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Abstract
One of the possible objective and universal descriptions of most folk songs can be based on structural musical charac-

teristics such as contour, tone set, tonality, rhythm, meter, and form. Experimental studies in the recent decade supported

the universal importance of contour and tonality as the two most important characteristics determining human music

cognition and memory. It follows from this statement that a mathematically adequate description of folk songs should

be based on both contour and tonality information. We describe a method searching for characteristic groups of universal

melody types (MTs) propagating jointly and regularly in several subsets of 59 folk music cultures in Eurasia and America,

represented by a database of 59,000 folk songs. The MTs are represented by pairs of contour and degree distribution

vectors. We describe the propagation of the MTs by 59-dimensional vectors containing their “moments” in the 59 cul-

tures studied. We show that principal component analysis (PCA) of these moment vectors reveals assumable ancestor

cultures, and we show a method modeling the 59 musical cultures as linear combinations of the musical contents of

seven assumable ancestral cultures. The results provide a method and a hypothesis for tracking the footprints of assum-

able ancient musical “primary languages” in folk music traditions in Eurasia and America. The assumable musical ancestral

cultures presented here show good correspondence with the distribution of certain human genetic characteristics and

archaeogenetic results.
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Introduction
According to its founders, comparative folk music research
aims to study relationships of musical cultures represented
by structured melody collections, with the final intention to
draw conclusions regarding the beginnings of music (Bartók,
1937; Hornbostel, 1986; Nettl, 2015). It follows from this def-
inition that a common framework of systematization based on
universal characteristics is indispensable when comparing
structured melody collections of different cultures (Brown
et al., 2014). Such description may be based on different
principles including analysis of melody structure
(Goienetxea et al., 2016; Járdányi, 1974), metadata

(Conklin, 2013), or predefined features including both struc-
tural and social characteristics (Lomax, 2009).

A possible common framework was suggested by Lomax
based on a set of predefined universal “cantometric” parame-
ters, where the parameter values are determined by subjective
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rankings of numerous individuals (Lomax, 2009). Although
the objectivity of this “cantometric” method seems question-
able for several researchers (McClean, 2006), a more exact
method called “CantoCore” (Savage et al., 2015) based on
the idea of Lomax was successfully applied for determining
common folk song types as well as characteristics of
Taiwanese native tribes (Brown et al., 2014; Savage &
Brown, 2014). The universal characteristics of songs focusing
on pitch, rhythm, form, instrumentation, performance style,
and social context were selected using phylogenetic
methods and a song database containing 304 tunes arising
from different parts of the world (Savage et al., 2015).

In contrast with cantometric and CantoCore parameters, an
alternative universal description of most folk songs can be
based on strictly structural musical characteristics such as
contour, tone set, tonality, rhythm, meter, and form
(Vargyas, 2005). As instrumentation, performance style,
and social context of a given song may be very different
even within one given culture, depending on the situation
of the performance (including the specific situation of the
recording), this information is not considered when focusing
on the pure melody structure. For instance, a song can be per-
formed by a solo singer or a solo flute player with more or less
ornamentations, but also by a choir of a community, accom-
panied or not accompanied by an instrumental orchestra or a
solo instrument. At the same time, the performance style and
the rhythm may be adapted to the text (parlando), or to the
strict rhythm of the dance (giusto), depending on the social
situation of the performance. Focusing on structural charac-
teristics, numerous methods of melody classification have
been elaborated over the last 150 years, often aiming at com-
parative analysis of musical cultures (Danckert, 1939;
Dobszay & Szendrei, 1992; Ellis, 1885; Elscheková, 1966;
Herzog, 1930; Huron, 1996; Janssen et al., 2015, 2017;
Juhász, 2006; Nettl, 1954; Wiora, 1952).

Cross-cultural music analysis raises the question of how
culture-dependent music cognition can be considered in a
common framework of musical universals. Although the list
by Brown and Jordania (2013) proposes a wide range of
musical universals, we justify our method on experimental
studies in the recent decade supporting the universal impor-
tance of the contour and the tonality as the two most important
characteristics determining human music cognition and
memory (Schmuckler, 2016). Therefore, we provide a mathe-
matical representation of the melodies by coupled pairs of
64-dimensional contour and 24-dimensional degree distribu-
tion vectors. Accordingly, a melody type (MT) is constructed
by a pair of contour type (CT) and degree distribution type
(DDT) vectors characterizing the centroid of a cluster of
similar melodies determined by the self-learning algorithm
called the Self Organizing Cloud (SOC) (Juhász, 2015).

Based on the preceding representation, the first aim of this
study can be defined as follows: we want to identify the most
characteristic “universal”MTs existing more or less generally
in the folk music cultures of Eurasia and America in order to
describe the specific assemblies of these types in different cul-
tures within a common framework. Thus, we determine the

most typical “universal” MTs (UMTs) as pairs of universal
contour type (UCT) and universal degree distribution type
(UDDT) vectors. The database where our algorithm searches
for the UMTs counts 55,182 melodies arising from 59 cul-
tures of Eurasia and America.

Bayard initiated the concept of tune family “to identify
specific melodies in as many of their variant forms as pos-
sible” (Bayard, 1954), but he did not define explicitly how
to define real families of tunes in general (Cowdery, 1984).
Vargyas designated essentially the same phenomena as
“tune types,” and listed the specificities defining a possible
type as follows: contour, tone set (tonality), rhythm, form,
interrelation between tune and text, and performance style
(Vargyas, 2005). We will show that the UMTs determined
by the SOC algorithm represent melodies being similar by
contour, tone set (tonality), form, and partly the rhythm
(except syllable number). Thus, they can be considered as
mathematically formulated tune types corresponding to
many of the specificities of Vargyas.

After determining the UMTs, we construct 59-dimensional
vectors for each UMT, containing the frequencies of their local
variants in the 59 cultures studied, and we show that principal
component analysis (PCA) of the resulting 59-dimensional
vector ensemble may indicate certain assumable ancient
musical cultures having significant impact in “recent” folk
music traditions documented in the past one to two decades.
We also show a new method that reconstructs the musical con-
tents of these assumable ancient cultures and generates models
of the recent cultures as weighted sums of the reconstructed
ancient musical contents.

Our diffusionist hypothesis assuming ancient musical cul-
tures in the background of the contacts of “recent” folk
music traditions is based on a previous work revealing strong
rank correlations in propagation of UMTs and human
genetic mitochondrial haplogroups (Juhász et al., 2019). The
associations of haplogroups whose frequencies show correlated
propagation with associations of UMTs could be identified in
certain ancient human populations identified by archeoge-
netics. Obviously, the assumption that the footprints of
certain ancient cultures can be detected even in musical cul-
tures of the last two decades does not exclude any other,
regional or synchronic, interaction.

We test our method by comparing our computational
results with classical musicological studies of folk music
traditions living in the Eurasian steppe region located
between the Carpathian Basin and China. Numerous pub-
lished works provide us with comprehensive structural clas-
sifications of Anatolian Turkish, Azeri, Karachay, Kazakh,
Kyrgyz, Mongolian, and so on folk music cultures for com-
parison with our computational results (Bartók, 1976;
Sipos, 1997, 2000, 2001, 2004, 2006, 2009, 2014; Vikár
& Bereczki, 1971, 1979, 1989, 1999).

Database
Our database contains 60,153 melodies divided into 59 sep-
arate subdatabases (Tables 1 and 2).
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The sizes of the 59 databases are between 200 and 2500
songs. In order to eliminate problems of comparative analysis
caused by these different sizes, we determined national–
regional sets of MTs for each of the 59 databases one by one
using SOC clustering, and the analysis was based on these col-
lections counting 150–400 types per culture. The data sources
are listed, characterized, and mapped in Appendix 5.

Methods

Representation of the Melodies by Coupled Pairs of
Contour and Degree Distribution Vectors
Mathematical representation of our melodies is given by
coupled pairs of 64-dimensional contour and 24-dimensional
degree distribution vectors for each melody. The elements of
the degree distribution vectors represent the cumulated time
duration of the degrees, normalized by the total time duration
of the melody, while the contour vectors contain 64 subse-
quent pitch samples of the melody, increasing by 1 for a semi-
tone. For sake of comparability, all melodies are transposed to
the final tone G. (The key is also transposed, thus, a melody
transcribed in A major is transposed to G major.) The
diagram in Figure 1(a) shows the continuous pitch–time func-
tion increasing by one for each semitone, ending on the
common pitch value 7 that corresponds to the common
ending note G. The pitch–time function is sampled in 64 equi-
distant time intervals, independent of the actual time duration.

