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ON p-GROUPS WITH A MAXIMAL ELEMENTARY ABELIAN

NORMAL SUBGROUP OF RANK k

ZOLTÁN HALASI, KÁROLY PODOSKI, LÁSZLÓ PYBER, AND ENDRE SZABÓ

Abstract. There are several results in the literature concerning p-groups G

with a maximal elementary abelian normal subgroup of rank k due to Thomp-
son, Mann and others. Following an idea of Sambale we obtain bounds for the
number of generators etc. of a 2-group G in terms of k, which were previously
known only for p > 2. We also prove a theorem that is new even for odd primes.
Namely, we show that if G has a maximal elementary abelian normal subgroup
of rank k, then for any abelian subgroup A the Frattini subgroup Φ(A) can
be generated by 2k elements (3k when p = 2). The proof of this rests upon
the following result of independent interest: If V is an n-dimensional vector
space, then any commutative subalgebra of End(V ) contains a zero algebra of
codimension at most n.

1. Introduction

For a finite p-group G we denote by d(G) the size of (any) minimal set of gen-
erators for G. Then the p-rank of G (denoted by r(G)), the normal p-rank of G
(denoted by nr(G)) and the sectional p-rank of G (denoted by sr(G)) are defined
as

r(G) = max{d(A) |A ≤ G, A is abelian},

nr(G) = max{d(A) |A ⊳ G, A is an abelian},

sr(G) = max{d(H/K) |K ⊳ H ≤ G, H/K is abelian}.

Note that sr(G) equals the maximum of the generator numbers of all the subgroups
of G.

These parameters were much investigated in the past. The results of Blackburn
and MacWilliams (see [4], [5], [21]) concerning p-groups of very low rank played an
important role in the proof of the Classification Theorem of Finite Simple Groups
(see also Janko [18]). A natural question that arises is that knowing r(G) or nr(G)
what can be said about sr(G). By a classical result of Thompson if p is odd and

nr(G) is at most k then any subgroup of G can be generated by at most k(k+1)
2

elements. Thompson’s result has been later improved by MacWilliams and an
analogous bound has been obtained by Mann for p = 2.

In fact, the following, much stronger results were proved.

Theorem 1.1. Let G be a finite p-group and let E be a maximal elementary abelian
normal subgroup of G. If d(E) = k, then
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(1) sr(G) ≤ k(k+1)
2 for p odd (Thompson [16, III, 12.3 Satz]);

(2) sr(G) ≤ k(k+4)
4 for p odd (MacWilliams [20, Theorem B]);

(3) sr(G) ≤ k2 + k(k+1)
2 for p = 2 (Mann [22, Theorem B]).

Remark 1.2. The above cited theorems are formed with the stronger assumption
“each normal abelian subgroups of G can be generated by k elements” (i.e. that
nr(G) ≤ k), but it can be easily checked that the proofs of [16, III, 12.3 Satz]),
[20, Theorem B] and of [22, Theorem B] only use the existence of an A ≤ G which
is maximal among the normal abelian subgroups of exponent p or 4 such that
d(A) ≤ k.

In particular, under the hypothesis of this theorem, every abelian subgroup A ≤
G is the product of at most O(k2) many cyclic groups. Note that apart from the
implied constant multiple this is the best possible bound for d(A) as the following
example shows.

Example 1.3. Let V be a k = 2m dimensional vector space over Fp and let V1 ≤ V
be an m-dimensional subspace of V . Let us define

H = {ϕ ∈ GL(V ) |ϕV1 = idV1 , ϕV/V1
= idV/V1

} and G = V ⋊H,

with the natural action of H on V . Then both V and V1 ×H are maximal normal

abelian subgroups of G with d(V ) = k and d(V1 ×H) = k2

4 + k
2 .

The significant part of MacWilliams’ improvement was to show that if p is an odd

prime and P is any p-subgroup of GL(n, p), then d(P ) ≤ n2

4 holds, see [20, Theorem

A]. (Note that Thompson’s argument only uses the trivial bound d(P ) ≤ n(n−1)
2 .)

