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CUBIC EXCHANGEABILITY AND LIMITS
PABLO CANDELA AND BALAZS SZEGEDY

ABSTRACT. We study a class of measure-theoretic objects that we call cubic couplings,
on which there is a common generalization of the Gowers norms and the Host—Kra semi-
norms. Our main result yields a complete structural description of cubic couplings, using
nilspaces. We give three applications. Firstly, we describe the characteristic factors of
Host—Kra type seminorms for measure-preserving actions of countable nilpotent groups.
This yields an extension of the structure theorem of Host and Kra. Secondly, we charac-
terize sequences of random variables with a property that we call cubic exchangeability.
These are sequences indexed by the infinite discrete cube, such that for every integer
k > 0 the joint distribution’s marginals on affine subcubes of dimension k are all equal.
In particular, our result gives a description, in terms of compact nilspaces, of a related ex-
changeability property considered by Austin, inspired by a problem of Aldous. Finally,
using nilspaces we obtain limit objects for sequences of functions on compact abelian
groups (more generally on compact nilspaces) such that the densities of certain patterns
in these functions converge. The paper thus proposes a measure-theoretic framework
on which the area of higher-order Fourier analysis can be based, and which yields new

applications of this area in a unified way in ergodic theory and arithmetic combinatorics.
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1. INTRODUCTION

A fruitful interaction between the areas of combinatorics and ergodic theory was initiated
in the 1970s by Furstenberg’s proof of Szemerédi’s theorem on arithmetic progressions [19].
In the last two decades, this interaction has intensified, thanks especially to the emergence
of analogous key tools and methods in these areas. A central example is given by the
uniformity norms introduced by Gowers in arithmetic combinatorics, in his seminal work
on Szemerédi’s theorem [22], and by how these norms found ergodic theoretic analogues
in the uniformity seminorms introduced by Host and Kra [35]. Each side of this analogy
has led to a major topic of research, and these topics have been in conversation ever since.
On one side there is the study and use of the basic harmonics of a function on a compact
abelian group that are characteristic for each uniformity norm, a topic now known as
higher-order Fourier analysis. An important result here is the inverse theorem for the
Gowers norms ([31, Theorem 1.3], [48, Theorem 2]). As stated in [25, §3.3], a principal
objective in this topic is to find new proofs of this theorem that provide further conceptual
clarification; for more information on this topic we refer to the survey [23]. On the other
side, there is the study of characteristic factors for uniformity seminorms, and the related
structural approach to the analysis of multiple ergodic averages. This direction, propelled
in particular by work of Host and Kra, has attracted numerous contributions by many
authors; for further information we refer to the book [34] and also to the survey [16].
This paper proposes an approach that enables a unified analysis of uniformity semi-
norms in ergodic theory and arithmetic combinatorics. Such a unification has been hoped
for as part of the development of the above topics, as expressed for instance in [34], end
of Chapter 17]. The approach in this paper is based on the study of measure-theoretic

objects that we call cubic couplings.
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A cubic coupling on a probability space 2 = (€2, A, \) consists of a sequence of prob-
ability measures, where the n-th measure is a coupling® of A defined on the product mea-
surable space (01" A1) (where A% denotes the product o-algebra Rueioiyn A
and the measures satisfy three axioms. For the present introductory purposes, let us de-
scribe these axioms informally. The first one, called the consistency axiom, states that
for every n and every injective discrete-cube morphism? ¢ : {0,1}™ — {0, 1}", the image
of the n-th measure under the map Q1" — Q0" induced by ¢ is equal to the m-th
measure. Next, the ergodicity aziom states that the measure on Q01 = Q x Q is the
product measure A x A. Finally, the conditional independence axiom states that for every
n, for any faces Fy, Fy of codimension 1 in the cube {0,1}" with Fy N Fy # 0, the two
sub-o-algebras of A!®1U" generated by the projections Q%" — QF are conditionally
independent relative to the o-algebra generated by the projection Q01" — QFiNF2

Cubic couplings are described above as sequences of measures, but note that by the
consistency axiom we can view a cubic coupling as a single measure®; indeed we can view
the measures in the sequence as marginals of a single coupling of A defined on QI where
by [N] we denote the infinite discrete cube, that is, the set of elements of {0, 1}" that
have only finitely many coordinates equal to 1.

