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The nuclear level densities of
194−196

Pt and
197,198

Au below the neutron separation energy have
been measured using transfer and scattering reactions. All the level density distributions follow the
constant-temperature description. Each group of isotopes is characterized by the same temperature
above the energy threshold corresponding to the breaking of the first Cooper pair. A constant
entropy excess ∆S = 1.9 and 1.1 kB is observed in

195
Pt and

198
Au with respect to

196
Pt and

197
Au,

respectively, giving information on the available single-particle level space for the last unpaired
valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the
microcanonical caloric curve.

PACS numbers: 21.10.Ma, 27.80.+w, 25.40.Hs, 24.10.Pa

I. INTRODUCTION

A detailed knowledge of the nuclear level density is fun-
damental to understanding reaction mechanisms when
the number of levels involved is too large to be treated in-
dividually. Hence, several phenomena in nuclear physics,
astrophysics and nuclear reactor science, such as mul-
tifragmentation reactions, thermonuclear reaction rates
and fusion-fission cross sections, are usually modeled us-
ing the level density as a key ingredient.

A wide collection of experimental data, mostly below
the particle separation threshold, is currently available
for stable and close-to-stability isotopes [1, 2]. From the
theoretical point of view, ever since the seminal work of
H. Bethe [3], several analytical expressions of the nuclear
level density as function of the excitation energy E, the
spin J or the angular momentum distribution have been
derived. Elaborate microscopic models embody the main
effects that substantially influence the density of levels in
atomic nuclei, i.e. shell effects, pairing correlations and
collective excitations [4–6].

In contrast to these microscopic descriptions, simple
phenomenological models, such as the back-shifted Fermi
gas model [8] and the composite Gilbert and Cameron
formula [7], are usually adopted to globally reproduce
the available experimental data, although they lack in a
solid theoretical basis. The latter includes a constant-
temperature behavior of the level density up to a certain
excitation energy where the pairing correlations disap-
pear (∼10 MeV) and then a Fermi-gas formula with an
energy shift is applied.

∗
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The constant-temperature picture describes well the
functional form of the level density in the quasicontinuum
region, i.e. between the discrete levels and the particle
separation energy, for heavy deformed nuclei belonging
to the rare-earth and actinide series (see Ref. [9], Fig. 3
and references therein).

In this paper we investigate for the first time the nu-
clear level density of 194−196Pt and 197,198Au, using the
Oslo method [10, 11]. This analytical procedure allows to
extract simultaneously the nuclear level density and the
γ-ray strength function from particle-γ coincidence mea-
surements. Pt and Au isotopes are located in the tran-
sitional region between strongly-deformed and spherical
nuclear shapes. In particular the structure of 196Pt has
been experimentally established to correspond to a tri-
axial γ-soft configuration with a tendency to an oblate
shape [12].

We can classify the thermal behavior of the above-
mentioned nuclear systems in the framework of the mi-
crocanonical ensemble, using the experimental level den-
sity as the partition function. Therefore, the entropy
and other fundamental quantities (temperature and heat
capacity) can be extracted to give more insight into
the statistical properties of the many-body nuclear sys-
tem. In particular, fine structures in the entropy dis-
tribution as a function of the excitation energy reveal
information on the quenching of pairing correlations in
atomic nuclei. These residual interactions lead to ef-
fects similar to the superconductivity in metals and are
successfully described by applying the Bardeen-Cooper-
Schrieffer (BCS) theory [13] to the case of a finite Fermi
system such as the nucleus.

In the next Section the details of the experimental
technique and the data analysis are described. Sec. III
presents the normalized level density distributions, while
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FIG. 1. (Color online) The particle-γ coincidence matrices for (a)
195

Pt(p, p
′
)
195

Pt and (b)
195

Pt(d, p)
196

Pt after being unfolded
with the NaI response functions. The black horizontal lines indicate the neutron separation energy Sn and the diagonal ones
the case of a neutron emitted (and not detected) with zero kinetic energy together with a particle and γ-rays. The right panel
shows the projection along the excitation energy E axis of the two matrices that is (c) the proton and (d) deuteron spectra,
respectively. Note how the particle emission drops abruptly above Sn (vertical red line) when an even-mass nucleus is formed

(
196

Pt) whereas a less steep decrease is observed in the proton distribution up to Sn+1.1 MeV. The peak at E ' 7.5 MeV in

(a) and (c) is due to the target contamination with
12

C.

the thermodynamics is discussed in Sec. IV. Finally, con-
cluding remarks are given in Sec. V.

