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ISTVÁN KOVÁCS 1,2,3, MIKHAIL MUZYCHUK, PÉTER P. PÁLFY 2, GRIGORY RYABOV 3,4,

AND GÁBOR SOMLAI 2,5

Abstract. We prove that the direct product of two coprime order elementary abelian groups of
rank two, as well as the direct product of a cyclic group of prime order and a cyclic group of square
free order are DCI-groups. The latter is a generalization of Muzychuk’s result on cyclic groups
(J. Combin. Theory Ser. A, 1995).

1. Introduction

Investigation of the isomorphism problem of Cayley graphs started in 1967 with the following
conjecture of Ádám [1]. He asked whether two circulant graphs on n vertices are isomorphic if and
only if they are isomorphic via a multiplication with an integer coprime to n.

A generalisation of the question using a different terminology was introduced in [3]. Let G
be a finite group and let S be a subset of G \ {e} = G#. The vertices of the Cayley graph
Cay(G,S) are the elements of G and g ∈ G is connected to h ∈ G if and only if hg−1 ∈ S. A right
multiplication by a group element g ∈ G is an automorphism of an arbitrary Cayley graph and
hence Aut(Cay(G,S)) contains a regular subgroup isomorphic to G.

Any automorphism α of G induces an isomorphism between the two Cayley graphs Cay(G,S)
and Cay(G,Sα). In this case these graphs are called Cayley isomorphic. A subset S of the group
G is CI if Cay(G,S) ∼= Cay(G,T ) implies that these graphs are Cayley isomorphic. A group G is
called a DCI-group if S is CI for every S ⊂ G# and it is called a CI-group if the same holds for
symmetric (S−1 = S) subsets of G#.

The first counterexample for Ádám’s conjecture was given by Elspas and Turner [10], and
independently by Djokovič [6]. The complete description of finite cyclic DCI-groups was given by
Muzychuk [24] in 1997, who proved that a cyclic group Cn is DCI if and only if n = ab, where
a | 4 and b is a square free odd number.

The class of CI-groups is closed under taking subgroups. It was proved by Babai and Frankl [3]
that a finite p-group is a DCI-group only if it is either an elementary abelian p-group or a quaternion
group of order 8 or a cyclic group of small order. This poses a strong restriction on the structure
of DCI-groups. A collection of the candidates of (D)CI-groups is found in [21]. Recently, further
significant restriction was obtained by Dobson et al. [9]. Furthermore, it has been proved by
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Muzychuk [22] that for every prime p, the elementary abelian p-groups of sufficiently large rank
are not CI-groups. The current lower bound for the rank of a non-CI elementary abelian p-group
is 2p+ 3 [29]. On the other hand, it was proved by Feng and Kovács [13] that C5

p is CI-group for
every prime p.

It was conjectured by Kovács and Muzychuk [17] that the direct product of DCI-groups of
coprime orders is always a DCI-group (see also [7, Conjecture 43]). They proved that C2

p × Cq is
a DCI-group for every pair of distinct primes p, q. As a strengthening of this result it was proved
that C3

p × Cq and C4
p × Cq are also DCI-groups, see [30, 19]. Furthermore, Dobson [7] settled the

conjecture for abelian groups under strong restrictions on the order of the factors.
It was shown by Babai [2] that S ⊆ G# is CI if and only if all regular subgroups of Aut(Cay(G,S))

isomorphic to G are conjugate in the automorphism group. This observation gives us one of the
main tools in the study of (D)CI-groups and allows us to use results from group theory. Another
basic method in these investigations is the use of Schur rings. It started in the paper of Klin and
Pöschel [16], where it was proved that a cyclic group whose order is a product of two different
primes is a DCI-group. The method was further developed in a paper of Hirasaka and Muzy-
chuk [15], where the notion of star product was introduced. We refer to the survey paper [25] for
more information on Schur rings and their link with combinatorics.

In our paper the techniques developed in [30] will be combined with a criterion given in [18] to
lead to our results.

Theorem 1.1. For any prime p and any square free number n the group Cp×Cn is a DCI-group.

If n is not divisible by p, then Cp×Cn ∼= Cpn is a cyclic group of square free order, so this result
includes Muzychuk’s theorem [23] and our methods provide an independent proof for that. If p
divides n, then Cp × Cn ∼= C2

p × Cn/p belongs to a new class of groups for which we establish the
CI property.

Theorem 1.2. If p and q are different primes, then C2
p × C2

q is a DCI-group.

This theorem provides the first example besides elementary abelian p-groups of an infinite family
of DCI-groups, which are not Burnside groups. The proof of Theorem 1.2 uses some techniques
from finite geometry.

As a consequence of Theorems 1.1 and 1.2, and results in [15, 24, 27, 30], we have the complete
list of abelian DCI-groups whose order is a product of four not necessarily distinct primes.

Theorem 1.3. The abelian DCI-groups whose order is a product of four not necessarily distinct
primes are the following groups:

C4
p , C

3
p ×Cq, C

2
p ×C2

q , C
2
p × Cqr, C

2
r × C4, C4rs, Cpqrs,

where p, q, r, s are pairwise distinct primes and r, s > 2.

The paper is organised as follows. The concept of Schur rings is presented in Section 2. The next
two sections are devoted to preparation for the proof of our two main theorems. The main result
in Section 3 is Lemma 3.5 that can certainly be applied to other infinite families of abelian groups.
Section 4 collects results on different types of products of CI-S-rings. The proof of Theorem 1.1 is
contained in Section 5. Section 6 is devoted to the investigation of uniprimitive groups containing
a regular subgroup isomorphic to C2

p × C2
q using translation nets. The proof of Theorem 1.2 is

contained in Section 7.

Notation. The set of non-identity elements of a group G is denoted by G#.
For a subset X ⊆ G, the set {x−1 : x ∈ X} is denoted by X−1 and the subgroup generated by

X is denoted by 〈X〉. The element
∑

x∈X x of the group ring ZG is denoted by X.
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For L P G, the canonical epimorphism from G to G/L is denoted by πG/L.
The group of all permutations of a set Ω is denoted by Sym(Ω) and the identity element of

Sym(Ω) by idΩ.
For A 6 Sym(Ω) and α ∈ Ω, the stabiliser of α in A is denoted by Aα, the orbit of α under A

by αA, and the set of all orbits under A by Orb(A,Ω).
The right regular representation of G is denoted by ρG, i.e., for x, y ∈ G, xρG(y) = xy. The

image ρG(G) is also denoted by GR.
The set of all permutation groups of G containing GR is denoted by Sup(GR).
For a set ∆ ⊆ Sym(G) and a section S = U/L of G, we set

∆S = {ϕS : ϕ ∈ ∆, Sϕ = S},

where Sϕ = S means that ϕ maps U to itself and permutes the L-cosets in U among themselves
and ϕS denotes the bijection of S induced by ϕ.

2. S-rings

Let G be a finite group with identity element e and ZG be the integer group ring. A subring
A ⊆ ZG is called an S-ring (or Schur ring) over G if there exists a partition S(A) of G such that

(1) {e} ∈ S(A),

(2) if X ∈ S(A) then X−1 ∈ S(A),

(3) A = SpanZ{X : X ∈ S(A)}.

The elements in S(A) are called the basic sets of A and the number rk(A) := |S(A)| is called the
rank of A. The definition of an S-ring is due to Wielandt (see [32, Chapter IV]). The motivation
comes from the following result of Schur (see [32, Theorem 24.1]).

Theorem 2.1. ([28]) If A ∈ Sup(GR), then the Z-submodule SpanZ{X : X ∈ Orb(Ae, G)} is a
subring of ZG.

Clearly, the ring in the theorem is an example of an S-ring, also called the transitivity module
over G induced by A and denoted by V (G,Ae). An S-ring A is called schurian if A = V (G,Ae)
for some permutation group A ∈ Sup(GR). We remark that not all S-rings are schurian (see [32]).
In the particular case when A = GRK for some subgroup K 6 Aut(G), the S-ring V (G,Ae) is
called cyclotomic and also denoted by Cyc(K,G). In this case the basic sets are the orbits under
K.

Let A be an S-ring over a group G. A set X ⊆ G is called an A-set if X ∈ A, and a subgroup
H 6 G is called an A-subgroup if H ∈ A. The S-ring A is primitive if G contains no non-trivial
proper A-subgroup. Suppose that A = V (G,Ae) for some permutation group A ∈ Sup(GR). Then
H 6 G is an A-subgroup if and only if the partition of G into its right H-cosets is A-invariant.
Hence A is primitive if and only if so is V (G,Ae).

Proposition 2.2. ([31]) Suppose that G is an abelian group of composite order having a cyclic
Sylow subgroup. Then every primitive S-ring over G is of rank 2.

For a subset X ⊆ G and integer m, define X(m) = {xm : x ∈ X}; and for a group ring element

η =
∑

g∈G cgg, define η
(m) =

∑

g∈G cgg
m. Two useful properties of S-rings over abelian groups are

invoked next. The statement in part (i) is [32, Theorem 23.9(a)] and the statement in part (ii)
follows from the proof of [32, Theorem 23.9(b)]. For an abelian group G and a prime divisor p of
the order of G we will use the notation G[p] = {g ∈ G : gp = e}.

Proposition 2.3. ([32]) Let A be an S-ring over an abelian group G.
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(i) If m is an integer coprime to |G| and η ∈ A, then η(m) ∈ A. In particular, X(m) ∈ S(A)
whenever X ∈ S(A).

