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Abstract

The process of formation of the participant system in heavy-ion collisions is investigated in the

framework of a simplified analytic Glauber-like model, which is based on the relativistic Boltzmann

transport equation. The key point lies in the time-dependent partition of the nucleon system into

two groups: nucleons, which did not take part in any interaction before a given time and nucleons,

which already have interacted. In the framework of the proposed model we introduce a natural

energy-dependent temporal scale tc, which allows us to remove all dependencies of the model

on the collision energy except for the energy dependence of the nucleon-nucleon cross-section.

By investigating the time dependence of the total number of participants we conclude that the

formation process of the participant system becomes complete at t ≃ 1.5tc. Time dependencies

of participant total angular momentum and vorticity are also considered and used to describe the

emergence of rotation in the reaction plane.

PACS numbers: 25.75.Ag, 24.10.Jv
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I. INTRODUCTION

From the very beginning of the collision of two nuclei some of the nucleons start to expe-

rience collisions and become participants. The number of nucleons which have experienced

collisions increases with time and the number of the nucleons which did not take part in

collisions decreases. Finally, this results in the partition of the total initial system of nu-

cleons into two subsystems: participants and spectators. In the framework of the Glauber

model [1–3] (optical limit) one can obtain average transverse distributions of the participants

and spectators at the end of this partition stage. These smooth distributions have been used

earlier as input to fluid dynamical models, see e.g., Refs. [4, 5]. The Monte Carlo Glauber

(MC-Glauber) approach allows one to simulate the initial partition stage on an event-by-

event level and can be used for determining fluctuating initial conditions in event-by-event

hydrodynamics [6–8]. Fluctuations in the collective flow coefficients have been attributed to

initial spatial fluctuations [9, 10] and thus can be used to put constraints on the initial-state

geometry [11, 12]. On the other hand, fluctuations can develop dynamically during the fluid

dynamical motion, especially if the matter undergoes a phase transition [13–15]. While the

transverse plane distribution (and its fluctuations) of the formed participant system has

been investigated in literature in great detail by using the Glauber approach, little attention

was paid to the temporal dynamics of the spectator-participant partition. This dynamics

can be of special interest in peripheral collisions where one can study, for instance, the

process of how participants gain a non-zero total angular momentum, which in turn results

in the emergence of initial rotation in the reaction plane. In the present work we develop

an analytical Glauber-like model in the framework of the relativistic Boltzmann equation

(Sec. II) and use it for the description of the process of partition into spectator and partici-

pant subsystems. Calculations done in the model for various time-dependent quantities are

presented in Sec. III and conclusions are given in Sec. IV.

II. THE MODEL

A. Initial conditions and the ballistic mode

In the simplest approximation of our description within the relativistic Boltzmann equa-

tion we assume a ballistic mode, i.e., we neglect all the reactions between hadrons and we
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separate the total system of net nucleons into nucleons of the target (A) and projectile (B)

nuclei. The initial single-particle distribution functions f
(0)
A (x, p) and f

(0)
B (x, p) [hereinafter

denoted f
(0)
A(B)(x, p)] of nucleons from corresponding nuclei are described by the collisionless

field-free relativistic Boltzmann equation

pµ∂µf
(0)
A(B)(x, p) = 0 . (1)

The solution to this equation is

f
(0)
A(B)(x, p) = FA(B) [r− v(t− t0), p] , (2)

where FA(B)(r, p; t0) is the distribution function of nucleons at the initial time, t0, v = p/Ep

is the velocity of particles and Ep = (m2 + p2)1/2. We adopt the system of units c = ~ = 1.

The initial time, t0, corresponds to the moment before any interaction takes place. I.e. no

collision and no internal change within the two nuclei occurs between t = −∞ and t0.

We assume that the initial distribution function of nucleons in the nucleus can be pre-

sented as a product of a spatial and momentum distributions

FA(B)(r, p; t0) = ρA(B)(r; t0) gA(B)(p) . (3)

Here ρA(B)(r; t0) is the initial spatial distribution of nucleons in the target (projectile), and

gA(B)(p) is the initial momentum distribution. Since the collider center-of-mass (c.m.) frame

and the Local Rest (LR) frame of a nucleus are connected via the Lorentz transformation in

(t, z) variables, we can write the initial spatial density, ρA(B)(r; t0), (which is the 0th com-

ponent of the nucleon 4-flow) in the collider c.m. system (c.m.s.) in terms of corresponding

4-flow quantities in terms of the Local Rest frame of the nucleus as

ρA(B)(r; t0) = γ0
{

ρLRA(B)[x, y, γ0(z − vA(B)t0)] + vA(B) j
A(B),LR
z [x, y, γ0(z − vA(B)t0)]

}

, (4)

where vA = −vB = v0 is the initial nucleus velocity in the c.m. frame, γ0 = (1 − v20)
−1/2,

ρLRA(B)(x, y, z) is the initial spatial distribution of nucleons in the Local Rest Frame of the

target (projectile) nucleus, and j
A(B),LR
z (x, y, z) is a z-coordinate of nucleon flow in the same

Local Rest Frame.