II. EXPERIMENTAL SETUP AND
DATA ANALYSIS

The 195Pt(d, p), 195Pt(p, p′) and 195Pt(p, d) reactions

were studied using a self-supporting 195Pt target enriched
to 97.3% and with a mass thickness of 1.50(15) mg/cm2.
The target was first irradiated for 5 days by a deuteron
beam with an energy of 11.3 MeV and an intensity of
1 nA delivered by a MC-35 Scanditronix cyclotron at the
Oslo Cyclotron Laboratory (OCL). The second experi-
ment lasted 6 days: this time a 1.8 nA proton beam ac-
celerated to 16.5 MeV was used. For the gold campaign,
two identical self-supporting 197Au targets with a thick-
ness of ∼ 1.93 mg/cm2 were irradiated with a deuteron

beam (12.5 MeV) and a 3He beam (34.0 MeV), respec-
tively.

Particle-γ coincidences were recorded in the Silicon
Ring (SiRi) particle detector system [14] and the CAC-
TUS multidetector array [15]. The former consists of
eight trapezoidal Si ∆E-E telescopes mounted in a ring
at 5 cm distance from the target. SiRi was placed in
backward direction with respect to the beam direction,
in order to minimize the detection of projectiles that un-
dergo elastic scattering on the target. It has a solid-angle
coverage of ∼ 6% of 4π. Each telescope consists of a thin
(130 µm) front detector segmented into 8 strips and a

1550 µm thick back detector for a total of 64 indepen-
dent telescopes covering eight scattering angles between
θ = 126o and θ = 140o, with a resolution of ∆θ = 2o. By
plotting the energy deposited into the ∆E detector versus
the E detector the different types of charged particles are
uniquely identified. From the reaction kinematics and Q-
value, the energy and angle of the emitted particle, one
can extract the excitation energy E of the residual nu-
cleus. A resolution of ∆E ∼ 100, 150 and 200 keV has
been reached for the p-, d- and 3He-induced reactions, re-
spectively. CACTUS is a spherical array of 26 collimated
5′′ × 5′′ NaI(Tl) γ-ray detectors with a total solid-angle
coverage of 16.2% out of 4π, surrounding the target point,
and with a total detection efficiency of 14.1(1)% at Eγ=
1332 keV.

The ejectile-γ coincidences are recorded on an event-
by-event basis. The time resolution is ∆t ≈15 ns. The
spectrum of emitted γ-rays can then be analyzed for
a given excitation energy of the residual nucleus after
being corrected for the known CACTUS response func-
tion through an unfolding procedure [16]. In this work
a recent version of the NaI response function has been
used: the relative efficiency as a function of the γ energy
has been reliably extracted for several γ lines from ex-
cited states in 13C, 17O, 28Si and 56,57Fe. Ultimately,
the unfolding method provides Compton background-
subtracted γ-ray spectra with unaltered statistical fluc-
tuations.

In Fig. 1 the matrices of unfolded γ spectra for each
excitation energy bin of 195,196Pt are shown. The trian-
gles below the neutron separation energy Sn correspond
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to the particle-γ coincidences from the (d, pγ)196Pt and

(p, p′γ)195Pt reactions, respectively. One can see that for
the even-mass isotope the emission of γ-rays drops sud-
denly above Sn where the neutron channel (d, pnγ)195Pt

is open. In contrast, for 195Pt a significant amount of
γ-rays is emitted for energies up to E ' Sn + 1.1 MeV.
This distinct behavior can be clearly seen if the projec-
tion on the E-axis is taken (see Fig. 1-right panel). To
explain the two diverse features one should look at the
levels populated in the neutron channels (p, p′nγ)194Pt

and (d, pnγ)195Pt. In the latter case, since the final nu-
cleus has an odd number of nucleons, it has several levels
with spins ranging over a broad distribution, even at low
energy. In the case of 194Pt only few levels with Jπ=0+,
2+, 3+and 4+ are available. Then, when higher angu-
lar momenta are transferred during the reaction, states
above Sn of the compound nucleus 195Pt are populated
and decay by γ emission.

