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ABSTRACT The microbial communities of disease vectors may represent a key feature 
in several biological functions and thus deserve special attention in light of climate 
change and the consequent need to develop novel control strategies. Nevertheless, 
vector-borne microbial networks are still poorly understood. Assessing vectors’ microbial 
interactions and climatic dependencies may contribute to better estimating pathogen 
transmission characteristics and public health risks. In a climatically representative 
country-wide survey, Ixodes ricinus ticks were collected from 17 locations in Hungary. 
Using shotgun metagenomic sequencing, the bacteriome composition was analyzed 
by investigating the relationship between the abundance of nymphs and females in 
various climatic environments. Bacterial composition on the genus level revealed a 
significant difference between the samples from females and nymphs. Within the core 
bacteriome, females and nymphs showed significant variation in the following genera: 
Arsenophonus, Bacillus, Candidatus Midichloria, Rhodococcus, Sphingomonas, Staphylococ­
cus, and Wolbachia. Among females, according to temperature strata, the following 
were found differentiating: Curtobacterium, Pseudomonas, and Sphingomonas. There was 
no genus with a significant difference in precipitation categories for females. Curtobac­
terium showed significant variation between temperature and Bacillus and Curtobacte­
rium for various precipitation levels in the nymphs. The composition of vector-borne 
bacteriome members showed significant alterations at sampling points with different 
climatic conditions and development stages of the tick hosts. Our findings not only pave 
the way toward understanding tick-borne bacterial networks and interdependencies but 
also shed light on the high potential for the presence of a possible biological tick control 
species, the tick parasitoid, Ixodiphagus hookeri based on related bacteriome patterns.

IMPORTANCE Climate-sensitive disease vectors, such as ticks, respond to the environ­
ment with changes in their microbiome. These changes can affect the emergence or 
re-emergence of various vector-borne pathogens, such as the causative agent of Lyme 
borreliosis (LB) or tick-borne encephalitis. This aspect is particularly emphasized in light 
of climate change. The climatically representative assessment of microbiome differences 
in various developmental stages of the most common Central European tick species, 
Ixodes ricinus, deepens our understanding of the potential climatic factors behind 
microbial relative abundance and interaction changes. This knowledge can support the 
development of novel disease vector control strategies.

KEYWORDS Ixodes ricinus, bacteriome, climate, female, nymph

A lmost all aspects of human life are directly or indirectly affected by the Earth’s 
climate system dynamics. Many organisms, such as arthropods being poikilotherm 

organisms, are particularly sensitive to climate factors (1). Recent estimates suggest that 
around 80% of the world’s human population is at risk of one or more vector-borne 
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disease(s) (2). The geographical distribution of arthropod vectors is changing due to 
climate change (3, 4). The response of ticks and dipteran vectors to the chang­
ing climate appears to differ (5). While bivalves respond to short-term weather and 
climate changes with rapid responses, ticks are affected by spatiotemporal averages of 
climate variation rather than short-term or localized climate variability. This suggests 
that changes in the risk of disease spread by dipterans can be expected in the short-
term, while the prevalence of tick-borne diseases (TBDs) may be expected over a more 
extended period of time (5). Ixodes ricinus is the primary vector of the most prevalent 
TBDs in Europe, tick-borne encephalitis, and Lyme borreliosis (LB). Although reports on 
the prevalence of these TBDs do not show consistent global trends (6, 7), the European 
I. ricinus populations do. As a consequence of climate change, I. ricinus has been found 
at extreme altitudes and latitudes other than its former range and its population has 
shifted further north within the European continent (4, 8, 9). Similarly, due to some 
recently studied adaptation processes (10), the geographic range of LB can expand to 
non-endemic areas, and also to higher altitudes and latitudes (6, 7). In consideration of 
climatic factors, a shift toward a more thermophilic tick fauna has also been described in 
Hungary (11).

The eukaryotic, and as such, tick-borne microbiota impacts numerous biological 
functions of the host causing a variety of detrimental, neutral, or beneficial effects. 
In addition, certain bacterial assemblages can affect tick-borne pathogens of public 
health importance. Thus, understanding the changes in tick microbiota associated with 
the climatic environment could aid in the deeper understanding of tick biology (12, 
13). Because the tick bacteriota contains a number of climate-dependent, environment-
dependent components, bacterial interaction patterns may also be determined by 
climatic factors (14). In our work, we investigated the diversity of the bacteriome of I. 
ricinus samples from nymphs and females from wetter or drier and cooler or warmer 
environments based on a climatically representative survey in Hungary.

