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Abstract: A methodology is presented for the quantitative assessment of soil biomass productivity at
100 m spatial resolution on a national scale. The traditional land evaluation approach—where crop
yield is the dependent variable—was followed using measured yield and net primary productivity
data derived from satellite images, together with digital soil and climate maps. In addition to
characterizing of soil biomass productivity based on measured data, the weight of soil properties on
productivity was also quantified to provide measured soil health and soil quality indicators as an
information base for designing sustainable land management practices. To produce these results, we
used only the Random Forest method for our calculations. The study considers high-input agriculture,
which is predominant in the country. Biomass productivity indices for the main crops (wheat,
maize and sunflowers) and general productivity indices were calculated for the whole agricultural
area of Hungary. Results can be implemented in cadastral systems, in applied in agricultural and
rural development programs. The assessment can be repeated for monitoring purposes to support
general monitoring objectives as well as for reporting in relation to the United Nations Sustainable
Development Goals. However, on the basis of the results, we also propose a method for periodically
updating the assessment, which can also be used for monitoring biomass productivity in the context
of climate change, land degradation and the development of cultivation technology.

Keywords: random forest; land evaluation; soil; biomass; Hungary; gross primary productivity; soil
health; soil quality

1. Introduction

A key natural resource that ensures food security, ecological security and sustainable
development is cultivable land. Recently, the importance of soil has been increasingly
put into focus as the general public also become more aware of it as a non-renewable
resource that can be lost quickly if improperly used or managed with very little chance
of regeneration. Despite the critical importance of soil productivity, not only as indicator,
but also in sustaining life on Earth, knowledge of the spatial and temporal variability of
soil from regional to global scales is limited or fragmented. For the creation of effective
agricultural and food policies at the regional levels, accurate soil productivity predictions
are essential. The limited information on soil productivity hinders national (Farmers’ Soil
Conservation Programme, National Rural Development Programme) and international
(EU Soil Mission) programs to monitoring its changes and build future scenarios on it.

The Sustainable Development Goals (SDGs) of the United Nations’ Agenda 2030 frame-
work include targets that recommend direct consideration of land and soil resources [1–3],
which were adopted by all United Nations member states in 2015. Soil resources are linked
to the SDGs through several soil functions [2], of which the biomass productivity function
is at the core of SDGs 2.3 and 2.4., which explicitly target the sustainable increases in
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agricultural productivity. Furthermore, biomass productivity is proposed as an indicator of
land degradation [4], which is linked to SGD 15.3 [5].

Biomass productivity is conditioned by inherent soil properties, climatic and manage-
ment factors, thus variable in both space and time [6]. Spatial variability of soil productivity
is traditionally assessed within the broad framework of land evaluation [7]. However, land
evaluation should also include socio-economic components [8], which are not necessary for
soil productivity evaluation. Nevertheless, soil is an integral part of the land with a distinct
spatial location and therefore biophysical characteristics of the studied sites, such as climate
and relief conditions, need to be taken into account when assessing its productivity [9].

The aim of classical quantitative land evaluation is to establish productivity indices
based on actual yields in order to reflect production potentials for taxation and planning
purposes [10–18]. A similar quantitative approach can be applied to reveal soil biomass
productivity, its drivers and changes for monitoring purposes.

Dynamic and simulation models [7,16,19–22] can provide an alternative to classical
productivity evaluation, but their validation still requires measured biomass or yield data.
Advantages of the classical data-driven assessment, i.e., where yield is the dependent
variable and biophysical factors are independent inputs, are high reliability, explicit spatial
validity and easy interpretation. Process-based modeling and statistical modeling are
also two frequently employed techniques for forecasting crop yield responses to climate
variability. Process-based crop models are effective for predicting crop yields because they
simulate physiological processes of crop growth and development in response to environ-
mental factors and management techniques, especially at the field scale [23]. Traditional
regression techniques have some drawbacks that can be addressed by statistical modeling
techniques based on machine-learning algorithms. Machine-learning techniques have
been used increasingly in recent years as niche-based classification modeling tools [24–26].
For our analysis we selected the Random Forest (RF) technique [27,28], which uses the
Classification and Regression Trees method as the basis for growing multiple classification
trees. The study considers high-input agriculture, which is predominant in the country and
uses time series information (measured crop yield statistics and satellite-derived biomass
productivity indicators).