By a modification of her proof, the same result can be achieved for p = 2, as
well.

Theorem 1.4. Let G be any 2-subgroup of GL(n, 2). Then G can be generated by

at most n2

4 elements.

This result allow us to give a nearly optimal bound for the maximum of the
generating numbers of all subgroups of GL(n, p). On the one hand, results of
Lucchini [19, Theorem 1] and Guralnick [14, Theorem A] say that if G is a finite
group and for every prime r | |G| the Sylow r-subgroups of G can be generated
by d elements then G can be generated by d + 1 elements. On the other hand, it
was proved by Isaacs [17, Theorem A] that if r ≥ 3 is a prime different from the
characteristic of a field K, then any finite r-subgroup of GL(n,K) can be generated
by n elements. Combining these results with Theorem 1.4, we obtain the following.

Theorem 1.5. Every subgroup of GL(n, 2) can be generated by at most n2

4 + 1
elements.

For p odd, the same result for GL(n, p) already appears in [26, p. 199].
In [3, Remark 2.7], Babai and Goodman claim that if |G| = pn and H is any

p-subgroup of Aut(G), then d(H) ≤ 1
3n

2 follows from the result of MacWilliams for
p > 2 and remark that they do not know whether such an estimate also holds for
p = 2. As another consequence of Theorem 1.4 we show that it does indeed hold.
In fact, almost the same estimate can be verified for any subgroup of Aut(G).

Corollary 1.6. If G is any p-group of order pn, then sr(Aut(G)) ≤ 1
3n

2 + 1.

Furthermore, every p-subgroup of Aut(G) can be generated by at most 1
3n

2 elements.
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Proof. Let H be any subgroup of Aut(G). The action ofH on G induces and action
of H on the Fp-vector space G/Φ(G). Let τ : H → Aut(G/Φ(G)) be the associated
homomorphism and K = ker(τ) ⊳ H . Let k be the dimension of G/Φ(G). Then
τ(H) embeds into GL(k, p) so d(H/K) = d(τ(H)) ≤ 1

4k
2 + 1 by [26, p. 199] and

by Theorem 1.5.
On the other hand, by a result of Hall ([15, Section 1.3, p. 37-38.], [28, Chapter 2,

Theorem 1.17]),K is a p-group of order at most p(n−k)k, so we have d(K) ≤ k(n−k).
Thus,

(Eq. 1) d(H) ≤ d(H/K)+d(K) ≤ k2/4 + 1+k(n− k) = nk−
3

4
k2+1 ≤

1

3
n2+1.

Therefore, sr(Aut(G)) ≤ 1
3n

2 + 1, as claimed.
If H is a p-subgroup of Aut(G), then we can use [20, Theorem A] and Theorem

1.4 to bound d(H/K) in Eq. 1 by k2/4. �

Using Theorem 1.4 for p = 2 and other results of this paper, we improve Theorem
1.1(3) as follows.

Theorem 1.7. Let G be a finite 2-group and let E be a maximal elementary abelian
normal subgroup of G. If d(E) = k, and H is any subgroup of G, then d(H) ≤
2k + 1

4k
2.

Note that by Example 1.3 this bound is almost optimal.
By an old result of Mann and Su [24], if M is a compact manifold, then any

elementary abelian p-group acting faithfully on M by homeomorphisms has rank
at most f(M), where f(M) depends only on M (and does not depend on the
prime p). In the work of the third and fourth authors with Csikós [8] the following
consequence of the above results is used.

Corollary 1.8. If every elementary abelian subgroup of a finite group G has rank
at most k, then each subgroup H of G can be generated by at most 1

4k
2 + 2k + 1

elements.

This result is the starting point for obtaining a structural description of finite
groups acting on compact manifolds.

Note that Ol’shanskii [25] has given a probabilistic construction of p-groups G
of nilpotency class 2 with r(G) = k and d(G) ≥ (k2 − 9)/8. In section 3 we will use
his method to show the following:

Theorem 1.9. For any prime number p and positive integers r, n, k with k(k−1) >
2n there is a p-group G and G′ ≤ N ≤ Z(G) such that G/N ≃ Cn

pr and G does not

contain a subgroup isomorphic to C2k
pr .