For the spatial distribution in the LR frame of the nucleus we use the Woods-Saxon

density profile so that

ρLRA(B)(x, y, z) = ρ
WS

(x∓ b/2, y, z) = cρ

{

1 + exp

[

√

(x∓ b/2)2 + y2 + z2 − R0

a

]}−1

, (5)
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where a = 0.545 fm and R0 is the nuclear radius. The normalization constant cρ is deter-

mined from the relation
∫

drρ
WS

(r) = A, where A is the mass number of the nucleus. In the

above equation we have already taken into account a shift in the x coordinate due to the

non-zero impact parameter b. It should be noted that our approach is not restricted just

to the standard Woods-Saxon profile, other nuclear density profiles, i.e., three-parameter

Woods-Saxon, can also be used. Assuming that the momentum distribution of nucleons in

the LR frame of the nucleus is isotropic, we get that the particle flow j
A(B),LR
z vanishes, and

the initial density, ρA(B)(r; t0), in the collider c.m. frame can be written as

ρA(B)(r; t0) = γ0 ρWS
[x∓ b/2, y, γ0(z − vA(B)t0)] . (6)

Expression (6) corresponds to nuclear density in the moving frame which has correct

normalization, i.e.,
∫

dr ρA(B)(r; t0) = A. To define the initial momentum distribution in the

c.m. frame we neglect the random Fermi motion in comparison to the collective motion since

we are dealing with ultra-relativistic collision energies. In this case the initial momentum

distribution, gA(B)(p), reads as

gA(B)(p) = δ2(p⊥) δ
(

pz − pA(B)

)

, (7)

where pA (pB) is the initial momentum of nucleons in the target (projectile).

Finally, we write the initial distribution function, FA(B)(r, p; t0), as

FA(B)(r, p; t0) = γ0 ρWS
[x∓ b/2, y, γ0(z − vA(B)t0)] δ

2(p⊥) δ
(

pz − pA(B)

)

. (8)

We can see that the target and projectile initially move with opposite velocities and they

are completely separated spatially at t = t0, therefore indicating that the presented initial

conditions are consistent with the condition that there are no reactions before the initial

time t0.

It can be seen that, in this particular case of momentum distribution (7), the expression

(8) actually represents a solution of the collision-less Boltzmann equation if we treat t0 as the

time variable. Indeed, using relation (2) we can write the time-dependent ballistic nucleon
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distribution functions in collider c.m. as

f
(0)
A(B)(t, r,p) = γ0 ρWS

(x∓ b/2, y, γ0[z −
pz
Ep

(t− t0)− vA(B)t0]) δ
2(p⊥) δ

(

pz − pA(B)

)

= γ0 ρWS
(x∓ b/2, y, γ0[z − vA(B)t]) δ

2(p⊥) δ
(

pz − pA(B)

)

=
γ0 cρ δ

2(p⊥) δ
(

pz − pA(B)

)

1 + exp

{

1
a

[

√

(x∓ b/2)2 + y2 + γ2
0 (z − vAt)

2 − R0

]} , (9)

where Ep ≡ p0 is the energy of particle with four-momentum p and pz/Ep = vz.

It can be shown that the solution of the Boltzmann transport equation, (9), has precisely

the same structure as the initial condition (8). The presented ballistic distribution function

corresponds to a uniform motion of a nucleus with a Woods-Saxon nuclear density profile

which is Lorentz-contracted in z-direction. At the time moment t = 0, the colliding nuclei

experience maximum density overlap and the z-coordinates of their centers coincide, and

are equal to zero. For better correspondence to cascade models, it makes sense to employ a

time axis where at time t = 0, we have the z-coordinates of the centers of the colliding nuclei

separated by their Lorentz-contracted diameter, 2R0/γ0 (see Fig. 1). In such a way, the time

t = 0 approximately corresponds to the time when the first reactions start to take place.

For instance, in case of central collisions it means that at t = 0 the colliding nuclei “touch”

each other. The timescale introduced above yields for the time of the maximum overlap

tc = R0/(γ0 v0). Consequently, we obtain the time-dependent ballistic nucleon distribution

functions in their final form

f
(0)
A(B)(t, r,p) = ρ

(0)
A(B)(t, r) δ

2(p⊥) δ
(

pz − pA(B)

)

=
γ0 cρ δ

2(p⊥) δ
(

pz − pA(B)

)

1 + exp

{

1
a

[

√

(x∓ b/2)2 + y2 + γ2
0 (z ±R0/γ0 ∓ v0t)

2 − R0

]} , (10)

where ρ
(0)
A(B)(t, r) = γ0 ρWS

(x∓ b/2, y, γ0[z ∓ v0(t− tc)]).