A scientific-based biomass productivity assessment should be based on a numerical
assessment of production potential based on statistical studies. Previous national land eval-
uation techniques were estimation procedures, which inevitably introduced classification
errors. Since the only objective measure of land quality is yield over time, our method is
designed with yield as the dependent variable and environmental factors (soil, climate,
topography) that affect yield as the independent variables. The method must be designed
in such a way that the parameterization process can be repeated as the amount of available
data increases, so that the land classification system can be easily revised and refined at
any time on the basis of changes in production conditions.

Based on the above considerations, we performed a detailed study with country
coverage with the following aims: (i) to identify main soil and climatic determinants of
biomass productivity, (ii) to quantify the weights of soil and climatic factors of productivity
for the main crop types (wheat, maize, sunflowers), (iii) to produce crop-specific and
general productivity maps for all agricultural land of the country, and (iv) to propose a
methodology for integrated monitoring of biomass productivity.

2. Materials and Methods

Soil biomass productivity evaluation must be based on biomass data and the assess-
ment of the environmental and management factors influencing it. This requires biomass
data, and geographical and management data, including soil, topography, climate and
fertilizer data. Country-wide implementation of the agricultural biomass productivity
model can only be based on information that is available for the full agricultural area of
the country. To ensure the best possible spatial detail to develop and implement a new
productivity model, data of dependent variables (measured yield and remotely sensed
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biomass indicators) as well as independent variables on soil properties were collected at
parcel scale and implemented at soil property maps of 100 m resolution.

2.1. Study Area

Hungary is located in Central Europe and the Carpathian Basin, which is a part of the
Pannonian biogeographic region (45◦43′ to 48◦35′N and 16◦06′ to 22◦53′E). The country
is 93,033 km2 and has an elevation range between 77 and 1014 m above sea level, and
agricultural lands are typically located between 77 and 350 m altitude. Agriculture is
the dominant land use, with non-irrigated arable land (Figure 1) accounting for 61% of
the country’s total area [29]. Winter wheat (Triticum aestivum), maize (Zea mays) and
sunflowers (Helianthus annuus), which have been sown on up to 80% of Hungary’s arable
land in recent decades, were selected for the productivity assessment.

Figure 1. Arable land areas of Hungary (study area), based on Corine Land Cover 2018 dataset [30].

2.2. Databases
2.2.1. National Plot-Level Field Soil, Fertilization and Yield Databases (AIIR
Field Database)

The AIIR database [31] contains crop type, yield, fertilization and soil information for
each cultivated parcel, summing up to 80,000 cultivated parcels of Hungary for 5 years
(1985–1989). The data were provided by the Central Plant and Soil Conservation Service
(Budapest) for the purpose of land evaluation research. The sampling for the soil tests was
carried out in such a way that the parcels were divided into 12 ha sections and then, along
the diagonals of the selected sections, soil samples were taken from at least 20 locations
using the so-called parallel sampling method. The subsamples were taken homogenized,
so that an average sample was taken from the subplots of each agricultural field. For areas
with a slope greater than 12%, average samples were taken separately for each (upper,
middle, lower) section of the slope, taking into account erosion and different soil nutrient
supply. The database was digitized in 2000 and in 2014 was upgraded to a modern geo-
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spatial database (point data with coordinates). We have selected the points that still fall on
arable land at the time of our study. The database includes the following three major types
of data:

- Basic data of the parcels (location, size, land user);
- Soil taxonomical and laboratory analysis data (soil type and subtype, pH, texture,

organic matter, nitrogen, phosphorus and potassium content);
- Agricultural management data (crop type, yield, date of sowing, fertilization and

harvest, fertilizer doses);
- Crop type and yield data.

Distribution of data by soil types is presented in Table 1.