For the remainder, for any natural number t, we use the notation

Ωt(G) = 〈x ∈ G |xpt

= 1〉 and ℧t(G) = 〈xpt

|x ∈ G〉.

Note that if G is abelian, then

Ωt(G) = {x ∈ G |xpt

= 1} and ℧t(G) = {xpt

|x ∈ G}.

Furthermore, in this case G/Ωt(G) ≃ ℧t(G), and ℧t(G) equals the t-th term of the
Frattini series of G.

We improve another related result of Mann [23, Theorem 3] as follows
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Theorem 1.10. Let G be a 2-group and let E be a maximal normal elementary

abelian subgroup of G. If d(E) = k, then |G : ℧1(G)| ≤ 2
k(k+5)

2 .

Knowing d(E) for a maximal normal elementary abelian subgroup E ⊳ G not
only gives restrictions on d(H) for subgroups H of G, but on the structure of
subgroups of G more deeply. A particularly interesting question could be that what
can be said about the cyclic decomposition of an abelian subgroup A of G if such
an information is known. In this paper we prove that under the same assumption
as of Theorem 1.1, the number of factors in the cyclic decomposition of A which
are larger than Cp is more restricted.

Theorem 1.11. Let G be a finite p-group and let E be a maximal normal ele-
mentary abelian subgroup of G. If d(E) = k, and A is any abelian subgroup of G,
then

(1) d(Φ(A)) ≤ 2k for p > 2,
(2) d(Φ(A)) ≤ 3k for p = 2.

It seems quite possible that if the stronger condition nr(G) ≤ k holds, then
the number of generators of any abelian subgroup A is at most linear in k (see
Question 3.9). By Theorem 1.11, such a bound holds for the generating number of
the Frattini subgroup of any abelian subgroup of G. As another piece of evidence
let us quote the following:

Theorem 1.12 (Alperin, Glauberman [2]). Let G be a finite p-group satisfying one
of the following conditions.

(1) p is odd and p > 4r(G) − 7;
(2) G has nilpotency class at most p;

Then nr(G) = r(G).

In contrast, examples of Alperin [16, Exercise 31, p. 349] and Glauberman [10]
shows that nr(G) can be strictly smaller than r(G).

A key result in this paper (which is essential for the proof of Theorem 1.11) says
that a commutative subalgebra A ≤ Hom(V ) is “close to being a zero algebra” in
the following sense.

Theorem 1.13. Let V be an n-dimensional vector space over the field K and let
A ≤ Hom(V ) be a commutative algebra. Then there exists a zero algebra B ≤ A
satisfying codim(B,A) ≤ n.

As a consequence of Theorem 1.13 we have the following

Theorem 1.14. Let A ≤ GL(n, p) be an abelian subgroup. Then |A : Ω1(Op(A))| ≤
pn. In particular, if A ≤ GL(n, p) is an abelian p-subgroup then there are at most n
many factors in the cyclic decomposition of A, which are larger than Cp. In other
words, d(Φ(A)) ≤ n for any abelian p-subgroup A ≤ GL(n, p).

Remark 1.15. Let k = n/(p + 1) and V = V1 ⊕ . . . ⊕ Vk with dim(Vi) = p + 1 for
each i. Furthermore, let g1, . . . , gk ∈ GL(V ) be such that gi|Vj

= idVj
for i 6= j

while gi|Vi
corresponds to a unipotent Jordan-block for each i. Then o(gi) = p2

and 〈g1, . . . , gk〉 = 〈g1〉 × 〈g2〉 × . . .× 〈gk〉 ≃ Ck
p2 , so the upper bound in Theorem

1.14 is essentially the best possible.
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An immediate consequence is that |A| ≤ pn−1 holds for any abelian p′-subgroup
of GL(n, p). Previously, we only knew of a proof for this fact which depends on
Maschke’s theorem. (Note that a subgroup of GL(n, p) generated by a Singer cycle
has order exactly pn − 1, so this bound is the best possible.)