B. Partition into spectators and participants

In this section we describe the process of partition of nucleons into spectators and partic-

ipants. We assume that nucleons coming from the target (projectile) become participants in

collisions with nucleons from projectile (target). We define fS
A(B)(t, r,p) as the distribution
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FIG. 1. Schematic drawing of the system evolution in the proposed model. Blue points indicate

nucleons which have not interacted before present time moment while red points indicate nucleons

which already have interacted.

function of nucleons from the target (projectile), which had not taken part in any reactions

before time t in the collider c.m. frame. It is seen from the definition that, at t → ∞, this

distribution function describes all spectators in the collision. Following this definition and

also the above-mentioned assumption about collisions where nucleons become participants,

we can describe the functions fS
A(B)(t, r,p) by the Boltzmann transport equation by assum-

ing binary collisions, local molecular chaos, and collision integrals containing only “loss”

terms. For instance, for nucleons from the target we have

pµ∂µf
S
A(t, r,p) = −1

2

∫

d3p1
Ep1

d3p′

Ep′

d3p′1
Ep′

1

fS
A(t, r,p) f

(0)
B (t, r,p1)W (p, p1|p′, p′1), (11)

where W (p, p1|p′, p′1) is the transition rate.

In order to perform integrations in Eq. (11) we will use the transition rateW (p, p1|p′, p′1) =
s σ(s, θ) δ4(p + p1 − p′ − p′1) for elastic binary collisions, where s ≡ (p + p1)

2 and σ(s, θ) is

the differential cross section of nucleon-nucleon collision.

Since we are only considering “loss” terms, only the total nucleon-nucleon cross section

will be relevant for the final result. After integrating (11) over outgoing particle momenta

p′ and p′1 we get

pµ∂µf
S
A(t, r,p) = −1

2

∫

d3p1
Ep1

dΩσ(s, θ)
1

2

√

s(s− 4m2)fS
A(t, r,p) f

(0)
B (t, r,p1). (12)

Taking into account that
1

2

∫

dΩσ(s, θ) = σ
NN

(s) and using explicit expression for f
(0)
A

(10) we perform the integration over p1

pµ∂µf
S
A(t, r,p) = −σ

NN
(s)

Ep0

1

2

√

s(s− 4m2)fS
A(t, r,p) ρ

(0)
B (t, r). (13)

6



Since fS
A(t, r,p) describes nucleons, which did not take part in any reactions, it can be

expressed as

fS
A(t, r,p) = ρSA(t, r) δ

2(p⊥) δ(pz − pA), (14)

where pA = −pB = p0 and ρSA(t, r) is the time-dependent spatial density of the spectator

nucleons. Then, taking into account that Ep0 =

√
s

2
and p0 =

1

2
(s − 4m2)1/2, we get the

equation for ρSA(t, r)

pµ0∂µρ
S
A(t, r) = −2σ

NN
p0ρ

S
A(t, r) ρ

(0)
B (t, r), (15)

ρSA(t0, r) = ρ
(0)
A (t0, r). (16)

Here the expression on the right-hand side of Eq. (15) is proportional to the number of

binary collisions in the four-volume element at (t, r), between any nucleons from target (B)

and those nucleons from projectile (A), which had not yet interacted at time t. It is seen that

this expression depends only on spatial densities, relative velocity and the nucleon-nucleon

cross section. Thus, if we regard σ
NN

as the total nucleon-nucleon cross section then Eq. (16)

also describes the loss of the non-interacting nucleons due to any binary reactions of nucleons

and not just due to elastic collisions. The solution of Eq. (15) with initial condition (16)

can be written as

ρSA(t, r) = ρ
(0)
A (t, r) exp

{

−2σ
NN

v0

∫ t

t0

dt′ρ
(0)
B [t′, r− vA(t− t′)]

}

, (17)

where v0 = p0/Ep0 and vA = (0, 0, v0). Similarly, for nucleons from the projectile we have

ρSB(t, r) = ρ
(0)
B (t, r) exp

{

−2σ
NN

v0

∫ t

t0

dt′ρ
(0)
A [t′, r− vB(t− t′)]

}

, (18)

where vB = (0, 0,−v0).

C. Transverse distribution of spectators

It is easy to see similarities between our model and the optical limit of the Glauber-

Sitenko approach [1] applied for the description of relativistic heavy-ion collisions. Indeed,

in our simplified kinetic approach we consider only binary collisions between nucleons which

always move in the forward-backward direction, and the probability of binary interaction is

determined by the total nucleon-nucleon cross section. One of the quantities which can be

evaluated in that approach is the transverse distribution T part(x, y) of the wounded nucleons
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(participants) [2, 3], which is often used to define initial conditions in fluid dynamical models

assuming that the transverse expansion of the interacting system is small during the initial

pre-equilibrium phase. This distribution reads as

T part(x, y) = T part
A (x, y) + T part

B (x, y)

= TA(x− b/2, y)

[

1−
(

1− σ
NN

TB(x+ b/2, y)

A

)A
]

+TB(x+ b/2, y)

[

1−
(

1− σ
NN

TA(x− b/2, y)

A

)A
]

≈ TA(x− b/2, y) [1− exp {−σ
NN

TB(x+ b/2, y)}] +

TB(x+ b/2, y) [1− exp {−σ
NN

TA(x− b/2, y)}] , (19)

where TA(B)(x, y) =
∫

dz ρ
WS

(x, y, z) is the nuclear thickness function (normalized to A).