The rhythm is represented by the subsequent identical pitch
values. Figure 1(b) shows the cumulated time rates of the
degrees in the melody. Degrees are indicated beyond the
columns. As most of our written sources miss information
on microtonal effects, we apply the resolution of one semitone
in our numerical pitch representation. Visual representations
of the contour and degree distribution vectors are shown in
Figure 1(a) and (b), respectively.

Determining the Melody Types of a Musical Culture
Using the SOC Algorithm
According to the vector pair representation of the melodies,
MTs are defined as centroid vectors of the local condensa-
tions of the multidimensional point systems constructed by
coupled pairs of contour and degree distribution vectors.
These pairs of CT and DDT vectors are determined as
feature vectors learned by the SOC algorithm trained by
the contour and degree distribution vectors of the melodies
(Juhász, 2015). Using these definitions, an MT is con-
structed by a pair of CT and DDT vectors.

The unsupervised self-learning SOC system is derived
from Kohonen’s Self Organizing Map (Kohonen, 1995;
Toiviainen, 2000; Toiviainen & Eerola, 2002) and the nonmet-
ric multidimensional scaling (MDS, see Appendix 1) principle
(Borg & Groenen, 2005). The main difference between Self
Organising Map (SOM) and SOC is that the former assigns
the feature vectors to predefined lattice points of a plane grid,

Table 1. The cultures of the database.

01-Pek: Chinese, Peking distr, 1220 30-War: Poland, Warmia, 978

02-Mon: Mongolian, Inner-Mongolia, 1567 31-GPl: Great-Poland, 692

03-Kyr: Kyrgyz 1120 32-And: Peru, Bolivia, Ecuador, 1298

04-Chu: Chuvash (Volga-Kama area.), 497 33-Gre: Greek, 400

05-Sic: Sicilian 1299 34-Est: Estonian, 705

06-Bul: Bulgaria, Dobruja 1027 35-Lap: Saami, 751

07-Aze: Azeri 324 36-Fir: Finnish rune songs, 236

08-Tur: Turkish (Anatolia, Thracia), 2299 37-Rsn: Ruthenian, 520

09-Kar: Karachay-Balkar (North-Caucasus), 1094 38-Uyg: Uyghur, 486

10-Hun: Hungarian 2527 39-Kaz: Kazakh, 752

11-Slo: Slovak, 1937 40-Cer: Cheremis (Volga-Kama reg.), 454

12-Mor: Moravian, 688 41-Tat: TatĂˇr (Volga-Kama reg.), 477

13-Rom: Romanian, 1133 42-Vot: Votyac (Volga-KĂˇma reg.), 205

14-Cas: Poland, Cassubian, 1569 43-Jap: Japanese (Hokkaido), 667

15-Fin: Finnish, 2252 44-Sek: Sekler (Hun. Ethnic group), 1919

16-Nor: Norvegian, 1970 45-Mns: Mangislak Kazakh, 267

17-Ger: German, 2402 46-Shn: China, Shanxi distr. 814

18-Lul Luxemburg, Lotharingia, 1149 47-Rod: Bulgarian, Rodope, 340

19-Fre: French, 2048 48-Lit: Lithuanian, 807

20-Hol: Holland, 2488 49-Tuv: Tuvan (South-Siberia), 332

21-ISE: Irish, Shottis, English, 2207 50-Hak: Khakass (South-Siberia), 322

22-Spa: Spanish (Extremadura, Asturia), 1401 51-CFr: French, Canada, 262

23-Dak: Dakota, 842 52-Mex: Mexico, 266

24-Pfu: Fino-Ugric (komi, izsĂłr, vĂłt), 405 53-Bas: Bashkirian, 285

25-ObU: Khanti, Mansi, 447 54-Bsq: Basque, 647

26-Bal: Serbian, Chroatian, 551 55-Bur: Buryat (Siberia) 531

27-Kur: Kurd, 615 56-Gag: Ghagauz (Moldova-Ukraina), 165

28-Rus: Russian, 688 57-Tkm: Iraq Turkmen, 200

29-Nav: Navajo, 436 58-Ald: German 16-eighteenth century 624

59-Ahu: Hungarian 16-eighteenth century, 588
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whereas the latter assigns them to freely moveable points of a
low-dimensional space and moves these points into a structure
optimally mapping the distance conditions of the multidimen-
sional feature vectors in low dimensions (Juhász, 2015; Juhász
et al., 2019). The SOC is also able to modify the number of
feature vectors during the learning process until a prescribed
significance of the clustering is reached (see Appendix 2).

In order to be able to learn pairs of CT and DDT vectors
simultaneously, the distance function measuring the dissim-
ilarity between melodies and/or MTs, as well as the learning
algorithm, were extended to associations of more than one
joined feature vector. The musical diversity measure (dis-
tance) of a given MT and a given melody is defined as
follows:

– The weighted Euclidean distance ΔC of the given
melody contour and the given CT vector is calcu-
lated according to Equation (A2-1) in Appendix 2.

– The distance ΔD of the given degree distribution and
the given DDT vector is also determined in the same
way.

– The musical distance ΔM is the weighted sum of ΔC

and ΔD, presented as
ΔM = (1− μ)ΔC + μΔD, (1)

where μ= constant weight determined experi-
mentally using melody sets with known musical
relationships as reference. We found μ = 0.3 for
optimal simultaneous characterization of both
contour- and degree-distribution relationships,
while μ = 0 and μ = 1 result in the calculation of
the pure distances of the contours as well as degree
distributions.

It is worth mentioning here that a third component charac-
terizing the rhythmic diversity is added to Equation (1) when
searching for relatives of a given individual melody. However,
rhythmic characteristics strongly depend on the text, therefore
our pure musical analysis focuses on the contour and the
degree distribution that were found to be the most important
features in music cognition (Schmuckler, 2016).

The mathematical description of the SOC algorithm and its
extension to more than one joined training and feature vectors,
as well as the performance tests, are given in Appendix 2.

A wide scale of similarity measurement and alignment
principles has been published over the past decades includ-
ing weighted Euclidean, city-block, correlation distances,
wavelet- and Fourier transformations, and dynamic time
warping (Janssen et al., 2015, 2017; Juhász, 2015, 2007;
Savage & Atkinson, 2015; Scherrer & Scherrer, 1971;
Schmuckler, 1999, 2010; Velarde et al., 2013; Volk &
Van Kranenburg, 2012; Van Kranenburg et al., 2009).
The relevance of our method based on Euclidean distance
measure and SOC-clustering of contour and degree distribu-
tion vector pairs was successfully validated on a Hungarian
test data set containing 164 melodies (Corpus Musicae
Popularis Hungaricae l-XII, 1951–2012). We have shown
that the correlation between SOC-clustering and expert

musicological classification became 0.69 for this test set.
The details are found in Appendix 2.

Determining the UMTs
Based on the preceding concept of MTs, the first main aim
of this study is to identify the most characteristic MTs exist-
ing more or less generally in the folk music cultures studied
in order to describe different cultures within a common
framework as specific compositions of these UMTs. Our
workflow contains two phases. First, we determine the
most typical “own” MTs of 59 musical cultures by cluster-
ing the sets of pairs of contour and degree distribution
vectors of the corresponding 59 melody collections one
by one. Thus, we obtain 59 independent sets of dominant
MTs for the 59 cultures studied. Second, we determine
the most typical “universal” MTs (UMTs) as coupled
pairs of cluster centers of the unified collection of the 59
“own” MT sets obtained in the first phase. This process
resulted in 847 UMTs describing the MTs simultaneously
inhering in more musical cultures with an appropriate sig-
nificance. (The mean distance of the cluster members
from the corresponding UMT is less than halve of the dis-
tance from the closest neighboring UMT, for all clusters.)

Having obtained the 847-element UMT set, the cultures
can be characterized in a common framework as follows.
We assign the MTs of a given culture to the most similar
UMTs, and represent the numbers of the hits in an
847-dimensional vector. (To take account of the actual dis-
tance d of an MT from the closest UMT, its hit is calculated
as h = 1− d / δ if d ≤ δ, and h = 0 otherwise, where δ is a
critical maximal distance value.)

Normalizing this hit-vector by the total number of MTs of
the given culture, we obtain its “UMT frequency distribution.”
Obviously, all of the 59 cultures studied are characterized by
their own “UMT frequency distribution,” and the vectors con-
structed from these distributions are unified in the
59*847-dimensional “UMT frequency matrix” containing
the UMT frequency distribution vectors of the 59 cultures in
its rows.