MATERIALS AND METHODS

Sampling design and sample collection

As the study’s main goal was to understand the natural bacteriome differences in I. 
ricinus, we designed the sampling to be representative of Hungary. In order to achieve 
this, we identified sampling points representative of climatic conditions (15). In Hungary, 
there are 175 local administrative units (LAU 1), for each of these units (geographical 
areas), we calculated the 10-year average of the yearly growing degree days (GDD) 
with base 10°C and the total yearly precipitation for each of the years. Meteorology 
data for the period of 2008 to 2017 was gathered from the ERA-Interim reanalysis data 
repository (16) with a spatial resolution of 0.125°. For each of the two environmental 
variables, binary categories were defined: GDD with classes “cooler” and “warmer” and 
precipitation with classes “less” and “more”. Regarding GDD, the lower two quartiles were 
classified as “cooler” and the upper two quartiles as “warmer”. For precipitation, the 
yearly means below the country-wide median were defined as “less” and scores above 
the median as “more”. Each LAU 1 was categorized with its own climatic variables. By 
stratified spatial random sampling (17, 18), 20 LAUs were chosen as sampling areas. The 
strata’s sample size was proportional to the stratifying GDD and precipitation categories’ 
country-wide frequency to be representative. All data management and analysis were 
performed in the R environment (19). A forest edge to sample from was identified 
within each of the 20 selected LAUs. Between 23/3/2019 and 20/5/2019, questing ticks 
were collected by flagging and dragging. In the laboratory (BSL2), ticks from the frozen 
samples were classified taxonomically. Ten nymphs and ten females of I. ricinus were 
selected randomly per sampling site. Since we could not collect the minimum of ten 
females and ten nymphs at three sampling sites, only the samples collected at the 
remaining 17 sites were included in the sequencing and downstream analyses (Fig. 1). 
Before DNA extraction, the ticks were washed twice with 99.8% alcohol.
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DNA extraction and metagenomics library preparation

For sequencing, we formed pools of nymphs per sampling site and did the same 
for females. Ticks were subjected to DNA extraction using a Qiagen DNeasy Blood & 
Tissue Kit (Qiagen, Hilden, Germany) and the supplementary protocol designated for 
the purification of total DNA from ticks for the detection of Borrelia DNA according 
to the manufacturer’s instructions. The blackPREP Tick DNA/RNA Kit (Analytik Jena 
GmbH) was used for the DNA isolation. Isolated total metagenome DNA was used for 
library preparation. In vitro, fragment libraries were prepared using the NEBNext Ultra 
II DNA Library Prep Kit for Illumina. Paired-end fragment reads were generated on an 
Illumina NextSeq sequencer using TG NextSeq 500/550 High Output Kit v2 (300 cycles). 
Primary data analysis (base-calling) was carried out with Bbcl2fastq software (v2.17.1.14, 
Illumina).

Bioinformatic analysis

After merging the paired-end reads by PEAR (20), quality-based filtering and trimming 
were performed by TrimGalore (v.0.6.6, https://github.com/FelixKrueger/TrimGalore), 
with a setting of 20 as a quality threshold, retaining reads longer than 50 bp only. 
The remaining reads after deduplication by VSEARCH (21) were taxonomically classified 
using Kraken2 (k = 35) (22) with a database created (26/03/2022) from the NCBI RefSeq 
complete archaeal, bacterial, and viral genomes. For taxon assignment, the confidence 
0.5 parameter was used to obtain more precise hits. Core bacteria was defined as the 
relative abundance of agglomerated counts on genus levels above 1% in at least one 
of the samples. The taxon classification data were managed in R (19) using functions 
of package phyloseq (23), microbiome (24), and metacoder (25). The pre-processed 
reads were assembled to contigs by MEGAHIT (v1.2.9) (26) using default settings. The 
contigs were also classified taxonomically by Kraken2 with the same database as above. 
The assembly-generated contigs that were classified to a pathogen bacteria genus 

FIG 1 Climate category spatial pattern and sampling points. The color of the sylvan areas is defined by the climatic categories based on GDD and precipitation 

over the period 2008–2017. The points are relatively homogeneous within Hungary geographically.
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by Kraken2 we reclassified by BLAST (27) on the representative prokaryotic genomes 
(downloaded on 16/6/2022). For each contig, the longest and the smallest e-value hit 
were kept and reported.

Statistical analysis

The within-subject (α) diversity was assessed using the numbers of observed species 
(richness) and the Inverse Simpson’s Index (evenness). These indices were calculated in 
1,000 iterations of rarefied operational taxonomic unit (OTU) tables with a sequencing 
depth of 158. The average over the iterations was taken for each sample. The α-diversity 
expressed by Inverse Simpson’s Index was compared between the conditions using linear 
models. Comparing the female and nymph samples collected, a mixed-effect model was 
applied to manage the repeated measurements by sampling site as a random factor.