Consequently, the transverse distribution of spectators can be written as

T spec(x, y) = T tot(x, y)− T part(x, y)

= TA(x− b/2, y)

(

1− σ
NN

TB(x+ b/2, y)

A

)A

+ TB(x+ b/2, y)

(

1− σ
NN

TA(x− b/2, y)

A

)A

≈ TA(x−b/2, y) exp {−σ
NN

TB(x+b/2, y)}+ TB(x+b/2, y) exp {−σ
NN

TA(x−b/2, y)} . (20)

To make a quantitative comparison of our model with the above-mentioned approach

we calculate the transverse distribution of spectators within our model. To account for all

possible nucleon interactions we let the initial time moment t0 → −∞. Then the transverse

distribution of spectators from projectile T spec
A (x, y) can be calculated as

T spec
A (x, y) = lim

t→∞

∫

dp

∫

dz fS
A(t, r,p)

= lim
t→∞

∫

dz ρ
(0)
A (t, r) exp

{

−2σ
NN

v0

∫ t

−∞

dt′ρ
(0)
B [t′, r− vA(t− t′)]

}

. (21)

To perform the integration in the exponent we use

ρ
(0)
B [t′, r− vA (t− t′)] = γ0 ρWS

[x+ b/2, y, γ0(z − v0t + 2v0t
′ − v0tc)] ,

and make the transformation of the integration variable: t′ =
1

2v0γ0
[z′ − γ0z + v0γ0(t+ tc)].

By using that t → ∞ and also the definition of the nuclear thickness function we can perform

the integration over the new variable z′ under the exponent and get

T spec
A (x, y) = lim

t→∞

∫

dz ρ
(0)
A (t, r) exp {−σ0TB(x+ b/2, y)} . (22)
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By using that
∫

dz ρ
(0)
A (t, r) = TA(x− b/2, y) we finally get

T spec
A (x, y) = TA(x− b/2, y) exp {−σ

NN
TB(x+ b/2, y)} . (23)

Similarly, the transverse distribution of spectators from projectile reads as

T spec
B (x, y) = TB(x+ b/2, y) exp {−σ

NN
TA(x− b/2, y)} . (24)

Comparing Eqs. (23)-(24) with (20) we can conclude that our model is consistent with

the Glauber-based approach for describing heavy-ion collisions. Furthermore, it provides

the possibility of studying the time-dependent features of the spectator-participant partition

process in the early stage of the nucleus-nucleus collision. Comparison of our model with

MC-Glauber is presented in Appendix A.

III. CALCULATION RESULTS

To study the temporal structure of the partition of spectators and participants we consider

the time-dependent transverse distribution T s(t; x, y) of the nucleons, which did not interact

before time t. This distribution reads

T s(t; x, y) = T s
A(t; x, y) + T s

B(t; x, y), (25)

T s
A(B)(t; x, y) =

∫

dp

∫

dz fS
A(B)(t, r,p)

=

∫

dz ρ
(0)
A(B)(t, r) exp

{

−2σ
NN

v0

∫ t

−∞

dt′ρ
(0)
B(A)[t

′, r− vA(B)(t− t′)]

}

. (26)

We can rewrite this expression in terms of the initial Woods-Saxon distribution:

T s
A(B)(t; x, y) =

∫

dz γ0ρWS
(x∓ b/2, y, γ0[z ∓ v0(t− tc)])×

exp

{

−2σ
NN

v0

∫ t

t0

dt′γ0ρWS
(x± b/2, y, γ0[z ∓ v0(t+tc)± 2v0t

′])

}

.(27)

It is useful to introduce the variables z̃ = γ0z and t̃ = t/tc, where, as previously defined,

tc = R0/(γ0v0), is the time of the maximum overlap of the colliding nuclei (see Fig. 1).

Studies within Monte Carlo cascade models have shown that this time moment corresponds

to the maximum of the nucleon-nucleon collision frequency [16–18] and it appears to be a

natural energy-dependent temporal scale for the initial stage of the collision. This time, tc,

decreases with increasing collision energy and lies in the range: tc ≃ 1 to 2 fm/c at energies

9
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FIG. 2. The time dependence of the total number of participant nucleons in Pb+Pb collisions at

(a) SPS and RHIC energies (σ
NN

= 33 mb) and (b) LHC energy (σ
NN

= 70 mb) for different values

of impact parameter. Solid lines depict calculations in the proposed model while dashed lines in

panel (a) correspond to calculations from the UrQMD model at
√
s
NN

= 17.3 GeV.

of the CERN Super Proton Synchrotron (SPS), tc ≃ 0.1 to 0.8 fm/c at energies of the BNL

Relativistic Heavy Ion Collider (RHIC) and tc ∼ 10−2 to 10−3 fm/c at energies of the Large