2. Proofs

Let V be an n dimensional vector space over a field K and let A ≤ Hom(V ) be
a commutative subalgebra in the full endomorphism algebra Hom(V ) of V . We use
the notation A2 for the subalgebra of A generated by all products {xy |x, y ∈ A}.
Furthermore, let ker(A) := ∩a∈A ker(a) = {v ∈ V | a(v) = 0 ∀a ∈ A}. Clearly, A is
a zero algebra if and only if ker(A2) = V . In what follows, for two subspaces U ≤ W ,
the codimension of U in W is denoted by codim(U,W ) := dim(W )−dim(U). First,
we prove the following stronger theorem than Theorem 1.13. Note that in our
terminology the property “ideal” also implies “K-subspace”.

Theorem 2.1. Let V be an n dimensional vector space over the field K and let
A ≤ Hom(V ) be a commutative algebra with dim(ker(A)) = k. Then there is an
ideal B of A satisfying codim(B,A) ≤ n− k and B2 = 0.

Proof. We define a series of integers 0 = l0 < l1 < . . . ≤ n − k and ideals A =
A0 > A1 > . . . of A such that codim(Ai,A) = li and dim(ker(Ai)) ≥ li + k holds
for every i. For i = 0, the pair l0 = 0, A0 = A clearly satisfies both conditions.
Let us assume that we found the pair li,Ai for some i. Now, if ker(A2

i ) = V , then
statement of the Theorem holds for B := Ai.

Otherwise, let us choose an x ∈ V such that x /∈ ker(A2
i ). This means that

Vi = Ai(x) := {a(x) | a ∈ Ai} is not contained in Ui := ker(Ai). Since Ai is an
ideal of A, both Ui and Vi are A-invariant, so Ui ∩ Vi is also A-invariant. Now, let

Ai+1 = {a ∈ Ai | a(x) ∈ Ui ∩ Vi}, mi := codim(Ui ∩ Vi, Vi) > 0, li+1 := li +mi.

Since ϕx : a 7→ a(x) defines a surjective linear map ϕx : Ai 7→ Vi and Ai+1 =
ϕ−1
x (Ui∩Vi) it readily follows that codim(Ai+1,Ai) = mi > 0, so codim(Ai+1,A) =

li+1 > li. Furthermore, the A-invariance of Ui ∩ Vi and Ai ⊳ A implies that
Ai+1 ⊳ A.

It remains to prove that dim(ker(Ai+1)) ≥ li+1 + k. (Thus, li+1 ≤ n − k
also holds!) For any y ∈ Vi we have y ∈ Ai(x), so Ai+1(y) ⊂ Ai+1(Ai(x)) =
Ai(Ai+1(x)) ⊂ Ai(Ui) = 0 by using the commutativity of A and the definition
of Ai+1 and Ui. Therefore, Vi ≤ ker(Ai+1). On the other hand, Ui = ker(Ai) ≤
ker(Ai+1), so dim(ker(Ai+1)) ≥ dim(Ui + Vi) = dim(Ui) + codim(Ui ∩ Vi, Vi) ≥
li + k +mi = li+1 + k also holds.

Trivially, the series 0 = l0 < l1 < . . . ≤ n − k has length at most n − k + 1, so
we find a sufficient ideal B = Ai for some i in at most n− k + 1 many steps. �

Proof of Theorem 1.14. We only need to prove the first statement, since the second
statement is just a special case of the first.

Let V be an n dimensional vector space over Fp, so we can view A as a subgroup
ofGL(V ). If A ≤ B ≤ GL(V ) and B is also an abelian subgroup, then Ω1(Op(A)) =
A ∩ Ω1(Op(B)), so |A : Ω1(Op(A))| ≤ |B : Ω1(Op(B))|. Thus, we can assume that
A ≤ GL(V ) is maximal among the abelian subgroups of GL(V ). Let A ≤ Hom(V )
be the subalgebra of Hom(V ) generated by A. Then A is commutative and A =
U(A) is the unit group of A. By Theorem 1.13, there is a zero algebra B ≤ A with
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codim(B,A) ≤ n. Then 1 + B ≤ A is an elementary abelian p-subgroup of A, so
1 + B ≤ Ω1(Op(A)). Therefore,

|A : Ω1(Op(A))| ≤
|A|

|1 + B|
≤

|A|

|B|
= pcodim(B,A) ≤ pn,

and the claim follows. �

Before the proof of Theorem 1.11, we summarise an idea of Sambale, which can
be found in the proof of [27, Theorem 1.3]). This idea will also be used in the proofs
of Theorem 1.7 and Theorem 1.10.