Table 1. Main features of the AIIR dataset, based on Hungarian [32] and World Reference Base for
Soil Resources [33] classification.

Soil Taxonomical Unit of Major Agricultural Soils No. of Parcels Covered Area (ha) Area (%)

Hungarian classification WRB 2014
Lessivated brown forest soil (non-podzolic) Haplic Luvisol 11,062 385,048 10.06

Raman-type brown forest soil Haplic Cambisol 6567 270,239 7.06
Rust-brown sandy forest soil Arenic Cambisol 2988 114,872 3
Typical calcareous chernozem Haplic Chernozems 3792 228,240 5.96

Great Plains calcareous chernozem Haplic Chernozems 2042 120,123 3.14
Carbonated meadow chernozem Gleyic Chernozems 5540 330,200 8.63

Non-carbonated meadow chernozem Luvic Chernozems 2021 108,149 2.83
Carbonated meadow soil Calcic Vertisols 3952 184,853 4.83

Non-carbonated meadow soil Haplic Vertisols 3460 151,394 3.96
Carbonated alluvial meadow soil Gleyic Fluvisols 3129 142,535 3.73

Non-carbonated alluvial meadow soil Dystric Fluvisols 4658 179,101 4.68
Carbonated humic alluvial soil Calcaric Fluvisols 1210 51,720 1.35

Non-carbonated humic alluvial soil Dystric Fluvisols 1584 50,789 1.33
Carbonated humic sandy soil Calcaric Cambisols 3714 138,044 3.61

Non-carbonated humic sandy soil Dystric Cambisols 2458 75,656 1.98
major soils in total 58,177 2,530,963 66.2

other soils 28,517 1,295,467 33.8
∑ 86,695 3,826,430 100

2.2.2. Remote Sensing Derived Biomass Productivity Indicators

Long term (2003–2018) time series remote sensing data were used to derive mean
gross primary productivity (GPP) values as proposed by Jin and Eklundh (2014) [34]. The
MODIS dataset (MOD17) [35] was used at a nominal 500 m spatial resolution to produce
GPP datasets for the whole country. It is important to note that crop yields and GPP
represent different aspects of productivity. However, in managed cropland there is a strong
correlation between the two [36]. We used the normalized productivity (value range 1–100)
as the target variable, and all of our results were normalized between 1 and 100, making it
easier to integrate into our model.

2.2.3. Time Series Meteorological Data

The Central-European FORESEE meteorological database [37], which covers the whole
area of the country with a 0.1 × 0.1 degree grid, was used to derive mean temperature
and total precipitation at monthly scales (between 1951 and 2013). Mean temperature and
precipitation values were linked to the spatial units (100 m pixels) of the assessment. The
downscaling was performed by the bilinear resampling method.

2.2.4. Topographic Data

The Shuttle Radar Topography Mission [38,39] provides a dataset of 30 m resolution
grid cells as the basis for the digital elevation model (DEM). SRTM mapped Earth’s topog-
raphy between 56 degrees south and 60 degrees north of the equator. SRTM has a vertical
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accuracy of 5.3 m (RMSE) in Hungary [40]. The SRTM-derived DEM was used to include a
topographic component to the land evaluation model.

2.2.5. Land Use Data

The Hungarian coverage of the CORINE [30] land cover database for the year 2018 was
used to delineate croplands in the country. The 1:100,000 scale datasets have a minimum
mapping unit of 25 ha for patches and a minimum width of 100 m for linear elements. A
total of 44 land cover and land use categories are included in the dataset, 28 of which are
appropriate for Hungary [30]. All assessments and the map visualization of the results
were based on the cropland areas (see Figure 1).