(ii) If p is a prime divisor of |G|, 1 6 k 6 p− 1 and X ⊆ G is an A-set, then the set

X [p,k] := {xp : x ∈ X and |X ∩ xG[p]| ≡ k(mod p)}

is an A-set (possibly empty). Hence the set

X [p] := {xp : x ∈ X and |X ∩ xG[p]| 6≡ 0(mod p)}

is also an A-set.

Let G be an arbitrary group and A be an S-ring over G. With each A-set X one can naturally
associate two A-subgroups, namely, 〈X〉 and

rad(X) := {g ∈ G : gX = Xg = X}.

Let L P U 6 G. The section U/L is called an A-section if U and L are A-subgroups. If
S = U/L is an A-section, then the module

AS := SpanZ{X
πU/L : X ∈ S(A), X ⊆ U}

is an S-ring over S. Note that, if A = V (G,Ae) and S is an A-section, then AS = V (S, (AS)eS)
and so AS is schurian (see [15, Proposition 2.8]). Here eS denotes the identity element of S.

Let A be an S-ring over a group G and B be an S-ring over a group H. A bijection ϕ : G→ H
is called an isomorphism from A to B if rk(A) = rk(B) = r, and there is an ordering X1, . . . ,Xr

of the basic sets in S(A) and an ordering Y1, . . . , Yr of the basic sets in S(B) such that ϕ is an
isomorphism from Cay(G,Xi) to Cay(H,Yi) for every 1 6 i 6 r. If there is an isomorphism from
A to B, then we say that A and B are isomorphic and write A ∼= B. Let Iso(A,B) denote the set
of all isomorphisms from A to B. An isomorphism ϕ ∈ Iso(A,B) is called normalised if it maps
the identity element eG to the identity element eH . If ϕ is normalised, then X ϕ

i ∈ S(B) for every
basic set Xi ∈ S(A) and ϕ also satisfies the condition:

∀1 6 i, j 6 r : (XiXj)
ϕ = X ϕ

i X
ϕ
j . (1)

Some further properties are collected below.

Proposition 2.4. ([15, Proposition 2.7]) Let ϕ : A → B be a normalised isomorphism from an
S-ring A over a group G to an S-ring B over a group H, and let E 6 G be an A-subgroup.

(i) The image Eϕ is a B-subgroup of H. Moreover, the restriction ϕE : E → Eϕ is an isomor-
phism between AE and BEϕ.

(ii) For each x ∈ G, (Ex)ϕ = Eϕxϕ.

(iii) If E P G and Eϕ P H, then the mapping ϕG/E : G/E → H/Eϕ, defined by (Ex)ϕ
G/E

= Eϕxϕ

is a normalised isomorphism between AG/E and BH/Eϕ.

We are interested in isomorphisms between S-rings over the same group and set

Iso(A) =
⋃

B is an S-ring
over G

Iso(A,B) and Isoe(A) = {ϕ ∈ Iso(A) : eϕ = e}.

Clearly, Iso(A,A) is a subgroup of Sym(G), which contains the normal subgroup defined as

Aut(A) =
⋂

X∈S(A)

Aut(Cay(G,X)).

This is called the automorphism group of A (see [16]). Clearly, GR 6 Aut(A).
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3. DCI-groups and CI-S-rings

Babai [2] gave the following group theoretical criterion for a subset X ⊆ G to be a CI-subset.

Proposition 3.1. ([2, Lemma 3.1]) A subset X ⊆ G is a CI-subset if and only if any two regular
subgroups of Aut(Cay(G,X)) isomorphic to G are conjugate in Aut(Cay(G,X)).

Let A,B ∈ Sup(GR) such that A 6 B. Then A is said to be a GR-complete subgroup of B,
denoted by A �G B, if for every ϕ ∈ Sym(G), the inclusion (GR)

ϕ 6 B implies (GR)
ϕψ 6 A for

some ψ ∈ B (see [15, Definition 2]). Notice that, the relation �G is a partial order on Sup(GR).
In this context Proposition 3.1 reads as

X ⊆ G is a CI-subset ⇐⇒ GR �G Aut(Cay(G,X)). (2)

Let A 6 Sym(G). The 2-closure A(2) is the largest permutation group of G satisfying

Orb(A(2), G×G) = Orb(A,G ×G),

where the groups A(2) and A act on G × G coordinate-wise. The group A is called 2-closed if
A(2) = A. If A = V (G,Ae), then Aut(A) = A(2). It is well-known that Aut(Cay(G,X)) is 2-closed
for any subset X ⊆ G. It follows from this and (2) that G is a DCI-group if GR �G A for every
2-closed permutation group A ∈ Sup(GR).

Proposition 3.2. ([15, Theorem 2.6]) Let A ∈ Sup(GR) be a 2-closed permutation group and
A = V (G,Ae). Then the following statements are equivalent.

(i) GR �G A.
(ii) Iso(A) = Aut(A)Aut(G).
(iii) Isoe(A) = Aut(A)eAut(G).

An S-ring A over G is called a CI-S-ring (or CI for short) if Aut(A)Aut(G) = Iso(A) (see [15,
Definition 3]).

Proposition 3.3. ([30, Proposition 2.4]) Let A, B ∈ Sup(GR) such that B 6 A, A = V (G,Ae)
and B = V (G,Be). If B �G Aut(A) and B is CI, then A is also CI.

This allows us to consider only minimal elements of the poset (Sup(GR),�G). The set of such
elements will be denoted by Supmin(GR).

Corollary 3.4. If V (G,Ae) is CI for every A ∈ Supmin(GR), then G is a DCI-group.

In fact, we are going to derive Theorems 1.1 and 1.2 by showing that the condition in Corol-
lary 3.4 holds whenever G is one of the groups in the cited theorems.

We conclude the section with a useful lemma.

Lemma 3.5. Let G be an abelian group, A ∈ Supmin(GR) and A = V (G,Ae). Suppose that there
exist A-subgroups L < U 6 G such that |U/L| = npt for a prime p and 1 < n < p. Then LUp is
an A-subgroup, where Up is the Sylow p-subgroup of U .

Proof. Let F1 := GR, F2, . . . , Fk be a complete set of representatives of the conjugacy classes of
regular subgroups of A isomorphic to G. Then A = 〈F1, . . . , Fk〉 because of A ∈ Supmin(GR). For

an easier notation, write B for BG/L, where B 6 A is any subgroup, and ē for the identity element
of G/L. Furthermore, denote by B {U/L} the setwise stabiliser of U/L in B.

For 1 6 i 6 k, let Pi be the Sylow p-subgroup of (Fi){U/L} and P be a Sylow p-subgroup of

A {U/L} such that P1 6 P . It follows from |U/L| = npt and n < p that a Sylow p-subgroup

of Sym(U/L) has n orbits, each containing pt elements (see [5, Example 2.6.1]). On the other
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hand, acting on U/L, the orbits under P1 are equal to the cosets of LUp/L in U/L, and therefore,
Orb(P1, U/L) = Orb(P,U/L).

Fix i, 2 6 i 6 k. By Sylow’s theorem P δii 6 P for some δi ∈ A {U/L}. Using also that Fi is

abelian, we find that the partition of U/L into its LUp/L-cosets is Fi
δi-invariant. Thus it is also

D-invariant for D := 〈F1, F2
δ2 , . . . , Fk

δk〉. In other words, LUp/L ∈ V (G/L,Dē).

Let γi be a preimage of δi under the epimorphism A→ A. Then

A = V (G,Ae) = V (G, 〈F1, . . . , Fk〉e) = V (G, 〈F1, F
γ2
2 , . . . , F γkk 〉e),

and so

AG/L = V
(

G/L, 〈F1, F
γ2
2 , . . . , F γkk 〉ē) = V

(

G/L, 〈F1, F2
δ2 , . . . , Fk

δk〉ē) = V (G/L,Dē).

This shows that LUp/L ∈ AG/L, implying that LUp ∈ A. �

4. Products of CI-S-rings

In this section we review the star and the generalised wreath product of S-rings. The former was
introduced by Hirasaka and Muzychuk [15] and the latter by Evdokimov and Ponomarenko [12]
and independently by Leung and Man [20] under the name wedge product.

4.1. Star product. Let A be an S-ring over a group G and V,W 6 G be two A-subgroups. The
S-ring A is the star product of AV with AW , written as A = AV ⋆AW , if

(1) V ∩W ⊳W ,

(2) every X ∈ S(A), X ⊆W \ V is a union of some (V ∩W )-cosets,

(3) for every X ∈ S(A) with X ⊆ G \ (V ∪W ), there exist basic sets Y,Z ∈ S(A) such that
X = Y Z, Y ⊆ V and Z ⊆W .

The star product is non-trivial if V 6= {e}, G. In the special case when V ∩W = {e} it is also
called the tensor product and written as AV ⊗AW .

Proposition 4.1. (cf. [17, Proposition 3.2 and Theorem 4.1]) Let G be a direct product of ele-
mentary abelian groups, A ∈ Sup(GR) and A = V (G,Ae). If A = AV ⋆AW and both S-rings AV

and AW/(V ∩W ) are CI, then A is also CI.

Corollary 4.2. In particular, if A = AV ⊗AW and both S-rings AV and AW are CI, then A is
also CI.