Hadron Collider (LHC). Equation (27) is then rewritten as

T s
A(B)(t̃; x, y) =

∫

dz̃ρ
WS

[x∓ b/2, y, z̃ ∓ R0(t̃− 1)]×

exp

{

−2σ
NN

R0

∫ t̃

−∞

dt̃′ρ
WS

[x± b/2, y, z̃ ∓ R0(t̃ + 1)± 2R0t̃
′]

}

. (28)

A. Number of participants

The total number of participants (net-baryon participant number) at time t can be ob-

tained as

Npart(t) = 2A−
∫

dxdy [T s
A(t; x, y) + T s

B(t; x, y)] . (29)

The time dependence of the total number of participant nucleons in Pb-Pb collisions

is depicted in Fig. 2 for (a) SPS and RHIC energies (σ
NN

= 33 mb) and (b) LHC energy

(σ
NN

= 70 mb) at three different centralities: b = 0, 0.4bmax, 0.7bmax, where bmax = 2R0 and

R0 = 6.53 fm. We can see that a change in the nucleon-nucleon cross section, which roughly

corresponds to the increase of the collision energy from RHIC to LHC, has little influence on

the time dependence of Npart(t) and only slightly increases the total number of participant
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nucleon charge at the given impact parameter. It is seen from Fig. 2 that the formation of

the participant system is the most intense in the time range t ≃ 0.5tc to 1tc and becomes

complete at about t = 1.5tc.

It makes sense to make a comparison of predictions regarding time dependence of our

simplified analytic model with a more complicated cascade model such as the ultrarelativistic

quantum molecular dynamics (UrQMD) transport approach [19, 20]. The time dependence

of the average total number of participant net nucleons (baryons) can be calculated in

UrQMD as event-by-event average of Npart(t) = 2A−Nspec(t), where Nspec(t) is determined

in each event by analyzing the collision history. UrQMD results for Npart(t) in Pb+Pb

collisions at top SPS energy of
√
s
NN

= 17.3 GeV are depicted by dashed lines in Fig. 2a.

We note that the temporal axis in UrQMD is specially aligned in Fig. 2a with the one used

in our model so that the time moment t = 0 correspond to two colliding nuclei “touching”

each other. The comparison of UrQMD with calculations of our model (solid lines in Fig. 2)

shows generally good agreement between our model and UrQMD. One can see, however,

that the number of participants in UrQMD keeps increasing, albeit insignificantly, also at

times t > 1.5tc, which can be attributed to the more complex collision dynamics of UrQMD

compared to our analytic model.

B. Angular momentum

Another important quantity, of which the time dependence can be studied within the

proposed model, is the total angular momentum of the participant system. The total angular

momentum of the formed participant system is non-zero in non-central collisions [21, 22]

and can attain a significantly large value (L ≈ 106~ for LHC energies [23]). The angular

momentum illustrates the initial rotation of the system of participants, and it was shown

that it depends strongly on the initial nuclear density profile and leaves some freedom for the

assumed initial state of the participant system in fluid dynamical and in molecular dynamics

models. The time-dependent total angular momentum, LP
tot(t), of the participant system

can be calculated in our model as the difference of total angular momentum, Ltot, and the

time-dependent angular momentum, LS
tot(t), of nucleons, which did not interact before time

11
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FIG. 3. The dependence of the total angular momentum of the participant system on impact

parameter at different times for Pb+Pb collisions at
√
s = 2.76 TeV.

t. These quantities can be written as

Ltot = pzin

∫

dxdy x [TA(x− b/2, y)− TB(x+ b/2, y)] , (30)

LS
tot(t) = pzin

∫

dxdy x
[

T S
A (t; x, y)− T S

B (t; x, y)
]

, (31)

LP
tot(t) = Ltot − LS

tot(t), (32)

where pzin = (s/4−m2
N )

1/2 is the initial momentum of a nucleon.

The dependence of the total angular momentum of the participant system on impact

parameter at different times is depicted in Fig. 3. The values of the angular momentum are

in units of ~. It can be seen that, similarly to the case of the total number of participants,

the total angular momentum of the participant system increases with time and reaches its

maximum value for each particular collision centrality at the end of the spectator-participant

partition process.

It is also interesting to consider the time evolution of the angular momentum of par-

ticipants per participant (per baryon charge of participants). We note that the number of

participants also changes with time. Such a quantity contains information about an aver-

age contribution of participant nucleons to the total angular momentum. The dependence

of this quantity on impact parameter at different times is depicted in Fig. 4. It can be

seen that, similarly to the total angular momentum of participants, the angular momentum

12
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FIG. 4. The dependence of the participant angular momentum per participant on impact parameter

at different times for Pb+Pb collisions at
√
s = 2.76 TeV.

per participant increases with time for any value of the impact parameter. This means

that, for any fixed value of impact parameter b, the rate of increase of the total number

of participants, Np, is smaller than the rate of increase of the total angular momentum of

participants. Another similarity is that there is also maximum in the dependence of this

quantity on impact parameter which is shifted in the direction of a larger b. One difference

is that the angular momentum per participant is non-vanishing for large b, indicating that

the initial rotation and local vorticity are significant in the range of semi-central to even the

most peripheral collisions and needs to be accounted for.