One of the main components of the Oslo method is
an iterative subtraction technique developed to separate
out the distribution of primary (first-generation) γ tran-
sitions from the cascade of γ-rays originating from states
at a given excitation energy [17]. The basic assumption
of this technique is the independence of the γ-decay pat-
tern from the way the states are populated, i.e. directly
by a nuclear reaction or as part of a de-excitation cas-
cade. This assumption is valid for levels fed with compa-
rable probability by the two processes. It is also valid in
the region of high level density where the nucleus seems
to thermalize in a compound-like phase before γ emis-
sion. In our analysis we consider initial excitation energy
bins containing many levels. Hence, the corresponding γ-
ray spectra are on average independent of the population
path.

From the matrix of first generation γ-rays tagged in
excitation energy, P (E,Eγ), the functional form of the
nuclear level density ρ and the γ transmission coefficient
T can be derived through a simultaneous fit, according
to the following factorization:

P (E,Eγ) ∝ ρ(E − Eγ)T (Eγ) (1)

where ρ(E − Eγ) is the level density at the final excita-
tion energy Ef = E−Eγ . This equation is in accordance
with the Fermi’s golden rule [18]: the decay probability
is proportional to the level density at the final state and
the squared transition matrix element between the ini-
tial and the final state. The decomposition of P (E,Eγ)
into two independent functions of Ef and Eγ is justified
in the limit of a statistical decay process, after a com-
pound state is formed during the reaction [19]. A window
in initial excitation energy is then selected where com-
pound state formation is predominant: the lower limit is
at ∼ 2.0− 4.0 MeV for the Pt and Au isotopes presented
in this work. Above the neutron separation energy the
final reaction channel is ambiguous since the compound
state may evaporate neutrons (which are not detected
in these experiments) before γ decay. The transmission
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FIG. 2. (Color online) Estimation of ρ(Sn) for
197

Au. The
total level density at the neutron separation energy is calcu-
lated from experimental value of D0 [1, 25] for neighboring
N -odd and N -even isotopes (colored filled squares). (a) For
198

Au and other N -odd nuclei a comparison with the system-
atics (open circles and black line) is done [24]. A correction
factor of 1.6− 1.85 is applied for each isotopic chain. (b) The
same factor is used for the N -even isotopes. The red triangle
is the estimated value of ρ(Sn) for

197
Au.

coefficient is independent of the excitation energy accord-
ing to the Brink-Axel hypothesis [20, 21] in its general-
ized form: collective modes built on any excited state
have the same properties as the ones built on the ground
state. This hypothesis is not valid for reactions where
high temperatures and spins are involved. Since in the
present cases the nuclear temperature is relatively low,
as it will be shown in the following, and the spin distri-
bution is centered at J ≈ 4 − 5, significant deviations
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TABLE I. Input parameters for the normalization of the level density of
194−196

Pt and
197,198

Au.

CT model [7] HFB+comb model [6]

Nucleus Sn [MeV] D0 [eV] σ(Sn) ρ(Sn) [10
4

MeV
−1

] TCT [MeV] E0 [MeV] a δ[MeV]

194
Pt 8.357 - 5.06(51) 512(154)

a
0.63 -1.08 -0.20 -0.08

195
Pt 6.105 71.8(29) 4.92(49) 69(14) 0.63 -2.07 -0.44 -0.32

196
Pt 7.922 15.93(41) 5.04(50) 165(32) 0.63 -0.81 -0.35 0.38

197
Au 8.072 - 5.15(51) 400(120)

a
0.68 -2.0 -0.32 0.06

198
Au 6.512 15.5(8) 5.08(51) 91(17) 0.67 -2.42 -0.41 -0.30

a
Estimated from systematics [1, 24] as shown in Fig. 2.
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FIG. 3. (Color online) Normalization of the level density (black filled squares) of (a)
195

Pt and (b)
196

Pt to discrete levels
at low energy (black line) and to ρ(Sn) at high energy (green filled circle). The vertical arrows define the region where the
normalization has been applied. The trend of the experimental distribution is compatible with the CT approach (red line).
Another normalization (black open squares), following the HFB plus combinatorial approach (blue line), is proposed, see the
text.

from the mentioned assumptions are not expected.
Relation (1) has an infinite number of possible solu-

tions generated by the transformations:

ρ̃(E − Eγ) = Aeα(E−Eγ)ρ(E − Eγ) (2)

T̃ (Eγ) = BeαEγT (Eγ). (3)

To obtain the absolute level density and γ transmission
coefficient a set of parameters A, B and α has to be
determined using independent experimental data. Fi-
nally, the γ transmission coefficient is associated to the
γ-ray strength function f(Eγ) by the relation T (Eγ) ∝∑
E2L+1
γ fXL(Eγ) where X and L stand for the electro-

magnetic character and the multipolarity of the γ-ray,
respectively.