The between-subject (β) diversity was assessed by UniFrac distance (28) based on the 
relative abundances of bacteria species. Using this measure, principal coordinate analysis 
(PCoA) ordination was applied to visualize the samples’ variance. To examine statistically 
whether the bacterial species composition differed by strata Permutational Multivariate 
Analysis of Variance (PERMANOVA (29)) was performed using the package vegan (30) in R 
(19).

The abundance differences in core bacteriome between groups were analyzed by a 
negative binomial generalized model of DESeq2 package (31) in R (19). This approach 
was applied following the recommendation of Weiss et al. (32). None of the compared 
groups had more than 20 samples, and their average library size ratio was less than 
10. According to the multiple comparisons, the FDR-adjusted P-value less than 0.05 
was considered significant. The SparCC correlation coefficient quantified the relationship 
among the relative abundances of bacterial species (33, 34). The statistical tests were 
two-sided.

RESULTS

After the basic demography of the samples, we present the α-diversity of the full 
bacteriome. From the analysis of the core bacteriome, we report the species that are 
part of it, the β-diversity, and the differences of the genera level expressed relative 
abundances. The Supplementary Material summarizes species of core bacteriome, the 
detected pathogen bacteria, and the correlations of bacteria genera (Fig. S1).

Among the ticks collected at the sampling sites, the median proportion of nymphs 
was 76.52% (IQR: 19.33), females 15.32% (IQR: 8.58), and males 7.91% (IQR: 11.47).

The numbers of observed species and the Inverse Simpson’s Index α-diversity metrics 
by strata are shown in Fig. 2. Alpha diversity showed no significant difference between 
groups in either metric. For the comparison of females and nymphs, the P-value was 
0.138. Within females, the P-values obtained by comparing groups from colder and 
warmer environments and drier and wetter environments were P = 0.562 and P = 0.577, 
respectively. Within nymphs, the comparative metrics were P = 0.174 and P = 0.309, 
respectively.

Core bacteriome

The core bacteriome is composed of the genera shown in Fig. 3. For the list of species 
identified within genera see Supplementary Material.

The variability of the samples’ core bacteriome genus profiles (β-diversity) is 
visualized by PCoA ordination (Fig. 4) based on weighted UniFrac distance. The 
PERMANOVA analysis of the bacterial composition on the genus level revealed a 
significant (P = 0.005) difference between the samples originating from females and 
nymphs. The core bacteriome of female samples showed no significant distance 
between either GDD (P = 0.444) or precipitation (P = 0.244) categories. Similarly, there 
was no significant difference between groups within nymphs (GDD P = 0.108, precipita­
tion P = 0.722).
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Abundance differences

The abundance differences (log2 median fold change, Log2FC) of groups per taxon 
comparison are summarized in Fig. 5. Comparing females and nymphs, the following 
genera showed significant (adjusted P = 0.05) differences in abundance: Arsenophonus, 
Bacillus, Candidatus Midichloria, Rhodococcus, Sphingomonas, Staphylococcus, Wolbachia. 
In the female samples, according to GDD, the following were found differentiating: 
Curtobacterium, Pseudomonas, and Sphingomonas. There was no genus with a significant 
difference in precipitation categories in females. In the nymphs, Curtobacterium showed 
a significant variation between GDD groups and Bacillus and Curtobacterium between 
precipitation levels.

DISCUSSION

Our shotgun sequencing-based microbiome analysis assesses an in-depth characteriza­
tion of I. ricinus nymphs and adult females collected from a climatically representative 
set of sampling points in Hungary. Our study revealed a comprehensive picture of the 
bacterial diversity and associations in various host categories in I. ricinus ticks over the 
various climatic regions of Hungary.

While I. ricinus ticks had previously been linked with relatively higher alpha diversity 
scores than other common tick species (35), no significant difference was observed 
among the nymph and adult female stages or warmer-colder and drier-wetter areas 
of origin. Carpi and colleagues found that the bacterial communities of geographically 
distant ticks of the same developmental stage differ more from those from the same 
regions (36). Moreover, Batool and colleagues found that in Ukraine, a neighboring 

FIG 2 Richness and evenness of Ixodes ricinus bacteriome by sample groups. The number of observed species (richness) and the Inverse Simpson’s Index 

(evenness) as α-diversity metrics are presented in the form of a violin and box plot combination. These indices were calculated from 1,000 iterations of rarefied 

