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ABSTRACT
In this paper, the kinetic study of the reaction between substi-
tuted 1,4-benzoquinones (RBQs) and Na2SO3 (S(IV)) is presented in
aqueous solutions at different pH values and reagent concentra-
tions. The stoichiometry of the reaction is 1:2 RBQs:S(IV) and one
equivalent of chloride ion was also detected as a product when
using mono- (2-CBQ) or dichloro-benzoquinones (2,5-DCBQ; 2,6-
DCBQ) as reactants. This shows that reductivedehalogenationoccurs
instead of simple reduction to the corresponding substituted 1,4-
hydroquinones (RBQHs) and quinone bisulfites are formed, analo-
gously to the addition of bisulfite ion to carbonyl compounds. Var-
ious sulfonated quinones have been identified as products by elec-
trospray mass spectrometry. Kinetic traces at different wavelengths
were obtained by the stopped-flow technique with spectrophoto-
metric detection, a kinetic fitting program (ZiTa) was used to fit a
multi-step model to the data. A detailed mathematical evaluation of
the reaction scheme was carried out under non-pseudo-first order
conditions showing that ourmodel can be fittedwith a double expo-
nential function even when none of the reagents are in large excess.
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Abbreviations

2-CBQ 2-chloro-1,4-benzoquinone
2-MBQ 2-methyl-1,4-benzoquinone
2-MBQH 2-methyl-1,4-hydroquinone
2-tBBQ 2-tert-butyl-1,4-benzoquinone
2,5-DCBQ 2,5-dichloro-1,4-benzoquinone
2,5-DCBQH 2,5-dichloro-1,4-hydroquinone
2,6-DCBQ 2,6-dichloro-1,4-benzoquinone
2,6-DMBQ 2,6-dimethyl-1,4-benzoquinone
BQ 1,4-benzoquinone
BQH 1,4-hydroquinone
CBQs chlorinated 1,4-benzoquinones
DBPs disinfection by-products
HBQs halogenated 1,4-benzoquinones
HRMS high-resolution mass spectrometry
MRA matrix rank analysis
NOM natural organic matter
RBQHs substituted 1,4-hydroquinones
RBQs substituted 1,4-benzoquinones

Introduction

The disinfection methods used in drinking and swimming pool water treatment tech-
nologies include chlorination, bromination, ozonization, UV irradiation and their com-
binations [1–3]. Chlorination is commonly used due to its low cost and simplicity [3].
However, the formation of chlorinated 1,4-benzoquinones (CBQs) as disinfection by-
products (DBPs) is a main concern in this case, because of the carcinogenic andmutagenic
effects of these compounds [4–6].
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Halogenated 1,4-benzoquinones (HBQs) are often metabolites of halogenated phenols
in biological systems and are likely to contribute very significantly to the well-known
toxicity of halophenols. It was shown that HBQs inhibit DNA methyltransferase more
efficiently than the non-halogenated 1,4-benzoquinone (BQ) [7]. This may be related to
that the highly chlorinated 1,4-benzoquinones form adducts with DNAmore readily than
less substituted compounds or unsubstituted 1,4-benzoquinone [8,9]. The increased risk
of toxicity due to the halogenation of the cysteinyl forms of quinones or semiquinone has
been discussed before [10,11]. Epidemiological studies have shown that DBPs – such as
CBQs – may have adverse effects and can contribute to the development of urinary cancer
[12–14]. Toxicity studies on HBQs found that their cytotoxicities was much, sometimes
1000 times greater than those of the non-chlorinated analogues or even its transformed
products [15,16]. A structure-toxicity relationship study also suggests that HBQs con-
tribute more significantly to cancer risk than their non-halogenated counterparts [17]. In
fact, among disinfection byproducts, these compounds are linked most directly to tumors
[8] even though the cytotoxicity of chlorinated 1,4-benzoquinonesmay systematically have
been underestimated [15]. Because of the antagonistic toxicological effects, understand-
ing reductive or oxidative dehalogenation of CBQs and finding efficient methods for their
removal from water is of primary importance.

CBQs are present at relatively low concentration levels in drinking and swimming pool
waters [5,16,18,19].