In the next section, details of the normalization proce-
dure will be presented and discussed with special focus
on the level density distribution.

III. NUCLEAR LEVEL DENSITIES

To normalize the level density the amplitude A and
the slope α in Eq. (2) are extracted from a fit to known
densities at low and high excitation energies. In the for-
mer case the discrete levels with energy E < 3.9 MeV
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FIG. 4. (Color online) Level density of (a)
197

Au and (b)
198

Au. The black filled squares are normalized to discrete levels at
low energy (black line) and to ρ(Sn) at high energy (green filled circle) with the constant temperature extrapolation (red line).
The same data are also normalized to the HFB plus combinatorial approach (blue line) and are represented by black open
squares.

are taken from literature [22]. The experimental level
scheme is far from complete when a density of about 50-
100 levels per MeV is reached. At the neutron separa-
tion energy Sn the total level density ρ(Sn) is calculated
from measured values of the neutron resonance spacing
D0 (s-wave) in the corresponding (n, γ) reaction on the
A-1 target nucleus [10, 11]. In order to obtain ρ(Sn),
the ground state spin It of the target nucleus and the
spin distribution at Sn must be taken into account. As
suggested in Ref. [23], the spin distribution is generally
expressed with a Gaussian-like formula containing a sin-
gle free parameter, the spin cutoff σ:

g(J, σ) ' 2J + 1

2σ2 e
− J(J+1)

2σ
2 . (4)

In this work we adopt the empirical expression of the
dependence of σ on mass and excitation energy proposed
by von Egidy and Bucurescu in their systematic study of
level density parameters [24]:

σ2 = 0.391A0.675E′0.312 (5)

where A is the mass number and E′ = E − 0.5Pa′ with
Pa′ being the deuteron pairing energy. The parity distri-
bution at Sn is assumed to be symmetric, as supported
by theoretical microscopic calculations for the nuclei un-
der study [6].

Very recent and accurate measurements of the level
spacing D0 of s-wave neutrons are available for Pt iso-
topes [25]. For 198Au we adopt the value reported in
the Reference Input Parameter Library (RIPL-3) compi-
lation [1]. Unfortunately, there exists no information on

the neutron level spacing of 197Au through the (n, γ) re-

action in literature, since 196Au is unstable. For this nu-
clide we estimate ρ(Sn) from a comparison of the experi-
mental values in neighboring isotopes and the systemat-
ics of Ref. [24]. In Fig. 2-(a) the total level density at Sn
of N -odd 77Ir, 78Pt, 79Au and 80Hg isotopes is reported:
the colored markers refer to ρ(Sn) values calculated from
D0 [1]. The open circles connected with black lines repre-
sent the global systematics [24]. A scaling factor ranging
between 1.6 and 1.85 is applied to reproduce the experi-
mental ρ(Sn) in the N -odd nuclei and the same value is
kept for the corresponding N -even isotopes (Fig. 2-(b)):

the agreement is good except for 193Ir. The uncertainty
of ρ(Sn) estimated for 197Au with this procedure is about
30%. It is estimated taking into account the uncertainty
for 198Au and the scaling correction to adjust with the
systematics. The general trend of ρ(Sn) as a function
of Sn is decreasing towards more neutron-abundant iso-
topes. The input parameters for the normalization of
195,196Pt and 197,198Au level densities are listed in Ta-
ble I.

Figures 3 and 4 show the extracted level densities nor-
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malized according to the procedure depicted above. One
can see that an extrapolation is needed to connect the
level density data points at the highest excitation ener-
gies with ρ(Sn): we use the constant temperature (CT)
formula [7, 23]

ρCT (E) =
1

TCT
e
E−E0
TCT (6)

that reproduces well the exponential logarithmic trend of
the extracted level densities. The values of the temper-
ature TCT and the energy shift E0 are listed in Table I.
They are in good agreement with the systematics [24] and
are determined in order to reproduce the experimental
value at Sn.

