMCEP method. In contrast, the StyleGAN2-ada generator

implicitly learns the distribution of the objects in the training set
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that can be used later to generate more realistic microscopy im-

ages compared with what can be achieved by utilizing the masks

generated using the SIMCEP method.

To show that the synthesized samples can be used to improve

the instance segmentation accuracy, we trained StarDist andCell-

posemodels on both datasets. Two experiments were performed.

In the first one, we pretrained the instance segmentation network

on the synthesized images only, and then the network was fine-

tuned on the raw dataset. In the second experiment, we simply

merged the raw dataset and the synthesized samples. We

executed thepix2pix and instance segmentation network trainings

with different training-set sizes to test the effectiveness of our

methodonanevenmore limitednumber of samples (subset exper-

iment). In both experiments, we cross-validated our results. We

formed 5 folds on the salivary gland dataset and 4 folds on the fal-

lopian tube.

We trained StarDist and Cellpose models on both datasets.

Table 1 shows the instance segmentation results using the

DSB 2018 metric20 (see the supporting table in the relevant sec-

tion in the STAR Methods) when we first trained the networks on

the synthesized images and then fine-tuned on the raw dataset.

For testing the accuracy on the subsets, we formed another 5

and 4 folds from the datasets andprogressively eliminated images



Figure 5. Quantitative evaluation of the synthesized masks and their corresponding microscopy images generated by SIMCEP and the

proposed model

The plot in the right column shows the Fréchet inception distance (fID) between the synthetic mask (microscopy image) and ground-truth mask (microscopy

image). From top to bottom: distance between ground-truth mask and SIMCEP synthesized mask; distance between ground-truth microscopy image and

simulated microscopy image using pix2pix with SIMCEP synthesized mask input; distance between ground-truth mask and StyleGAN2-ada synthesized masks;

and distance between ground-truth microscopy image and simulated microscopy image using pix2pix with StyleGAN2-ada synthesized mask input.
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from the training set and synthesized the samples with pix2pix us-

ing only the reduced datasets. For the salivary gland dataset, we

used training sets with 8 images (100% of the annotated images),

5 images (62,5%) and 3 images (37,5%). For the fallopian tube da-

taset,we considered 9 images as 100%and used subsets of sizes
3 and 6. The segmentation task was then executed on datasets

where the synthetic images were merged to the original training

set. In all the experiments, the test accuracy was higher when

the segmentation network was trained on the combined dataset

(Figure 6). We also observed that the standard deviation of the
Cell Reports Methods 3, 100592, September 25, 2023 7



Table 1. Segmentation results with StarDist and Cellpose

Salivary gland Fallopian tube

StarDist Cellpose StarDist Cellpose

Raw training set 0.3443 0.4867 0.2484 0.3822

Augmentation 0.3854 – 0.3310 –

Fine-tune +

augmentation

0.3893 0.4876 0.3567 0.3864
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accuraciesof the repeatedexperimentsoneach foldwassubstan-

tially lower when the synthetic sampleswere used (see the depos-

ited table in the shared repository in the key resources table; see

Figure 6 and Table S5).
DISCUSSION

In this article, we introduced a synthetic sample generation strat-

egy for instance segmentation that consists of the generation of

synthetic masks using a GAN (StyleGAN2-ada) and their corre-

sponding synthetic microscopy images using image-to-image

translation (pix2pix). Our method generates the labeled masks

explicitly, and they can be used for other tasks as well. We

showed that the distribution of the instances on the masks

generated by the GAN are more similar to the ground-truth dis-

tribution compared with the masks generated by classical para-

metric methods like the SIMCEP, and the GAN generation is

especially useful when the underlying global structure of the ob-

jects are more complex than cell cultures like in our case. We

qualitatively showed that the naive training of GANs on binary

masks or the raw labels lead to suboptimal results, as frag-

mented objects are often produced even in images from simple
Figure 6. Subset experiment results

(A) Fallopian tube.

(B) Salivary gland.

The numbers are the mean of the accuracies computed on each fold. Our augm
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cell cultures and the reconstruction of the labels is almost impos-

sible from the GAN output, but appropriate dense mask encod-

ing overcomes these issues. We also showed that the generated

samples can be used to improve the accuracy of the down-

stream instance segmentation task, especially when only a

very limited number of samples are available, compared with

the case when only the raw dataset is used for training .