2.2.6. Map Series of Soil Types and Soil Properties

The unified national soil type and soil property maps of Pásztor et al. (2020, 2018,
2017, 2015) [41–44] provided the soil information base for the assessment. A total of
41 soil types, belonging to 9 main soil type groups of the Hungarian Soil Classification
System [45], are covered by the dataset. Soil chemical and physical data include pH, calcium
carbonate content, organic matter content and texture. The map series are all produced at
a 100 m resolution and can be viewed on the dosoremi.hu website. The 100 m resolution
of the soil maps was considered to be sufficiently detailed for parcel-scale productivity
evaluation, and therefore this spatial resolution defined the resolution of the assessment.
There is a slight difference in the semantic component of the soil type maps and the soil
type information in the AIIR dataset (Table 1). There are soil types in the national soil
map with areas covering <1% of the country that are not available in the AIIR dataset, or
which are available only with a very limited sample size. These were not sufficient for
statistical tests. This minor inconsistency required an expert-based modification of the final
evaluation system.

2.3. Data Preparation

A quality and consistency check of the AIIR dataset was carried out in the first phase of
the data preparation to filter out typos and false records. Inconsistent records (outliers), such
as soil samples with high carbonate content and low pH, were excluded from the dataset.
We then selected those records from the AIIR dataset that corresponded to agricultural
parcels of intensive (i.e., high fertilizer use) cultivation. The selection was made based on
the amount of fertilizers applied, and records containing at least 125 kg × ha−1 of nitrogen
and 30 kg × ha−1 of active phosphorus input were kept. In this way, the analysis of the
current assessment focused on data from intensively cultivated fields.

Winter wheat (Triticum aestivum), maize (Zea mays) and sunflowers (Helianthus annuus),
which have been sown on up to 80% of the croplands in Hungary [46] in recent decades,
were selected for the productivity evaluation. In order to establish a common basis for
the analysis, the yield data of these three main crops from each parcel of the dataset were
normalized to a scale of 1 to 100. For the same reason, the GPP values were also normalized
to a scale of 1 to 100. Normalization was applied to all wheat, maize and sunflower
yield data in the five years covered by the AIIR database and to all cropland pixels in the
GPP dataset.

The AIIR database with normalized yield data and the normalized GPP dataset were
integrated with the climate geodatabase into a single geodatabase using geographical
coordinates as unique identifiers. The result was a georeferenced dataset created to include
all soil, climate, management and yield data. Productivity analysis was carried out using
information of the georeferenced pixels, including their geographical coordinates.

The GPP data, originally produced at 500 m resolution, were downscaled to
100 m resolution and normalized to values between 1 and 100. The downscaling was
performed by the nearest neighbor resampling method The SRTM data, which were origi-
nally produced at 30 m resolution were generalized to 100 m resolution using the bilinear
interpolation technique.
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All datasets were converted to the Uniform National Projection System (EOV) to create
a coherent geodatabase.