Wang et al. have investigated the formation of different CBQs in swimming pool
water by taking samples from ten different locations. In each sample, 2,6-dichloro-1,4-
benzoquinone (2,6-DCBQ) was found at about two orders of magnitude larger concen-
tration level (19–299 ng/L) than in a typical drinking water. This finding was explained by
considering that various cosmetics (sunscreen, body lotion etc.) could be the precursor in
the formation of CBQs [7]. Because of their cytotoxicity [20], the allowed maximum daily
intake of these CBQs and their derivatives is 49 μg per kilogram of the human body [21].

Qian et al. used UV light irradiation (254 nm, 1000mJ cm–2) to degrade CBQs into
less toxic products and confirmed the formation of various derivatives by TOF-MS [18].
They proposed a mechanism which includes the formation of a hydroxy-quinone deriva-
tive upon irradiation and a subsequent dissociation step of the halide from the quinone
ring. Wang and Diemert et al. have tested how the concentration of CBQs is reduced by
using various methods for the removal of their precursors from water before chlorination
in detail [22,23]. Nowadays, several research groups aim to remove all natural organicmat-
ters (NOMs) from water instead of dehalogenating only CBQs. Even if complete removal
of NOM is often not feasible, this strategymay be efficient inminimizing the concentration
of CBQs in the treated water [24].

In this work, we investigate the possibility of the dechlorination of CBQswith sulfur(IV)
in aqueous solution. It is well known that sulfur(IV) exists in different forms in water
depending on the pH of themedium (H2O·SO2 under pH 1.5, HSO3

− between pH 1.5–6.5
and SO3

2− above pH 6.5).1 Hydrogen sulfite ion has two isomers because a proton can bind
either to the sulfur atom or alternatively to one of the oxygen atoms [25–27]. At high sul-
fur(IV) concentrations pyrosulfite (S2O5

2–) is formed (S–S bond) from hydrogen sulfite in
an equilibrium dimerization process [28–30]. Earlier, the oxidation of sulfite ionwas inves-
tigated in the presence and absence of catalysts [31–46]. The photochemical oxidation of
sulfur(IV) has also been investigated [47,48]. Due to the complexity of S(IV) chemistry,
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the dechlorination reactions of CBQs may be very sensitive to the applied experimental
conditions. In order to avoid the noted side reactions, high sulfur(IV) concentration, high
pH and high intensity light sources were not applied in our experiments.

The reactions of S(IV) and some quinones were investigated earlier [49–55], but the
exact compositions of the intermediates/products and the kinetics of these reactions were
not described in detail. It was suggested that 1,4 reductive addition occurs in neutral aque-
ous solutions [56,57], while redox reactions producing hydroquinone and sulfate ion may
be operative in acidic medium. The reactions of BQs and S(IV) was studied in a wide pH
range by LuValle [49]. While hydroquinone, sulfate ion and hydroquinone monosulfonate
were identified as products below pH 4.0, only hydroquinone monosulfonate formation
was reported in the pH range of 4.0-7.5. In alkaline medium (pH > 7.5), the formation of
a greenish blue intermediate was observed.

Youngblood also suggested the formation of hydroquinone monosulfonate but pro-
posed a different reaction sequence for the overall process [50]. The reaction of 2-halo-
3,5,6-trimethyl-1,4-benzoquinone with sulfur(IV) was studied by Bishop [51]. In these
systems, the nucleophilic attack of the sulfite ion induces the dissociation of the halide
ion (iodide, bromide, chloride) from the quinone ring. It was assumed that a quinone –
bisulfite adduct forms first in a fast equilibrium step.

The main goal of this work is to explore the inherent features of the reactions between
RBQs and sulfur(IV). Detailed kinetic studies were performed, and the exact composi-
tion and structure of the intermediates and products were investigated by the ESI-MS
method. The results serve as a basis for deeper understanding of the environmentally
relevant dechlorination processes of CBQs.

Materials andmethods

Materials

Analytical grade chemicals were used in this study. Solid 1,4-hydroquinone (BQH),
1,4-benzoquinone (BQ) and its derivatives (2-chloro-1,4-benzoquinone (2-CBQ), 2,5-
dichloro-1,4-benzoquinone (2,5-DCBQ), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ),
2-methyl-1,4-benzoquinone (2-MBQ), 2,6-dimethyl-1,4-benzoquinone (2,6-DMBQ), 2-
tert-butyl-1,4-benzoquinone (2-tBBQ) from Alfa Aesar Co., Inc.) (structures shown in
Figure 1) were dissolved in purified water (Elix-3, Millipore, Darmstadt, Germany).