At the same time, a column of the preceding “UMT fre-
quency matrix” represents the “moments” of the correspond-
ing UMT in the 59 cultures. Therefore, the propagation of the
kth UMT in the cultures can be characterized by the
59-dimensional “UMT moment vector” generated from the
59 elements of the kth column of the UMT frequency
matrix. These 59-dimensional moment vectors construct an
847-element vector system that we analyzed using PCA.

PCA of the UMT Moment Vectors Characterizing the
Distributions of the UMT in the Cultures Studied
As we have mentioned previously, each UMT was charac-
terized by a 59-dimensional “UMT moment vector” con-
taining its own moments in the cultures studied. The main
assumption of our work is that the PCA of the spatial
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structure of the point system constructed by these 847
vectors may reveal the footprints of the most important
ancestral cultures in recently observed folk music traditions.
As an illustration, we discuss a simple model containing
five UMTs belonging to two cultures denoted by A and B
in Figure 2. Horizontal and vertical axes represent the
moments of the UMTs in cultures A and B, respectively.

Let us suppose that an ancestor culture E containing
UMTs 1–5 contributed to cultures A and B, and the con-
tributions preserved the original moments of the UMTs

within the ancestral culture E. In such conditions, all
five UMTs have nonzero coordinates on both axes, and
the proportions of the coordinates a1:a2:a3:a4:a5 as well
as b1:b2:b3:b4:b5 are identical due to the assumption
that the contributions preserved the original moments
[see Figure 2(a)]. Consequently, the points representing
the descendant moments in cultures A and B are situated
along a straight line represented by the unity vector e in
Figure 2(a). The different impacts of culture E on cultures
A and B are represented by the inclination angle of vector

Figure 1. (a) The generation of the melody contour vectors; and (b) the degree distribution vectors.
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e (e.g., a higher impact of E on A results in higher values
of a1 … a5, so the angle between e and A decreases). In
more realistic conditions, the original moments in
culture E are not preserved exactly, and the interactions
between cultures A and B may result in further deviations
of the coordinates on axes A and B. Providing that these
effects are not too grave, we obtain a more disordered
point system still subtending along the direction of
vector e, as it is shown in Figure 2(b). However, the
moments of UMTs 1–5 are known merely in recent cul-
tures A and B, whereas their moments in the assumed
ancestor culture E are unknown. Thus, our first aim is to
reconstruct vector e from coordinates (moments) of
UMTs 1–5 as the vector pointing into the direction of
the largest extension of the point system in Figure 2(b).
This vector is the “first principal component” of the
point system by definition, and can be determined as the
eigenvector belonging to the largest eigenvalue of the
two-dimensional, symmetric covariance matrix C as

C e = λe. (2)

where λ= largest eigenvalue belonging to eigenvector e;
and the elements of C= covariances of the coordinates

a1 . . . a5 and b1 . . . b5, which can be represented as

ci,j =
∑5
k=1

(ak − a)(bk − b) i = 1, 2 j = 1, 2

i ≠ j,

(3)

ci,j =
∑5
k=1

(ak − a)(ak − a), (i = j = 1), (4)

ci,j =
∑5
k=1

(bk − b)(bk − b), (i = j = 2), (5)

where a and b= averages of coordinates a1 . . . a5 and
b1 . . . b5. In possession of the coordinates of e in the
basis of A and B [eA and eB in Figure 2(c)], the
moments of the UMTs within the ancestral culture E

can be reconstructed as the projections of points 1–5 to
vector e [see coordinates e1-e5 in Figure 2(c)].

Furthermore, the impact of the ancestral culture E to
recent cultures A and B can also be characterized by coor-
dinates eA and eB [see Figure 2(c)].

Obviously, we have to assume more unknown ancestral
cultures in our realistic system of 59 cultures (dimensions)
and 847 UMTs. In other words, we have 847 UMT moment
vectors in the 59-dimensional “space of cultures.”However,
this is not a crucial problem, because we can determine all of
the mathematically possible 59 principal vectors of the point
system, and the most important assumable ancestral cultures
can be identified by the highest related eigenvalues. It is
easy to see on the score of the preceding two-dimensional
model that the 59 coordinates of the PC vectors characterize
the impacts of the corresponding ancestral culture on the 59
recent populations. Thus, higher coordinates of a PC vector
in the 59-dimensional “culture space” indicate recent cultures
where the corresponding ancestral culture has higher impacts.
The mathematical description of our PCA method is given in
Appendix 3.

Projection of the 847 59-dimensional UMT moment
vectors into the subspace determined by the orthogonal PC
vectors whose eigenvalues exceed a critical number provides
an optimal low-dimensional approximation of the original
vector system. In this subspace, the coordinates of the
UMTs represent the optimal estimates of the moments of
the UMTs in the assumable ancestral cultures represented
by the PCs. Consequently, an 847-dimensional vector contain-
ing the normalized coordinates of the 847UMTs in a given PC
vector can be interpreted as the optimal approximation of the
UMT frequency distribution of the assumable ancestral culture
represented by the given PC vector. Thus, the musical contents
of the assumable ancestral cultures can be reconstructed by
projection of the UMT moment vectors into the subspace of
the most important PC vectors.

Although PCA is a widely applied method, it produces
not necessarily well interpretable results. Fortunately, the
fast reduction of the eigenvalues in higher dimensions
refers to an appropriate shape of the 59-dimensional point

Figure 2. Illustration of PCA of a point system constructed by five pieces of two-dimensional UMT moment vectors in cultures

A and B.
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system, and yields the reduction of the analysis to the
assumption of 6–7 ancestral cultures in our case. (The 6th
largest eigenvalue is less than 10% of the first one.) In addi-
tion, our basic assumptions also were verified by the results
showing that the PC vectors are well interpretable from both
musical and geographical points of view, although the anal-
ysis was based on pure mathematical principles.

Modeling of Musical Cultures as Weighted
Admixtures of the UMT Frequency Distributions of
the Most Important PC Vectors
We have shown above that our 59 cultures can be character-
ized by 847-dimensional UMT frequency distribution
vectors. Accordingly, the musical content of the hypotheti-
cal ancestral cultures can also be reconstructed by the nor-
malized coordinates of the 847 UMTs in the corresponding
principal component (PC) axes.

The mathematical problem can be formulated as follows.
We want to approximate the given D-dimensional vector x
as a weighted sum of the given set of N D-dimensional
vectors v1 . . . vN as

x = a1v1 + a2v2 + · · · + aNvN + ε, (6)

where x=UMT frequency vector to be approximated;
v1 . . . vN = reconstructed UMT distributions of the hypo-
thetical cultures represented by the PCs; N= 7= number
of the PC vectors; and ε= error vector of the approxima-
tion. Our aim is to find the optimal set of the weights
a1 . . . aN , minimizing the power of the error vector ε (the
squared sum of the D error components), using

H = ε21 + ε22 + · · · + ε2D =
∑D
k=1

ε2k = min, (7)

where H= power of the error to be minimized; and ε1 . . .
εD = coordinates of the D-dimensional error vector ε.

The accuracy of an estimation is indicated by the error
power H normalized by the total power of the vector to
be estimated x using

J = H /
∑D
k=1

x2k , (8)

where the accuracy J is 0 when the estimation is totally
perfect and 1 if the estimation is unsuccessful, that is, all
the weights a1 . . . aN equal 0. A high value of J refers to
high frequencies of autonomous MTs in the culture
studied, independent of any hypothetical ancestral culture.
Thus, low or high values of J indicate that our assumption
supposing ancestral musical cultures in the background of
the corresponding culture is adequate or not.

As the partial derivatives of the error power can be ana-
lytically formulated as

∂H
∂am

=
∑D
k=1

2εk
∂εk
∂am

= 2
∑D
k=1

εk(−vm,k ), (9)

the numerical solution of Equation (7) can be based on the
gradient search principle as it is detailed in Appendix 4.

Thus, substituting a UMT frequency distribution vector
into x, our algorithm determines the optimal weights
a1 . . . aN for interpreting the corresponding culture as an
admixture of N hypothetical ancestral cultures represented
by N PC vectors. Assuming that the N PC vectors and their
musical contents can be well explained from a musical point
of view, the interpretation of real cultures as their weighted
admixtures may provide instructive consequences. At the
same time, high estimation error values indicate more autono-
mous cultures where the hypothetical ancestral cultures have
merely limited impacts, or significant cultural interactions
and drifts obscuring the footprints of the ancestral cultures.