OTU tables with a sequencing depth of 158. The average over the iterations was taken for each sampling site. The violin plot shows the probability density of 

metrics, while the box plot marks the outliers, median, and IQR.
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country to Hungary with an area around 6.5 times as big, the alpha diversity analyses 
demonstrated differences in tick microbiota patterns of various administrative regions 
(37). For the dissimilarity of the samples’ core bacteriome genus profiles (beta diver­
sity), inter-regional comparison of developmental stages (females or nymphs) produced 
significant differences, while developmental stage-wise testing of the climatic condition-
associated localization did not. Similarly, Batool and colleagues described that tick sex 
comparisons resulted in significant differences on various beta-diversity tests regardless 
of the area of origin (37). While these results are interesting to compare, the different 
study models and testing methods should be considered.

During the tick-collection phase of our study, three categories of ticks were evaluated 
for metagenome sequencing: nymphs, adult females, and adult males. Nevertheless, the 
sequencing of adult males was rejected as the number of males was lower than nymphs 
and adult females at all sampling points. Sex ratio shifts by ticks are not uncommon (38, 
39). The elucidation of the reason for the observed shift toward females in the adult 
life stage in our study would require further investigation. Nonetheless, the presence 
of certain maternally inherited genera, namely Arsenophonus, Rickettsia, Spiroplasma, 
and Wolbachia in the metagenomes is noteworthy. These genera are described to 
induct parthenogenesis, feminize or kill males, and, thus, manipulate the reproduction 
of their host species toward the production of daughters (40, 41). Sex ratio skewness 
may be adaptive from the perspective of upper-generation ticks since it diminishes the 
competition of related males in tick-dense localities by reducing their numbers while 
increasing the number of related females that can be fertilized by the smaller male 
population (42, 43).

Besides the members of the core bacteriome of nymphs and adult females, reads 
deriving from further bacterial genera with relatively lower abundance rates but high 
clinical relevance (pathogens), such as Anaplasma, Bartonella, Borrelia, Borreliella, and 

FIG 3 Core bacteriome composition of Ixodes ricinus samples. The relative abundance is plotted for the females and nymphs. Besides the bacterial genera of the 

core bacteriome, the environmental condition (GDD and precipitation) categories of sampling locations are also marked.
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Ehrlichia have also been detected. While Anaplasma phagocytophylum, the cause of 
Anaplasmosis has previously been associated with the presence of a tick parasitoid, 
Ixodiphagus hookeri, based on its lifestyle and its mode of hunting (44), its positive 

FIG 4 PCoA plots of β-diversity estimated based on the core bacteriome of Ixodes ricinus samples.
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correlation with the genera of Arsenophonus and Wolbachia, endosymbionts of I. hookeri, 
was not affirmed (13). Within our study, the geolocations where Anaplasma sp. occurred 
did not match the detection points I. hookeri in Hungary described in a recent study 
(45). I. ricinus ticks are considered to be the vector of the Borrelia burgdorferi sensu lato 
complex, which is responsible for LB (46–48). Despite the high incidence rates of Lyme 
disease in Europe (49), Borreliella burgdorferi itself was not detected in our samples, while 
other species of Borrelia and Borreliella were identified. Since the causative agent of Lyme 
disease is normally mentioned as B. burgdorferi sensu lato (50, 51), referring to this species 
broadly, involving other members of the genera as well, the presence of Borrelia garinii, 
Borrelia valaisiana, Borrelia afzelii, Borrelia coriaceae and Borrelia miyamotoi can also be 
associated with this common disease. Bartonella spp. and Ehrlichia spp. are pathogens 
that are also often isolated in European settings (52–54). The presence of pathogens may 
influence the composition of tick microbiota (55).

FIG 5 Core bacteriome abundance fold changes by taxonomic ranks. The colors represent the Log2FC of the median abundances of the compared groups. 

Subfigure (a) shows the ratio of the abundances in females comparing nymphs as a reference. Figure (b) compares female samples from warmer areas to cooler 

ones. Figure (c) compares samples from drier areas to those from wetter areas among females. Comparisons of GDD groups in nymphs are shown in figure (d), 