In general, the concentration of the RBQ stock solution was 1.00 × 10−3 M. Higher
concentrations could not be used because of the low solubility of these compounds inwater.
RBQs are highly photosensitive [58]. Thus, an appropriate experimental protocol was used
during the preparation of the stock solutions to avoid any photochemical side reaction. The
solutions were always prepared freshly and handled, as well as stored in the dark.

The concentration of dilute hydrochloric acid solutions prepared from concentrated
HCl solution (37V/V%, Sigma Aldrich, St. Louis, MO, USA) was determined by poten-
tiometric titration. Constant pH of the samples was maintained by using acetate, MES and
HEPES buffers. The desired pHwas set by adding appropriate amounts of sodium hydrox-
ide and HCl solutions (Sigma Aldrich, St. Louis, MO, USA). The buffer was always added
to the S(IV) stock solution prior to mixing the reactants. It was thoroughly tested that the
buffer did not induce any side reaction with the reactants. To avoid the medium effect and
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Figure 1. Structures of the investigated RBQs.

to make the experimental results directly comparable, constant ionic strength was used
(I = 1.0 M, NaCl) in the quantitative kinetic experiments. Each solution was prepared
freshly on the day of the measurements.

Spectrophotometric and potentiometric techniques

AMettler-ToledoT50M titrator equippedwith aMetrohmmicro combined glass electrode
(6.0234.110) was used for pH measurements and pH-potentiometric titrations. The read-
out of the pH meter was transformed into pH = –log[H+] as described [59].

Spectrophotometric experiments were made either with an AnalytikJena SPECORD
S600 diode array spectrophotometer equipped with a JUMO dTRON 308 thermostat or
a Shimadzu UV-1601 double-beam spectrophotometer using a Shimadzu TCC controller
Peltier thermostat. The spectra were collected and evaluated by the built-in controlling
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software of the instruments: WinAspect and UV PROBE 2.2, respectively. The experi-
ments were performed in standard stoppered 1.000 cm quartz cuvettes and at constant
temperature (25.0± 0.1°C).

An Applied Photophysics DX-17 MV Sequential Stopped Flow Apparatus with Pro-
Data SX v2.5.0 software was used for the fast kinetic studies maintaining constant temper-
ature with a Julabo F12-ED thermostat. The dead time of the instrument, 1.51± 0.03ms,
was determined by utilizing the 2,6-dichlorophenolindophenol – ascorbic acid reaction
[60].

The chloride ion concentration in the reaction mixtures was measured with a Thermo
Scientific ORION 9617BNWP chloride ion-selective combined electrode connected to
a Radiometer ABU91 Autoburette potentiometer. The measured electrode potentials of
the chloride ion selective electrode were converted to chloride ion concentrations by
calibrating the electrode with standard KCl solutions.

ESI-MSmeasurements

High resolution MS measurements were carried out with a maXis II UHR ESI-QTOF MS
instrument (Bruker) in negative ionization mode. The following parameters were applied
for the electrospray ion source: capillary voltage: 2.5 kV; end plate offset: 500V; nebu-
lizer pressure: 0.5 bar; dry gas temperature: 200 °C and dry gas flow rate: 4.0 L/min.
The MS method was tuned according to the examined mass range, which was 100-
450m/z. Constant background correction was applied for each spectrum. Na-formate
calibrant was injected after each sample, which enabled internal m/z calibration during
data evaluation (relative errors were < 2 ppm). Collision induced fragmentation (CID)
was applied for MS/MS study of the reaction products. In these measurements, the colli-
sion energywas systematically varied between 10 and 60 eV. In order to show every possible
fragment, each reported tandem mass spectrum is the average of spectra recorded at dif-
ferent collision energies. In these tandem measurements, the m/z range was expanded
to 30-250 to detect smaller fragments. Mass spectra were recorded by otofControl ver-
sion 4.1 (build: 3.5, Bruker) and processed by Compass DataAnalysis version 4.4 (build:
200.55.2969).