We leave the formal definition of a cubic coupling for the sequel (see Definition B.1]),
but let us illustrate this concept straightaway with examples that are actually key objects
of study in the two topics mentioned above.

In arithmetic combinatorics, the example in question consists of the Haar measures
on the groups of standard cubes of increasing dimension in a compact abelian group Z
(for a basic discussion of these cubes, see [10, §2.1]). More precisely, the n-th measure in

this cubic coupling is the Haar probability measure on the group of n-cubes

C"(Z) := {c = (:p + o) hy+ -+ v(n) h")ue{og}" cx,hy, ..., hy, € Z} <zl (1)
Let us recall that for a bounded measurable function f : Z — R, if we integrate the
function ¢ = [ c 0,1y f(c(v)) over C*(Z), and take the 2"-th root of the result, then we
obtain the Gowers U™ norm of f, denoted by || f||u».

In ergodic theory, the example in question is the sequence of measures ™ constructed
by Host and Kra in [35] §3] for ergodic measure-preserving systems.

The main result of this paper is a characterization of the structure of a general cubic
coupling on a Borel probability space, using objects the study of which began recently
in connection with the analysis of uniformity norms, namely compact nilspaces. These
spaces, introduced by the second-named author in joint work with Antolin Camarena
IThe notion of a coupling is recalled below in Definition Here it means that for each v € {0,1}"

the image of the n-th measure under the coordinate projection Q101" — Q. w s w, is the measure \.
2As in [9], we call ¢ : {0,1}™ — {0,1}" a morphism if ¢ extends to an affine homomorphism Z™ — Z".
3This viewpoint is useful in Section B} see Remark 601
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[9], offer a useful common generalization of compact abelian groups and nilmanifolds (see
also the treatments of nilspaces in [10} 11} 28] 29, 30]). A compact nilspace X is naturally
equipped with a sequence of probability measures, the n-th term in the sequence being
the Haar measure jucn(x) on the set of n-cubes C"(X) (this is detailed in [I1}, §2.2]). Every
compact nilspace with this sequence of measures is a cubic coupling; see Proposition

Apart from these examples generated by nilspaces, there is also the trivial example
consisting of an independent cubic coupling, formed by taking the powers A% (in the
sense of the product measure) of the measure .

The main result of this paper, Theorem [Tl tells us that, more generally, a cubic
coupling is a combination of the above constructions, in some natural sense which involves
the concept of relative independence (we defer the discussion of this concept to Definition
2.23)). The formal statement of the result uses the following notation.

Given a map f : X — Y between two sets X, Y, and given another set S, we use
the power notation f* to denote the map from the Cartesian power X to Y defined by
5 ((20)ves) = (f (:Uv))vE ¢ 1t is also convenient for the sequel to introduce the shorter
notation [n] to denote the discrete n-cube {0,1}" (this simplifies notations, especially

when these cubes appear as superscripts). We can now state our main result.

Theorem 1.1. Let (pn)n>0 be a cubic coupling on a Borel probability space §2. Then
there is a compact nilspace X and a measure-preserving map v : £ — X such that for each
n the map Y is measure-preserving from (Q[["],/,cn) to (X["ﬂ,ucn(x)). Furthermore, for

each n the coupling p, is relatively independent over the factor generated by "1

Our first application of Theorem [[I] is a description of the characteristic factors for
natural generalizations of the Host—Kra seminorms. We define these generalizations for
any measure-preserving action of a countable nilpotent group on a Borel probability space,
and our application describes the corresponding characteristic factors as compact nilspaces
acted upon by their translation groups; see Theorem [E.I1l This yields the following

generalization of the celebrated structure theorem of Host and Kra [35, Theorem 10.1].

Theorem 1.2. Let G be a finitely generated nilpotent group acting ergodically on a Borel
probability space {2. Then, for each positive integer k, the k-th Host-Kra factor of the

system (§2,G) is isomorphic to an inverse limit of k-step nilsystems.