Proposition 4.3. ([11, Lemma 2.3.(2)]) Let G be an abelian group and A be an S-ring over G.
Suppose that G = H1 ×H2 with A-subgroups H1, H2. Then A ⊇ AH1 ⊗AH2, and the equality is
attained whenever AH1 = ZH1 or AH2 = ZH2.

Lemma 4.4. Let G be an abelian group, A ∈ Supmin(GR) and A = V (G,Ae). Suppose that
G = H1 ×H2 with A-subgroups H1, H2. Then A = AH1 ⊗AH2 . If AH1 and AH2 are CI, then A
is also CI.

Proof. Let Ki be the kernel of the action of A on the set of Hi-cosets where i = 1, 2. The groups
K1, K2 are normal in A and intersect trivially because H1 ∩ H2 = {e}. Pick a regular abelian
subgroup F 6 A. Then F = (F ∩K1)×(F ∩K2) 6 K1K2. Therefore, any regular abelian subgroup
of A is contained in K1K2, implying that K1K2 �G A. By �G-minimality of A we conclude that
A = K1K2.

Therefore, the permutation group A = K1K2 acting on G = H1H2 is permutation isomorphic
to the permutation direct product KH1

1 × KH2
2 acting on H1 × H2 (see [5, p. 17]). This implies

that A = AH1 ⊗AH2 , as required. If AHi and AH2 are CI, then so is A by Corollary 4.2. �
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4.2. Generalised wreath product. Let A be an S-ring over a group G and S = U/L be an
A-section of G. The S-ring A is the S-wreath product (also called the generalised wreath product
of AU with AG/L), written as A = AU ≀S AG/L, if

(1) L P G,

(2) every X ∈ S(A), X ⊆ G \ U is union of some L-cosets.

The S-wreath product is non-trivial if L 6= {e} and U 6= G. Notice the following relation with
the star product. If AV ⋆AW is defined over the group G such that V ∩W P G, then the latter
star product becomes the V/(V ∩W )-wreath product.

An S-ring A is called decomposable if it can be expressed as a non-trivial S-wreath product and
indecomposable otherwise. In the special case when U = L, i.e., S is trivial, the S-wreath product
is also called wreath product and written as AU ≀ AG/U .

The following result is a sufficient condition for the CI-property of a generalised wreath product.
To state the condition, we set the notation: AutG(A) := Aut(A) ∩ Aut(G). Clearly, if S is an
A-section of G, then AutG(A)S 6 AutS(AS).

Proposition 4.5. ([18, Theorem 1.1]) Let G be a direct product of elementary abelian groups, and
A = AU ≀S AG/L be a non-trivial S = U/L-wreath product such that both AU and AG/L are CI.
Then A is CI whenever

AutS(AS) = AutU (AU )
S AutG/L(AG/L)

S .

Note that, if AS = ZS in Proposition 4.5, then AutS(AS) is trivial, so we obtain the following.

Corollary 4.6. If AS = ZS in Proposition 4.5, then A is CI.

Two subgroups K1,K2 6 Aut(G) are Cayley equivalent, written as K1 ≈Cay K2, if Orb(K1, G)
= Orb(K2, G) (see [18]). A cyclotomic S-ring A over G is said to be Cayley minimal if

{

K 6 Aut(G) : K ≈Cay AutG(A)
}

= {AutG(A)}.

Proposition 4.7. ([19, Lemma 4.2]) With the assumptions in Proposition 4.5, suppose that at
least one of the S-rings AU and AG/L is cyclotomic and AS is Cayley minimal. Then A is CI.

This proposition will be especially useful in conjunction with the following lemma.

Lemma 4.8. Let A be an S-ring over a cyclic group G of order n.

(i) If n is a prime, then A is cyclotomic.
(ii) If n = pq for distinct primes p, q and rk(A) 6= 2, then A is cyclotomic or a non-trivial wreath

product of two S-rings.
(iii) If A is cyclotomic, then it is Cayley minimal.

Proof. The statement in (i) follows from Proposition 2.3(i). The statement in (ii) follows from [16,
Theorem 2.10].

For (iii) let A = Cyc(K,G) for a subgroup K 6 Aut(G). Let x be a generator of G and
X ∈ S(A) be the basic set containing x. It is easy to see that K is regular on X, hence |K| = |X|.
This implies that AutG(A) = K and K ′ 6≈Cay K for any proper subgroup K ′ < K, i.e., A is Cayley
minimal. �

Dobson and Witte [8] described the groups in Sup(GR) where G ∼= C2
p for a prime p (the

description of the imprimitive groups were obtained earlier by Jones [14]). The proposition below
follows from their result and for our convenience it is formulated here in the language of S-rings.

Proposition 4.9. (cf. [8, Theorem 14]) Let G ∼= C2
p for a prime p, A ∈ Sup(GR) and A =

V (G,Ae). If G contains exactly one A-subgroup of order p, say L, then A = AL ≀ AG/L.
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An S-ring A over a group G is a p-S-ring if G is a p-group and for every X ∈ S(A), |X| is equal
to a power of p.

Proposition 4.10. ([17, Lemma 5.2]) Let G be an abelian group, A ∈ Supmin(GR) and A =
V (G,Ae). Suppose that U is an A-subgroup such that G/U is a p-group for a prime p. Then
AG/U is a p-S-ring.

It is obvious that ZCp is the only p-S-ring over Cp. Furthermore, it is well-known that up to
isomorphism, there are two p-S-rings over C2

p , namely

ZC2
p and ZCp ≀ ZCp, (3)

(see, e.g., [15, Section 3.1].
For the next two propositions let G be an abelian group such that q | |G| and q2 ∤ |G| for a

prime q and let A be an S-ring over G. Let Q be the least A-subgroup of order divisible by q and
H be the unique maximal A-subgroup of order coprime to q.

Proposition 4.11. ([30, Corollary 3.2]) With notation as above, A is the HQ/Q-wreath product.

Proposition 4.12. ([30, Propositions 3.4 and 3.5]) With notation as above, if |HQ/H| 6= q or
AHQ/H

∼= ZCq, then AHQ = AH ⋆AQ.

Lemma 4.13. With the assumptions in Proposition 4.5, A is CI whenever AG/L = AS ⊗AH for
some AG/L-subgroup H < G/L.

Proof. The following containment is clear:

AutG/L(AG/L)
S > (AutS(AS)×AutH(AH))

S = AutS(AS).

On the other hand, AutG/L(AG/L)
S 6 AutS(AS) and therefore, AutG/L(AG/L)

S = AutS(AS).
Then A is CI by Proposition 4.5. �

Lemma 4.14. Let G be an abelian group, A ∈ Supmin(GR) and A = V (G,Ae). Suppose that A is
indecomposable and L is an A-subgroup of prime order. Then ρG(L) 6 Z(A). Moreover, for each
u ∈ L, {u} ∈ S(A).

Proof. Let p = |L| and write L̂ = ρG(L). Let K be the kernel of the action of A on the set of
L-cosets in G. For x ∈ G, let KLx denote the pointwise stabiliser of Lx in K. Define the binary
relation ∼ on the set of L-cosets in G by Lx ∼ Ly if and only if KLx = KLy. It is obvious that
∼ is an equivalence relation. Also, for arbitrary γ ∈ A, K(Lx)γ = (KLx)

γ , implying that ∼ is also
A-invariant. This shows that the set {Lx : Lx ∼ L} is a block for A acting on the set of L-cosets in
G. Consequently, the set U :=

⋃

Lx∼L
Lx is a block for A acting on G, and so U is an A-subgroup.

Clearly, L 6 U .
Let γ ∈ KLx for some x ∈ U . By the definition of U , γ ∈ KU , the pointwise stabiliser of U in

K. In other words, KU is faithful on Lx for every x ∈ U .
Assume for the moment that U < G. Let x /∈ U . The group K acts primitively on Lx because

|Lx| = p, and KL P K. Since x /∈ U , L 6∼ Lx, and hence (KL)
Lx 6= 1. We obtain that the

orbit xKL = Lx, so L 6 rad(xAe). This shows that A is the non-trivial U/L-wreath product, a

contradiction. Thus U = G. As K = KU is faithful on L, L̂ is the unique Sylow p-subgroup of K.
On the other hand, if F 6 A is any abelian regular subgroup, then K ∩ F has order p, and thus
we find K ∩ F = L̂, in particular, L̂ 6 Z(F ). This yields L̂ 6 Z(A) because A is generated by its
regular subgroups isomorphic to G due to the condition A ∈ Supmin(GR).

For the second assertion, choose u ∈ L and let X ∈ S(A) be the basic set containing u. Then

X = uAe and as L̂ 6 Z(A), we obtain X = eρG(u)Ae = (eAe)ρG(u) = {u}. �
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5. Proof of Theorem 1.1

Throughout this section we keep the following notation:

G ∼= Cp × Cn for a prime p and a square-free number n (that may or may not be

divisible by p), A ∈ Supmin(GR) and A = V (G,Ae).

In view of Corollary 3.4, it is sufficient to show that A is CI. We proceed by induction on the
total number of prime divisors (counted with multiplicities) of |G|, that we will denote by Ω(|G|).

If Ω(|G|) = 1, then G ∼= Cp. It follows from Proposition 3.1 via Sylow’s theorem that A = GR,
hence A = ZG, which is clearly CI.