Limitations of the study
Our proposed method solves two problems. First, it extends

GAN-based augmentation approaches developed for medical

image segmentation to instance segmentation, thus making it

possible to apply the idea of automatic augmentation for sin-

gle-cell segmentation. We tested our method onmicroscopy im-

ages that have unique global structures and observed improve-

ment in the downstream segmentation accuracy when we used

the generated images together with the raw images in the data-

set. Our model may not offer any improvement over previously

proposed parametric cell population simulation tools in cases

where global structure is not observed (e.g., fluorescent nuclei

images of cell cultures). Another limitation is that the proposed

method is dependent on the pix2pix algorithm for generating

the microscopy images from the masks. Even if we can almost

perfectly simulate the distribution of the instances, the image-

to-image translation task may not successfully generate such

microscopy images in all cases.

We lastly acknowledge that we tested the performance of our

method on a small number of images, which is a limitation to un-

derstanding the true generalizability of the accuracy and perfor-

mance gains that we did observe. More extensive testing on

larger datasets would be needed to paint a more comprehensive

picture of model performance.
entation protocol improves the accuracy on each subset and each fold.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Main datasets (microscopy image and

annotation) (salivary gland and fallopian

tube)

Mund et al. https://zenodo.org/record/8096773/files/

datasets.zip

Main source code repository This paper https://doi.org/10.6084/m9.figshare.

23791554

Synthesized data with SIMCEP and pix2pix This paper https://zenodo.org/record/8096773/files/

mask_quality_experiment.zip

Pix2pix models (subset experiment, fold 0,

100%)

This paper https://zenodo.org/record/8096773/files/

pix2pix_models.zip

SIMCEP code Lehmussola et al.1 https://zenodo.org/record/8096773/files/

simcep.zip

StyleGAN2-ada trained models This paper https://zenodo.org/record/8096773/files/

StyleGAN2-ada_models.zip

Synthesized training sets for the subset

experiments (fold 0)

This paper https://zenodo.org/record/8096773/files/

subset_experiments_training_set.zip

Supporting data for the fine-tuning and the

subset experiments

This paper https://zenodo.org/record/8096773/

files/Supporting_data_for_experiments

_1_and_2.xlsx

Software and algorithms

StyleGAN2-ada Karras et al.16 https://github.com/NVlabs/

stylegan2-ada-pytorch

pix2pix Isola et al.18 https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix

SIMCEP Lehmussola et al.1 http://www.cs.tut.fi/sgn/csb/simcep/

StarDist Schmidt. et al. https://github.com/stardist/stardist

Cellpose Stringer et al.17 https://github.com/MouseLand/cellpose

MATLAB R2020b (to run SIMCEP) MathWorks, Inc https://www.mathworks.com/products/

matlab.html

Python 3.8.10 Python Software Foundation https://www.python.org/

Other

DSB 2018 dataset Caicedo et al.20 https://bbbc.broadinstitute.org/BBBC038
RESOURCE AVAILABILITY

Lead contact
Further information and requests for the details of our method, please contact Dr. Peter Horvath (horvath.peter@brc.hu).

Materials availability
This study did not generate unique reagents.

Data and code availability
d This study analyzes existing, publicly available data. All of the processed datasets reported in this paper are freely available

using the links listed in the key resources table.

d All original code reported in this paper is freely available via the links listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used two single-cell datasets for testing the proposed method (Figure 1). One is a salivary gland tumor (acinic cell carcinoma)

dataset referred to as salivary gland extracted from a 29-year-old male, healthy condition after 4 years of sample collection. No

sign of mitosis, necrosis de-differentiation or perineural or intravascular growth are observed. The nuclei and a tumor marker IHC

stained.21 The other is a fluorescently stained fallopian tube tissue extracted from a 64-year-old female (membrane and nuclei stain-

ing) named fallopian.21 The sample appears microscopically and histologically normal. In both datasets, the objects follow a specific

layout that could be hard to explicitly generate using classic algorithms but using our approach, we can generate samples that are

closer to the training dataset. (Figure 5) We also show qualitatively that using the StyleGAN2-ada generator, we are able to draw syn-

thetic samples from this distribution, without any explicit parameterization or algorithm. (Figure 4)

Salivary gland tumor dataset (salivary gland)
The dataset consists of 10 annotated 3-channel imageswith resolution of 600x800 and contains a total of 1058 labeled cells. 5 + 5-folds

are formed (5 for each experiment), each fold contains 8 images for training and 1 + 1 images for validation and testing. (Figure 1, top)