Since the examined reactions are fast, measurements in buffered media (both MS1 and
tandem MS) were carried out by applying a special experimental protocol, as follows. A
capillary electrophoresis (7100 CE System, Agilent,Waldbronn, Germany) instrument and
a 1260 Infinity II isocratic pump (Agilent) was connected to the MS unit with a coaxial
CE-ESI Sprayer interface (G1607B, Agilent). The S(IV) reagent solution was transferred
towards the MS unit with the liquid pump and the solutions of quinone derivatives were
transferred from the CE capillary (L: 75 cm; ID: 75 μm; fused silica) using external pres-
sure (nitrogen gas, Linde). The two reagents met only at the end of the sprayer, thus,
these fast reactions practically occurred in the electrospray chamber (MS inlet), which
enabled extremely fast MS detection. The same system was used for detecting reaction
products from unbuffered media (Figures S1–S3), however, in this case the reactants
were premixed in various molar ratios and then injected into the MS. In this latter case,
the CE instrument served as an autosampler, and no additional liquid was added from
the liquid pump. The CE and the pump were operated by OpenLAB CDS Chemstation
software.
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Data analysis

Different software packages were used for matrix rank analysis calculations (Matlab) and
to evaluate measured and simulated kinetic curves (MicroMath Scientist, ZiTa software).
Simple non-linear least squares fitting of the experimental data was made with the Micro-
Math Scientist software [61]. ZiTa is a comprehensive software package for fitting complex
data sets on the basis of ordinary differential equation systemswhich represent amulti-step
kinetic model [62].

Results and discussion

In general, it was found that different RBQs show very similar behavior in the experiments.
Thus, the common features are demonstrated in the figures by showing only the results
obtained with 2,5-DCBQ throughout this paper. Experimental data for the other systems
are reported in the Supplemental online material.

The photochemical stability of quinone derivatives

The studied RBQs are photosensitive compounds [63–65]; therefore, the spectrophoto-
metric measurements were carried out in a darkened laboratory. It is well documented
that unwanted photochemical reactionsmay occur in diode array spectrophotometers [66].
This is the consequence of the design of these instruments in which a relatively high inten-
sity polychromatic light beam of typically 190–1100 nm spectral range enters the sample.
To explore the photosensitivity of the RBQs, their solutions were illuminated for (min-
imum) 20min in the SPECORD S600 diode array spectrophotometer. A photoinduced
process was detected with all RBQs (Figure 2). It was confirmed that the spectral changes
are associated with the formation of hydroxy-quinone and hydroquinone.

Such reactions (which could have corrupted the study of the title reaction) were not
observed with the conventional double beam spectrophotometer and in the stopped-
flow experiments when the samples were irradiated with low-intensity monochromatic
light beam, so the reactions between quinones and sulfur(IV) could be studied without
photochemical interference.

Identification of the chlorinated products

First, each reaction between RBQs and sulfur(IV) was carried out in unbuffered medium,
however, these measurements led to very complex kinetic patterns. Time resolved UV/Vis
spectra were evaluated by using matrix rank analysis (MRA) [67], which proved the
presence of six or seven light-absorbing molecules in each system.

Monitoring chloride ion formation
Before suggesting a model for the reaction, it was necessary to identify the structure of
the end product(s). To justify the initial hypothesis, that the halide ion is removed from
the quinone ring, the formation of Cl− was followed by potentiometry using a chloride
ion selective electrode. In order to compensate the interference of low-level chloride ion
contamination in the quinone solutions, KCl was added to the other reagent solution in
appropriate amount to set the corresponding measured electrode potentials equal. With
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Figure 2. Spectral changes in the photochemical decomposition of 2,5-DCBQ (λmax = 525 nm)
recordedby theSPECORDS600diodearray spectrophotometer. Theoptical shutterwas kept openduring
this experiment, i.e. the samplewas continuously illuminated by the light source of the spectrophotome-
ter. The absorption maxima at 525 and 345 nm are consistent with the formation of hydroxy-2,5-DCBQ
and 2,5-DCBQH, respectively. c(2,5-DCBQ) = 0.50mM.

this arrangement, no change in the electrode potential is expected upon mixing the reac-
tants unless the reaction itself produces chloride ion. The concentration of chloride ion
increased immediately after the addition of S(IV) to a 2,5-DCBQ solution. Only a minor
change was observed in the electrode potential upon the addition of further aliquots of
S(IV) solution to the sample. It was confirmed that 1 equivalent chloride ionwas released in
the reactionwhen 2 equivalents of S(IV)was added to the 2,5-DCBQsolution. These obser-
vations suggest that reductive dehalogenation takes place in the reaction of 2,5-DCBQ and
sulfur(IV). Similarly, chloride ion formation was also observed in the reactions of 2-CBQ
and 2,6-DCBQwith sulfur(IV). This proves that sulfur(IV) is a suitable agent for removing
chloride ion from CBQs.