while comparisons of precipitation groups are shown in figure (e).
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Some genera constituting the core bacteriome, namely Arsenophonus, Candidatus 
Midichloria, Rickettsia, and Wolbachia are believed to be maternally inherited or strongly 
tick-associated due to direct or indirect reasons, while the members of Bacillus, 
Curtobacterium, Cutibacterium, Mycobacteroides, Pseudomonas, Rhodococcus, Sphingomo­
nas, Staphylococcus, and Stenotrophomonas are related to soil, water, plants, skin or 
mucosa of vertebrates, thus may rather be acquired from the environment of the 
ticks (13, 13, 37, 56, 57). The representatives of the environmental genera may either 
participate in ticks’ transient or long-term microbiota. Several environmental, tick gut, 
or surface bacteria cause opportunistic infections in humans, especially in patients 
with an immunocompromised history (58, 59). Even though certain bacteria, such as 
cutibacteria and staphylococci, may be considered bacterial contaminants from the 
sample processing steps (13), according to a recent study, the effects of a possible, minor 
level contamination are not noticeable in the overall relative bacterial abundance (37). 
Nevertheless, it is possible that some environmental genera were only present at the 
cuticle of the collected ticks regardless of the repeated laboratory washing steps with 
99.8% alcohol.

Except for Cutibacterium, Mycobacteroides, Rickettsia, and Stenotrophomonas, genera 
constituting the core bacteriome showed statistically significant alterations in the 
examined tick groups differing in life stage and climatic condition-associated geographi­
cal origins. This finding is plausible considering the fact that both the life stage and the 
season-associated climatic conditions are very important in the composition of the tick 
bacteriome (60, 61).

The members of Rickettsia are maternally inherited or transstadially passed symbionts 
(62, 63) that may cause tick-borne infections (62) and have been described to be 
dominant in tick microbiomes in several studies (36, 64–68), However, high rickettsial 
abundance rates are not necessarily present in the ticks. Certain studies presented 
relatively low rickettsial genome fragment counts (37). The reason for these alterations is 
that the appearance rates of Rickettsia spp. vary between the geographical populations 
of ticks. According to a recent study, the members of Rickettsia are more abundant in 
ticks from forests (57, 69), where ticks included in the present study are also derived. 
Considering that nymphal rickettsial counts were high in other studies as well (64), 
while male ticks are normally associated with relatively fewer members of the genus 
Rickettsia (64, 65), the number of rickettsias seems to decrease throughout the life of 
male ticks gradually. This theory is in line with a study on microbiome changes during 
tick ontogeny (70). On the other hand, certain rickettsial species are also associated with 
male-killing, which may also cause the decreasing numbers associated with male adult 
ticks (71). Rickettsia helvetica and Rickettsia monacensis, two species identified in our 
samples as well, have been connected with the presence of adult I. hookeri wasps which 
are the parasitoids of ticks. The reason for the association may either be related to the 
role of the parasitoid wasps in the circulation of rickettsias among ticks or with digested 
bacterial DNA in the wasp body lumen (72).

Even though the members of Mycobacteroides are considered as either long-term 
or transient environmentally derived residents of the tick microbiota, recent studies 
revealed that certain species might be able to multiply inside the host and be transo­
varially inherited (56, 73). Nevertheless, the relative abundance of the species seems 
dependent on the geographic region (66). In our study, a statistically non-significant 
shift could have been observed in the direction of cooler and dryer regions. Consider­
ing climatic tendencies, Thapa and colleagues reported higher mycobacterial genome 
fragment counts in ticks from Texas than from Massachusetts (66), which shows 
a contrary mycobacterial temperature preference. The observed differences may be 
caused by the different species-level Mycobacterium composition in the U.S. and Europe. 
Since several Mycobacterium species may be pathogenic to humans or animals, this 
finding may have a public health significance, especially in the light of current climate 
change trajectories.
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Cutibacterium and Stenotrophomonas are common environmental bacteria that have 
been associated with ticks in several studies (13, 35, 37). Cutibacterium is strongly 
associated with ticks in forests (69), where our I. ricinus ticks are derived from. Stenotro­
phomonas maltophilia, a species identified in our samples, is an opportunistic pathogen 
often isolated from the infections of immunocompromised individuals (59).

The majority of the genera constituting the core bacteriome were found to demon­
strate significant differences among various life stages and climatic conditions associated 
with tick host groups. With the abundance rates of specifically tick-associated genera, 
Arsenophonus, Candidatus Midichloria, and Wolbachia, the significant differences among 
adult female ticks and nymphs were clearly explainable.