It can be interesting to compare the rate of the increase with time of the angular mo-

mentum of participants with a similar rate concerning the total number of participant nu-

cleons. In order to do that, we compare the time dependencies of the normalized quantities

Npart(t)/Npart(∞) and LP
tot(t)/L

P
tot(∞), where Npart(∞) and LP

tot(∞) are the values of the

total number of participants and of the total angular momentum of participants at the end

of the spectator-participant separation stage. The time dependence of the above-mentioned

quantities is depicted in Fig. 5.

It can be seen from Fig. 5 that the process of increase of the angular momentum of partic-

ipants happens at a somewhat later time in comparison to the total number of participants,

and the most significant increase happens in time interval t ≃ 0.75tc to 1.25tc. The reason

13
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FIG. 5. The time dependence of the total number of participant nucleons and of the total angular

momentum of participants divided by their final values in Pb+Pb collisions.

for this is that different nucleons carry different contributions to the total participant angu-

lar momentum, and most of the nucleons with the largest contribution become participants

at later times, which is also evident from the time dependence of the angular momentum of

participants related to the number of participants (see Fig. 4).

C. Vorticity

The classical (non-relativistic) vorticity of the participants in the reaction plane, (x, z),

is defined as

ωy = ωxz = −ωzx =
1

2

(

∂zv
P
x − ∂xv

P
z

)

, (33)

where vP is the average 3-velocity of participants. The emergence of the vorticity in the

reaction plane in heavy-ion collisions is attributed to initial angular momentum of the par-

ticipant system and studies within fluid dynamical models had shown that vorticity still

remains significant during the freeze-out stage [24]. Along with angular momentum such

a quantity can be used to study rotation in the reaction plane. Another closely related

quantity is Λ polarization which can be detectable experimentally [25]. The possibility to

detect rotation via differential Hanbury Brown and Twiss (HBT) has also recently been

explored [26, 27].
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While in our simplified model we do not consider the subsequent evolution of the formed

participant system, most importantly the equilibration process, we can still study the emer-

gence of the vorticity during the formation of this system. To do this we assume that the

transverse motion of participants is small during the formation stage (“no-stopping” mode)

and their average velocity can be expressed as

vPx (t, r) ≈ vPy (t, r) ≈ 0, (34)

vPz (t, r) ≈ v0
ρPA(t, r)− ρPB(t, r)

ρPA(t, r) + ρPB(t, r)
, (35)

ρPA(B)(t, r) ≈ ρ
(0)
A(B)(t, r)− ρSA(B)(t, r). (36)

Here ρPA(B)(t, x, y, z) is the time-dependent spatial density of participant nucleons from the

target (projectile). For the relativistic case we follow the definition from Ref. [28]

ωµ
ν =

1

2
(∇νu

µ −∇µuν) , (37)

where uµ = γ(1,v), ∇α = ∆β
α∂β and ∆µν = gµν − uµuν . Similarly to Ref. [24] we neglect

the collective acceleration in comparison with rotation, i.e., |∂τuµ| ≪ |∂xuz|, and get the

following expression for the relativistic vorticity ωx
z in the reaction plane

ωx
z = −ωz

x = −1

2
γ∂xvz −

1

2
vz∂xγ, (38)

where γ = (1− v2z)
−1/2. Here we already take into account that vx = vy = 0 in our model.

Similarly to Ref. [24], we also use the weights proportional to the energy density to better

reflect the collective dynamics. The energy-density weighted vorticity for both classical and

relativistic cases is then

Ωzx = w(t, x, z)ωzx, (39)

where the weight, w(t, x, z), is

w(t, x, z) =
ǫP (t, x, y = 0, z)

〈ǫP (t, x, y = 0, z)〉 . (40)

Here, ǫP (t, x, y, z) =

√
s

2

(

ρPA + ρPB
)

is the energy density of the participants and 〈ǫP (t, x, y =

0, z)〉 is the average energy density in the reaction plane at time t. For averaging we use

the region −1.5R0 < x < 1.5R0, −1.5R0 < γ0z < 1.5R0. Results of the calculations of the

classical and relativistic weighted vorticity in the reaction plane at different time moments

are presented in Figs. 6-8.
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FIG. 6. The (a) classical and (b) relativistic weighted participant vorticity, Ωzx, in units of c/fm,

calculated in the reaction plane, i.e. (xz) plane, at time moment t = 0.5tc in Pb+Pb collisions.

The collision energy is
√
s
NN

= 2.76 TeV and b = 0.7bmax. The collision axis z is scaled with

γ-factor γ0, which corresponds to the collision energy.
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FIG. 7. Same as Fig. 6, but for t = tc.