Fallopian tube dataset (fallopian)
This dataset originally consisted of 8 images and 1818 annotated cells split into 30 parts with varying sizes. Only the parts reaching

the resolution 256x256 pixels are kept, therefore we finally got 17 images. The number of cells is counted in each part and are distrib-

uted to 8 groups to each contain roughly equal numbers of annotated cells. From the 8 groups, 4 + 4-folds are formed, each fold

contains 6 groups for training and 1 + 1 groups for validation and testing. (Figure 1, bottom)

METHOD DETAILS

Mask learning using GANs
Generative adversarial networks (GANs)

In traditional GANs22 the goal is to learn themappingG : z/ywhere z is the element of the distribution of the training set. The learning

employs two networks, the generator (G) and the discriminator (D), where both networks simultaneously improve to perform better in

generating images (G) that cannot be distinguished from the real images by the discriminator, and the discriminator trained to do that

task more successfully. Thus, the value function is VðG;DÞ = log DðyÞ + logð1 � DðGðzÞÞ. V is minimized with respect to D and

maximized with respect toG by doing one gradient update in each step. After the training has converged,G is used to generate sam-

ples from the distribution of the dataset and D is discarded. In the StyleGAN and its variants, the architecture of G is modified such

that it progressively upsamples the image being generated while adds details to it. In each upsampling step, a style vector is used

which is constructed by a multi-layered fully connected network from z. We chose the StyleGAN2-ada model to synthesize samples

as it offers non-leaking augmentation that makes possible to train on datasets with limited size.

To train the StyleGAN2-ada model (mStyleGAN2� ada), we used 256x256 pixel sized overlapping tiles extracted from each dataset.

Only tiles containing at least 3 objects were kept. We used default settings (with augmentation turned on) when training the models.

The actual parameters can be found in the deposited models.

The best model is selected based on Fréchet Inception Distance (fID) computed based on the pretrained ImageNet weights.23

Although ImageNet isa natural imagedataset, it is shown that the featuresextractedby themodel onmedical imagesare alsomeaningful

to assess the generated image quality.16We observed that models with fID < 100 produce synthetic masks that are numerically correct

(they canbe reconstructedby following the gradientswithout any significant error in the reconstructedmask). As the trainingprogresses,

the fID scoremay decrease but the variability of the objectsmay become less diverse, therefore visual assessmentmay also be needed.

In the case of the salivary gland dataset, the model used is trained from scratch, while the fallopian tube model is also tested by

fine-tuning the salivary gland model for saving time and computational costs and also to demonstrate transfer capability of

StyleGAN2-ada on the datasets.

Training from scratch

When training from scratch, the StyleGAN2-ada reaches the fID 54.33 at step 6500 on the salivary gland dataset, while the model

converges on the fallopian tube after 12140 steps and reaches the lowest fID 56.45 (See Figures S1 and S2 in the supplemental

information).

Transfer learning

Whenweusedthecheckpointatstep5000 (5millioncropspassed through thenetwork) fromthesalivaryglandmodel,wecouldfine-tune

thenetworkon the fallopian tube, and thenetworkneedsonly1800 steps (compared to the12140when trained fromscratch) to reach the

minimum score 46.61 that is also substantially better (17.4% lower distance from the ground truth compared to uninitialized training).

Fine-tuning with limited subsets

We used the salivary gland model at checkpoint 6400 (the best model on salivary gland) to fine-tune on the crops extracted from a

limited number of training images from the fallopian tube dataset. We observed that the model has a good enough score even when

less than 50% of the training set is used. See the details in supplemental information II: Table S2 and S3, the key resources table for

the shared models and Table S4 in supplemental information for the descriptions of the shared models.
e2 Cell Reports Methods 3, 100592, September 25, 2023
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The StyleGAN2-ada is trained on the discretized flows that are 3 channel images thus no modification is needed in the code. The

first channel encodes the object probability score (values 0 and 255 in the ground truth images). The gradient dx and dy (second and

third channels) are discretized from [-1.0, 1.0] to the interval [0, 255].

Synthesizing the corresponding microscopy images
Image to image translation

The pix2pix method solves the image-to-image translation task using modified conditional GANs. Compared to a regular conditional

GAN, the pix2pix method adds the dependency on the condition not only to the generator but also the discriminator. Thus, the value

function becomes VðG;DÞ = log Dðx;yÞ + logð1 � Dðx;Gðx;zÞÞ, where the x is the condition (the source image), y is the target image

and z is random latent vector. The loss function minimizes D and maximizes G by doing one gradient update for each input for both

networks in each step. Once the training converges, the generator represents the mapping ðx;zÞ /y.