ESI-MSmeasurements
ESI-MS was applied to identify products of the RBQs – S(IV) reaction. In the first experi-
ments, the reaction was followed in buffered solutions in the pH range 3.8–8.5 (Figures
S4–S7) according to the special experimental protocol (see Experimental chapter) to
follow very fast reactions. The formulas for each base peak were calculated (188.9863:
[C6H5O5S]–, 222.9473: [C6H4ClO5S]– and 256.9083: [C6H3Cl2O5S]–). Similar products
were detected in each case. However, some less intense ions might not have been detected
due to ion suppression caused by the buffer, too short reaction time and/or insufficient
mixing.

The established formulas can be attributed to two alternative structures because an
–SO3

– group might be attached to one of the two oxygens (resulting in –SO4
– group)
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Table 1. Relative intensity values of sulfite radical anion (SO3
·–), hydro-

gensulfite ion (HSO3
–), sulfate radical anion (SO4

·–) and hydrogensulfate
ion (HSO4

–) in the tandem mass spectra of the base peak in the RBQs –
S(IV) reaction.

S(IV) attacks hydroquinone ring S(IV) attacks phenolic oxygen

Irel (SO3
·–) Irel (HSO3

–) Irel (SO4
·–) Irel (HSO4

–)

BQ 100% 30.8% 0.1% 0%
2-CBQ 100% 63.4% 0.2% 0.1%
2,5-DCBQ 33.7% 9.8% 0.1% 0.9%
2,5-DCBQ 29.4% 7.9% 1.5% 1.3%

or the RBQs ring (resulting in –SO3
– group). These possibilities were evaluated on the

basis of tandem mass spectra from the previously identified base peaks (Figures S8−S11).
The detected fragments corresponding to an –SO3

– group are considerably more intense
than those of an -SO4

– group (Table 1). For example, when the mass of 222.9473 was
fragmented (base peak in the 2-CBQ – S(IV) reaction), the relative intensities for m/z
79.9574 (SO3

·−) and 80.9652 (HSO3
−) were 100% and 63.4%, whilst for 95.9523 (SO4

·−)
and 96.9601 (HSO4

−) they were 0.2% and 0.1% (Table 1, Figure S9). Similar results for the
other products clearly proved that in the detected products the –SO3

− group is bonded to
the RBQs ring and not to the oxygen atom (Table 1, Figures S8, S10, S11).

To eliminate the effect of ion suppression, insufficient mixing, or too short reaction time
under the special experimental setup, the unbuffered solutions of RBQs and S(IV) were
mixed in various molar ratios (RBQs:S(IV) = 10:1–1:10). Mass spectra were recorded at
each ratio and product formulas were calculated based on exact masses. In these exper-
iments, the reaction time was not controlled, samples were injected directly into the MS
shortly after mixing the solutions. The results confirmed that many species are formed in
the reaction, mainly the products of the dehalogenation process. These compounds (Table
2) are expected to show significant light absorption due to the aromatic structural motifs.
This is in a good agreement with the expected large number of absorbing species based on
MRA calculations.

Table 2 shows that the products contained one or two –SO3
– groups and zero, one or

even two chloride ionwas released (compared to the reactant RBQ). Dehalogenation prod-
ucts and two-fold sulfonated products were detected with higher intensities when the ratio
of RBQ:S(IV) was 1:2. In addition, increasing the ratio of S(IV) resulted in monotonously
decreasing peak intensities because Na2SO3 also caused ion suppression.

The (one-dimensional) mass spectra of the RBQ – S(IV) reactions contain a mass peak
at 96.9601m/z corresponding to HSO4

− ion (Figures S8−S11). This species is the product
of the oxidation of S(IV) to S(VI). The presence of S(VI) in the system suggests that the
first step of the overall process is the reduction of RBQ to RBQH. In a subsequent reaction,
RBQH may react with another S(IV) to form the detected products. To corroborate these
considerations, the reaction mixture of 1,4-hydroquinone (BQH) and S(IV) was analyzed
with tandemmass spectrometry (Figure S12). As expected, the same fragmentation pattern
was observed as in the reaction of BQ – S(IV) (Figure S8), confirming the formation of the
same product.