The presented results illustrate the emergence of rotation during the formation of the

participant system. Also, it is seen that there may exist substantial differences in results

when using different definitions of vorticity indicating that its relativistic generalization is

not trivial. It should also be noted, however, that the proposed model does not describe

the evolution of the participant system after its formation and using the “no-stopping”

assumption, Eq. (36), allows us to only give qualitative rather than quantitative picture,
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FIG. 8. Same as Fig. 6, but for t = 1.5tc.

especially for times t > tc.

IV. CONCLUSIONS

The identification of different stages of the initial state is important if we want to discuss

the results of multimodule models or hybrid models. While the middle part of a heavy ion

reaction is usually well described by the fluid dynamical model, different initial states and

different final-state approximations are used in such kinds of combined models.

In the Particle in Cell relativistic (PICR) fluid dynamical model [29, 30] the initial state

assumes a dynamical evolution in a Yang-Mills field theoretical model [31, 32], which has

some features similar to the model presented here. The time when the PICR calcula-

tion starts corresponds to a configuration when the two nuclei have interpenetrated each

other and were near to be stopped by the Yang-Mills field. In the timescale of this model

this configuration corresponds to a time moment not earlier than 2tc. The subsequent

(3+1)-dimensional fluid dynamical development led to increased rotation due to the Kelvin-

Helmholtz Instability (KHI) in certain favorable configurations. The initial time moment of

the hydrodynamical evolution in the hybrid approach based on UrQMD model [33] is also

closely related to the temporal scale tc of our model. There 2tc is assumed to be the earliest

possible thermalization time and, consequently, the earliest possible initial time moment of

the hydrodynamical evolution, which should not be smaller than 1 fm/c.
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The present model is based on a conserved nucleon picture. For example, the angular

momentum per nucleon assumes conserved nucleons. At very high energies numerous hadron

pairs are created including baryon pairs, so the concept of the model should be implemented

for the conserved baryon charge.

Physically, the prehydrodynamical stage will remain nearly the same; however, the high

parton density may influence the dynamics already after tc. Especially, collective force fields

may change the dynamics, and may speed up equilibration, which then leads to collective

effects like the KHI.

The vorticity characteristics shown in Fig. 8 are interesting. The participant domain

has substantial positive vorticity. This agrees well with the fluid dynamical calculations.

The spectators show negative vorticity, this is arising from the particle loss due to collisions

from the spectator domain. Because the spectators are not considered at all in the PICR

calculations this effect is not covered by these model calculations.

Notice the large difference between the non-relativistic and relativistic vorticities in Figs.

7 and 8. This is due to the relativistic γ factors, which are large in the present calculation

as there are only collisions, no collective forces or pressure. In the PICR calculations these

collective interactions decrease velocity differences both in the initial state model and in the

fluid dynamics, thus the difference between the non-relativistic and relativistic vorticities is

modest.

The initial state model in the PICR calculations is dominated by attractive collective

Yang-Mills fields, which keep the system more compact and uniform. Some versions of the

Color-glass Condensate (CGC) initial state models have similar features. Also in the PICR

model sharp initial nuclear surfaces are assumed instead of Woods-Saxon surface profiles.

This makes the typical times tc and 2tc shorter. On the other hand for molecular dynamics

models (or to some extent for hybrid models) with MC-Glauber initialization the present

model provides a good estimate for the initial times. See Appendix A.

The formation of a quark-gluon plasma (QGP) leads to more rapid equilibration and

to critical fluctuations. These also facilitate the equilibration of rotation especially in low

viscosity fluid dynamical models like PICR with KHI. Before the final hadronization the per-

turbative vacuum may keep the participant system more compact and then rapid hadroniza-

tion from a supercooled QGP has the best chances to show observable signs of rotation at

the final freeze out. To detect the observable signs of Global Collective Flow patterns these

18



should be separated from random fluctuations as described in Ref. [34].

At the same time, for the development of the initial rotation and vorticity the present

model provides an excellent guidance for all dynamical models of peripheral heavy ion reac-

tions.
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APPENDIX

A. Reaction density of binary collisions

Our model gives the possibility to calculate the density, Γ(t, r), of binary collisions be-

tween nucleons from colliding nuclei, which describes the number of binary reactions per

unit volume per unit time. Since these binary collisions are beam directed, the relative

velocity of nucleons is 2v0. Exploiting this and taking into account the ballistic distribution

functions f
(0)
A(B) of the colliding nucleons [see Eq. (10)] one can write down the four-density

of binary reactions as

Γcoll(t, r) = σ
NN

2v0 ρ
(0)
A (t, r) ρ

(0)
B (t, r). (41)

The total average number of binary collisions Ncoll is

Ncoll =

∫

dt drΓcoll(t, r) (42)

= σ
NN

2v0γ
2
0

∫

dt dr ρ
WS

(

x− b/2, y, γ0[z − v0(t− tc)]
)

ρ
WS

(

x+ b/2, y, γ0[z + v0(t− tc)]
)

.