Assume that Ω(|G|) > 1 and the assertion holds for any group G̃ ∼= Cp̃×Cñ, where p̃ is a prime,

ñ is square-free and Ω(|G̃|) < Ω(|G|). Note that, this implies that every schurian S-ring over G̃ is
CI.

If G ∼= C2
p , then A ∼= ZC2

p or ZCp ≀ZCp by Proposition 4.10 and (3). In either case, A is CI (for
the latter S-ring, see Corollary 4.6).

Now, let np′ > 1, where np′ denotes the p
′-part of n. Let np′ = q1 · · · qk be the prime decompo-

sition of np′ , P be the Sylow p-subgroup and C be the Hall p′-subgroup of G. Then P ∼= Cp or C
2
p

and C ∼= Cnp′
. For 1 6 i 6 k, let Qi be the least A-subgroup of G of order divisible by qi, and Hi

be the unique maximal A-subgroup of order coprime to qi.

Claim 1. A is CI, unless HiQi 6= G for every 1 6 i 6 k.

Suppose that HiQi = G for some 1 6 i 6 k. Then A = AHi ⋆ AQi. This follows from
Proposition 4.12 if |G/Hi| 6= qi, and from Propositions 4.10 and 4.12 if |G/Hi| = qi.

If Qi/(Qi ∩Hi) 6∼= G, then the induction hypothesis guarantees that both AHi and AQi/(Qi∩Hi)

are CI, and hence so is A by Proposition 4.1.
Let Qi/(Qi ∩ Hi) ∼= G. Then Qi = G, Hi = {e}, and these imply that A is primitive. By

Proposition 2.2, rk(A) = 2, and so A is CI in this case as well. This completes the proof of
Claim 1.

Claim 2. A is CI, unless C is an A-subgroup and AG/C
∼= ZC2

p .

In view of Claim 1, we may assume that HiQi 6= G for every 1 6 i 6 k. Then A is the non-trivial
HiQi/Qi-wreath product by Proposition 4.11.

Assume first that P ∼= Cp, i.e., G is a cyclic group. Let X ∈ S(A) be a basic set containing a
generator of G, say x, and let V = rad(X). Then for every 1 6 i 6 k, x /∈ HiQi, and so V > Qi.
We obtain V = C, in particular, C ∈ A. By Proposition 4.10, AG/V

∼= ZCp, and it follows that
X = V x. This and Proposition 2.3(i) imply that A = AV ≀ AG/V , hence A is CI by Corollary 4.6.

Now, suppose that P ∼= C2
p and let c be a generator of C.

Assume for the moment that some cyclic subgroup of index p is not an A-subgroup, i.e., 〈xc〉 /∈ A

for some x ∈ P#. Let X ∈ S(A) be the basic set containing xc and let V = rad(X). If xc ∈ HiQi
for some 1 6 i 6 k, then 〈xc〉 = HiQi because |〈xc〉| = |G|/p and HiQi < G, and this contradicts
that 〈xc〉 /∈ A. Thus xc /∈ HiQi for every 1 6 i 6 k, and one finds as above that V > C. If

V = C, then C ∈ A. The basic set X/V ∈ S(AG/V ) satisfies | rad(X/V )| = 1. On the other hand,

AG/V = AG/C
∼= ZC2

p or ZCp ≀ ZCp by Proposition 4.10 and (3). We conclude that X = V x, and
so 〈xc〉 = 〈X〉 ∈ A, which is impossible. Thus V > C, and it can be deduced from this in the
same way as before that A = AV ≀ AG/V , so A is CI.

To sum up, A is CI, unless 〈xc〉 ∈ A for every x ∈ P#. It is easy to see that this implies C ∈ A

and AG/C
∼= ZC2

p .

Claim 3. A is CI.
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In view of Claim 2, we may assume that C ∈ A and AG/C
∼= ZC2

p . By Proposition 3.2, A is
CI exactly when Isoe(A) = Aut(A)eAut(G). Let ϕ ∈ Isoe(A). We finish the proof of Claim 3 by
finding an automorphism α ∈ Aut(G) such that

∀X ∈ S(A) : Xϕ = Xα. (4)

By Proposition 2.4(i), Cϕ is a subgroup of G of order np′ . Thus Cϕ = C, and the restriction

ϕC induces a normalised isomorphism of AC , see Proposition 2.4(i). Furthermore, ϕG/C is a
normalised isomorphism of AG/C defined in Proposition 2.4(iii). Since both AC and AG/C are
schurian, these are also CI by the induction hypothesis. Thus there exists α1 ∈ Aut(C) such that

∀X ∈ S(A),X ⊆ C : XϕC = Xα1 . (5)

Also, there exists α2 ∈ Aut(G/C) such that

∀X ∈ S(A) : (XπG/C )ϕ
G/C

= (XπG/C )α2 . (6)

Since G ∼= C × G/C, there exists a unique automorphism α ∈ Aut(G) such that αC = α1 and

αG/C = α2. We claim that α satisfies the condition in Eq. (4).
If X ∈ S(A), X ⊆ C, then by Eq. (5), Xϕ = XϕC = Xα1 = Xα.
Let X ∈ S(A), X 6⊆ C. Since AG/C

∼= ZC2
p , X ⊆ Cx for some element x ∈ P#. Let U = 〈C, x〉.

Then U = 〈X〉C, showing that U ∈ A. Let P1 be the minimal A-subgroup contained in U whose
order is divisible by p. By Proposition 4.12, AU = AC ⋆AP1 . Moreover, letting D = P1 ∩ C, the
basic set X can be written in the form

X = Y Dx, Y ∈ S(A), Y ⊆ C. (7)

Assume first that Y = {e} in Eq. (7), i.e., X = Dx. Let ψ = ϕα−1 ∈ Sym(G). Then
ψ ∈ Isoe(A). Using Proposition 2.4(ii)–(iii) and Eq. (6), we can write

(Cx)ϕ = Cxϕ = (Cx)ϕ
G/C

= (Cx)α2 = (Cx)α.

This shows that (Cx)ψ = Cx and so Uψ = U . Thus Pψ1 6 U , and as |P ψ
1 | = |P1| also holds,

P ψ
1 = P1. We conclude

(Dx)ψ = (Cx ∩ P1)
ψ = Cx ∩ P1 = Dx.

Equivalently, (Dx)ϕ = (Dx)α.
Finally, let Y 6= {e} in Eq. (7). Then by Eq. (1), Xϕ = (Y Dx)ϕ = Y ϕ(Dx)ϕ = Y α(Dx)α = Xα.

This completes the proof of Claim 3 as well as the proof of Theorem 1.1.

6. Primitive rational S-rings over C2
p × C2

q and translation nets

Let G be an abelian group and exp(G) be its exponent. Let P(G) be the subgroup of Aut(G)
consisting of the power automorphisms

πm : x 7→ xm, x ∈ G,

where 1 6 m 6 exp(G) and gcd(m, exp(G)) = 1.
The trace X◦ of a subset X ⊆ G is defined by X◦ =

⋃

πm∈P(G)X
πm . The cyclotomic S-ring

Cyc(P(G), G) is also known as the complete S-ring of traces over G and denoted by W (G). If A is
an S-ring over G, then its rational closure A◦ is defined by A◦ = A∩W (G). The S-ring A is called
rational if A◦ = A, i.e., A ⊆W (G). In this case X◦ = X holds for every basic set X ∈ S(A). We
also say that X is rational if X◦ = X.

Lemma 6.1. (i) Let A be an S-ring over the abelian group G and X ∈ S(A) be a basic set. If
X contains elements of coprime orders, then X is rational.
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(ii) Let G be an abelian group whose order is divisible by at least two distinct primes and let A
be an S-ring over G. If A◦ is of rank 2, then so is A.

Proof. (i): Assume that x1, x2 ∈ X have coprime orders. Then we can write G as a direct product
G = G1 × G2, where x1 ∈ G1, x2 ∈ G2 and gcd(|G1|, |G2|) = 1. Let m be an integer such that
gcd(m, exp(G)) = 1. We have to show that Xπm = X. By the Chinese remainder theorem we can
find m1 and m2 satisfying

m1 ≡ 1 (mod exp(G1)), m1 ≡ m (mod exp(G2)),

m2 ≡ m (mod exp(G1)), m2 ≡ 1 (mod exp(G2)).

Then m1m2 ≡ m (mod exp(G)). By Proposition 2.3(i) we have that Xπm1 ,Xπm2 ∈ S(A). Since
x1 ∈ X ∩Xπm1 and x2 ∈ X ∩Xπm2 we obtain Xπm1 = Xπm2 = X, hence Xπm = X as well.

(ii): Let {e} 6= X ∈ S(A). Then X◦ = G#, hence X contains elements of every prime order
occurring in G. By (i), it follows that X = G#. �

For the next lemma we define a particular subgroup of P(G). If p is a prime divisor of |G|, then
let

Pp(G) = {πm ∈ P(G) : m ≡ 1 (mod exp(G)p′)}.

Lemma 6.2. Let G be an abelian group with Sylow p-subgroup Gp ∼= C2
p and assume that Gp 6= G.

Let A be a primitive S-ring over G, X ∈ S(A) a Pp(G)-invariant basic set and x ∈ G# a p′-
element. Then X ∩ Gpx is one of the following sets: ∅, Rx or (Gp \ R)x for a subgroup R 6 Gp
of order p, Gp.