The whole flow of the analysis is demonstrated in the
diagram in Figure 3. We have uploaded the input data and
the C++ Builder codes of the algorithms we have elaborated
for the study: https://github.com/JUHZOL/MS/tree/main

Results

The Set of the UMTs
The SOC learning process described in the sections
“Determining the Melody Types of a Musical Culture
Using the SOC algorithm” and “Determining the UMTs”
resulted in an 847-element UMT set. The size of the set
was adjusted during learning automatically, until the mean
distance of the MTs of any cluster and the corresponding
UMT became less than the half of the distance from the
closest neighboring UMT (see Appendix 2). As the cluster
sizes were in the interval of 5–50, the Student’s t-test may
be an appropriate measure of significance in our study. A
test was applied for all UMTs one by one as follows.
Considering a given UMT (UMT1), the input data of the
test are: (1) the standard deviation of the distances between
the UMT and the MTs belonging to its own cluster; and
(2) the distance between UMT1 and the nearest neighboring
UMT (UMT2). The hypothesis is that the distance between
UMT1 and UMT2 is significantly higher than the standard
deviation (i.e., the “radius” of the “sphere” of the cluster
around UMT1). According to this test, the probability that
the distance between an UMT and its nearest neighbor is sig-
nificant was more than 0.95 for all of the 847 clusters. (For
more details, see Suppl.Mat1.)

The coupled pairs of UCTs and UDDTs are mapped sep-
arately by the SOC, as it is shown in Figure 4(a) and (b). As
these points represent the relationships of 64 as well as 24
dimensional cluster central vectors (UCTs and UDDTS)
in two dimensions, at first sight they show a random-like
structure. However, a more accurate study may show that
the different areas of these maps correspond to different
musical characteristics. Nine contour examples and the
arrow in Figure 4(a) show that the ranges increase from
the top to the bottom. Descending contours are located in
the left, whereas domed and wavy contours in the right
halves. The UDDT map in Figure 4(b) is divided into
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three main clusters containing minor-like (third b3), major-
like (third 3) as well as third-less UDDTs. The arrow sepa-
rating the two clusters shows the direction where the range
increases.

Geographical and Musical Features of the Seven
Most Important PCs
Aswe have shown earlier, the fast reduction of the eigenvalues
allows us to reduce the analysis to PCs 1–7 corresponding to
the seven highest eigenvalues. The detailed geographical and
musical description of PCs 1–7 is provided in file Suppl.Mat1.
To clarify our method, we confine ourselves here to the anal-
ysis of PC1, but we utilize the results of the overall analysis in
the interpretation.

Figure 5 shows the coordinates of PC1, located to their
geographical areas. (Coordinates of negligible values are
not indicated.) The peaks show that the highest coordinates
of PC1 are in Hungarian (Hun), Sekler (Sek), Anatolian
Turkish (Tur), and Caucasian Karachay (Kar) cultures.
The ancestor culture also has significant footprints in the
Volga-Kama region (Cer, Chu, Tat, Bas), and in Finnish
(Fin), Inner Asian (Kaz, Mon, Sha, Pek), and native
American (Dak, And) cultures. Canadian French (CFR)
and Mexican (Mex) cultures are located in the leftmost,
Dakota, Navajo, and Andean cultures in the rightmost
sides of the map. Sixteenth–eighteenth century German
and Hungarian “cultures” (Ald and Ahu) are also separated,
in order to reduce the density in Central Europe (see
Figure A5-1). The locations of the American cultures are
plotted in a separate map in Figure A5-2.

The musical maps in the right upper part indicate UMTs
having the highest frequencies in the reconstructed UMT
frequency distribution belonging to PC1 (see section
“PCA of the UMT Moment Vectors Characterizing the
Distributions of the UMTs in the cultures studied”). The
big black dots refer to descending contours with both
major- and minor-like modes with ranges around one
octave, and also descending, minor-like UMTs with
ranges around a fifth. A-pentatonic tone sets are also fre-
quent in several melodies belonging to the UMT set of
PC1. We show closely related melodies in Example 1, rep-
resenting the four cultures containing the largest heritages
of ancestral culture 1. Example 2 illustrates UMTs having
ranges below one octave.

The main geographical and musical characterization
with some melody examples of the entire set of PCs 1–7 is
shown in Suppl.Mat1 by the same way. The impact of the cor-
responding seven hypothetical musical ancestor cultures to the
59 real cultures was studied using the linear combination
models generated by the gradient search algorithm (see
section “Modeling of Musical Cultures as Weighted
Admixtures of the UMT Frequency Distributions of the
Most Important PC Vectors” and Appendix 4). We deter-
mined the weights providing optimal approximations of the
UMT frequency distributions of the cultures in the linear com-
bination models formulated in Equation (6). We interpret the

resulting 7-dimensional weight vectors as the “models” of
the 59 cultures studied. We show here a systematic overview
of the linear combination models where PC1 plays a dominant
or a predominant role. Figure 6(a) to (c) show models where
PC1 is predominant (a), dominant as a member of the pair
of PC1–PC4 (b), of the triad of PC1–PC4–PC7, as well as
dominant within a more complex admixture (d). Estimation
errors of the linear combination models (ranging between 0
and 1) are shown next to the culture labels.

The musical maps In the rightmost upper parts of Figures
S1-1–S1-7 and Figure 5 show that many UMTs with different
musical characteristics may belong to a common PC vector.
Therefore, we indicate the most typical musical characteristics
in the descriptions below (e.g., typical ranges:−2 to 5,−2 to 8;
typical contours: descending, (domed); typical scales: minor-
like, major-like, A-pentatonic).

The systematic overview of the 7-dimensional linear
combination models is provided in Suppl.Mat1. We have
found in general that the models of certain cultures are dom-
inated by one given PC, while the other PCs have negligible
weights. It seems obvious to consider such PCs as ancient
substrate cultures, immediately preserved by certain
recent cultures whose models show the exclusive domi-
nance of them. The most convincing exclusive dominances
in more cultures were found for PCs 1, 2, 3, while PC5
showed a strong but not totally exclusive dominance in
certain cultures. PCs 4, 6, and 7 appear as significant but
not predominant components in numerous cultures. We
present the roles of these substrate- and additional PCs in
the most interpretable models of 50 cultures later. The geo-
graphical and musical characterization of the PCs and
models are based on Figures S1-1 to S1-7 presented in
Suppl.Mat1.

We have shown in Figures S1-1 to S1-7 that most of the
cultures studied can be arranged into 12 groups by the sim-
ilarities of their PC models. (These groups were validated
by SOC clustering of the 7-dimensional linear combination
model vectors of the 59 cultures studied. The compositions
“(2), (2,5), (1,2,5)” and so on in Figure 7 correspond to the
maximal components of the 7-dimensional central vectors
of the clusters determined by the SOC. The arrangement
of the nodes in Figure 7 was modified manually for the
purpose of transparency. Thus, Figure 7 maps the musical
connections of the cultures, independent of the geographic
distribution (see also Suppl.Mat1). The contacts of the 12
groups are represented by the nodes of the graph in
Figure 7, where the edges connect nodes having shared
PCs. Both of the types in Figures S1-10b and S1-11b are
composed by PCs 3, 5, and 6, with the difference that
PC3 dominates in the former, whereas PC5 and PC6 in
the latter case. As the weight hierarchies are not demon-
strated in the graph, these types are combined in one node
but the cultures belonging to the two subtypes are given
in two different columns in Figure 7.

High estimation error values (see Equation (8)) indicate
that PCs 1–7 have merely week impacts in 12 cultures (Nav,
Lap, Uyg, Jap, Mns, Rod, Tuv, Hak, CFr, Mex, Bur, Altd)
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probably having different roots or strong autonomous
musical layers not belonging to any of the seven hypothet-
ical ancestral cultures. We also allude to these cases in the
notes in Suppl.Mat1, but some of them are missing from
Figure 7.

Discussion

Performance of the Method
The first step of our processing was the determination of the
UMTs that are constructed by central vectors of the local

Figure 3. Processing scheme: (a) generation of UMTs and UMT moment vectors from the 64-dimensional contour and

24-dimensional degree distribution vectors of the melodies, using the SOC; and (b) generation of the PC vectors from the

59-dimensional UMT moment vectors using PCA, and generation of the 7-dimensional PC models of the cultures using the linear

combination algorithm.
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Figure 4. (a) UCT; and (b) UDDT maps of 847 UMTs determined by the SOC algorithm. A: descending contours: red; domed

contours: green; even contours: black. B: minor third: red; no third: green; major third: black.