Pix2pix training

we trained themodels for 600 epochs on the salivary gland dataset and for 300 epochs on the fallopian tube.We used themodel from

the last epoch when synthesizing the samples (did not use validation set). All other parameters hold their default value. See the key

resources table for the exact implementation we used.

StarDist instance segmentation: the masks in the training set are processed, and each object in the mask is converted into a star-

convex polygon by first selecting the centroid of an object and then measuring the length of the rays connecting the contour of an

object and its centroid. The angle between adjacent rays is equal and fixed for the entire dataset. The network consists only of con-

volutional layers (‘‘U-Net’’ and "ResNet’’ are proposed), where the layer exactly before the top one branches to predict the probability

map and the distance map. Both the probability and distance feature maps have spatial size proportional to the input size (or equal

size if downsampling is not used). The probability map contains the object probability scores for each representative location, and the

distance map at the same location represents the ray lengths encoding a candidate object (that is defined for the entire map). The

training uses cross entropy loss to supervise the probability scores while uses mean squared error for the distances. During predic-

tion, non-maximum suppression is used to find the best candidates.

StarDist training details

we set the batch size to 4, the number of rays to approximate the objects was 32 and the learning rate was 0.003. In the transfer

learning experiment, we trained the models for 100 epochs. During fine-tuning we limited the training for 20 epochs, as the models

usually converged after only a few epochs. We used the last model from the pretraining as the initial weights in the transfer learning

experiment. We used the same parameters for the subset experiment except that all models were trained for 50 epochs.

Cellpose is an instance segmentation method that uses the heat-flow representation to encode each object in a labeled mask to a

different image containing 3 channels: the probability map and a vector field encoding the flow. Since the heat-flow can be converted

back to a labeled mask, the instance segmentation problem can be solved as a dense prediction task: the method uses a fully con-

volutional architecture (a ‘‘U-Net’’-like network is used) to predict the flows that are converted back into labels.

Cellpose training details

we set the batch size to 8. In the transfer learning experiment, we trained themodels for 100 epochs (during fine-tuning, we loaded the

last model and trained for 20 epochs). In the subset experiment we disabled the rescaling based on the median object size and

trained the models for 50 epochs.

Augmentation protocol

We used augmentations affecting only the input image and geometric transformations that affect both the input images and the cor-

responding masks. We apply random joint intensity change with coefficient sampled from uniform distribution Uð0:6;2Þ and added

bias sampled from Uð � 0:2;2Þ and apply standard Gaussian noise with strength 0.02. We observed that using this augmentation

protocol alone degrades the performance in most of the cases. We apply random rotations and flips in each dimension with prob-

ability 0.5 independently.We also use elastic deformations applied in the original U-Net paper.24,25 The augmentations are applied on

the fly during the training. We do not use the elastic deformations on the Cellpose masks as the flows for the deformated masks

should have been computed before each step that is computationally too expensive (Table 1). We measure the generalization capa-

bility of our approach by also comparing it to basic augmentation pipelines.

Evaluation metric

We used a standard nuclei segmentation metric to evaluate the performance of our model.1 The metric matches the predicted and

ground truth objects and computes their intersection over union (IoU). Then the size of true positives, false positives and false nega-

tive sets are computed on each IoU threshold from 0.5 to 0.9 with step size 0.05. The metric then computes the mean accuracy (TP

over TP + FP + FN) over the thresholds.

QUANTIFICATION AND STATISTICAL ANALYSIS

Synthesized mask quality quantification
Themask quality experiment is quantitatively evaluated by computing the fID for dataset pairs. We used the StyleGAN2-ada code for

computing the fID initialized with ImageNet weights (see the key resources table for the StyleGAN2-ada availability). We did not

directly compare the decoded masks but compared them in the heat-flow space.
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Downstream task
We did cross validation for the downstream task experiments. In the subset experiments, we formed different subsets by removing

items from each fold. In the subset experiments, each training is executed 10 times (training = one execution of a particular subset in a

particular fold). In the transfer learning experiment, each training is executed 3 times. The accuracy of each single execution is depos-

ited (see the resource availability and key resources table for details). For making the table in the fine-tuning and subset experiments,

the trainings are averaged first on fold level, then the mean accuracy of the folds are reported. In each run, the model with the best

validation score is considered for evaluation on the test set. The instance segmentation accuracy is computed using the StarDist

metric implementation (see the key resources table). The standard deviation is also computed in the supporting data for the exper-

iments (deposited, see the key resources table for details).
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