Proof. Consider the set X [p]. It is contained in Gp′ , the Hall p′-subgroup of G, and by Proposi-

tion 2.3(ii), it is an A-set. If p ∤ |X ∩ Gpx|, then 〈X [p]〉 is a non-trivial proper A-subgroup. But
this is impossible as A is primitive, hence p | |X ∩Gpx|. Now X ∩Gpx is mapped to itself by every

automorphism in Pp(G), hence X ∩Gpx = (X ∩ {x})∪
⋃m
i=1R

#
i x with some p-element subgroups

R1, . . . , Rm 6 Gp (0 6 m 6 p + 1). Thus |X ∩ Gpx| = f + m(p − 1), where f ∈ {0, 1}. As
p | |X ∩Gpx|, we obtain that (f,m) = (0, 0), (1, 1), (0, p) or (1, p + 1), and the result follows. �

We analyse rational S-rings over G ∼= C2
p1 × · · · × C2

pk
, where p1, . . . , pk are pairwise distinct

primes. Clearly,
W (G) =W (Gp1)⊗ · · · ⊗W (Gpk),

where Gpi is the Sylow pi-subgroup of G. The basic sets ofW (Gpi) distinct from {e} are in one-to-
one correspondence with the pi+1 proper non-trivial subgroups of Gpi , denoted by Li,1, . . . , Li,pi+1.

The basic set corresponding to Li,j is Xi,j := L#
i,j. Furthermore, we set the notation Xi,0 for the

basic set {e}. Writing [0, n] for {0, 1, . . . , n}, we obtain

S(W (G)) =
{

k
∏

i=1

Xi,ti : (t1, . . . , tk) ∈ [0, p1 + 1]× · · · × [0, pk + 1]
}

.

This shows that W (G) is of rank
∏k
i=1(pi + 2).

Let now A be an arbitrary rational S-ring over G, i.e., A ⊆ W (G). Every basic set of A
is a union of basic sets of W (G), and for this reason, it is encoded by a non-empty subset of
[0, p1+1]×· · ·× [0, pk+1]. More precisely, if T ⊆ [0, p1+1]×· · ·× [0, pk+1], then the corresponding
basic set X is given as

X =
⋃

(t1,...,tk)∈T

k
∏

i=1

Xi,ti . (8)
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Given an arbitrary subset T ⊆ [0, p1 + 1] × · · · × [0, pk + 1], a (k − 1)-tuple a ∈ Zk−1 and a
number 1 6 i 6 k, define the subset Ti(a) ⊆ [0, pi + 1] as follows:

Ti(a) = {ti : ∃ t = (t1, . . . , tk) ∈ T such that (t1, . . . , ti−1, ti+1, . . . , tk) = a}.

Lemma 6.3. With the notation as above, suppose that A is primitive, k > 2 and T ⊆ [0, p1 +1]×
· · ·× [0, pk +1] corresponds to a basic set of A. Then for each non-zero (k− 1)-tuple a ∈ Zk−1 and
1 6 i 6 k,

Ti(a) = ∅ or {0, ℓ} or [0, pi + 1] \ {0, ℓ} or [0, pi + 1]

for some 1 6 ℓ 6 pi + 1.

Proof. Suppose that Ti(a) 6= ∅. It follows from Eq. (8) that aj ∈ [0, pj + 1] if 1 6 j < i and
aj ∈ [0, pj+1 + 1] if i 6 j 6 k − 1. Let X be the basic set corresponding to T . Then

X ∩Gpi

i−1
∏

j=1

Xj,aj

k−1
∏

j=i

Xj+1,aj =
⋃

ℓ∈Ti(a)

(

Xi,ℓ

i−1
∏

j=1

Xj,aj

k−1
∏

j=i

Xj+1,aj

)

.

Thus, for a fixed x ∈
∏i−1
j=1Xj,aj

∏k−1
j=i Xj+1,aj , X ∩Gpix =

(
⋃

j∈Ti(a)
Xi,j

)

x. Then x 6= e because

at least one of the entries aj is non-zero, and Lemma 6.2 can be applied to X ∩Gpix. We conclude
that, either there exists a subgroup R 6 Gpi of order pi such that

⋃

j∈Ti(a)
Xi,j = R or Gpi \R, or

else Xi,j = Gpi (recall that, Ti(a) 6= ∅ was assumed at the beginning of the proof). �

The next theorem is the main result of this section, which is of independent interest.

Theorem 6.4. Suppose that G ∼= C2
p×C

2
q for distinct odd primes p, q and A is a primitive rational

S-ring over G of rank at least 3. Then A has a basic set of the form

H#
1 ∪ · · · ∪H#

m ,

where each Hi 6 G is of order pq and Hi ∩Hj = {e} if i 6= j.

Proof. We consider the partition of G# into the basic sets of A distinct from {e}. Denote the
latter basic sets by X,Y,Z, etc. We imagine such partition as a (p+1)× (q+1) matrixM filled up
with the letters X,Y,Z, etc. More precisely, let Mi,j = X if and only if (i, j) ∈ [1, p+1]× [1, q+1]
belongs to the subset of [0, p+1]× [0, q+1] corresponding to X. Here and in what follows, we use
the description of the basic sets of A established in Eq. (8) with abbreviation p1 = p and p2 = q.

Notice that, Lemma 6.3 implies that the subsets of [0, p + 1] × [0, q + 1] corresponding to the
basic sets X,Y,Z, etc. are determined uniquely by M (hence as well as A). We will freely use
symmetries arising by permuting the rows, the columns, the letters, and transposing the matrix.

Suppose that Mi,j = X and Mi,j′ 6= X if j′ 6= j. Let T ⊆ [0, p + 1] × [0, q + 1] be the
subset corresponding to X. Then T2(i) = {0, j} by Lemma 6.3. In particular, (i, 0) ∈ T , and so

X1,iX2,0 = L#
1,i ⊆ X. This shows that X is the only letter in the ith row occurring exactly once.

Applying Lemma 6.3 again, one concludes that each row and each column is filled up with either
a single letter or with the same letter with one exception. We will call the letter that occurs there
with at most one exception the dominant letter of the row or column.

Assume to the contrary to the claim in the theorem that no basic set of A is the union of
pairwise disjoint subgroups of order pq without the identity element. This means that every letter
is dominant in at least one row or column. As rk(A) > 3, there are at least two letters. Moreover,
primitivity implies that every letter occurs in at least two rows and in at least two columns.

There cannot be three different dominant letters of rows, since in that case there would be a
column containing three different letters. As p, q > 2, we may assume w.l.o.g. that the number
of rows is at least 6. Thus, there are 3 rows with the same dominant letter, say, X, hence we see
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that with at most one exception the dominant letter of the columns is X. Now, since the number
of columns is at least 4, we also conclude that with at most one exception the dominant letter of
the rows is X.

We show next that there cannot be three different letters. W.l.o.g. the first p rows are dominated
by X, the last row by Y , the first q columns by X, and the last column by Z. The letter Y should
appear somewhere in the first p rows (as it was pointed out, this follows from primitivity). Since
no column is dominated by Y , this is the only Y in its column. Hence up to permuting the rows
and columns, the matrix M must look like this:

M =











X X . . . X X Y

X X . . . X X Z

...
...

. . .
...

...
...

X X . . . X X Z

Y Y . . . Y Y Z











.

Then Z occurs only in the last column, but primitivity does not allow this. So there are exactly
two letters, X and Y .

Case 1. Both the last row and column are dominated by Y and all others by X.

Subcase 1A. If the entry in the lower right corner is X, then the matrix is uniquely determined:

M =M1 :=











X X . . . X X Y

X X . . . X X Y

...
...

. . .
...

...
...

X X . . . X X Y

Y Y . . . Y Y X











.

Subcase 1B. If the entry in the lower right corner is Y , then up to permuting rows and columns
the matrix looks like this:

M =











? X . . . X X ?
X X . . . X X Y

...
...

. . .
...

...
...

X X . . . X X Y

? Y . . . Y Y Y











where each question mark should be replaced by X or Y in such a way that in the first row, as
well as in the first column, there can be at most one Y . That allows the following possibilities for
the corner elements of the matrix (up to transposition):

M2 :=





X . . . X

...
...

X . . . Y



, M3 :=





X . . . Y

...
...

X . . . Y



, M4 :=





X . . . Y

...
...

Y . . . Y



, M5 :=





Y . . . X

...
...

X . . . Y



.

Case 2. The last row is dominated by Y and all other rows as well as every column is dominated
by X.

By primitivity, Y must occur somewhere in the first p rows. No two Y ’s can be in the same
column, because each one is dominated by X. Hence up to permutations, we have a unique
possibility:

M =M6 :=











X X . . . X X Y

X X . . . X X X

...
...

. . .
...

...
...

X X . . . X X X

Y Y . . . Y Y X











.
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What is left to show is that none of the matrices M1, . . . ,M6 defines a primitive S-ring (of rank
3). Let P and Q be the Sylow p- and q-subgroups of G, respectively.

We start with the matrix M1. Let T ⊂ [0, p + 1] × [0, q + 1] be the subset corresponding to Y .
Using Lemma 6.3, we find

T =
{

(i, q + 1), (i, 0) : 1 6 i 6 p
}

∪
{

(p+ 1, j), (0, j) : 1 6 j 6 q
}

.

Then due to Eq. (8), Y = L1,p+1(Q \ L2,q+1) ∪ (P \ L1,p+1)L2,q+1. It can be seen easily that
Y x = Y for every x ∈ L1,p+1L2,q+1. Thus rad(Y ) is a non-trivial A-subgroup, contradicting that
A is primitive.