The absolute identifications of themolecular formulas shown in Table 2 is possible using
the high resolution masses determined in the experiments. Table 3 provides comparisons



JOURNAL OF SULFUR CHEMISTRY 655

Table 2. Identified chemical formulas, proposed structures, m/z values, molecule ion types and relative
intensities of the products in the reactions of CBQs and sulfur(IV) in unbuffered medium on the basis of
high resolution MS experiments.

The CBQ:S(IV) ratios show the molar ratio at which the corresponding product was detected with the highest intensity.
Experimental and simulated mass spectra are reported in the Supplemental online material (Figures S1−S3).

of detected and calculated values for the m/z values of the most abundant ions for the
proposed molecular formulas. In each case, agreement within 0.001 atomic mass units is
observed, which positively confirms the proposed molecular formula. In addition, at least
one of the positional isomers of the structures in Table 2 is a known compound. Table 3 also
includes references for these known substances as PubChem compound identifiers (CID),
and also in some cases as Chemical Abstract Services identification numbers (CAS #).

The stoichiometry and the kinetics of the RBQs – sulfur (IV) reactions

It is reasonable to assume that some of the intermediates and/or products are weak acids
or bases and involved in protolytic equilibria. Thus, these equilibria may be shifted during
the overall reaction and contribute to the absorbance change in unbuffered reaction mix-
tures. In order to eliminate this problem, detailed kinetic studies were made at constant
pH maintained with acetate, MES, HEPES buffers. Under such conditions, the number of
absorbing molecules dropped to 3.

The reactions between S(IV) and RBQs were monitored at two detection wavelengths
where the absorbance change is sufficiently large and corresponds to the formation of the
product, and the formation and decomposition of the intermediate; 2-CBQ: 313, 348 nm,
2,6-DCBQ: 310, 355 nm, 2,5-DCBQ: 320, 420 nm, 2,6-DMBQ: 290, 325 nm, 2-tBBQ: 307,
340 nm. In the case of BQ and 2-MBQ, only the formation of the product could be followed
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Table 3. Mass spectrometric identification information for the products in the reactions of CBQs and
sulfur (IV) in unbuffered medium and data of relevant reference materials.

Neutral formula Identified ion Detected m/z Calculated m/z Reference compound

C6H6O5S C6H5O5S− 188.9865 188.9858 Dobesilic acid/ 2,5-
dihydroxybenzenesulfonic
acid, CAS# 88-46-0, PubChem
CID 17507

C6H5ClO5S C6H4ClO5S− 222.9475, 222.9467, 222.9463 222.9468 4-chlorobenzenesulfonic acid,
CAS# 98-66-8, PubChem CID
7400

C6H4Cl2O5S C6H3Cl2O5S− 256.9082, 256.9078 256.9078 3,5-dichloro-2,6-dihydroxy-
benzenesulfonic acid, PubChem
CID 141104784

C6H6O8S2 C6H4O8S22− 133.9683, 133.9680, 133.9677 133.9674 4,6-dihydroxybenzene-1,3-
disulfonic acid, CAS# 17724-11-
7, PubChem CID 9962731

C6H5O8S2− 268.9426 268.9426
C6H5ClO8S2 C6H3ClO8S22− 150.9485, 150.9481 150.9479 5-chloro-4,6-dihydroxybenzene-

1,3-disulfonic acid, PubChem
CID 20077643

5-chloro-2,4-dihydroxybenzene-
1,3-disulfonic acid, PubChem
CID 87814287

at 300 and 310 nm, respectively. All of these reactive systems exhibit analogous proper-
ties, and the evaluation of the experimental data is demonstrated by discussing the results
obtained in the 2,5-DCBQ – S(IV) reaction.

The kinetic traces are consistent with two consecutive reaction steps (Figure 3). When
the excess of S(IV) over the substrate is increased, the induction period in the formation
of the product becomes less profound (320 nm) and the intermediate forms faster and in
higher transient concentration (420 nm).