Besides the constant temperature term of the compos-
ite phenomenological model, the microscopic combinato-
rial approach of Goriely et al. [6] is also included in the
comparison. The Hartree-Fock-Bogoliubov (HFB) plus
combinatorial method provides a parity as well as energy
and spin dependent level density that reproduces fairly
well the low-energy discrete region of our data and es-
timates the neutron resonance spacing D0 with a good
degree of accuracy. As described in Ref. [6] the calcula-
tions are normalized with the δ and a parameters listed in
Table I to be compared with the experimental data. This
model predicts a more or less pronounced concave curva-
ture of the level density below the particle threshold in
contrast with the straight-line behavior of the experimen-
tal data in a logarithmic scale, especially for 196Pt and
198Au. In addition, the normalization using the micro-
scopical model gives a slightly steeper function with re-
spect to the phenomenological CT model. We can trans-
late this effect as a broader spin distribution accounted
by the microscopical model for the nuclei under study.

Goriely and his coworkers have recently published a
new version of the combinatorial model where the col-
lective effects are predicted by a newly derived Gogny
interaction [26]. For the Pt and Au mass region an in-
creased curvature is expected in the level density below
Sn: a trend not seen in our data. For this reason a com-
parison between this model and the experimental data
is not shown in this work. A better agreement with the
previous formulation of the model is achieved.

In conclusion, the four data sets are best represented
by the constant temperature formula above E ∼ 2 MeV.
A remarkable feature of our results is the common par-
allel trend of the level densities in a log plot (see Fig. 5):
as expected the odd-mass Pt isotope has a higher level
density with respect of the neighbor even-nucleus, cor-
responding to a scaling factor of 9. For both Pt nuclei
we observe a steep increase in the density of levels for
E 6 1 MeV. In particular, the γ-band in 196Pt opens
above the 2+ level at E = 355.7 keV in the ground
band [12]. A second step-like increment is observed be-

tween 1− 2 MeV in 196Pt where the breaking of nucleon
Cooper pairs occurs. This effect will be further discussed
in the next section.

In the case of gold (Fig. 5-lower panel), the odd-odd
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FIG. 5. (Color online) Comparison of the level density of (a)
194−196

Pt and (b)
197

Au and
198

Au. Both distribution sets
follow a straight-line trend in the log plot corresponding to a
constant temperature TCT = 0.63 and 0.68 − 0.67 MeV for
195,196

Pt and
197,198

Au, respectively. The staggering of the
even-even and even-odd Pt isotopes is much more pronounced
than for the odd-even and odd-odd Au nuclei. For

195
Pt and

197
Au data from the (d, d

′
) reaction are also shown.

isotope shows a higher density of levels with respect
to the even-odd neighbor. Again the two distributions
are parallel in a log scale but this time the spacing be-
tween them corresponds to a scaling factor of only ∼ 2.5.
The level density of 197Au has a rapid increase up to
E ∼ 1.0 MeV. From 1.0 to 2.0 MeV the slope of the
level density becomes even steeper, due to the breaking
of Cooper pairs and the availability of more quasiparti-
cles that can combine in all possible configurations. In
198Au, the density of levels is rapidly increasing after a
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TABLE II. Neutron and proton pairing gap parameters of
195,196

Pt and
197,198

Au [19, 28].

Pairing gap

(MeV)
195

Pt
196

Pt
197

Au
198

Au

∆n 1.02 0.97 0.75 0.66
∆p 0.76 1.04 0.94 0.66

few hundred keV of excitation energy. The presence of
an unpaired neutron and proton, on average, smears out
the effect of the first Cooper pair breaking, therefore the
level density appears smoothly increasing without any
pronounced step-like structure.

Fig. 5 displays also the level density of 195Pt and
197Au extracted from the 195Pt(d, d′) and 197Au(d, d′)
reactions, respectively. The comparison confirms that
similar results are obtained for different incident projec-
tiles. Selecting the 195Pt(p, d) reaction channel it was

also possible to extract the level density of 194Pt up to
E = 3.4 MeV, using the parameters reported in Ta-
ble I. The constant temperature extrapolation is calcu-
lated with TCT = 0.63 MeV as for the others Pt isotopes.
The functional form of ρ(E) is similar to the one of 196Pt
with an abrupt increase at about 2.0 MeV.