Arsenophonus, which showed significantly lower abundance rates in females than in 
nymphs, is a widespread, mainly insect-associated bacterial genus with a wide spec­
trum of either parasitic or symbiotic host relations (57, 74). While the high number of 
Arsenophonus, more precisely Arsenophonus nasoniae associated reads could suggest the 
dominance of this genus in the nymph microbiota; its presence is associated with I. 
hookeri, a parasitoid wasp of ticks that is supposed to have a wide geographical range 
worldwide. I. hookeri oviposits to larval and nymphal hard tick hosts. Its eggs can only 
develop in engorging or engorged nymphs (75, 76). If the tick immune system-borne 
encapsulation of the I. hookeri eggs is not successful, the eggs hatch. Larvae start 
consuming the tick tissues and thus cause the death of the host (75). Furthermore, 
Bohacsova and colleagues found that A. nasoniae, an endosymbiont of encyrtid wasps 
identified in high numbers in our nymph samples, is only detectable in tick nymphs 
parasitized by the wasp (72). According to these findings, nymphs harboring A. nasoniae 
do not often reach the adult stage due to the parasitoid wasp, I. hookeri. Thus A. nasoniae 
deriving reads demolish from the adult tick population specifically due to the death 
of nymph hosts. While the developmental stage dependence of I. hookeri-associated A. 
nasoniae is beyond question; the median abundance of this bacterial genus also showed 
differences in nymph groups of different climatical regions. Nymphs collected from 
warmer and rainier areas harbored more reads deriving from Arsenophonus spp. than 
ones collected from warmer areas. Attempts have been made to use I. hookeri as a means 
of biological control of ticks for approximately 100 years (76) and the consideration of 
climatic conditions as underlying causes for unstable control technique success rates 
may improve current biological control methods. Moreover, A. nasoniae is described to 
be male-killing in several wasp species (77), but in I. hookeri adult wasp males were also 
infected by A. nasoniae, although the emergence ratio of males to females was 1:3.6 in 
the infected populations (72). Nevertheless, the presence of this bacterium may underlie 
decreased I. hookeri numbers at certain habitats or could even have contributed to 
insufficient abundance rates by biological tick control purposes, attempted mass releases 
of the parasitoid wasps in the past (78, 79).

The genus of Wolbachia, having a significant, strong abundance rate shift to nymphs 
is reported to share several characteristics with Arsenophonus that affect tick life and, 
potentially, tick population size. One of the identified species, Wolbachia pipientis, is 
strongly related to the presence of I. hookeri (80, 81). Thus, the reason for the high 
number of wolbachial reads in nymphs may be the same as in the case of the Arseno­
phonus genus. Wolbachia spp. are also known to kill male hosts in some host insect 
species selectively (40, 82), while in others it appears to be non-male-killing (83). To the 
best of our knowledge, no studies exist on the effect of Wolbachia spp. on I. hookeri. 
Furthermore, similarly to the case of Arsenophonus, warmer and rainier areas had a slight 
positive effect on the number of wolbachial reads in nymphs although this effect was 
weaker than in the case of Arsenophonus. Due to the nymphal loads of reads from 
Arsenophonus and Wolbachia, the prevalence of I. hookeri in the samples and at the 
sampling points in Hungary can be strongly hypothesized. Evidence for the presence of 
these parasitoid wasps has recently been discovered in Hungary (45).

By Candidatus Midichloria, the strong, statistically significant difference that was 
observed for females among adult female and nymph ticks is in agreement with the 
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results of other research groups and has an explanation in the scientific literature. Studies 
exploring the inter-sex microbiome differences of adult I. ricinus ticks (35, 37, 84, 85) 
demonstrated much higher abundance rates of Candidatus Midichloria in females than 
in males independent of the regions of tick collection. The unique reason for this is that 
Candidatus Midichloria mitochondrii (CMM) invades the mitochondria of the cells within 
the ovaries of the female ticks. Despite the multiplication of the bacteria that consumes 
many ovarian mitochondria, the tick oocytes are expected to develop normally. CMM is 
described as being vertically transferred to all eggs (84, 86). Even though the nymphal 
sex ratio of ticks may not be exactly 1:1 (87), according to the available evidence, the 
presence of CMM does not result in sex ratio distortion in ticks (84). Simultaneously, it 
has been observed that CMM is transferred to both male and female larvae, but later, 
during the nymph stage, its specialization occurs toward females (85). Thus, a possible 
reason for the difference in CMM abundances among females and nymphs may be that 
many nymphs are males. Furthermore, the multiplication of CMM appears to increase 
after engorgement (85). Accordingly, the relatively low numbers of CMM might also be 
associated with the lack of engorgement among the nymphs collected for our study. 
Since tick collections occurred between the end of March and the middle of May, which 
represents the beginning of the activity period of nymphs (88), information on the 
overall engorgement status based on CMM counts appears to be realistic.

With the environmentally derived bacterial groups (Bacillus, Curtobacterium, 
Pseudomonas, Rhodococcus, Sphingomonas, and Staphylococcus), the explanation of 
statistically significant life stage and climatic condition-wise differences in the bacterial 
composition appeared to be present.