Kinetic traces recorded at various 2,5-DCBQ concentrations and pH are shown in
Figure 4. In this system, the reactants and possibly the intermediates are involved in acid –
base equilibria which are coupled with the formation of the sulfonated product and, there-
fore, the pH strongly influences the kinetics. The reaction becomes considerably faster by
increasing the pH.

The stoichiometry of the reaction was determined by the Job method [68,69]. The
final absorbance of the kinetic traces at 320 nm (Figure 4(a)) was plotted as the function
of the sulfur(IV):RBQs concentration ratio Figure 5. The breakpoint at c(S(IV)):c(2,5-
DCBQ) = 2 confirms that one mole of RBQs reacts with two moles of sulfur(IV).

All experimental kinetic traces can be fitted with a double exponential function even
(A1exp(−k1t)+A2exp(−k2t)+E) though non-pseudo-first order conditions (using close
to equimolar reagent concentrations) were also applied. This feature is quite unexpected
in a relatively complex system, which may be the consequence of fortuitous combination
of the values of the rate constants and the characteristic molar absorbances. A detailed
mathematical interpretation of this phenomenon was reported earlier [70]. Kinetic exper-
iments were performed at two different pH values and varying the concentrations of RBQs
and sulfur(IV). The corresponding kinetic curves recorded at 320 and 420 nm were fit-
ted either individually or together. These calculations yielded the same estimates for the
pseudo-first-order rate constants. The goodness of the fit is illustrated in Figure 6.
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Figure 3. Characteristic kinetic traces for the reaction of 2,5-DCBQ with sulfur(IV) at two different
wavelengths (320 and 420 nm). c(2,5-DCBQ) = 0.50mM, c(S(IV)) = 0.15–5.00mM (the individual con-
centrations are listed in the figures), pH = 3.8 (acetate buffer), I = 1.0 M, T = 298.2 K.

The results are consistent with a simple kinetic model shown in Scheme 1. It postulates
the formation of an intermediate in an equilibrium step between the reactants (k1, k−1).
The next step is the dehalogenation of the intermediate (k2) followed by a very fast reaction
with a second bisulfite ion (k3).

In the final evaluation, all kinetic traces recorded at constant pH and at the selected
two wavelengths were fitted simultaneously with the ZITA software package. This pro-
gram package makes it possible to fit large data sets obtained by varying the ini-
tial concentrations of the reactants. In this case, all the curves measured at pH 4.5
and all the curves measured at pH 3.8 were evaluated together at two wavelengths
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Figure 4. Kinetic traces recorded as a function of the 2,5-DCBQ concentration (a) and pH (b) in the
reaction of 2,5-DCBQ with sulfur(IV). (a): c(2,5-DCBQ) = 0.015–0.50mM, c(S(IV)) = 5.00mM, (acetate
buffer) pH = 4.5. (b): c(2,5-DCBQ) = 0.50mM; c(S(IV)) = 5.00mM, pH = 3.6–5.1 (acetate buffer),
I = 1.0 M, T = 298.2 K.

(420 and 320 nm) and the concentrations of the reactants were in the following
ranges: c(2,5-DCBQ) = 0.25–1.00mM, c(S(IV)) = 1.00–10.00mM (pH 4.5) and c(2,5-
DCBQ) = 0.25–1.00mM, c(S(IV)) = 1.00–10.00mM (pH 3.8). It was assumed that the
last step in the kinetic model (Scheme 1) is fast and k3 was included with a large fixed,
diffusion-controlled value in the calculations. The molar absorptivities of the intermediate
and the final product were also estimated. The results of the parameter fitting are listed in
Table 4 and the goodness of the fit is demonstrated in Figure 7 and Figure S13.



JOURNAL OF SULFUR CHEMISTRY 659

Figure 5. Determination of the stoichiometry in the reaction of 2,5-DCBQwith S(IV) by the Jobmethod.
c(2,5-DCBQ) = 0.50mM, c(S(IV)) = 0.20–30.00mM, pH = 3.8 (acetate buffer), I = 1.0 M, T = 298.2 K.

Figure 6. Experimental kinetic traces of the reaction between 2,5-DCBQ and S(IV) at 420 nm (brown
circles) and 320 nm (purple rectangles), together with the fitted double exponential curves. Only a
small fraction of the measured points is shown for clarity. c(2,5-DCBQ) = 0.50mM, c(S(IV)) = 1.0mM,
pH = 4.5 (acetate buffer), I = 1.0 M, T = 298.2 K.
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Scheme 1. Kinetic model for the reaction of 2,5-DCBQ with sulfur (IV).