2.4. Assessment and Implementation Methods
2.4.1. Model Development

Soil biomass productivity assessment is the process of establishing relationships
between soil properties and yields. Data-mining methods are tools for revealing hidden
relationships in datasets structured by input variables. In soil assessment, data mining can
help to identify the most important factors in yield formation and establish the weights of
these factors. For our analysis we chose the Random Forest technique [27,28], which uses
the Classification and Regression Trees method as a basis for growing multiple classification
trees. For this operation, the database is divided into a series of training and test datasets to
establish and validate relationships, respectively. Each training dataset (80% of the dataset)
is a randomly selected subset that is used to develop a tree model using randomly selected
predictors. The remaining data (10%) after the random selection of the subset (test data, 10%
of dataset) are used to validate the developed model [47]. We used the createDataPartition
function from the caret package to select data randomly. The generalized error of the
forest depends on two parameters: how accurate each individual classifier is and how
independent the different classifiers are from each other (i.e., the strength of each tree in
the forest and the correlation between them). The Random Forest analysis was performed
with the ranger R package [48]. The long-term means normalized productivity index
(MNPI), taking into account both the measured AIIR data and the GPP data, was computed
by taking the average of the two normalized datasets. The Random Forest operation
was performed with the MNPI as the dependent variable and the environmental (soil,
climate) variables as explanatory variables (Figure 2). First, the assessment was carried
out separately for winter wheat, maize and sunflowers in order to evaluate crop-specific
productivity of Hungarian croplands using the MNPI data of these crops. As a result, crop-
specific productivity indices were produced for the three main crops. As our overall interest
was to establish the MNPI for each Hungarian parcel at 100 m resolution, three parallel
models were developed for the three major crops (wheat, maize, sunflowers) based on
the crop-specific entries of the normalized yield data, and a fourth, a general productivity
model, was developed based on the MNPI. As a result, both crop-specific (weighted means,
wheat 40%, maize 40% and sunflowers 20%) and general productivity indices were assigned
to climate and soil property combinations. Due to the limited information for some minor
soil types (i.e., occupying area < 0.5% of agricultural lands), statistical testing could not
be successfully performed for these soils. To assess the productivity evaluation of these
soils, two evaluation approaches were applied and their results were combined. Firstly, an
expert-based judgement was carried out. Productivity indices were established considering
those of closely related soils in the Hungarian soil taxonomy using information from
previous land evaluation systems [49], related literature [50–54] and expert knowledge.
Secondly, a statistical test based solely on the GPP data was carried out to evaluate the
effect of soil properties and climate, although without statistically significant results, but for
orientation purposes. The relative importance of the explanatory variables was calculated.
We analyzed the importance of all variables using the imp function of bclust package
in R [55]. Relative importance was calculated by dividing the importance score of each
variable by the largest importance score of the variable, and then multiplying by 100.
Harmonizing the results of the two approaches ensured the consistency across the system,
even for parcels with soils that make up a small proportion of the country’s croplands. The
theoretical range of the final productivity indices was set between 1 and 100, corresponding
to the normalized yield values of the test dataset and following the indexing approach of
traditional soil productivity evaluation of Hungary [51]. Model validation was performed
using normalized yield data as independent variables of the test dataset. The test dataset
included a randomly selected 10% of the data and a predict function of the ranger package
was used. We calculated the correlation coefficient to show the relationship between the
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observed and the predicted values, the mean absolute error (MAE) to show the distance
of the predicted values from the observed values [56], and the mean absolute percentage
error (MAPE) to show the percentage of error between observed and predicted values [57].

Figure 2. Flowchart of land evaluation modeling process.

2.4.2. Spatial Implementation

Soil, meteorological and digital terrain maps were used for the spatial implementation
of the soil biomass productivity model, i.e., to produce soil productivity maps. The devel-
oped model provides productivity indices on a scale of 1 to 100 for several combinations
of climate and soil properties in the country. Basic input layers for the spatial implemen-
tation include detailed (100 m) soil type and soil property maps and climate data. Slope
correction coefficients (see Appendix A Table A1) from the previous official Hungarian
land evaluation model [49] were applied to produce the final productivity indices. The
coefficients reflect the effect of slope angle and slope direction on productivity. The SRTM
digital topographic data were used to implement the correction coefficients and to produce
the final maps. Presentation of the results covers all cropland areas of the country at a
100 m resolution.

3. Results
3.1. Model Development and Estimation Efficiency

The general, country-wide productivity model using biophysical explanatory variables
explains up to 40% of the biomass productivity in the country (R2 = 0.402). This model fit can
be considered adequate for a country scale assessment, especially for a country with a wide
variety of soil types from salt-affected soils to Arenosols, Luvisols and chernozems. The
efficiency of the crop-specific models is best for wheat, followed by maize and sunflowers,
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in the order of the available sample size, respectively (Figure 3 and Table 2). Results were
statistically significant at the 0.01 level.

Figure 3. Scatter plot of observed vs estimated biomass productivity of total cropland area (A),
wheat (B), maize (C) and sunflowers (D). Results were significant at the 0.01 level.

Table 2. Test validation results of all cropland, wheat, maize and sunflowers. R2: correlation
coefficient, R: Pearson correlation, MAPE: mean absolute percentage error, MAE: mean absolute error,
N: number of pairs.