The notion of Host—Kra factor used here is given in Definition (9] and extends [35]
Definition 4.1]. Actually, these factors and their corresponding seminorms can be defined
for any filtration on G (in Theorem [[.2] the underlying filtration is the lower central
series), and we describe these factors in this more general setting; see Theorem
The only other results in the direction of Theorems .11l and 512 apart from [35]
Theorem 10.1], are those of Bergelson, Tao and Ziegler in the abelian setting [§], which
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focus on actions of infinite-dimensional vector spaces F;°. The possibility of structural
results such as our Theorem [5.11] concerning nilpotent measure-preserving group actions,
was evoked in [8, p. 1540]. (In the setting of topological dynamics, compact nilspaces also
appear in recent structure theorems related to group actions, in [21].)

In the analysis of limits of multiple ergodic averages, one of the main strategies is based
on using uniformity seminorms to control such averages, and on analyzing characteristic
factors for these seminorms; see [16, §2.6]. (Other strategies include that of Ziegler in [53],
which isolates characteristic factors in a different way.) Theorems [5.17] contribute
to an extension of this strategy to nilpotent group actions, by enabling a reduction of the
problem, for a family of averages including those in [35], to the analysis of these averages
on nilspaces, or even on nilmanifolds (when Theorem is applicable). This reduction
is not treated in this paper; see Remark £.13

Our second application concerns the theory of exchangeable random variables. Broadly
speaking, this theory aims to describe the structure of the joint distribution of a sequence
of random variables, assuming that the distribution has certain prescribed symmetries.
The original definition of exchangeability states that a sequence of random variables
(Xy)ver is exchangeable if the joint distribution is invariant under all permutations of
finite subsets of the index set I. If I is countably infinite, then a characterization of
such distributions is given by the classical theorem of de Finetti, which describes such
a distribution as a convex combination of distributions of i.i.d. random variables [15].
Weaker notions of exchangeability, involving fewer symmetries, yield various extensions
or analogues of de Finetti’s theorem, and the resulting subject is rich in connections
with other areas, including combinatorics and ergodic theory; see [3, 13| I7]. Despite
these connections, and the importance of this subject within probability theory, complete
characterizations of exchangeable distributions are known only for a few variants of the
exchangeability property. Beyond de Finetti’s theorem, principal results of this type are
the Aldous—Hoover theorem [I], 32] and its extension by Kallenberg [38].

In this paper we study joint distributions of sequences of random variables that are
indexed by the infinite discrete cube [N]. For such a distribution, we assume a property
that we call cubic exchangeability, which says that for every £ > 0 the marginal distribu-
tions on k-dimensional affine subcubes of [N] are all equal; see Definition 6.3l Related
properties have been studied before. In [2, §16], Aldous considered a weaker property,
namely invariance under the group Aut([N]) of symmetries of [N] (we detail this group in
Remark [6.6]). Aldous asked for a description of measures with this property. In [4], Austin
showed that such a description is difficult, in that these Aut([N])-exchangeable measures
(or cube-exchangeable measures, as they were called in [4]) form a Poulsen simplex. How-

ever, in [4, §5.3] it was noted that a stronger version of Aut([N])-exchangeability, requiring
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invariance under the whole group Aff(F°) of affine symmetries of [N] (viewing [N] as
F3°), is also natural. This motivated the problem of describing measures with the latter

property. As explained in Remark [6.6] these properties are related as follows:

Aff(F$°)-exchangeability [4] = cubic exchangeability = Aut([N])-exchangeability [2].
Our main result in this direction is a description of cubic exchangeable measures (and
thereby of Aff(IF°)-exchangeable measures) using nilspaces. Note that nilmanifolds ap-
pear in other exchangeability contexts, for instance in Frantzikinakis’s work [17]. We
explain our result using the following general construction of cubic exchangeable systems
of random variables.* Let Z be a compact abelian group and let B be a standard Borel
space. Let P(B) denote the set of Borel probability measures on B, equipped with its
standard Borel structure [39, p. 113]. Let m : Z — P(B) be a Borel function. Let
x,hy, he, ... beiid. random elements of Z chosen according to the Haar probability. For
v € [N], let X, = m(x + v(1)hy + v(2)ha + - - - ) (this sum has only finitely many non-zero
terms, by definition of [N]). If we look at a finite-dimensional affine subcube of [N], then,
for the corresponding subcollection of (X,)ueny, the elements x + v(1)hy + v(2)he + - - -
form a subcube of one of the cubes in (dl). Using this, it is seen that (X, )uepy is a cu-
bic exchangeable P(B)-valued sequence. Now, in a second round of randomization, for
each v independently we choose Y, € B with probability distribution X,. This yields a
cubic exchangeable system (Y, ),y of B-valued random variables. We denote the joint
distribution of (Y,)veqny by (z,m- This construction can be generalized, replacing Z by a

compact nilspace. Our result describes cubic exchangeability in terms of this construction.