Figure 7. Experimental and fitted kinetic traces using the ZITA software. c(2,5-DCBQ) = 0.50mM (A, B,
C, D); c(S(IV)) = 10.00mM (A, C), 2.00mM (D), 1.00mM (B); pH = 3.8 (A, B), 4.5 (C, D); acetate buffer;
I = 1.0 M; T = 298.2 K. Only a selection (ca. 5%) of measured points is shown for clarity.

The graphs in Figure 7 and Figure S13 illustrate that the model fits the measured kinetic
traces with an acceptable precision. Table 4 shows that the parameter values are in the
expected range for every case. It is to be noted that almost all parameters significantly
depend on the pH used (except the molar absorbance of the product at 420 nm). This is
clearly caused by the fact that all of the species in the scheme have acid–base properties and
are therefore present in a different protonation state at the two wavelengths. The different
protonation states are expected to have different reactivities, too, which explains the differ-
ences between the rate constants fitted at the two different pH values. These fitting results
are also in agreement with the independent matrix rank analysis of the UV/Vis spectra,
which – as mentioned earlier – gave evidence for at least 6 absorbing species when all mea-
surements were used together, but only 3 when spectral data collected at a single pH were
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Table 4. Estimated parameters obtained by the ZITA software
for the reaction of 2,5-DCBQ with sulfur(IV).

QR 2,5-DCBQ

pH 4.5 3.8
k1 (M−1s−1) 12166± 116 4346± 35
k−1 (s−1) 0.0020± 0.0003 0.0050± 0.0004
k2 (s−1) 5.440± 0.007 3.640± 0.008
k3a (M−1s−1) 1.0× 1010 1.0× 1010

εQ1 (M−1cm−1) 140± 4 75± 2
εS1a (M−1cm−1) 5.4 5.4
εI1 (M−1cm−1) 1665± 5 1133± 4
εP1 (M−1cm−1) 252± 3 254± 3
εQ2 (M−1cm−1) 509± 4 323± 2
εS2a (M−1cm−1) 5.4 5.4
εI2 (M−1cm−1) 935± 5 594± 4
εP2 (M−1cm−1) 2929± 3 2573± 3
aFixed parameter values. Molar absorbance notations: subscripts 1 and 2
refer to 420 and 320 nm, respectively. Q means the starting quinone, S
means HQClSO3

− , I means QSO3H, P means the products lumped into a
single species (see Scheme 1).

analyzed. The findings of the ESI-MS measurements, which detected a large number of
different species even in a single system, also support this qualitative interpretation.

Conclusions

By using HRMS technique to investigate the RBQ – S(IV) reaction we proved that the
examinedCBQs provided similar products (monosulfonated hydroquinones) in the exam-
ined pH range (3.8–8.7), under the special experimental conditions. It was also proved
that in these products the SO3

– group was attached to the hydroquinone ring and not to
any of the two phenolic O atoms. At longer reaction times (1–10min) and without the
presence of buffer (ion suppression was omitted) several dehalogenation products were
detected. The formation of multiply sulfonated and dehalogenated products was facilitated
by increased S(IV) ratio (maximal intensity of these products reached at a ratio of 1 CBQ:2
S(IV)). It was also presumed that the first step of the reaction is the reduction of quinone
to hydroquinone, from which sulfonated products can be formed.

Furthermore, this work has demonstrated that double exponential fitting can be well
used to describe the kinetic traces of the RBQs – sulfur(IV) reaction in a wide concentra-
tion range. The rate constants of the kinetic model can be estimated based on the observed
rate constants of the double exponential fitting.

In the case of CBQs, the organic compound undergoes reductive dehalogenation, which
may be the basis of a practical process in the treatment of CBQ containing wastewater.

Note

1. The terms sulfur(IV) or S(IV) refer to all forms being in fast equilibrium (H2O·SO2, HSO3
−,

and SO3
2−). Distinction is made between these species only when it is required by the clarity of

the presentation. It needs to be emphasized that a form of S(IV) may be present in a small mole
fraction still be more reactive than a dominant form at a given pH.
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