R2 R MAPE (%) MAE N

All cropland 0.4 0.63 19.28 7.33 4381
Wheat 0.41 0.64 18.06 6.78 2631

Maize 0.35 0.59 19.17 7.93 1646
Sunflower 0.27 0.52 29.81 11.7 104
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The combination of measured and satellite-driven data for the general productivity
model development gave almost the same model fit as the crop-specific one for wheat,
which was based on a large sample size of measured yields. The descriptive power of
sunflower productivity estimation was not as strong (Figure 3D). The MAPE results are
as follows: all cropland 19.28%, wheat 18.07%, maize 19.17% and sunflowers 29.81%. The
most accurate prediction based on the MAPE and MAE results was for wheat followed by
the maize and sunflower predictions.

3.2. Baseline Biomass Productivity Indices and Map for Croplands of Hungary

By implementing the biomass productivity model on the national soil, climate and
topographic geodatabase, a new soil biomass productivity map was produced (Figure 4).
The map shows the general productivity of croplands. In the same process, crop-specific
productivity maps were also produced. While the crop-specific productivity indices and
maps can be used for planning land use and cropping, the general productivity map
provides an overview of the spatial pattern of biomass potential of agricultural parcels in
the country.

Figure 4. Croplands’ land evaluation values range between 0 and 100 in the case of general biomass
productivity of arable lands without slope correction coefficients (A) and separately wheat (B),
maize (C) and sunflowers (D).

The map confirms the empirical knowledge that the most fertile areas are on cher-
nozem soils in the east and on various loamy soils in the west of the country. Sandy soils,
whether in the western, the central or the eastern part of the country, perform rather poorly.
This phenomenon is typical of a country where water supply is the main climatic factor
limiting crop production.

The mean productivity index for all the croplands is 64.7, with a standard deviation of
13.4, reflecting the dominancy of medium-to-good land within the agricultural areas of the
country in terms of the spatial extent (Figure 4A).
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The mean productivity index after slope coefficient correction for all the croplands
of the country is 58.9, with a standard deviation of 18.5, reflecting the dominancy of
medium-to-good land within the agricultural areas of the country (Figure 5).

Figure 5. Croplands’ land evaluation values range between 0 and 100 in the case of general biomass
productivity of arable lands after slope correction.

3.3. Soil and Climatic Determinants of Biomass Productivity in Hungary

In general, humus content (which also reflects organic matter content), pH, CaCO3
content, soil type and soil texture were the most important soil-based input parameters
for predicting wheat productivity (Figure 6A). However, the geographical location was
found to be an even more important explanatory variable. While this information sug-
gests the importance of climate, the measured climatic variables ranked lower in the
importance list. The mean temperatures of January, February, December and June (in the
order of importance) are the most important thermal parameters for productivity. Regard-
ing precipitation, the amounts in November, August, June and December are the most
important determinants.

In the case of maize, on the other hand, the measured climatic variables were found to
be of high importance, together with humus, pH, CaCO3 and soil type, while the location
was not considered to be relevant. These differences suggest the appropriateness of the
crop-specific evaluation approach. There are also differences in the mean temperature
and precipitation. Figure 6B shows that the precipitation (July, November, May, August
and October) is a more important factor than temperature (most important in January and
February) in the case of maize.
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Figure 6. Overall importance of explanatory variables in predicting wheat (A), maize (B) and
sunflower (C) biomass productivity.
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Based on Figure 6C, the variables of the sunflower prediction show a completely
different pattern. The most important variables are the location and mean temperature in
February, followed by humus content, mean temperature in January, March and November,
pH, precipitation in November and CaCO3. Soil type and texture are the least important
variables. Climatic variables (mainly amount of precipitation) have a more significant effect
on the sunflower yield amount than the soil type and texture.

4. Discussion

Biomass productivity is a dynamic property that changes over time, partly due to
changing climatic conditions (within and between years) and changing soil properties
(pH, organic matter, soil nutrients content, etc.), but also due to new crop varieties and
advances in crop management having an important influence. The effect of the changes
in the biophysical factors may be synergistic or in the opposite direction. Nevertheless,
it is possible to estimate the weight of the factors in productivity on a reasonable time
scale. Twenty to thirty years seem to be an adequate time scale for estimating soil biomass
productivity and for identifying the weights of different factors in it. A moving timeframe
with intervals of 3 to 6 years can be proposed for the updating of the biomass productivity
indices. If the system is to be used for monitoring purposes, soil biomass productivity will
need to be compared on the basis of different time periods, e.g., on moving time windows
or trends and supplemented by the monitoring of soil properties, subject to degradation.
The moving time window for biomass productivity monitoring can be harmonized with
the periodic assessments in soil monitoring, i.e., 3–6 years.