Similarly, if M = M3,M4, or M6 we can find a non-trivial A-subgroup contradicting the prim-
itivity of A. Namely, if M = M3, then Y = L1,p+1(Q \ L2,1) ∪ (P \ L1,p+1)L2,q+1, hence
rad(Y ) > L1,p+1. If M = M4, then X = (P \ L1,p+1)(Q \ L2,q+1), so rad(X) ≥ L1,p+1L2,q+1. If

M =M6, then Y = Q# ∪ L#
1,1L2,q+1 ∪ L#

1,p+1(Q \ L2,q+1), hence rad(Y ∪ {e}) > L2,q+1.
Let M =M2. Then one obtains Y = A ∪B ∪ C, where

A = (P \ (L1,1 ∪ L1,p+1))L2,q+1, B = L1,p+1(Q \ (L2,1 ∪ L2,q+1)) and C = L#
1,p+1L

#
2,q+1. (9)

Write (Y )2 =
∑

g∈G cgg. A straightforward computation shows that ch = p(q−2)2+2(p−1)(q−2)

for h ∈ Q \ (L2,1 ∪ L2,q+1), and ch′ = (p− 2)2q + 2(p− 2)(q − 1) for h ∈ P \ (L1,1 ∪ L1,p+1). Since
Y is a basic set of A and h, h′ ∈ Y , ch = ch′ must hold. This gives that (q − p)(pq − 2) = 0, a
contradiction.

Finally, let M = M5. Then Y = A ∪ B ∪ C ∪ (L1,1L2,1)
#, where A, B and C are defined

in (9). In this case write (Y )2 =
∑

g∈G c̃gg. Comparing the coefficients with the previous case

(M = M2) we see that c̃h = ch + 2(q − 2) for h ∈ Q \ (L2,1 ∪ L2,q+1), and c̃h′ = ch′ + 2(p − 2) for
h ∈ P \ (L1,1 ∪L1,p+1). As c̃h = c̃h′ must hold, we obtain (q− p)pq = 0, a contradiction again. �

The particular case when |G| = 36 is considered separately and the proposition below follows
from the database of S-rings over groups of small order due to Reichard [26].

Proposition 6.5. Suppose that G ∼= C2
2 × C2

3 and A is a primitive rational schurian S-ring over

G of rank at least 3. Then A has a basic set in the form H#
1 ∪H#

2 , where H1 and H2 are subgroups
of G of order 6 and H1 ∩H2 = {e}.

The subgroups Hi’s above and as well as in Theorem 6.4 can be used to define a translation net
with translation group GR (see [4, Definition 1]) and this connection will be explored in the proof
of Theorem 1.2. The rest of the section is devoted to translation nets.

An (n, k)-net N = (Ω,L) consists of a set Ω of n2 points and a set L of kn lines such that

(1) each line L ∈ L contains n points,
(2) L is partitioned into k parallel classes: L1, . . . ,Lk,
(3) any two lines from distinct parallel classes intersect at exactly one point.

The collinearity graph ΓN has vertex set Ω, and two points α and β are adjacent if and only if
there is a line L ∈ L passing through these points. ΓN is a strongly regular graph with parameters
(n2, k(n− 1), n − 2 + (k − 1)(k − 2), k(k − 1)) and non-principal eigenvalues n− k and −k.

Following [4], a weak automorphism of N is a permutation of Ω, which preserves the line set
L. By a strong automorphism we mean a weak automorphism when, in addition, it also preserves
each parallel class Li. If N admits a group H of strong automorphisms acting regularly on Ω,
then it is called a translation net with translation group H.

One way to construct an (n, k)-net is the following. Let H be a group of order n2. A partial
congruence partition of H with degree k (an (n, k)-PCP for short) is a family of k subgroups
H1, . . . ,Hk of order n such that Hi ∩ Hj = {e} whenever i 6= j. Letting Ω = H and L to
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be the set of all right cosets Hix, 1 6 i 6 k and x ∈ H, the pair (Ω,L) becomes an (n, k)-
net whose i-th parallel class Li consists of the cosets Hix, x ∈ H. Note that, the collinearity

graph is Γ(Ω,L) = Cay(H,D), where D =
⋃k
i=1H

#
i . Furthermore, (Ω,L) is a translation net with

translation group HR.

Proposition 6.6. Let N be an (n, k)-net such that n > (k − 1)2. Then the size of a clique of the
collinearity graph ΓN is bounded by n, and the lines of L are the only n-cliques of ΓN .

Proof. Let ∆ be a clique not contained in any line. We will show that |∆| 6 (k − 1)2. Choose a
line L such that m = |∆∩L| is as large as possible. As ∆ 6⊆ L, we can take a point δ ∈ ∆ \L. Let
L0 be the line through δ parallel to L, and let L1, . . . , Lm be the lines connecting δ to the points
in ∆ ∩ L. Then L0, L1, . . . , Lm are pairwise distinct, so m+ 1 6 k. Each point in ∆ is connected
to δ, hence we obtain |∆| 6 1 + k(m− 1) 6 (k − 1)2. �

Proposition 6.7. Let N = (Ω,L) be an (n, k)-net such that k < n and H be an abelian group of
weak automorphisms of N , which is regular on Ω. Then every element in H is a strong automor-
phism.

Proof. Note, first, that |H| = |Ω| = n2. Let L ∈ L and O = {Lh : h ∈ H} be the orbit of L
under H in its action on L. It follows from |O| ≤ |L| = nk < n2 = |H| that the setwise stabilizer
H{L} = {h ∈ H : Lh = L} is non-trivial. Since H is abelian, H{L} = H{Lh} for every h ∈ H. In

particular, the intersection L ∩ Lh is mapped to itself by H{L}. Using also that H is semiregular

on Ω, this implies that |L ∩ Lh| is divisible by |H{L}|. If L 6= Lh, then |L ∩ Lh| ∈ {0, 1}, and we
conclude that the lines in O are pairwise disjoint. Therefore, |H/H{L}| = |O| 6 n, implying that
|H{L}| ≥ n. On the other hand, |H{L}| 6 |L| = n. Therefore, |H{L}| = n = |O| and, consequently,
O is a parallel class of L. �

We conclude the section with a sufficient condition for the CI-property of an S-ring over C2
p×C

2
q .

Lemma 6.8. Let G be an abelian group of order p2q2 for primes p < q, A ∈ Supmin(GR) and
A = V (G,Ae). Suppose that there exists an A-set of the form

H#
1 ∪ · · · ∪H#

k ,

where H1, . . . ,Hk are subgroups of G and form a (pq, k)-PCP of G. Then Hi ∈ A for each
1 6 i 6 k. If k > 1, then A is CI.

Proof. Denote by N the induced translation net, i.e., the point set is G and the lines are the cosets

Hix, 1 6 i 6 k and x ∈ G. The collinearity graph is ΓN = Cay(G,X), where X =
⋃k
i=1H

#
i . Let

γ ∈ Aut(A). Then γ ∈ Aut(ΓN ). Now k 6 p+1, and we have (k− 1)2 6 p2 < pq. By Lemma 6.6,
the lines of N are the only n-cliques of ΓN . Since γ ∈ Aut(ΓN ), it follows that γ maps an n-clique
to an n-clique, and we conclude that γ is a weak automorphism of N .

Let F be a regular and abelian subgroup of A. By Lemma 6.7, F is a group of strong automor-
phisms of N , or equivalently, the partition of G into its Hi-cosets is F -invariant. Thus Hi ∈ A
follows from the �G-minimality of A. If k > 1, then Lemma 4.4 shows that A is CI. �

7. Proof of Theorem 1.2

For this section we fix the following notation:

G = P ×Q, where P ∼= C2
p , Q

∼= C2
q for distinct primes p and q, A ∈ Supmin(GR)

and A = V (G,Ae).

Again, our goal is to show that A is CI (see Corollary 3.4). In the proof we shall use the following
two lemmas.
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Lemma 7.1. Suppose that P /∈ A and let x ∈ P# be such that 〈x〉 /∈ A. Then for every basic set

X ∈ S(A)

(i) q divides |X ∩Qx|.
(ii) If X contains an element of order p, then X ∩ Qx can be one of the following: ∅, Rx or

(Q \R)x for some subgroup R 6 Q of order q, or Qx.

Proof. For (i) assume on the contrary that |X ∩Qx| is not divisible by q. Consider the A-set X [q]

defined in Proposition 2.3(ii). Then xq ∈ X [q], hence 〈X [q]〉 = 〈x〉 or P , contradicting that none of
these subgroups are A-subgroups.

If X also contains an element of order p, then it is Pq(G)-invariant and (ii) follows from this
and (i) in the same way as in the proof of Lemma 6.2. �

Lemma 7.2. Suppose that P /∈ A, Q ∈ A, and there exists a subgroup U ≤ G of order pq2 such
that U ∈ A. Let X ∈ S(A) be a basic set with the following properties: there exist an element
x ∈ P \ U and a subgroup R 6 Q of order q such that X ⊆ Ux, X ∩ Qx = Rx, X 6= Rx,
X 6= (U ∩ P )Rx. Then A is CI.