Bacilli inhabit a broad range of environments, ranging from soils to insect guts and 
some species can be pathogens (36). The finding that the number of reads deriving 
from bacilli was significantly higher in nymphs than in adult females may originate from 
the choice to assess adult female ticks and exclude adult males from the study. While 
nymphs appeared in the study as a mixed population of males and females, the adult 
males collected at the sampling points were not represented due to their relatively 
low number compared to adult females. A study on the microbiome of Rhipicephalus 
sanguineus ticks describes a strong shift of Bacillus spp. toward the male tick population. 
Since our study only contained males in the nymph population, the observed shift may 
represent the male-relatedness to Bacillus spp. The nature of the relatedness of male 
ticks and Bacillus spp. has not yet been characterized (64). Nonetheless, Bacillus spp. are 
described not to be present in every tick microbiota (66, 89) and the detection rates of 
the members of this genus appear to show significant regional differences (37). Within 
our study, reads deriving from Bacillus spp. showed significantly higher abundances 
in nymphs from areas with more precipitation. Furthermore, Fernández-Ruvalcaba and 
colleagues reported that Bacillus thuringiensis strains significantly elevated mortality and 
demolished oviposition and egg hatch among adult, pesticide-resistant Rhipicephalus 
microplus ticks (90). Moreover, certain strains of Bacillus wiedmannii are known, while B. 
thuringiensis strains are even commercialized as insecticides or nematicides for biological 
pest control (91, 92), although the entomopathogenic effect of environmental strains 
proved to be more present (93). Both above-mentioned Bacillus species were present 
in our samples, which can decrease I. ricinus numbers, although potentially in both 
age groups. The key to the biopesticide characteristics of these bacilli is the formation 
of functional crystalline Cry proteins that are specific toxins. Other entomopathogenic 
bacteria such as Bacillus cereus, also present within our samples, are opportunistic as they 
act in secondary, non-specific pathways facilitated by certain weakening motives, such as 
the presence of Cry proteins (92). Thus, the shift in Bacillus abundance toward nymphs 
rather appears to occur due to the sex determination of the adult ticks included in the 
study.

Although within our samples, significantly more Rhodococcus reads are derived 
from adults than from nymphs, this result may be based on the following factor. The 
dominating species, Rhodococcus fascians, is a common bacterial phytopathogen that 
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interacts with a broad array of plants, causing their malformation (94). Older ticks may 
have had more opportunities for encounters with these environmental bacteria than 
younger ones. Higher Rhodococcus read counts in adults align with René-Martellet and 
colleagues’ findings (64).

Association with Staphylococcus spp. that were significantly more abundant in adult 
females than in nymphs may be explained with similar reasoning. Staphylococci are 
common findings related to ticks (56, 65) that often appear on the skin and mucous 
membranes of the hosts of the ticks as well (56). Ticks carrying staphylococci may have 
already engorged and thus encountered these bacteria. Considering that the number of 
engorged nymphs appeared to be relatively low within our samples according to the 
reasons explained by the genus Candidatus Midichloria, fewer opportunities to encounter 
the members of this genus by nymphs are possible. Moreover, the relative abundance of 
Staphylococcus spp. also appears to be dependent on the region of tick collection (66) 
and, as described earlier, staphylococcal hits may also derive from contamination (37).

The finding that the members of another environmental bacterial genus, Sphingomo­
nas (13) were identified with significantly higher abundance rates in nymphs than in 
adults is controversial to the hypotheses of Rhodoccus spp., Staphylococcus spp., and to 
the related findings of other authors (70). Another finding was that among adult females, 
the abundance rate of Sphingomonas spp. was significantly higher in warmer sampling 
areas than in cooler localities, while by nymphs, the temperature-wise difference was not 
relevant. Interestingly, another research group found that Sphingomonas spp. were much 
more abundant in adult ticks kept at 4°C than by those at 20°C, 30°C, or 37°C. Moreover, 
according to their study, Sphingomonas was among the most abundant bacterial genera 
at 4°C by males (65). The reason for this discrepancy with our results on temperature-
wise abundance may rest on the species-level Sphingomonas composition. Additionally, 
interactions with other bacterial groups may also underlie our findings. In any case, 
further studies would be required to elucidate the findings of Sphingomonas populations 
and confirm or invalidate our hypotheses.