Let G be a finite 2-group and let E be a maximal elementary abelian normal
subgroup of G with d(E) = k. Let C = CG(E). Choose a maximal abelian
normal subgroup A of exponent at most 4 which contains E. Then obviously
CG(A) ≤ C. By a result of Alperin [1, Theorem] (see also [16, III, 12.1 Satz]),
Ω2(CG(A)) = A ≤ Z(CG(A)), that is, CG(A) is 2-central. (For the definition
and basic properties of p-central groups see [7] and [23].) Sambale observed that
C/CG(A) is elementary abelian. Furthermore, by using a theorem of MacWilliams
(see [6, Theorem 37.1]), he showed that |C : Φ(C)| ≤ 22k. We note that Sambale’s
argument can be used without modification to prove that |H : Φ(H)| ≤ 22k holds
for any subgroup H satisfying E ≤ H ≤ C.

Proof of Theorem 1.11. First, we consider the case p > 2. In accordance with the
assumption, let E be a maximal elementary abelian normal subgroup of G with
d(E) = k. Let C be the centraliser of E in G. Then Ω1(C) ≤ E by [1, Theorem].
If A ≤ G is any abelian subgroup, then d(A ∩ C) = d(Ω1(A ∩ C)) ≤ d(E) = k
holds. The action of A on E defines an injection A/A ∩ C 7→ Aut(E) ≃ GL(k, p),
so d(Φ(A/A ∩ C)) ≤ k by Theorem 1.14. Therefore,

d(Φ(A)) ≤ d(Φ(A)(A ∩ C)) ≤ d(Φ(A/A ∩ C)) + d(A ∩ C) ≤ 2k.

Now, we turn to the case p = 2. Let E be a maximal elementary abelian normal
subgroup of G with d(E) = k and C = CG(E). Furthermore, let A ≤ G be any
abelian subgroup. Using the aforementioned result of Sambale we get d(A ∩ C) ≤
d((A ∩C)E) ≤ 2k. On the other hand, the same argument as in case p > 2 proves
that d(Φ(A/A ∩ C)) ≤ k. Therefore,

d(Φ(A)) ≤ d(Φ(A/A ∩ C)) + d(A ∩ C) ≤ k + 2k = 3k.

�

Now, we show that MacWilliams’ Theorem [20, Theorem A] can be extended for
p = 2, as well.

Proof of Theorem 1.4. We only point out, how MacWilliams’ argument must be
modified to hold also for p = 2. MacWilliams proof can be divided into two parts.

(1) First, she proves that if p is an odd prime and G is a p-group, then there is
a subgroup H ≤ G of nilpotency class at most two satisfying d(G) ≤ d(H).

(2) Second, starting from a p-subgroup G ≤ GL(n, p) of nilpotency class at

most two, she modify it to get a G̃ ≤ GL(n, p) with d(G) ≤ d(G̃) such that

d(G̃) can easily be calculated.

It turns out that part (2) of MacWilliams’ proof works also for the case p = 2, but
the claim in part (1) is not valid for p = 2. However, there is a similar statement

which also follows for p = 2. Let w = xp2

[y, z] ∈ F3 be a word, i.e. an element of the
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free group F3 = 〈x, y, z〉. For any p-group P , let w(P ) = 〈w(g1, g2, g3) | g1, g2, g3 ∈
P 〉 be the verbal subgroup of P defined by w. Thus, s(P ) := |P : w(P )| equals
the order of the largest abelian quotient of P with exponent at most p2. Now,
results of González-Sánchez and Klopsch ([13, Lemma 3.1] and [13, Theorem 3.3])
imply that there is a subgroup G1 ≤ G ≤ GL(n, p) of nilpotency class ≤ 2 such
that s(G1) = s(G). Now, the initial step of MacWilliams’ modifying argument
can be used to find a G2 = N ⋊ H ≤ GL(n, p) of nilpotency class ≤ 2 such that
|G2| = |G1|, furthermore N ⊳ G1 and Φ(G2) = G′