Figure 5. Geographical and musical maps of the hypothetical ancestral culture represented by PC1. Black dots in the musical maps:

the most important UMTs in the reconstructed UMT-distribution.
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condensations of the contour and degree distribution vector
manifolds. Thus, any individual melody can be assigned to
the closest UMT, and the clusters of melodies obtained by
this method can be considered as variants generated by a
common musical idea. This may recall biological mutations
and the phylogenetic trees representing biological or even
cultural evolution. However, the tree structure seems too
specific for modeling folk music cultures, because chains
of variations in oral musical cultures may regenerate
earlier nodes of the tree. Regeneration by variation was
described as an essential mechanism of the conservation

of the information in a dynamic model of oral musical tra-
ditions (Juhász, 2000; Vargyas, 2005). As loops cannot be
ruled out in the graph of connections, we stayed with the
cloud representation of the contacts between UMTs
(Figure 4).

Our analysis was based on the assumption that the
spread of the 847 UMTs in the 59 musical cultures
studied may show detectable regularities. To characterize
the impact of the 847 UMTs in the 59 cultures, we deter-
mined the 59-dimensional UMT moment vectors for each
UMT, and the PCA of the 847 pieces of 59-dimensional

Table 2. Groups of cultures where PC1 is a dominant component.
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Figure 6. Weight vectors of cultures dominated by PC1. Order of columns corresponds to culture labels in the diagrams. Horizontal

axis: serial number of the PCs. Vertical axis: weights a1 . . . a7 in the PC-based linear combination models of the cultures noted by the

culture labels in the diagrams (see Equation (6)).
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UMT moment vectors proved to be an appropriate tool to
reveal really existing regularities. We have found that the
first seven PC vectors provide an appropriate subspace for
describing most UMT moment vectors. Therefore we
assumed seven ancestral musical cultures in the background
of the seven PC vectors, and we estimated the correspond-
ing “musical contents” (847-dimensional UMT distribution
vectors) by projections of the 847 UMT moment vectors to
the seven PCs (Figure 3).

As we have mentioned earlier, PCA does not necessarily
provide the optimal latent space for characterization of vector
manifolds. A generalized approach is provided by
“Variational autoencoders” trained in order to generate the
optimal “latent space models” for concrete cases (Ding
et al., 2019; Kingma & Welling, 2014; Rezende et al.,
2014; Rocca, 2019). However, latent vectors of the autoen-
coders are often really similar to PCA vectors (Plaut, 2018;
Rolinek et al., 2019). Therefore, the description of the evolu-
tional structure of proteins using a variational encoder proves
that the PCA of vector manifolds can be an appropriate tool
for our study as well (Ding et al., 2019).

In our study, the fast reduction of the eigenvalues also
verified that the PCA produces an appropriate latent space
for our musical data. Thus, the seven assumed ancestral cul-
tures provide a realistic model of the roots of real folk music
cultures. Consequently, the 7-dimensional linear combina-
tion models in Figures S1-1 to S1-7 show a real picture
of the impact of the seven ancestral cultures in the 59
descendants. At the same time, our model ignores the
effect of inherent evolution of the musical cultures that
may even generate totally specific MTs or variants. This
may be the reason for the extremely high estimation
errors of the models of 13 cultures in our database. In con-
clusion, we have to keep in mind that our method focuses

on the footprints of the ancestral cultures, whereas we
omitted other possible interactions. The easily interpretable
graph in Figure 7, however, may refer to realistic ancestral
roots of the folk music cultures.

Although the graph in Figure 7 is totally connected, the
interpretation may be based on four subgraphs indicated by
gray areas and letters A, B, C, and D.

Subgraphs A and B
The interaction between PC3, PC6, and PC5 is demonstrated
by subgraph A. According to its dominance in Kurdish and
Azeri cultures (Kur, Aze), PC3 might be the substrate culture
in the Near East (with weaker participation of PC6). We have
shown in Figure S1-3 and Example S1-4 that this culture con-
tains dominantminor-likemelodieswith narrow ranges. This is
supported by amore detailed systematic musicological classifi-
cation of Azeri folk music that reveals different subgroups of
melodies having mainly minor-like scales and descending con-
tours ranging between 1-b3 and 1-5 (Sipos, 2004).

We have shown in Figure S1-5 that PC5 dominates in the
area between Scandinavia and the Carpathian Basin, on the
one hand, and in South Siberia and Inner Asia, on the
other hand (subgraph B in Figure 7). We attributed this
wide propagation to a prehistoric migration from eastern
Europe to South Siberia inferred by genetic and archaeolog-
ical results. According to our results, the substrate culture
indicated by PC5 dominates in certain Siberian and Inner
Asian cultures (Kyr, Uyg, Kaz), whereas it remained still a
strong component in northeastern Europe combined with
PC2 and PC1 – see the cultures represented by nodes
(1,5), (2,5), and (1,2,5). The interaction of the substrate cul-
tures represented by PC5 and (PC3, PC6) was detected by
the combination of PC3, PC5, and PC6 in several cultures

Figure 7. The system of PC-based models of the cultures studied.
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of the Balkans (Bul, Bal, Gre) as well as East Europe and the
Baltic area (Russian: Rus, Komi: Pfu, Estonian: Est, Karelian
Finnish Runo: Fir). As we have mentioned earlier, the main
difference between the two groups lies in the high weights of
PC3 in the former and the pair of PC5 and PC6 in the latter
cases. This interaction can be well interpreted by the inten-
sive and long-term migration process from the Near East to
the Balkans and East Europe through Asia Minor and the
Caucasus in the time interval between 6,000 and 3,000 BC
(Juhász et al., 2019). The different weights of PC3 and
PC6 may be attributed to two different populations both
arising from the Near East, one of them colonizing the
Balkans, and the other eastern Europe. European melody
examples of PC5 with high ranges, major-like scales, and
domed contours are shown in Example S1-6, while melodies
of minor-like scales and low ranges are found in Example
S1-7.

Subgraph C
The main actor of subgraph C is the Western substrate
culture represented by PC2 (Figure S1-2 and Example
S1-3). The interaction with PC5 in northeastern European
cultures Cas, War, and Lit has been discussed earlier, and
French and Basque relations can also be interpreted by
the known historical contacts. In addition, PC2 has a signif-
icant impact in Scandinavian (Finnish: Fin, Norwegian:
Nor) and East-Central European (Slovak: Slo, Moravian:
Mor, Ruthenian: Rsn) cultures. An important new compo-
nent not mentioned up to now is PC1, representing the sub-
strate musical culture of the Carpathian Basin and several
cultures in the steppe region. Thus, musical cultures
assigned to node (1,2,5) have close contacts to the north-
eastern, western, and Carpathian-Steppe substrate cultures
represented by PC5, PC2, and PC1, respectively.

Subgraph D
The central node of subgraph D is just PC1 having predom-
inant impacts in the Carpathian Basin (Sek, Hun), the

Caucasus (Kar), the steppe region (Mon, Bur), and also
Anatolia (Sipos, 2000) and the Andes region (And), as
we have shown in Figures 5 and 6. The interaction of
PC1 with PC3 in East Europe (Romanian: Rom, Gagauz:
Gag) can be interpreted by the Neolithic or later migrations
of Near Eastern and Anatolian populations contributing
PC3 to the substrate PC1. The reason for the shared domi-
nance of PC1 and PC3 in Anatolian Turkish (Tur) and
Mangistau Kazakh (Mng) cultures may be assigned to a
reverse invasion of Turkish people from Inner Asia to
Anatolia and the southern Steppe, where the substrate
might be PC3 and the contribution might arise from Inner
Asia where the inherence of PC1 was indicated in numerous
cultures (Mongolian: Mon, Buryat: Bur, Kazakh: Kaz).
Systematic musicological classification of Anatolian
Turkish and Karachay folk music also distinguished
between melody groups of narrow and high ranges, attrib-
uting them to Near Eastern substrate populations on the
one hand, and the Inner Asian Turkish invasion on the
other hand (Sipos, 2000; Sipos & Tavkul, 2015). Melody
examples for PC1 having minor-like scales, descending
contours, and high as well as medium ranges are found in
Examples 1 and 2, in the main text.

The dominance of PC1 in West-Siberian Ob-Ugric
culture (ObU) might also arise from the steppe region.