Making a change of variables (t, z) → (z1, z2) as z1 = γ0[z− v0(t− tc)], z2 = γ0[z+ v0(t− tc)]

we get

Ncoll = σ
NN

∫

dr⊥

∫

dz1 ρWS

(

x− b/2, y, z1
)

∫

dz2 ρWS

(

x+ b/2, y, z2
)

= σ
NN

∫

dxdy TA

(

x− b/2, y
)

TB

(

x+ b/2, y
)

= σ
NN

A2 t(b), (43)

where t(b) is the nuclear overlap function, normalized to unity, which depends on the im-

pact parameter. Equation (43) coincides with the expression for average number of binary

collisions in the analytical Glauber model. Our model, however, allows one to study also

the temporal and longitudinal structure of the binary collisions.

Let us consider the quantity Γ̃coll(t, z) =
∫

dxdyΓcoll(t, r), which represents the two-

dimensional space-time structure of the binary collisions. This quantity is depicted in Fig. 9.

It is instructive to compare the structure of two-dimensional binary collisions given in Fig. 9

with space-time reaction zones which were investigated in Ref. [18] exploiting UrQMD: very

similar features of the distribution of collisions can be immediately found at earlier times.

Besides, it is explicitly seen in Fig. 9 how natural and useful for the description of the initial

stage is the time scale tc, which is a unit of a measuring the time axis.
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It is useful to make a comparison of our model to MC-Glauber. In MC-Glauber one

can take into account correlations generated by the collision mechanism (dubbed “twin”

correlations in Ref. [35]), i.e. that nucleons can only collide if they are close by in the trans-

verse plane. In order to make a comparison we consider the frequency of binary reactions,

νcoll(t) =
∫

dzΓ̃coll(t, z), which can be calculated in our model and also in MC-Glauber. To

calculate this quantity in MC-Glauber we follow the usual procedure, recently described in

Ref. [36], but also add additional step to determine time dependence:

1. We generate the initial positions of nucleons in colliding nuclei by using the Woods-

Saxon distribution with the same parameters that are used in our analytical model.

2. We consider all possible binary collisions between the nucleons from different colliding

nuclei by calculating the distance, dtrans, between them in the transverse plane. In

case it satisfies the inequality dtrans <

√

σ
NN

π
, we register a binary collision.

3. We calculate the time moment for each binary collision as t =
|z1 − z2|

2v0
, where z1

and z2 are the longitudinal coordinates of the two colliding nucleons in the collider

center-of-mass frame at t = 0.

The frequency of binary reactions calculated in our analytical model and in the MC-Glauber

are depicted in Fig. 10. It is seen that both graphs virtually coincide, which further indicates

that our model is consistent with Glauber approach and also that event-by-event fluctuations

and “twin” correlations have negligible effect on a frequency of the binary reactions.
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[10] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010).

[11] E. Retinskaya, M. Luzum, and J.-Y. Ollitrault, Phys. Rev. C 89, 014902 (2014).

[12] T. Renk and H. Niemi, Phys. Rev. C 89, 064907 (2014).

[13] J.I. Kapusta, Phys. Rev. C 81, 055201 (2010)

[14] J.I. Kapusta, B. Müller, and M. Stephanov, Phys. Rev. C 85, 054906 (2012).

[15] J.I. Kapusta, B. Müller, and M. Stephanov, Nucl. Phys. A 904-905, 499C (2013).

[16] D. Anchishkin, A. Muskeyev, and S. Yezhov, Phys. Rev. C 81, 031902 (2010).

[17] D. Anchishkin, V. Vovchenko, and L.P. Csernai, Phys. Rev. C 87, 014906 (2013).

[18] D. Anchishkin, V. Vovchenko, and S. Yezhov, Int. J. Mod. Phys. E 22, 1350042 (2013).

[19] S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

[20] M. Bleicher et al., J. Phys. G 25, 1859 (1999).

[21] F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C 77, 024906 (2008).

[22] J.H. Gao, S.W. Chen, W.T. Deng, Z.T. Liang, Q. Wang, and X.N. Wang, Phys. Rev. C 77,

044902 (2008).

[23] V. Vovchenko, D. Anchishkin, and L.P. Csernai, Phys. Rev. C 88, 014901 (2013).

[24] L.P. Csernai, V.K. Magas, and D.J. Wang, Phys. Rev. C 87, 034906 (2013); L.P. Csernai,

D.J. Wang, M. Bleicher, and H. Stöcker, Phys. Rev. C 90, 021904 (2014).

[25] F. Becattini, L.P. Csernai, and D.J. Wang, Phys. Rev. C 88, 034905 (2013).

[26] L.P. Csernai and S. Velle, arXiv:1305.0385 [nucl-th]; L.P. Csernai and S. Velle, Int. J. Mod.

Phys. E 23, 1450043 (2014).

[27] L.P. Csernai, S. Velle, and D.J. Wang, Phys. Rev. C 89, 034916 (2014).

[28] E. Molnar, H. Niemi, and D.H. Rischke, Eur. Phys. J. C 65, 615 (2010).
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