2 = [N,G2] = [N,G1] ≤ G′
1. (For

details, see [20, page 135].) Therefore,

s(G) = s(G1) ≤ |G1 : G′
1| ≤ |G2 : G′

2| = |G2 : Φ(G2)| = pd(G2).

Now, d(G2) ≤ 1
4n

2 by MacWilliams’ argument, so s(G) ≤ p
1
4n

2

which readily

implies d(G) ≤ 1
4n

2. �

Proof of Theorem 1.7. Let C = CG(E) be the centraliser of E and let H ≤ G be
any subgroup of G. Using Sambale’s result to the group (H ∩ C)E we get that
d(H ∩ C) ≤ d((H ∩ C)E) ≤ 2k. On the other hand, H/(H ∩ C) is included in
Aut(E) ≃ GL(k, 2), so d(H/(H ∩ C)) ≤ 1

4k
2 by Theorem 1.4. Therefore, d(H) ≤

d(H ∩ C) + d(H/(H ∩ C)) ≤ 2k + 1
4k

2, as claimed. �

Proof of Theorem 1.10. Let E be a maximal elementary abelian normal subgroup
of G with d(E) = k and let C = CG(E). Then G/C is a subgroup of Aut(E) ≃

GL(k, 2), so |G : C| ≤ 2(
k

2). As in Sambale’s argument (see the paragraph pre-
ceding the proof of Theorem 1.11) choose a maximal abelian normal subgroup A
of exponent at most 4 which contains E. Then C/CG(A) is elementary abelian,
and |C : Φ(C)| ≤ 22k, so |C : CG(A)| ≤ |C : Φ(C)| ≤ 22k. Furthermore, CG(A)
is p-central, so, by using [23, Proposition 4], we get that |CG(A) : ℧1(CG(A))| ≤
|Ω1(CG(A))| = |E| = 2k. Therefore,

|G : ℧1(G)| ≤ |G : ℧1(CG(A))| = |G : C| · |C : CG(A)| · |CG(A) : ℧1(CG(A))|

≤ 2(
k

2)+2k+k = 2
k(k+5)

2 .

�

3. Related problems

In this section we pose some problems related to the above results. A positive
answer to the following question would be a generalization of Theorem 1.14.

Question 3.1. Let G ≤ GL(n, p) be a p-group and let H/K be an abelian section
of G, that is, K ⊳ H ≤ G with H/K abelian. Is is true that there are at most n
many factors in the cyclic decomposition of H/K, which are larger than Cp? Or,
at least, is the number of such factors bounded by O(n)?

Another possible generalisation of Theorem 1.14 is

Question 3.2. Let G ≤ GL(n, p) be p-central. Is it true that |Ω2(G)/Ω1(G)| ≤ pn?

By [23, Lemma C], the p-central assumption implies that Ω2(G) is of exponent
p2 and of nilpotency class 2. Furthermore, |Ωi+1(G)/Ωi(G)| ≤ |Ω2(G)/Ω1(G)| for
every i ≥ 2 in a p-central group.

Note that if G ≤ GL(n, p) is a p-Sylow subgroup of GL(n, p), then d(Φ(G)) =
2n− 5, so the final conclusion in Theorem 1.14 does not remain valid if the abelian
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condition for G is dropped. In fact, the below example shows that there exists a
p-group G ≤ GL(n, p) such that d(Φ(G)) is roughly n2/4.

Example 3.3. Let {Eij | 1 ≤ i, j ≤ n} be the usual basis of the vector space of
n× n matrices over Fp and let 1 denote the n× n identity matrix. Let

G =
{

1 +
∑

i<j

aijEij

∣

∣

∣
aij = 0 if j < ⌈n/2⌉ or i > ⌈n/2⌉

}

≤ GL(n, p).