Our validation results (predicted data vs. measured data in the test set) showed that
there is a significant difference in the prediction accuracy between the different crops. The
sunflower model has a lower performance in calculating biomass productivity, which may
be due to the fewer number of data available for model training. Furthermore, sunflowers
are a cash crop grown on very diverse soils and not so much linked to bioclimatic factors
and soil parameters [58,59], while the R2 value (0.41) for the biomass productivity map
can be regarded as adequate for a national estimate. The MAPE value indicates that only
18.06% of the model is inaccurate, that is, above the accuracy of results published in other
studies [60,61]. The MAE indicator values indicate an average deviation of 6.78, which is
not outstanding on a scale of 1 to 100. Cheng et al. (2022) [25] found similar R2 values in the
case of maize and wheat based on MODIS GPP values, with stronger correlation in the case
of maize. However, other studies in the case of wheat presented lower values [24,61,62].
Although the performance of the sunflower productivity model is rather low, its inclusion
in the assessment provides a more comprehensive overview of plant-specific productivities
and their differences, including major factors and the varying weights of the factors in
plant-specific productivities. Furthermore, the inclusion of an additional plant-specific
model extends the potential of the applied method to provide a general soil productivity
assessment considering multiple crops, which is often needed in land use planning.

A new soil biomass productivity map was created by applying the biomass produc-
tivity model using national soil, climate and topography geodatabase. Crop-specific pro-
ductivity maps, which shall be the ultimate source of multicriteria land use planning [63],
were also produced using the same technique. The spatial distribution of biomass po-
tential is shown on the general productivity map, which can be used to plan land use
and crop production. Further to that, weights of individual soil and climate parameters
of crop-specific productivity indices were also derived. For our final model results (soil
biomass productivity) we applied a correction that takes into account the topography. Slope
angle and orientation both matter for solar radiation to be taken into account. Our solu-
tion for incorporating terrain indices from an earlier national land evaluation model [51]
was tailored for Hungarian conditions (average slope under 2.3%), instead of applying
more complex methods [64,65] used in other pedoclimatic conditions. Random Forest is
considered to be an appropriate method to predict crop-specific biomass productivity, as
proven by Jeon et al. [23] and as also highlighted in our country assessment. Results of
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RF-based models can be applied to plan agricultural land use in order to increase the yield
and make it sustainable, without environmental side effects. One of the most important
and interesting results in our perspective is the quantification of the relative importance of
explanatory variables, which best reflects the different edaphic and climatic needs of the
observed crop species. For wheat, soil characteristics are the most important factors, while
temperature and precipitation are less important [66]. In case of maize, soil parameters are
still important but temperature and precipitation have more importance than in the case of
wheat, highlighting that, even in a relatively small country like Hungary, climate tolerance
of plants is a differentiating factor. This observation becomes more evident when studying
sunflowers, where the importance of mean temperature and precipitation outweighs those
of soil type and soil textures as earlier presented by Kern et al. (2018) in case studies from
Hungary. Nevertheless climatic variables, such as precipitation in October and November
and temperature in January and February are also important for winter wheat [66]. Our
results also show the importance of summer rainfall totals (May, June, July) for maize,
while for sunflowers the most important parameters are spring and autumn temperatures.
We have to emphasize that it is often difficult to compare our results with those of other
researchers, because the bioclimatic variables of the study area differ. For example, the
work of Vannoppen and Gobin (2018) from northern Belgium, investigating the importance
of climatic variables in winter wheat yield estimation, found similar parameters to be
important, but in a different order. While in Hungary, the mean temperature in January
and the amount of precipitation in November are the most important, in Belgium, winter
precipitation is the most important [67]. The model fit can be further improved by adding
information on management factors such as nutrient levels and fertilizer inputs [52,68].