Statistically significant climatic condition-wise alterations in adult female and 
nymphal stage ticks only appeared in environmental bacterial genera, namely Curtobac­
terium and Pseudomonas. While the former appeared significantly more abundantly in 
warmer environments both for adult females and nymphs, a significant preference for 
little precipitation was observable in nymphs. This finding may be relevant in light of 
climate change, mostly because of a dominant species, Curtobacterium flaccumfaciens 
which is a phytopathogenic bacteria with economic significance (95) and has also been 
isolated from a child with fatal septicemia (96).

Reads from the genus of Pseudomonas were detected with significantly greater 
abundances at areas with higher GDD in adult females, while temperatures appeared 
not to influence the relative abundance of Pseudomonas spp. in nymphs. The forma­
tion of biofilms might explain this finding as some Pseudomonas strains have better 
biofilm formation capacities at warmer temperatures (97, 98). Thus, adult ticks from 
warmer environments that have already survived at least one summer, according to 
our knowledge of the tick life cycle, may harbor more bacteria from the Pseudomonas 
genus that managed to form biofilms and so became more steadily present. According 
to a study, the egg wax composition of the cattle tick, Rhipicephalus microplus is able to 
inhibit the biofilm formation of Pseudomonas aeruginosa (99). Thus, certain mechanisms 
may influence the abundance of Pseudomonas species at earlier tick life stages. The exact 
composition of Pseudomonas strains should be examined to evaluate this hypothesis as 
the genus is very versatile. At the same time, Pseudomonas spp. have been related to 
both nymphs and adults in other publications (37), while certain studies report more 
stable Pseudomonas spp. appearance rates in males than in females (35, 66).

All the above-mentioned bacterial groups share another factor, namely the inter­
action among the bacterial community members, this may be responsible for the 
microbial pattern assessed. In order to elucidate the possible influence of certain 
bacterial co-occurrences, the correlation analysis of the bacterial genera was performed 
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in each development stage and climatic category. Positive correlations among the 
taxa of microbial communities may be interpreted as the reflection of shared habi­
tat or environmental condition preferences, cooperative activities, such as cross-feed­
ing (100), or the representation of functional guilds performing complementary or 
similar functions (101). In contrast, negative correlations may indicate competition for 
limiting resources, niche partitioning, inequivalent resistance to losses, or active negative 
interactions (100, 101). In contrast to other studies (13), the number of positive and 
negative correlations was balanced within our samples.

All samples considered, Arsenophonus and Wolbachia correlated positively, which is 
assumed to have occurred due to the presence of I. hookeri. Furthermore, Rickettsia was 
observed to be negatively correlated with Curtobacterium spp. in several development 
stages and climatic groups, which may indicate positive public health consequences 
and a possible step toward a future tick control tool. In contrast, Candidatus Midichloria 
spp. which were previously detected in positive correlation with Rickettsia spp. (13) 
showed no correlation in our samples. Juxtaposing another publication in the field (13), 
neither the Pseudomonas and Rickettsia nor the Bacillus and Rickettsia pair showed any 
correlation. Correlations among environmental bacteria of various climatic categories are 
likely based on their similar environmental preferences and the previously mentioned 
interaction types. Due to the seasonal variability of environmental bacteria, the number 
of tick-borne, potentially pathogenic bacteria may increase or decrease correspondingly 
with the taxa of environmental origins (13). Accordingly, the presence or absence of 
certain environmental taxa may reflect the temporal dynamics of certain pathogens. 
The public health significance of this finding is particularly significant in light of 
climate change and potentially varying climatic conditions around the globe. Neverthe­
less, the interpretation of co-occurrence patterns and the nature of these correlations 
require further studies as abundance shifts depend on multiple factors. Thus, bacterial 
and parasitological interconnections are not exclusively responsible for the variations. 
Moreover, our results were obtained from the sequencing of entire tick individuals and 
thus lacked finer, e.g., organ scale considerations of the correlating taxa.

Conclusion

Here we reported the identification of the I. ricinus bacteriome-associated findings in 
adult females and nymphs collected from a climatically representative set of sampling 
points in Hungary. These results allowed us to show that (i) the I. ricinus bacteriome is 
dependent on the temperature and precipitation history of the geolocation of sampling; 
(ii) the I. ricinus bacteriome is not stable in the developmental stages of the ticks; (iii) 
based on the bacteriome patterns identified, the identified developmental stage-wise 
alterations may be associated with the presence of certain tick parasitoids that exclude 
the option of reaching the adult age; (iv) TBD pathogens are widely distributed at the 
climatically representative sampling points.

In the future, developmental stage and climate-associated microbial differences and 
correlations identified in this ecosystem study could be confirmed with experimental 
approaches and complemented with further metagenome studies to achieve sufficient 
data volumes of tick microbial inter-relatedness and exploit them as promising resources 
for novel tick control strategies.
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