Another important observation can be made when one
compares the level density of neighboring nuclei: as al-
ready shown in the actinides, pairs of even-even and odd-
even close isotopes have a level density characterized by
the same slope, i.e. the same temperature [9, 27]. This
feature is valid also in this case, for soft-deformed nuclei.
If we measure the shift ∆ along the excitation energy
axis between 195,196Pt and 197,198Au pairs we obtain a
value equal to 1.25 and 0.54 MeV, respectively. The ex-
perimental shifts are in qualitative agreement with the
neutron pairing gaps ∆n reported in Table II. The latter
lists both ∆n and ∆p for the four nuclei under study:
the neutron and proton pairing gap parameters are de-
termined using the three-point mass-difference formula of
Ref. [19], from the empirical masses of Pt and Au isotopic
and isobaric chains, respectively [28].

In the next Section we will focus on the the most com-
plete dataset of 195,196Pt and 197,198Au for the extraction
of the thermodynamical properties.

IV. THERMODYNAMICS

An atomic nucleus can be treated as an isolated system
with fixed energy and particle number, since the strong
force has a short range and the excitation energy is in
general not exchanged with the surroundings. Hence,
a thermodynamical description of excited nuclei can be
derived from their measured level density.

According to these facts, the nucleus can be studied in
the framework of the microcanonical ensemble: its level
density can be used to define a partition function and

the entropy is expressed, according to the Boltzmann’s
principle, as

S(E) = kB lnW (E) (7)

where kB is the Boltzmann constant and W (E) ∝ (2J +
1)ρ(E)δE. Here the number of accessible states for the
system W (E) is proportional to the density of states,
i.e. to the experimental level density ρ(E) multiplied by
the spin degeneracy of magnetic substates. The present
experimental technique provides no information about
the spins J populated during the reaction and we there-
fore extract a ”reduced” entropy

S(E) = ln
[ρ(E)

ρ0

]
(8)

in units of kB , where ρ0 is a normalization factor that
ensures the validity of the third law of thermodynamics,
i.e. the entropy approaches a constant value at temper-
atures close to zero. Since the ground state band of an
even-even nucleus such as 196Pt has W (E) ∼ 1 within ex-
perimental energy bins of ∼ 150 keV, and it represents an
ordered system with all its nucleons paired, its entropy
would be zero in the ground state. Therefore ln(ρ0) is
set to −1.37 kB and this value is used also for the other
nuclei under study.

The entropies of 195,196Pt (left) and 197,198Au (right)
are displayed in the upper panels of Fig. 6. As already
noticed for ρ(E), the entropy curves S(E) are rather lin-

ear, however small bumps are visible. In 196Pt a rapid
increase of S(E) from 1.9 to 3.9 kB is observed around
1.9 MeV corresponding to the breaking of a Cooper pair;
this step-like increment is expected to occur at about
twice the proton or neutron pairing gap. In this even-
even nucleus the two pairing gaps ∆p and ∆n have simi-
lar values, see Table II. As a result, the breaking of both
a proton and a neutron pair, on average, contributes to
such an abrupt increase in the disorder of the nuclear
system. The other Pt isotope has already an unpaired
neutron that smears out this effect causing the entropy
to increase in a more uniform way and a less pronounced
step is visible.

The two Au isotopes form an odd-even and an odd-odd
pair: for 198Au the entropy is high even at low excitation
energies and increases linearly. In 197Au the thresholds
for breaking a neutron and a proton pair are shifted at
about 1.5 and 1.9 MeV, respectively: the combined effect
gives a smooth increment in the entropy curve between
1.0 and 2.0 MeV instead of a sharp edge.