Then

Φ(G) = G′ = Z(G) =
{

1 +
∑

i<j

aijEij

∣

∣

∣
aij = 0 if j ≤ ⌈n/2⌉ or i ≥ ⌈n/2⌉

}

has rank ⌊n/2⌋ · (⌈n/2⌉ − 1).

Maybe the abelian condition in Theorem 1.14 can be weakened to several im-
portant classes of p-groups. We ask

Question 3.4. Let G ≤ GL(n, p) be a p-central, powerful or regular p-group. Is it
true that d(Φ(G)) ≤ n (or O(n))?

The next problem is similar to Theorem 1.13. It might be useful to answer
Question 3.1.

Question 3.5. Let V be an n dimensional vector space over the field K and let
A ≤ Hom(V ) be a nilpotent algebra. Does there exist a subalgebra B ≤ A of
codimension at most n (or O(n)) such that B2 ≤ [B,B] (or, at least, B2 ≤ [A,A])?

One might think that Question 3.1 could be reduced to Theorem 1.14 by showing
that if a finite p-group has a quotient isomorphic to (Cpr )n for some r and n, then
it always contains a subgroup isomorphic to (Cpr )n (or, at least (Cpr )εn for some
absolute constant ε > 0). However, this is not the case; For r = 1, this has been
proved by Ol’shanskii [25]. Using his result, we now prove Theorem 1.9, which is a
generalisation of the above statement for any r ≥ 1.

First we prove a lemma.

Lemma 3.6. Let R be a commutative ring, A = Rn, B = Rk and let ϕ : A ×
A 7→ B be an alternating R-bilinear map. Then there is a 2-nilpotent group G
and G′ ≤ N ≤ Z(G) such that G/N ≃ A, N ≃ B as abelian groups and the
commutator map [. , .] : G/N ×G/N 7→ N, (xN, yN) 7→ [x, y] agrees with ϕ under
these isomorphisms.

Proof. First, if S is any ring with S3 = 0, then G := 1 + S is a 2-nilpotent group
with group operation (1+ s)(1+ t) := 1+ s+ t+ st satisfying G′ ≤ 1+S2 ≤ Z(G).
Furthermore, [1+ s, 1+ t] = (1− s+ s2)(1− t+ t2)(1+ s)(1+ t) = 1+ st− ts holds
for every s, t ∈ S.

Now, starting from A,B, ϕ we construct a ring S with underlying abelian group
A⊕B. Let e1, . . . , en be the canonical basis of A. We define the multiplication on
S as

BS = SB = 0, eiej =

{

ϕ(ei, ej) if i < j,
0 if i ≥ j

and we extend it to the whole S in a distributive way. Then S is a ring with
S3 = 0, so G = 1+ S is a group and N = 1+B satisfies G′ ≤ 1+ S2 ≤ N ≤ Z(G).
Furthermore, the maps (1 + a)N 7→ a and 1 + b 7→ b (a ∈ A, b ∈ B) define
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isomorphisms G/N 7→ A and N 7→ B, respectively. Finally, for every 1 ≤ i, j ≤ n
we have

[(1 + ei)N, (1 + ej)N ] = 1 + eiej − ejei = 1 + ϕ(ei, ej).

Thus the commutator map [. , .] : G/N × G/N 7→ N agrees with ϕ on the set of
generators {(1 + ei)N | 1 ≤ i ≤ n} under the above isomorphisms, so it agrees with
ϕ on the whole G/N . �

Remark 3.7.

(1) The above construction also works in the more general case if A is any (not
necessarily finite dimensional) free R-module and B is any R-module.

(2) If there is a half of every element in B (for example, when R is a K-algebra
over a field K of characteristic different from 2), then the multiplication
A × A 7→ B can be defined in a more natural way by choosing a1a2 :=
1
2ϕ(a1, a2). In that case the exponent of G always agrees with the exponent
of R as an additive group.