Soil plays an important role in increasing crop production. The soil science community
is trying to define the appropriate indicators. The presented analysis on the importance
of variables in calculating productivity also provides a good basis for SDG indicators, as
the related target of SDG is to improve land and soil quality progressively. Addressing
soil health and soil quality are the main criteria for achieving sustainable agriculture.
Climate change largely affects the minimum and maximum temperatures and the amount of
precipitation per month [69–72]. Our results suggest that these variables are also important
for winter wheat, maize and sunflowers, and that changes in these variables could change
soil productivity in the future.

We established a baseline prediction model for biomass productivity applicable for
Hungarian croplands using Earth observation data and yield statistics, identified the
importance of soil and climatic determinants of biomass productivity, and proposed a
methodology for integrated monitoring of biomass productivity.

5. Conclusions

Our present assessment shows the long-term productivity of soils in Hungary. Long-
term productivity in this context means the mean productivity of the last three decades.
A period of 20 to 30 years was found to be an adequate time scale for estimating the
productivity of soil biomass and for identifying the weights of different factors in it, and also
as prospective baseline and threshold values of soil health and soil quality indicators, which
can be used in land degradation and soil improvement assessment. A new generalized
biomass productivity map was created on a 100 m resolution, which can be implemented
in the cadastral system and in multipurpose land use planning programs. The general map
of productivity was produced from crop-specific productivity maps by applying biomass
productivity models on the country-scale soil, climate and topography geodatabase. Soil
properties and characteristics play the most important roles in wheat biomass productivity,
while maize has a more significant relationship with precipitation. In the case of sunflowers,
soil type and texture are less important factors. The spatial pattern of biomass potential
is shown on the general productivity map at 100 m resolution. This map can be used to
plan land use in general and agricultural production in croplands. Climate change largely
affects the minimum and maximum temperatures, their variability and the amount of
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precipitation and its temporal distribution, which all have considerable impact on soil
biomass productivity. The most important climatic variables for crops deserve particular
attention in the next decade, particularly in developing adaptation strategies. We believe
that our soil–climate-based land productivity models will help in developing new methods
for such adaptation. However, in order to measure changes in biomass production potential,
further assessment is required, including trend analysis and the analysis of the effects
of changing combinations of soil properties. Nevertheless, the proposed methodology,
in addition to possible applications in cadastral systems and in land use planning and
agricultural development programs, is also applicable to the integrated monitoring of
biomass productivity, which is in line with the goals related to the UN SDGs.
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Appendix A

Table A1. Coefficients to modify the computed productivity based on slope relief and orientation [49].

Slope (%) South,
South-West

West,
South-East

East,
North-West North-East North

1 1 1 1 1 0.98
2 1 1 1 0.98 0.96
3 1 1 0.98 0.96 0.94
4 1 0.98 0.96 0.94 0.92
5 0.98 0.96 0.94 0.92 0.9
6 0.96 0.94 0.92 0.9 0.88
7 0.94 0.92 0.9 0.88 0.86
8 0.92 0.9 0.88 0.86 0.84
9 0.9 0.88 0.86 0.84 0.82
10 0.88 0.86 0.84 0.82 0.8
11 0.86 0.84 0.82 0.8 0.78
12 0.84 0.82 0.8 0.78 0.76
13 0.82 0.8 0.78 0.76 0.74
14 0.8 0.78 0.76 0.74 0.72
15 0.78 0.76 0.74 0.72 0.7
16 0.76 0.74 0.72 0.7 0.68
17 0.74 0.72 0.7 0.68 0.66
18 0.72 0.7 0.68 0.66 0.64
19 0.7 0.68 0.66 0.64 0.62
20 0.68 0.66 0.64 0.62 0.6
21 0.66 0.64 0.62 0.6 0.58
22 0.64 0.62 0.6 0.58 0.56
23 0.62 0.6 0.58 0.56 0.54
24 0.6 0.58 0.56 0.54 0.52
25 0.58 0.56 0.54 0.52 0.5
25 0.56 0.54 0.52 0.5 0.48
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