The shared dominance of PC1 with PC4 was observed in
Japanese (Jap), two Chinese (Pek, Shn), and Chuvash (Chu)
musical cultures, as shown in node (1,4). Although PC4
does not appear as solely dominating ancestral culture in
our database, we consider it as the representative of a sub-
strate, since this is the only PC representing consequently
G- and A-pentatonic UMTs, with a weaker C-pentatonic
contribution (Example S1-5). As both Peking and Shanxi
districts of China are in the neighborhood of Inner
Mongolia where our Mongolian data arise from, Chinese
and Mongolian musical cultures studied here may have
close historic contacts to the musical cultures of Nomadic
people and empires; for example, Siberian Scythians,
Huns, and Avars (Sipos, 1997). The “pentatonic branch”
of the graph ends with node (1,4,7). Here, the pair of

Example 1. Melody examples belonging to a common UCT in

the UCT set of PC1.

Example 2. Melody examples belonging to a common UCT in

the UCT set of PC1.
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(PC1, PC4) is complemented by PC7 contributing mainly
C-pentatonic UMTs to the model of the cultures in the
Volga-Kama region (Cheremiss Cer, Tatar Tat, Bashkir
Bas), and in North America (Dakota Dak).

Node (1,5) represents cultures where the Eastern version of
PC5 interacts with PC1. Musicological studies have shown
numerous major- and minor-like diatonic and pentatonic
scales with both narrow and wide ranges in the music cultures
of Kazakhs and Uyghurs (Kaz, Uyg) living in the territory of
China (Sipos, 2001). On the other hand, 16th–18th century
Hungarian melodies (Ahu) are also dominated by PC1 but
southern and western contributions are also represented by
PC3 and PC2. However, the only component consequently
coexisting with PC1 in all of the three cultures is PC5.

Although the preceding discussions focused on detection
of common ancient sources of folk music cultures, they do
not exclude later culture-specific musical interactions and
evolutions (drifts) also strongly determining the folk
music traditions documented in the 19th–20th centuries.
(As we have mentioned, the quality of our hypothesis is
characterized by the estimation error values J of the
PC-based linear combination models.) However, appear-
ance of the Near Eastern PC3 and PC6 in northeastern
European, the northeastern European PC5 in South
Siberian, and the Carpathian-Caucasian-Anatolian PC1 in
Chinese and native American cultures can be interpreted
only by ancient migrations verified by archeological and
archaeogenetic evidences.

Conclusions
In this work, we suggested a digital representation of folk
songs by pairs of contour and degree distribution vectors,
for comparative structural analysis of a big folk song data-
base. This formulation allowed us to determine the set of
UMTs, and the moments of the UMTs in the cultures
studied. The PCA analysis of the moment vectors revealed
that the UMTs can be grouped into seven hypothetical
musical parent languages, while the linear combination anal-
ysis revealed that most of the folk music cultures studied can
be traced back to the interactions of these seven hypothetical
sources. Moreover, three of these sources (deduced from PCs
1, 2, and 3) could be identified as still existing predominant
components in cultures between the Carpathian Basin and
Inner Asia (PC1), West Europe (PC2), and the Near East
(PC3). These results show that comparative folk music anal-
ysis applying computer science and mathematical tools can
open important new opportunities to understand the origins
of music in general.

The organization of our approach arises from the results
of correlation analysis detecting simultaneous geographical
propagations of certain groups of UMTs and genetic charac-
teristics (mitochondrial haplogroups) (Juhász et al., 2019).
These correlations identified associations of UMTs being
very similar to the hypothetical musical parent languages
shown here, and the corresponding genetic associations
could be well interpreted by known prehistoric processes

that can be traced back to at least the Bronze Age. At the
same time, the results presented here show that an indepen-
dent, pure musical analysis of folk music cultures that have
only been documented in the last two centuries also can
reveal these ancient musical parent languages. This result
suggests the conclusion that living oral musical traditions
preserve ancient roots of music that are much earlier than
our written sources. In order to support this statement, most
of our Examples S1-1 to S1-9 contain related melodies
arising from geographically very distant cultures, suggesting
the assumption that the common UMTs standing in the back-
ground may arise from common ancient sources, much rather
than from interactions in the last few decades or centuries.

We hope that these results may inspire further interdisci-
plinary studies of folk music, since early musical cultures
were strongly attached to the other areas of culture and
life, so the study of such correlations is necessary to under-
stand the history of oral musical traditions.
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Appendices 1–4: Mathematical description
of the algorithms

Appendix 1: The MDS Algorithm

The input of the MDS algorithm is the N*N dimensional
quadratic, symmetric matrix Q containing the squared
Euclidean distances qi,j of N objects. In our case, the
objects are N= 624 multidimensional universal melody
types (UMTs). We also define N low-dimensional
vectors vi being ordered to the input objects. The aim of
the algorithm is to represent the N objects (UMTs) by
the N low-dimensional vectors vi, so that the distances
di,j between these vectors converge to the best low-
dimensional approximations of the qi,j values in the
sense of

S =
∑N
i=1

∑N
j=1

(di,j − qi,j)
2 = min (A1− 1)

where S= stress function to be minimized (Equations
(2) and (3)).

The minimum of the stress function is searched by a gra-
dient algorithm. At the beginning, the N points are ran-
domly allocated on the plane with the coordinates
(vm,1, vm,2), where m denotes the serial number of the
points. The gradient components of the stress function in
the two-dimensional space of the point coordinates are the
partial derivatives

∂S
∂vm,k

=
∑N
i=1

2
∑N
j=1

(di,j − qi,j)
∂di,j
∂vm,k

, k = 1, 2

m = 1 . . .N .

(A1− 2)
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Let the “distance” of the ith and jth points on the plane be
defined as

di,j = 1

2

∑2
k=1

(vi,k − v j,k)
2 k = 1, 2

i = 1 . . .N , j = 1 . . .N .

(A1− 3)

This definition yields a very simple expression for the
partial derivatives of di,j as

∂di,j
∂vm,k

=
vm,k − v j,k....(i = m, j ≠ m)
vm,k − vi,k....(j = m, i ≠ m)
0 . . . . . . (i = m, j = m)
0 . . . . . . (i ≠ m, j ≠ m)

⎧⎪⎪⎨
⎪⎪⎩

k = 1, 2, m = 1 . . .N

(A1− 4)

Substituting these partial derivatives into Equation (A1-2),
the gradient components become

∂S
∂vm,k

= 2
∑N
i=1

(vm,k − vi,k)(dm,i + di,m − qm,i − qi,m)

k = 1, 2 m = 1 . . .N

(A1− 5)

According to the gradient search principle, the new esti-
mates of the optimal point coordinates are determined as

v′m,k = vm,k − λ
∂S
∂vm,k

, (A1− 6)

where the small scalar value λ determines the rate and the
accuracy of the convergence.

In the subsequent steps of the algorithm, the gradient
components of the stress function are recalculated in the
new point locations using Equations (A1-3)–(A1-5), and
the points are replaced using Equation (A1-6) again. The
algorithm in the presented form can be applied also for non-
symmetric “distance” matrices. The algorithm can also be
easily generalized to three or more dimensional point
systems.

The definition of the “distance” in Equation (A1-3) is the
square of the Euclidean distance. Besides its numerical
advantage, the disadvantage of this definition is the distor-
tion of the real “distance-like” input data. However, we also
squared in the definition of qi,j, therefore the Euclidean dis-
tances of the points in the plane (or low-dimensional space)
correspond to the input data in Euclidean sense. Thus, the
distortion of our low-dimensional distance definition was
compensated by the parallel squaring of the input distance
data.

Appendix 2: The Cooperative SOC Algorithm
The following algorithm performs an unsupervised learning
of

– the feature vectors ci

– the weights applied in the calculation of the distances
between the feature vectors and the training vectors
g
i
, using the training vectors xk

– the algorithm also learning the coordinates of the
low-dimensional vectors vi, mapping the feature
vectors into a low-dimensional point system.

The sizes of the training- and feature-vector sets are denoted
by M and N, respectively.

Let the diversity of a training vector and a feature vector
be defined as the weighted Euclidean distance as

Δi,k =
�����������������������
(ci − xk )

TG
i
(ci − xk )

√
, (A2− 1)

where ci − xk = difference of the ith feature- and the kth
training vector; and G

i
= diagonal matrix containing the

weights belonging to the ith feature vector. Thus, the diag-
onal elements of G

i
are equal to the vector elements of g

i
,

while the remaining matrix elements are equal to zero.
In the initial state, the vectors ci can be filled by randomly

selected training vectors, while all weight elements are equal
to 1. The algorithm consists of the following steps:

1. A training vector xk is selected randomly from the
training set and is compared with the feature
vectors ci using the distance function defined in
Equation (A2-1).