Proof of Theorem 1.9. Let Ã := Z
n
p , B̃ := Z

k
p and let ϕ̃ : Ã × Ã 7→ B̃ be an

alternating bilinear map such that there is no k-dimensional completely isotropic
subspace of A with respect to ϕ̃. (Since 2n < k(k − 1), such a map exists by [25,

Lemma 2.].) Let Mϕ̃ ∈ (B̃)n×n be the matrix form of ϕ̃ with respect to the natural

basis of Ã = Z
n
p so Mϕ̃ is an alternating matrix over B̃.

Let us choose R = Zpr , A = Rn, B = Rk, so A ≃ Cn
pr and B ≃ Ck

pr as abelian

groups. Let Mϕ ∈ Bn×n be an alternating matrix over B such that the natural
homomorphism (mod p) : Zpr 7→ Zp maps Mϕ to Mϕ̃ and let ϕ : A × A 7→ B be
the alternating map whose matrix is Mϕ with respect to the natural basis of A.

By Lemma 3.6 and its proof, there are p-groups G = G(A,B, ϕ) and G̃ =

G(Ã, B̃, ϕ̃) of the formG = 1+S and G̃ = 1+S̃. By construction, the (mod p)-map

extends to a surjective ring homomorphism S 7→ S̃, so it also defines a surjective
group homomorphism ρ : G 7→ G̃ whose kernel is K = 1 + pS. Now, for any s ∈ S

we have (1 + ps)p
r−1

= 1 + prs+
(

pr−1

2

)

· p2s2 = 1, so the exponent of K is pr−1.
It remains to prove that G does not contain any abelian subgroup isomorphic to

C2k
pr . Assuming the converse, letH ≤ G be such a subgroup. Then ρ(H) ≃ H/H∩K

is an abelian subgroup of G̃ such that d(ρ(H)) = 2k. Therefore, the image of ρ(H)

under the natural map G̃ 7→ G̃/B̃ ≃ Ã is a completely isotropic subspace with
respect to the form ϕ whose dimension is at least k, which is a contradiction. �

Some results from [13] suggest that Question 3.1 might be reduced to p-groups
of nilpotency class 2 as follows.

Question 3.8. Let G be a finite p-group such that G has a quotient isomorphic to
(Cpr )l for some positive integers l and r > 1. Is it true that G contains a subgroup
of nilpotency class at most 2 with this property?

By Example 1.3, if we only assume that G contains a maximal abelian normal
subgroup A with d(A) = k, then O(k2) is the smallest general upper bound to
r(G). On the other hand, if we assume that d(A) ≤ k for every maximal abelian
normal subgroup A of G (i.e. we assume that nr(G) ≤ k), then we do not know
any similar example. So we may ask:
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Question 3.9. Let G be a p-group and let us assume that nr(G) ≤ k, that is,
d(A) ≤ k for every abelian normal subgroup A of G. Is it true that r(G) ≤ 2k, that
is, d(B) ≤ 2k holds for every abelian subgroup B of G ?

Remark 3.10. The k-term direct power Dk
16 (where D16 is the dihedral group of

order 16) shows that this bound is the best possible.

One can ask a similar question, but using the order of abelian subgroups instead
of their rank.

Question 3.11. Let G be a p-group and let us assume that |A| ≤ pm for every
abelian normal subgroup A of G. Is is true that |B| ≤ p2m holds for every abelian
subgroup B of G?

Remark 3.12. Examples of Alperin and Glauberman [16, Exercise 31, p. 349], [12]
show that there exists a p-group G for which max{|B| |B ≤ G is abelian} is strictly
larger than max{|A| |A ⊳ G is abelian}. Moreover, if p ≥ 5, then there exists a
group of exponent p with this property.

On the other hand, under various conditions (for example when G is metabelian
[9] or it has nilpotency class at most p− 1 [11]) there is a normal abelian subgroup
among the abelian subgroups of maximal order.
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Reáltanoda utca 13-15, H-1053, Budapest, Hungary
ORCID: https://orcid.org/0000-0002-1305-5380

Email address: zhalasi@caesar.elte.hu and halasi.zoltan@renyi.hu

Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest,
Hungary

Email address: podoski.karoly@renyi.hu
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