Proof. Due to Proposition 4.10 and (3), AG/Q
∼= ZC2

p or ZCp ≀ZCp. Since X 6= Rx, the former case

is impossible, hence |X ∩Qxyi| = q for every 0 6 i 6 p− 1, where y is a generator of Up = U ∩P .
Notice that 〈x〉 /∈ A by Lemma 4.4, and hence Lemma 7.1(ii) can be applied to X. Thus for each
0 6 i 6 p− 1,

X ∩Qxyi = Rixy
i or (Q \Ri)xy

i, Ri 6 Q and |Ri| = q.

The subgroup R0 = R and if X ∩Qxyi = (Q \Ri)xy
i for some i, then q = 2 must hold.

Case 1. For each 0 6 i 6 p− 1, X ∩Qxyi = Rixy
i.

Notice that, X [p,k] ∪ {e} is just the union of those subgroups Ri that occur exactly k times in
the union

X = R0x ∪R1xy ∪ · · · ∪Rp−1xy
p−1.

SinceX 6= (Up)Rx, it follows that there exists an integer 1 6 k 6 p−1 such that X [p,k] is non-empty

A-set, see Proposition 2.3(ii). Hence X [p,k] ∪ {e} =
⋃r
i=1 Sr with {S1, . . . , Sr} ⊆ {R0, . . . , Rp−1}.

By Proposition 2.3(ii), this is an A-set. Write X ·X [p,k] =
∑

g∈G cgg and fix a generator ui of Ri
for each 0 6 i 6 p− 1. A direct computation shows that cuixyi = q− 1 or 0 depending on whether
Ri ∈ {S1, . . . , Sr} or not. On the other hand, all of the coefficients cuixyi must be the same,
and therefore, {S1, . . . , Sr} = {R0, . . . , Rp−1}. This means each Ri occurs k times, in particular,
k divides p. It follows from 1 ≤ k ≤ p − 1 that k = 1, hence the subgroups R0, . . . , Rp−1 are
pairwise distinct. Let Hi = Ri〈xy

i〉, It is easy to see that the subgroups Hi, 0 6 i 6 p− 1 form a

(pq, p)-PCP of G. Since X◦ ∪X [p] = H#
0 ∪ · · · ∪H#

p is an A-set, Lemma 6.8 gives that A is CI.

Case 2. q = 2 and X ∩Qxyi = (Q \Ri)xyi for some 1 6 i 6 p− 1.

We show that this case cannot occur. Assume that p > 3. Applying Lemma 3.5 for L = {e}
and U yields Up ∈ A. Let l = |X ∩ Upx|. As x ∈ X but xyi /∈ X, we have 1 6 l < p. Now the

coefficient of x in XUp is equal to l, hence for any u ∈ Q for which X ∩ (Up)xu is not empty, we get

|X ∩ Upxu| = l. Using also that X 6= UpRx, it follows from this that |X| = 3l or 4l since |Q| = 4.
This contradicts that |X| = 2p and p > 3.

If p = 3, i.e., |G| = 36, then the database of S-rings over groups of small order given in [26]
shows that A does not exist. �

We focus first on the case when A is decomposable.
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7.1. A is decomposable. Let A be a non-trivial S = U/L-wreath product. Since {e} < L 6 U <
G, we have 1 ≤ Ω(|L|) ≤ Ω(|U |) ≤ 3. If Ω(|U |) = Ω(|L|), then U = L and A is CI by Corollary 4.6.
So it remains to consider the following cases:

(Ω(|U |),Ω(|L|)) ∈ {(3, 2), (2, 1), (3, 1)}.

Case 1. (Ω(|U |),Ω(|L|)) = (3, 2).

In this case Ω(|S|) = 1, hence AS is Cayley minimal by Lemma 4.8(i) and (iii). We may assume
w.l.o.g. that

|G/L| = pq or |G/L| = p2.

Let |G/L| = pq. As S ∈ AG/L, rk(AG/L) 6= 2. According to Lemma 4.8(ii) AG/L is cyclotomic
or a non-trivial wreath product of two S-rings. We claim that A is CI in both cases. Indeed, this
follows by Proposition 4.7 if AG/L is cyclotomic. If AG/L is a non-trivial wreath product, then
AG/L = AS ≀ A(G/L)/S . This implies that A = AU ≀ AG/U , and so A is CI by Corollary 4.6.

Now, suppose that |G/L| = p2. By Proposition 4.10, AG/L is a p-S-ring, in particular, AS = ZS,
and so A is CI by Corollary 4.6.

Case 2. (Ω(|U |),Ω(|L|)) = (2, 1).

Again, Ω(|S|) = 1 and AS is Cayley minimal. We may assume w.l.o.g that |L| = p. Then

|U | = pq or |U | = p2.

Let |U | = pq. As L ∈ A, rk(AU ) 6= 2. It follows from Lemma 4.8(ii) that AU is cyclotomic or a
non-trivial wreath product of two S-rings. In the former case A is CI by Proposition 4.7. In the
latter case AU = AL ≀ AU/L, which implies that A = AL ≀ AG/L, and so A is CI by Corollary 4.6.

Now, suppose that |U | = p2, i.e., U = P . Note that, S is an AG/L-subgroup of order p. Denote

the maximal q-AG/L-subgroup of G/L by H. Clearly, |H| ∈ {1, q, q2}.

If |H| = q2, then LQ ∈ A. By Proposition 4.10, AG/(LQ)
∼= ZCp. This implies that AS = ZS,

and so A is CI by Corollary 4.6.
Let |H| ∈ {1, q}. By Proposition 4.11, AG/L is a non-trivial (HS)/S-wreath product. This

implies that A is the (HS)(πG/L)
−1
/U -wreath product. One can see that (Ω(|(HS)(πG/L)−1

|),
Ω(|U |)) = (2, 2) or (3, 2), and hence we are done by Corollary 4.6 or by Case 1, respectively.

Case 3. (Ω(|U |),Ω(|L|)) = (3, 1).

In this case Ω(|S|) = 2. We may assume w.l.o.g. that |U | = p2q. By Proposition 4.10, AG/U
∼=

ZCq, and this implies that
(AG/L)(G/L)/S ∼= ZCq. (10)

Clearly, |L| ∈ {p, q}. Let |L| = q. Then |S| = p2. Using this, Eq. (10) and Proposition 4.12,
we find that AG/L = AS ⋆ AQ1 , where Q1 is the least AG/L-subgroup of G/L of order divisible
by q. If |S ∩ Q1| = 1, then AG/L = AS ⊗ AQ1 . Then A is CI by Lemma 4.13. If |S ∩ Q1| > 1

then AG/L is the non-trivial S/(S∩Q1)-wreath product. Thus A is the U/(S∩Q1)
(πG/L)

−1
-wreath

product. One can see that (Ω(|U |),Ω(|(S ∩Q1)
(πG/L)

−1
|)) = (3, 3) or (3, 2), and hence we are done

by Corollary 4.6 or by Case 1.
Now, suppose that |L| = p. Then |G/L| = pq2 and |S| = pq. Denote by H the unique maximal

q-AG/L-subgroup of G/L, and by P1 the least AG/L-subgroup of order divisible by p. Obviously,

|H| ∈ {1, q, q2}.
Let |H| ∈ {1, q}. Assume that H 
 S. Then |H| = q and |H ∩ S| = 1. So G/L = H × S and

Eq. (10) implies that AH
∼= ZCq. Then AG/L = AS ⊗ AH by Proposition 4.3, and hence A is

CI by Lemma 4.13. Now, let H 6 S. Since |S| = pq, P1 6 S. By Proposition 4.11, AG/L is the



18 I. KOVÁCS, M. MUZYCHUK, P. P. PÁLFY, G. RYABOV, AND G. SOMLAI

S/P1-wreath product. Thus A is the U/P
(πG/L)

−1

1 -wreath product. We are done by Corollary 4.6

or Case 1 because (Ω(|U |),Ω(|P
(πG/L)−1

1 |)) = (3, 3) or (3, 2).
Let |H| = q2, V = LQ and K = H ∩ S. Then V ∈ A and K ∈ AG/L. By Proposition 4.10,

AG/V
∼= ZCp, implying that,

(AG/L)(G/L)/H ∼= ZCp. (11)

Assume for the moment that H contains an AH -subgroup K ′ of order q such that K ′ 6= K.
It follows from Eq. (10) that (AG/L)H/K ∼= ZCq, this implies that AK ′ = ZK ′. Then AG/L =
AS ⊗AK ′ by Proposition 4.3, and so A is CI by Lemma 4.13.

From now on K is assumed to be the only A-subgroup of H of order q. The S-ring AG/L =
AH ⋆AP1 by Proposition 4.12 and Eq. (11).

Let |H ∩ P1| = 1 then P ∈ A, and so AG/P is a q-S-ring by Proposition 4.10. This implies
that AK = ZK. On the other hand, AP1 = ZP1 follows from Eq. (11), and we conclude that
AS = AP1K = ZS, and so that A is CI by Corollary 4.6.

Now, suppose that |H∩P1| > 1. Then P1 = S and it follows that AG/L is theH/K-wreath prod-
uct. By Proposition 4.9, AH = AK ≀ AH/K , and we conclude that AG/L = AK ≀ A(G/L)/K . Thus A

is the U/K(πG/L)
−1
-wreath product, and we are done by Case 1 because (Ω(|U |),Ω(|K(πG/L)−1

|)) =
(3, 2). By this we have considered all cases and shown that A is CI.