2. The feature vector of the minimal distance cm is
determined as the “winner,” and all of the feature
vectors “located” in its low-dimensional vicinity
of R1 < di,m < R2 are approached to the training
vector xk .

c′i = ci + λ(xk − ci), (A2− 2)

where λ= scalar factor controlling the rate of con-
vergence and the accuracy, while R1 and R2 are pre-
defined low-dimensional distances controlling the
cooperativeness of the training. The condition R1 <
R2 results in a cooperative learning within a ring
around the winner, whereas R1 ≥ R2 yields inde-
pendent operation of the multidimensional feature
vector learning and the low-dimensional mapping
function of the algorithm.

Using the constraint 0 < R1, the collapse of the
system into one point (mentioned in section “PCA
of the UMT Moment Vectors Characterizing the
Distributions of the Universal Melody Types in
the Cultures Studied”) can be avoided, because the
CTVs located close to the winner are not modified,
and therefore cannot approach it. Thus, close neigh-
bors are indirectly forced to look for another conver-
gence point.

3. In the case of adaptive weight learning, the weights
belonging to the feature vectors having been trained
in step 2 are also modified according to a function of
the new feature vectors as
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g′i = gi + γ(f (c′i)− g
i
), (A2− 3)

where g
i
=D-dimensional vector containing the

diagonal elements of G
i
.

The function f (ci) can be defined according to the
concrete training set, whereas the choice f (ci) = 1
means an unweighted distance calculation.

4. The distances qi,j of the new feature vectors ci are
updated, and the new coordinates of the correspond-
ing low-dimensional points (vm,1, vm,2) are recalcu-
lated using Equations (A1-5) and (A1-6).

5. The process 1–4 is repeated until the average of the
clustering distances E(Δi,k) shows a significant
reduction.

Adaptive Learning of the Feature Vector Size N. As the actual
number of clusters to be identified in the training vector
system is usually unknown, and the final result of the learn-
ing may strongly depend on the predefined value of N. In
case of a low value of N, numerous actual clusters may
be ordered to one common feature vector, and this may
lead to too high an extension of the resulting clusters.
Therefore, just the control of the cluster extensions may
approach the number of the feature vectors to the actual
value adaptively, using the following algorithm.

We initialize the size of the feature vector set N so that it
is smaller than the actual number of the clusters.

In a given phase of the training process, the clustering of
the training vector set is accomplished corresponding to
the instantaneous state of the feature vectors. After that, the
average distances between the feature vectors and the
related training vectors are calculated using Equation
(A2-1) as

di = E(Δi,k), (A2− 4)

for all k belonging to the cluster of the ith feature vector (E is
the operator of the expected value calculation). At the same
time, the Euclidean distance Dmi between a feature vector ci
and its closest neighboring feature vector is also determined
for each ci.

The algorithm finds the “extension” of the ith cluster too
large, when

Dmi < κdi, (A2− 5)

where 0 < κ < 1= predefined parameter defining the
required significance of the clustering after training. In
cases where Equation (A2-5) is fulfilled, a new member is
added to the feature vector set, initialized by a training
vector belonging to the given cluster. Next training steps
drive this new feature vector into the central position of
an actual cluster in the neighborhood, so the imperfect
cluster is divided into two parts.

This process is repeated with an appropriate frequency
during the learning, whereas Equation (A2-5) is fulfilled
for any cluster.

Extension of the SOC Algorithm: Associations of Training
Vectors. In certain cases, the objects to be classified by
“types” can be described by more characteristics. For
example, melodies used to be characterized by contour,
tone set, rhythm, musical form, and so on simultane-
ously, and each of these characteristics can be described
by vectors of different dimensions. As the structure of the
feature vectors is necessarily identical to the training
vector structure, the MTs must also be constructed by
more associated vectors corresponding to the training
vector associations. Obviously, the “extended” distance
of a training- and a feature-vector association can be
defined as the weighted sum of the subdistances of the
corresponding members of training and feature vector
associations calculated one by one using Equation
(A2-1). In the present state of the system, the weights
are optimized experimentally, using test data with
known relationships as reference.

The main steps of the extended algorithm are as follows:

– A training vector association is selected randomly
(see previous step 1).

– The most similar feature vector association is
determined using the distance function calculated
as the weighted sum of the corresponding
members of training- and feature-vector associa-
tions. After that, the components of the selected
feature vector association are modified indepen-
dently one by one using Equations (A2-2) and
(A2-3). The associations in the close low-
dimensional vicinity of the winner are also modi-
fied (see previous steps 2 and 3).

– The coordinates of the points representing the types
(feature vector associations) in the low-dimensional
space are modified using Equations (A1-5) and
(A1-6) (see previous steps 4 and 5).

The number of the feature vector associations can be mod-
ified using Equations (A2-4) and (A2-5), implicitly using
the extended distance calculation described earlier. This
step is not accomplished in each cycle, because the replace-
ment of a new feature vector association into a condensa-
tion center needs many steps of the iterative process.

In our study, we characterize the melodies by pairs of
64D melody contour and 24D degree distribution vectors,
so our MTs also consist of two coupled vectors of 64 and
24 dimensions.

Performance Test of the SOC Learning of CT–DDT Pairs. The
goodness of the result of the SOC learning can be charac-
terized as follows. After the learning process, the pairs of
training vectors are clustered by assigning them to the
most similar pair of feature vectors, and the inherence
matrix (containing values 1 when a pair of training
vectors belongs to identical cluster and 0 if not) is deter-
mined. The goodness of the clustering is characterized
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by the correlation coefficient of the lower triangles
(without the diagonal elements) of the symmetric inher-
ence matrix and the distance matrix of the training
vectors. In our case, the closer this correlation is to −1
the better the clustering.

For performance test, we assembled a test set of 164
Hungarian melodies classified into 17 different MTs by
classical ethnomusicology (Corpus Musicae Popularis
Hungaricae l-XII, 1951–2012).

First, we tested the goodness of our extended distance
measure given in Equations (1) and (A2-1). We con-
structed the inherence matrix of the 164-element test
set according to the musicological classification and
determined its correlation with the distance matrices cal-
culated using Equations (1) and (A2-1) for weights
0 < μ < 1, μ = 0 and μ = 1. We obtained the best corre-
lation (−0.691) for μ = 0.3, while the correlations were
−0.600 and −0.425 for μ = 0 and μ = 1, respectively.
These results show that the extended distance measure
combining both contour and degree distribution compo-
nents produces the most similar results to the musicolog-
ical classification, averting pure contour distance
measurement. The strong correlation approaching −0.7
is itself a convincing evidence of the usefulness of the
extended method.

We also tested the performance of the SOC-clustering on
the test set. The automatic adjusting of the number of the
feature vectors produced 23 clusters. The reason for the
increase is that the algorithm subdivided four musicological
types into two or three SOC-clusters while the remaining 13
types were identified perfectly. The total number of outlier
classifications (when a melody was ordered to a cluster
dominated by melodies of another type) was six (3%).
The correlation coefficient of the distance- and the
inherence-matrices was −0.735, in contrast to the result of

−0.617 obtained with pure contour-based SOC-clustering
of the same test set. As the distance values vary within a
continuous domain of real numbers, whereas the inference
matrix values are restricted to 0 or 1, the results −0.691 and
−0.735 can be considered as convincingly strong
correlations.

Appendix 3: PCA of the Moment Vectors
The input data of the analysis are the moments of N uni-
versal melody types (UMTs) in the D cultures studied.
The data are represented in matrix W having N rows

and D columns, where N= 847 and D= 59 for our
case. Thus, the matrix element wi,j represents the
moment of the ith UMT in the jth culture.

First of all, we determine the averages of the columns of
W , denoted by wj for the jth column, and generate new
matrix V where vi,j = wi,j − wj.

Then we determine the D= 59-dimensional symmetric
covariance matrix as

C = 1

N
VT V , (A3− 1)

where the matrix elements are calculated as

ci,j = 1

N

∑N
k=1

vk,iv j,k (A3− 2)

The principal component (PC) e pointing into the direction
of the largest extension of the point system is determined as
the solution of the eigenequation

C e = λe, (A3− 3)

where the dominant eigenvalue λ is identical to the standard
deviation of the coordinates along PC e. We solve the

Figure A3-1. Eigenvalues belonging to the first 20 eigenvectors λ1,...,20.
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eigenequation using the power iteration method (Von Mises
iteration).