The lower panels of Fig. 6 show the entropy difference
∆S between the odd and the even mass isotopes. Above
1.8 MeV the entropy excess stabilizes around a value of
2.0 kB and 1.1 kB for the Pt and Au pairs, respectively.
Accordingly, in 195Pt an unpaired neutron contributes
to the system with an increment in entropy equal to 2.0
kB , corresponding to exp(∆S) = exp(2.0) ≈ 7 available
states per quasiparticle. However, the unpaired nucleon
is not identified with a neutron in a specific orbital config-
uration, it retains the average properties of all the valence
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FIG. 6. (Color online) Entropy curves for (a)
195,196

Pt and (b)
197,198

Au. The lower panels show the entropy differences of (c)
195

Pt (black open circles) and
197

Au (green filled circles) relative to
196

Pt and (d)
198

Au relative to
197

Au (violet filled squares)

and
196

Pt (red filled diamonds). The error bars correspond to the propagated error of ρ(E).

orbits under the Fermi surface. At the same time, the ex-
tra unpaired neutron in 198Au has a reduced number of
accessible states, giving a contribution to the entropy of
the system of only 1.1 kB . Moreover, the entropy excess
of 197Au with respect to 196Pt is also displayed in the
same figure to assess the average contribution of a pro-
ton to the entropy of the system. In this case ∆S = 1.1
kB : this means that the entropy of the system is largely
affected by the neutron configurations, to the same ex-
tent as in well deformed nuclei such as actinides or lan-
thanides [27, 29]. The valence proton has a reduced phase
space, that one would ascribe to the proximity of the
shell gap at Z = 82 that hinders the formation of pair-
ing correlations. However, from the experimental level
density of mid-shell actinides, the odd-odd 238Np [30]

and the even-odd 237U [27], the deduced entropy excess
due to the unpaired proton is also ∆S ≈ 1.1 kB . Be-
ing thorough, the entropy difference of 196Pt and 198Au
corresponds to the sum of the proton and neutron con-
tributions: ∆S ≈ 2.2 kB ≈ ∆Sp + ∆Sn.

In the microcanonical ensemble, the temperature of
the system can be derived by the differentiation of the

entropy with respect to the excitation energy:

1

T (E)
=
∂S

∂E
(9)

The statistical error and uncertainties from the unfolding
and the first generation method are propagated accord-
ingly. Since our experimental data do not constitute a
continuous function and are affected by fluctuations, the
derivative of S(E) is obtained as a quadratic fit of every
point with the four adjacent ones at the time. Therefore,
the resulting temperature is smoothed over 0.6 MeV.
Even though this procedure reduces the resolution below
the experimental level (∼ 0.15 MeV), it is still possible
to extract valuable information from the resulting caloric
curves, T (E), seen in Fig. 7.

For 197Au, large error bars and fluctuations are
present, due to the relatively poor statistics of the
dataset. However, for all the nuclear systems under study
the temperature increases up to 0.9 MeV and then drops
to a minimum within a few hundreds keV. A decrease in
temperature as a function of the excitation energy corre-
sponds to the energy spent to break a pair of quasiparti-
cles in the system. As one can notice, the most prominent
peak is observed in the caloric curve of the only even-even
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FIG. 7. (Color online) Experimental temperatures of (a)
195

Pt, (b)
197

Au, (c)
196

Pt and (d)
198

Au as a function of the excitation
energy within the formalism of the microcanonical ensemble.

nucleus presented in this work, 196Pt. The minimum is
reached at 1.8 MeV in this case. This value is roughly
equal to twice the pairing gap parameter ∆. Soon after
the temperature increases again, due to the latent pairing
energy released to the isolated system. This characteris-
tic fall and rise of the temperature can be clearly observed
in the Pt isotopes between 1.0 and 2.2 MeV. Above this
threshold the temperature reaches a value close to 0.63
MeV. The most disordered system, the odd-odd 198Au,
manifests a very smooth entropy and, as a consequence,
less structure in the temperature. This is visible in the
quenching of the main bump at 0.9 MeV.

The even-even nuclear system, 196Pt, has the highest
statistics and effective energy resolution. In this nucleus
we can observe an oscillating distribution with secondary
maxima at approximately 2.4, 3.4 and 4.2 MeV. Similarly
to the most prominent bump at 0.9 MeV, we expect to
observe other peaks at 4∆, 6∆ and so on, in correspon-
dence of the energy threshold where two, three or more
quasiparticle pairs can split. Nevertheless, the observed
bumps occur after a spacing that is smaller than 2∆.

Moreover, pairing correlations are expected to become
less important at higher excitation energies where the
pairing field is decreased by the presence of a large num-
ber of unpaired quasiparticles. Further breaking of two
or more Cooper pair is not noticeable in the level den-
sity and entropy distributions since the increase of the

number of levels due to the splitting of a pair is smeared
out. A linear increase in the entropy S(E) is the overall
effect (see Fig. 6), although small fluctuations around the
mean value can still be observed in the caloric curve, as
mentioned for 196Pt.