Theorem 1.3. Let B be a standard Borel space. Then every cubic exchangeable probability
measure on BN is o convex combination of measures of the form Cx,m, where X 1s a

compact nilspace and m : X — P(B) is a Borel function.

It also follows from our results that the measures of the form (x ,, are extreme points in
the convex set of cubic exchangeable measures on BN In particular, we show that one
can detect whether a cubic exchangeable measure is such an extreme point by using a
type of independence property (see Theorem [6.7)). As a consequence, we obtain that if
B is a compact Polish space then the set of such extremal cubic exchangeable measures
on B i closed with respect to weak limits. This fact leads to the following third main
application in this paper, which concerns arithmetic combinatorics.

Given a compact abelian group Z and a bounded Borel function f : Z — C, and
given a type of additive pattern in Z (any type of configuration determined by a system
of integer linear forms), we can talk about the density of such patterns in f to refer to the

integral of f over the group of such patterns, using the Haar probability on this group.

We say that a system or sequence of random variables is cubic exchangeable if its joint distribution is.



ON CUBIC COUPLINGS 7

In particular, if f is the indicator function of a Borel set A C Z, and the patterns are
k-term arithmetic progressions, say, then the integral in question is indeed the density (or
probability), among all k-term progressions in Z, of those progressions that are included
in A. Another example of such a density is the 2"-th power of the Gowers norm || f||y»,
where the additive patterns involved are the n-cubes described in ().

In keeping with various central questions in arithmetic combinatorics, it is natural to
study notions of convergence for sequences of such functions, based on the convergence of
the densities of certain additive patterns in the functions. More precisely, if S is a set of
additive patterns (in other words S is a collection of systems of integer linear forms) and
(fi + Z; = C);en is a sequence of uniformly bounded measurable functions on compact
abelian groups, then we say that the sequence is S-convergent if for every pattern in S
the density of this pattern in f; converges as ¢ — oo. It is then also natural to seek a
so-called limit object for such a convergent sequence, i.e. a fixed space with a function
defined on it such that the limits of the densities in the sequence can be expressed exactly
as certain integrals involving this function. When S' is the set of additive patterns given
by systems of linear forms of compexity 1 (as per the definition of complexity from [24]),
a complete limit theory with appropriate limit objects was worked out in [49]. Other such
limits were obtained for a different set of patterns in [48]. Our results in this paper are
related to the ones in [48], as we use a similar set of patterns. However, here we are able
to extend the results to functions on compact nilspaces. Our main theorem on this topic
provides a limit object for a uniformly bounded sequence of functions (f; : X; — C) on
compact nilspaces X;, assuming the convergence of densities of certain patterns that we
call cubic patterns (see Definition [(I]). The limit object is a measurable function on a
compact nilspace, with the values of the function being probability measures on C (see
Theorem [7.2)); this is thus a natural analogue in arithmetic combinatorics of limit objects
from the theory of convergent sequences of graphs and hypergraphs [41].

Let us briefly describe another application of our main result, concerning the inverse
theorem for the Gowers norms. The proof of this theorem given by the second-named
author in [48] works with ultraproducts of finite abelian groups. Some arguments in this
paper use some of the key ideas from [4§], but the tools developed here do not assume any
group structure on the underlying probability space. As a consequence, the deduction of
the inverse theorem in [48] can be carried out similarly, but at a more general level, using
the main results from this paper. This yields in particular the inverse theorem for the
Gowers norms stated in [48, Theorem 2], but it also gives an extension of this theorem
in which the initial bounded Borel function f can be defined not just on a compact
abelian group, but more generally on a compact nilspace. The proof of this theorem can

be summarized as follows: supposing for a contradiction the existence of a sequence of
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functions violating the conclusion of the inverse theorem, one takes an ultraproduct of
this sequence, in which one can then locate a separable factor that yields a cubic coupling,
and the result then follows by applying Theorem [Tl Thus the core of this proof of the
inverse theorem is Theorem [I.Il Since this proof requires background on the separate
topic of analysis on ultraproducts, we shall detail this application in separate work.
Finally, let us add a few remarks about the organization of the paper. Section
gathers tools from probability theory. Some of these are new (in particular in §2.5]), while
others may be more familiar to probabilists. In any case, it is certainly viable to skim
through Section 2] on a first reading, as the core of the paper consists really of Section [3]
in which cubic couplings are introduced, and of Section [4], where the main results on the

structure of cubic couplings are obtained. The applications are treated in sections B to [7l
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2. MEASURE-THEORETIC PRELIMINARIES
This section gathers the concepts and results from measure theory needed for the sequel.
2.1. Some basic notions.