To determine the PCs belonging to the second, third, and
so on largest extensions, we modify the covariance matrix by

Ck+1 = Ck − λke
T
k ek , (A3− 4)

and solve the new eigenequation, until we obtain a suffi-
ciently small eigenvalue.

Finally, we calculate the coordinates of a modified
moment vector vi in the subspace of the K PCs belonging
to the K largest eigenvalues as

vi = [eT1 vi, e
T
2 vi . . . e

T
Kvi]

T . (A3− 5)

To reconstruct the N= 847-dimensional UMT frequency
distribution of the assumable ancestral culture represented
by the kth PC, the N-dimensional vector
[eTk v1, e

T
k v2 . . . e

T
k vN ]

T is calculated and normalized to 1.

Appendix 4: Linear Combination Method Modeling
UMT Frequency Distributions
Given the D-dimensional (UMT frequency distribution)
vector x, and N pieces of D-dimensional, not orthogonal
basis (reconstructed frequency distribution) vectors
v1 . . . vN , we want to determine the scalar weights
a1 . . . aN , producing the best approximation of the linear
combination of x, as

x = a1v1 + a2v2 + . . .+ aNvN + ε, (A4− 1)

where ε=D dimensional error vector.
The requirement that the total error of the approximation

H has to be minimized is formulated as

H = ε21 + ε22 + · · · + ε2D =
∑D
k=1

ε2k = min, (A4− 2)

where ε1 . . . εD are the coordinates of ε in the
D-dimensional space.

It follows from Equation (1) that the kth coordinate of ε
is

εk = xk −
∑N
i=1

aivi,k (k = 1 . . .D), (A4− 3)

therefore H can also be formulated as a function of the
weights a1 . . . an as

H =
∑D
k=1

(xk −
∑N
i=1

aivi,k)
2. (A4− 4)

To accomplish a gradient search for the weights a1 . . . aN min-
imizingH, we have to determine the partial derivatives of H as
a function of a1 . . . aN . It follows from Equation (A4-2) that

∂εk
∂am

= −vm,k , (A4− 5)

so

∂H
∂am

=
∑D
k=1

2εk
∂εk
∂am

= 2
∑D
k=1

εk(−vm,k) (A4− 6)

The algorithm based on Equations (1)–(6) calculates the gradi-
ent of H in the space of the weights a1 . . . aN and modifies the
solution by a small step in the opposite direction of the gradient
in the following steps:

1. The weights a1 . . . aN are initialized by positive
random values.

2. The error vector components are calculated using
Equation (3).

3. The partial derivatives of H are determined by
Equation (6).

4. The weights a1 . . . aN are modified in opposite
direction of the gradient

a,m = am − λ
∂H
∂am

m = 1 . . .N , (A4− 7)

where the scalar λ is a small number controlling the
step sizes.

5. In order to avoid negative values of a1 . . . aN , the
weights are multiplied by a small negative constant
immediately when they come into the negative
domain. When applying this step, the algorithm
searches for pseudo-optimal solution with the con-
straint that all of a1 . . . aN should be not negative.

6. Steps 1–5 are repeated until the change of H reaches
a critical minimum value.

There are no restrictions for weights a1 . . . aN when
x and v1 . . . vN are arbitrary vectors with real compo-
nents. However, when x and v1 . . . vN are distribution
vectors and x is an exact linear combination of v1 . . . vN ,
that is

∑k=D

k=1

vi,k = 1,
∑k=D

k=1

xk = 1 and

εk = 0 (k = 1 . . .D),

(A4− 8)

the algorithm approaches the solution fulfilling∑N
i=1 ai ≅ 1. Nevertheless, this normality cannot be sus-

pected when the linear combination is merely an approxi-
mation, that is, εk ≠ 0. Obviously, the conditions in
Equation (A4-8) are not fulfilled in our study, therefore
the sum of the weights are in the domain of (0.8–1.3) in
most of our models, and weights exceeding 1 may also
be found in certain cases.

Appendix 5: Data Sources
All of our sources – books, digital notation, and audio
sources – are perfectly documented, indicating the names
of the performers, places of origin, dates of the recordings,
social functions, and other metadata, thus, all of the melodies
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studied are valid folk songs. Most of the digital sources are
coded originally in ABC, Humdrum, and numerical Chevé
notation, as well as Finale files, but other specific codes are
also included. Audio sources were first transcribed, and
then coded in Finale format. Finally, we have transformed
all digital codes to our common format that is similar, but
not identical to ABC coding. As an illustration, we show
the code of the melody in Figure 1 here:

T2/4 K1b [8G2 8G2 8A2 8G2] |K1b [8F2 8D2 8D2
8C2] |K1b 4F2 4D2 |

K1b [8G2 8G2 8A2 8G2] |K1b [8F2 8D2 8D2 8C2] |
K1b 4H1 4G1 |

K1b [8C2 8C2 8D2 8C2] |K1b [8H1 8G1 8G1 8F1] |K1b
4H1 4G1 |

K1b [8C2 8C2 8D2 8C2] |K1b [8H1 8G1 8G1 8F1] |K1b
4G1 4G1 |

Sources of the Melody Database

1. Aksenov A.N. (1964): Tuvanskaya Narodnaya
Muzyka. Muzyka Moskva. ISBN 5-7655-0302-0

2. A Magyar Népzene Tára. [MNT]=Corpus
Musicae Popularis Hungaricae.=Collection of

Hungarian Folk Music. I–XII. kötet. Budapest.
1951–2011.

3. Amieva, Xuacu (1998): Método de Gaita
Asturiana. S. l. Ediciones Trea.

4. Anohin A. V. (1989): Skazanie ob Altaye.
5. Arias, Ismael María González – Varillas, Alberto

(2000): Les cuarenta principales. Cancioneru.
Ayto. de Mieres, Asturias. /Colección Temas de
Mieres, 4./

6. Bacon, Lionel (1986): A Handbook of Morris
Dances [The “Black Book”.] 2nd rev. ed.
[London], Morris Ring Society.

7. Balakirev, Mili Alexéievich (1957): Russkie nar-
odnye pesni dlja odnogo golosa s soprovoždeniem
fortepiano. Moskva, Gos. muz. izdatel’stvo.

8. Bartók, Béla (1913): Cântece poporale româneşti
din comitatul Bihor (Ungaria) – Chansons
populaires Roumaines du Département Bihar
(Hongrie). Culese şi notate de B. Bartók.
Bucureşti, Sosec, Academia Românǎ, din vieaţa
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Figure A5-2. Geographical distribution of the data sources in the Americas. Canadian French (CFr), Appalchian (App) and Mexican

(Mex) cultures are represented by grey, Dakota (Dak), Navajo (Nav), and Andean (And) cultures by black columns.
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Zeneműkiadó Budapest 1957.

89. Vujicsics Tihamér (1978): Muzičke tradicije
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119. Éneklő Egyház (1984), Szent István Társulat,
Székesfehérvár. ISBN 978 963 361 676 5

26 Music & Science

http://www.jyu.fi/musica/sks/
http://www.jyu.fi/musica/sks/
http://kern.humdrum.org/help/tour/
http://kern.ccarh.org/cgi-bin/ksbrowse?l=/essen
http://kern.ccarh.org/cgi-bin/ksbrowse?l=/essen
http://www.liederenbank.nl/
http://www.edd.uio.no/ballader/
http://www.nepzeneipeldatar.hu/
http://www.nepzeneipeldatar.hu/

	 Introduction
	 Database
	 Methods
	 Representation of the Melodies by Coupled Pairs of Contour and Degree Distribution Vectors
	 Determining the Melody Types of a Musical Culture Using the SOC Algorithm
	 Determining the UMTs
	 PCA of the UMT Moment Vectors Characterizing the Distributions of the UMT in the Cultures Studied
	 Modeling of Musical Cultures as Weighted Admixtures of the UMT Frequency Distributions of the Most Important PC Vectors

	 Results
	 The Set of the UMTs
	 Geographical and Musical Features of the Seven Most Important PCs

	 Discussion
	 Performance of the Method
	 Subgraphs A and B
	 Subgraph C
	 Subgraph D

	 Conclusions
	 References
	 Appendix 1: The MDS Algorithm
	 Appendix 2: The Cooperative SOC Algorithm
	 Adaptive Learning of the Feature Vector Size N
	 Extension of the SOC Algorithm: Associations of Training Vectors
	 Performance Test of the SOC Learning of CT–DDT Pairs

	 Appendix 3: PCA of the Moment Vectors
	 Appendix 4: Linear Combination Method Modeling UMT Frequency Distributions
	 Appendix 5: Data Sources
	 Sources of the Melody Database



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