7.2. A is indecomposable. Assume first that A is primitive. If rk(A) = 2, then A is CI, hence
let rk(A) > 2. If p or q is equal to 2 and |G| > 36, then by Lemma 3.5 (choose L = {e} and
U = G), P ∈ A if q = 2 and Q ∈ A if p = 2. Hence either p, q > 2 or |G| = 36. Since rk(A) > 2,
rk(A◦) > 2 as well, see Lemma 6.1. Also, A◦ is primitive and as A◦ = A∩W (G), it is also schurian.

Due to Theorem 6.4 and Proposition 6.5, there exists a basic set of A◦ of the form H#
1 ∪ · · · ∪H#

k ,
where H1, . . . ,Hk are subgroups of G and form an (pq, k)-PCP of G. By Lemma 6.8, each Hi is
an A-subgroup, a contradiction.

Now let A be imprimitive and U be a proper A-subgroup of maximal order.

Claim. |G/U | is a prime.

If |G/U | is a prime power, then AG/U is a primitive p-S-ring, implying that |G/U | is a prime.
If |G/U | = pq, then by Lemma 3.5, UR is an A-subgroup, where R ∈ {P,Q} is a Sylow max(p, q)-
subgroup of G. This contradicts the maximality of U .

Thus we have to consider a unique case: U is of prime order. W.l.o.g. |U | = q. Suppose there
exists a proper A-subgroup V 6= U . Then U ∩V = 1 and UV = G, and hence |V | = |G|/|U | > |U |,
contrary to the maximal choice of U . Thus we assume that U is the unique non-trivial proper
A-subgroup. The quotient AG/U is a primitive S-ring over an abelian group of order p2q. By
Proposition 2.2 it has rank 2. Therefore TU = G \ U holds for each basic set T outside G \ U .
It follows from Lemma 4.14 that for each u ∈ U the singleton {u} is a basic set of A. Therefore
Tu is a basic set of A. Thus either U 6 rad(T ) or T ∩ Tu = ∅ for each u ∈ U#. In the first case
A is the wreath product AU ≀ AG/U , contradicting that A is indecomposable. In the second case,

T, Tu, . . . , Tuq−1 are the only basic sets outside U . Therefore |T | = p2q − 1.
If T ∩Q = ∅, then Tu∩Q = ∅ for all u ∈ U . Therefore, every basic set Tu contains q-elements.

It follows from T ∪ Tu ∪ · · · ∪ Tuq−1 = G \ U that at least one of the sets Tui contains some
p-element. W.l.o.g. T ∩ P 6= ∅. Combining this with T ∩ Q 6= ∅ we conclude that T is rational.
Write

T = T0 ∪ P
#
1 S1 ∪ · · · ∪ P#

p+1Sp+1,
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where P1, . . . , Pp+1 are all subgroups of P of order p, T0 := T ∩Q and Si ⊆ Q, 1 6 i 6 p + 1 are
rational sets. It follows from TU = G \U that each Si is a transversal of Q/U . Therefore |Si| = q
and Si is a subgroup ofQ of order q such that Si 6= U . Now, it follows from |T | = |T0|+(p+1)(p−1)q
that |T0| = q − 1. Since T0 is rational, the subset S0 := T0 ∪ {e} is a subgroup of Q distinct from
U . Note that the subgroups Si < Q, 0 6 i 6 p + 1 are not necessarily distinct. Let us choose
the indices so that S0, . . . , Sk is the complete set of distinct subgroups that appear in the list
S0, . . . , Sp+1. Denote by ni the multiplicity with which Si, 0 6 i 6 k appears in the above list.

Then
∑k

i=0 ni = p+ 2.
We finish the proof of the claim by finding a non-trivial proper A-subgroup distinct from U ,

which was excluded above. If 0 < i 6 k and ni 6= p, then the set S#
i is contained in T [p]. Therefore,

if k 6= 0 and (k, n0, n1) 6= (1, 2, p), then T [p] is a non-empty subset of Q, which intersects U trivially,
and so 〈T [p]〉 is the required A-subgroup. If k = 0, then T [p] = {e} and T = (PS0)

#, showing

that PS0 is an A-subgroup of order p2q. Finally, if (k, n0, n1) = (1, 2, p), then T [p] = {e} and
T = (PjS0)

#∪ (P \Pj)S1 for some 1 < j 6 p+1. Then Pj ≤ rad(T ∪{e}) < G, hence rad(T ∪{e})
is the required A-subgroup. The claim is proved.

Assume w.l.o.g. that |U | = pq2. For the rest of the proof fix an element x ∈ P \ U . By
Proposition 4.10, AG/U

∼= ZCp, and this shows that Ux is an A-set. Let I be the intersection
of all subgroups rad(X), X ∈ S(A) and X ⊆ Ux. Then I ∈ A. Furthermore, it follows from
Proposition 2.3(i) that I 6 rad(X) for any basic set X outside U , and we find that A is the
U/I-wreath product. As A is indecomposable, I = {e}. We have shown the following:

⋂

X∈S(A)
X⊆Ux

rad(X) = {e}. (12)

Notice that 〈x′〉 /∈ A can also be assumed for each x′ ∈ P \ U , otherwise A would be CI by
Lemma 4.4.

Case 1. P /∈ A.

Let y be a generator of Up = U ∩ P . For 0 6 i 6 p − 1, let Xi be the basic set containing xyi.
By Lemma 7.1(ii),

Xi ∩Qxy
i = Rixy

i

for some non-trivial subgroup Ri 6 Q. Note that the sets Xi are not necessarily distinct. In view
of Eq. (12), we may assume w.l.o.g. that |R0| = q.

Fix 0 6 i 6 p− 1. We claim that every basic set X ∈ S(A) satisfies

X ∩Qxyi 6= ∅, Ri ∈ A and |Ri| = q =⇒ Ri 6 rad(X). (13)

Indeed, {u} ∈ S(A) for every u ∈ Ri because of Lemma 4.14, hence the right multiplications
ρG(u), u ∈ Ri map the basic sets of A having non-empty intersection with Qxyi to themselves.
Lemma 7.1(i) implies that there are at most q such basic sets. Using this and that XiRi = Xi, we
conclude that XRi = X, i.e., (13) holds.

Assume first that X0 = UpR0x. Then Xi = X0 and Ri = R0 for each 1 6 i 6 p − 1. It follows

from Eq. (12) that Up 
 rad(X) for some basic set X ⊂ Ux. Then S := 〈X [p]〉 is a non-trivial
A-subgroup contained in Q and distinct from R0. If |S| = q, then {u} ∈ S(A) for every u ∈ S
because of Lemma 4.14, and we find that the sets X0u = UpR0xu, u ∈ S are the basic sets
contained in Ux. This contradicts Eq. (12). Let S = Q. Then R0 = rad(X0) ∩ S, and so R0 ∈ A.
Then (13) implies that R0 6 rad(X) for every basic set X ⊂ Ux, a contradiction to Eq. (12).

Assume second that X0 6= UpR0x and Q ∈ A. By Lemma 7.2, we may assume that X0 = R0x.

Then R0 ∈ A and AG/Q
∼= ZC2

p by Proposition 4.10. Thus for every 0 6 i 6 p − 1, Xi = Rixy
i,
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and hence Ri ∈ A. It follows from Eq. (12) and the implication in (13) that there exists some

1 6 i 6 p − 1 such that |Ri| = q and Ri 6= R0. But then 〈X0〉 = 〈R0x〉 and 〈Xi〉 = 〈Rixy
i〉 are

A-subgroups intersecting trivially, and hence A is CI by Lemma 4.4.
We are left with the case when X0 6= UpR0x and Q /∈ A. We show that R0 ∈ A. Assume

on the contrary that R0 /∈ A. As neither Q belongs to A, X [p] contains no element from R#
0 ,

and hence R#
0 xy

i ⊆ X ∩ Qxyi if 1 6 i 6 p − 1. Using also Lemma 7.1, we find that the latter
intersection is equal to R0xy

i, Qxyi or (Q\R)xyi for some subgroup R < Q such that |R| = q and
R 6= R0. Furthermore, as X 6= UpR0x, there exists some 1 6 i 6 p−1 such that one of the last two

possibilities holds. If X ∩Qxyi = Qxyi, then (Q \R0) ⊆ X [p], hence 〈X [p]〉 = Q, a contradiction.

Suppose that X ∩ Qxyi = (Q \ R)x. Then Q \ (R ∪ R0) ⊆ X [p], which implies that q = 2. If
p > 3, then Lemma 3.5 applied to A, where |G/{e}| = 4p2, we find that P ∈ A, contradicting our
assumption P /∈ A. If p = 3, then |G| = 36, and it follows from the database of S-rings of small
order in [26] that such an A cannot exist.

Note that, the above proof also shows that, for any 1 6 i 6 p − 1, Ri ∈ A whenever |Ri| = q.
Now, since Q /∈ A, R0 is the only non-trivial A-subgroup contained in Q, and therefore, Ri = R0

or Q for each 1 6 i 6 p−1. Then by (13), R0 6 rad(X) for each basic set X ⊆ Ux, a contradiction
to Eq. (12).

Case 2. P ∈ A.

By Proposition 4.10, there exists an A-subgroup V of order p2q. If now Q /∈ A, then one can
copy the argument used in Case 1 with V and Q playing the role of U and P , respectively and
deduce that A is CI. If Q ∈ A, then Lemma 4.4 shows that A is CI.
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