The peculiar fluctuating behavior of the temperature
and in particular the decrease observed, for instance, be-
tween 1.0 and 1.8 MeV, corresponds to negative values
of the heat capacity, derived as:

1

CV (E)
=
∂T

∂E
. (10)

This apparent violation of the laws of thermodynamics is
related to the use of the microcanonical ensemble, which,
in fact, is the most appropriate formalism to describe
small systems. Negative heat capacities have been mea-
sured for several systems which are considered isolated,
such as clusters of sodium atoms [31], fragmenting Au
nuclei [32] and magnetically self-confined plasma [33].
With the same analysis method presented in this work,
negative heat capacity has been recently measured in ac-
tinides [27]. From the theoretical point of view, this fea-
ture has been subject of several interpretations. It has
been addressed as a hint of first- or second-order phase
transition [34, 35].

Recently it has been shown that atomic nuclei undergo
a first-order phase transition from a superfluid to an ideal
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FIG. 8. (Color online) Microcanonical heat capacity of
198

Au
in the range of excitation energies between 0 and 4 MeV. The
dashed red lines are drawn to help recognizing the sequence
of the data points between divergences at ±∞.

gas of non interacting quasiparticles being characterized
by pairing and shell gaps in their particle spectra [9]:
the heat capacity has an exponential dependence on the
temperature up to when the critical point is reached and
the system has essentially absorbed all the energy. Sim-
ilarly to a melting ice cube where the phase transition
of water molecules is linearly dependent of the absorbed
heat, quasiparticles are created with a constant energy
cost and contribute with a constant amount of entropy
to the disorder of the system.

In Fig. 8 the experimental heat capacity of 198Au is
shown for excitation energy up to E = 4.0 MeV. The
heat capacity diverges to ±∞ when the temperature is
constant, i. e. in correspondence to the maxima and min-
ima. CV rapidly increases from zero to +∞ at 0.9 MeV.
Then it proceeds from −∞ and increases up to −0.2 kB
before to drop again to −∞ close at 1.5 MeV. A new
branch diverging at +∞ covers the energy range between
1.5 and 2.2 MeV. If we compare the CV distribution with
the corresponding caloric curve in Fig. 6, we find that
the negative branches occur when the temperature de-

creases and the quasiparticle pair breaks up. We may
conclude that a sequential melting of Cooper pairs oc-
curs in the region of low excitation energies, as evident
from the oscillating feature of the caloric curve and the
negative branches of the heat capacity distribution shown
in Fig. 6 and Fig. 7.

V. CONCLUSIONS

Excited states of 194−196Pt and 197,198Au up to the
neutron separation energy were populated in (p, p′γ),

(p, dγ), (d, pγ), (d, d′γ) and (3He, 3He′γ) reactions. From
the measured γ-ray spectra, the level density of the five
nuclear systems has been extracted. Both the Pt and Au
groups show a level density consistent with a constant-
temperature description and characterized by the same
temperature TCT = 0.63 and 0.67 MeV, respectively.
The isotopes with an unpaired neutron, i. e. 195Pt and
198Au, are characterized by an increased density of levels
with respect to the other systems with an even number
of neutrons. This same effect is visible in the entropy
distribution. The entropy difference ∆S = 1.9 kB in
the 195,196Pt pair is comparable to the value obtained in
well deformed nuclei, meaning that the unpaired valence
neutron has a comparable degree of freedom in terms of
available orbital space. The entropy excess due to an un-
paired proton ∆S = 1.1 kB is also of the same order as in
actinides. We can conclude that transitional Pt and Au
isotopes show the same statistical features of mid-shell
deformed heavy nuclei: the residual nuclear interaction
is dominated by pairing correlations, while shell effects
are not noticed in spite of the vicinity of the Z = 82 shell
closure.

Temperature and heat capacity have been deduced
from the microcanonical ensemble formalism. Sequential
bumps in the caloric curve are fingerprints of consecutive
breaking of nucleon Cooper pairs in the heating nuclear
system, showing a transition from an ordered to a disor-
dered phase similar to the transition from superfluidity
in liquids.
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