Among the results in this subsection, some are well-known (belonging to the folklore) or
appear elsewhere in the literature. In these cases we refer to the relevant sources or give
the proofs in the appendix, in order to enable a lighter first reading of this subsection.
Let (€2, A,\) be a probability space. When the c-algebra 4 and the probability
measure A are clear from the context, we write {2 instead of (€2,.4, A). Given a family F
of subsets of €2, we denote by o(F) the o-algebra generated by F, that is, the smallest

o-algebra (relative to inclusion) among the o-algebras that include F.

Definition 2.1 (Join of o-algebras). Given c-algebras A, B on a set 2, the join of A
and B is the o-algebra AV B := o(AU B).

Given a Polish® space X and A-measurable functions f, g : Q — X (relative to the Borel
o-algebra on X)), we write f =, g to mean that f, g are equal A-almost everywhere, i.e.
A{w € Q: f(w) # g(w)}) = 0. (The assumption that X is Polish ensures that the set

5A topological space is Polish if it is separable and metrizable by means of a complete metric.
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{f # g} here is measurable; see [7, Lemma 6.4.2 and Example 6.4.3].) For p € [1, oo and
a probability space 2 = (€2, A, 1), we denote the corresponding LP space by LP({2) (see
[6, §4.1]).% We also use variants of this notation when a particular component of {2 needs
to be emphasized and the other components are clear, for instance the notation L”(\) or
LP(A). We denote by UP(A) the unit ball of LP(A).

We use the following approximation result many times (for a proof see Lemma [A.T]).

Lemma 2.2. Let 1 < p < oo, let (B;)!, be a sequence of sub-o-algebras of A, and let
B=V._B;. Let R denote the set of functions on Q@ of the form w — [[;_, fi(w), where
fi € UX(B;) for alli. Then for every f € LP(B), and every € > 0, there exists a finite

linear combination g of functions in R such that || f — gl|r» < €.

When we need to specify the o-algebras involved in R, we write R( (Bi)?zl).
Let us recall the following definition of conditional independence [42], p. 30], [51) §7].

Definition 2.3 (Conditional independence of two sub-c-algebras relative to a third one).
Let (€2,.A, A) be a probability space, and let By, By, B be sub-o-algebras of A. We say that
By, B are conditionally independent relative to B if for every bounded By-measurable func-
tion fy and bounded B;-measurable function fi, we have E(fyf1|B) =x E(fo|B) E(f1|B).

Recall also that By, B; are said to be independent if for every function fy € L>(By) and
fi1 € L=(By) we have E(fof1) = E(fo) E(f1); equivalently if A(Ay N A;) = A(Ap) A(A;) for
every Ag € By, A1 € B;. In some contexts we may have to clarify what is the measure with
respect to which the o-algebras are independent; in this case we say they are independent
in \. This notion of independence is the special case of Definition 2.3 with B = {0, Q}.
In Definition 2.3] we are fully rigorous by using the notation =,. To avoid overloading
the notation, when the measure A is clear from the context we shall often omit it from such
equalities between conditional expectations (especially from Subsection onwards).

Let us recall also the following useful result (for a proof see [42] p. 30, Theorem 51]).

Theorem 2.4. Let (2, A, \) be a probability space, and let By, By, B be sub-o-algebras
of A. Then By, By are conditionally independent relative to B if and only if the following
statement holds: for every function f € L'(By) we have E(f|By V B) =, E(f|B).

Remark 2.5. In Theorem 2.4 the equivalence still holds if we replace L' (B;) with L>(By).
This follows from the density of L>(B;) in L'(B;) [6, Lemma 4.2.1] and the fact that

conditional expectation is a contraction on L'(B;) [7, Theorem 10.1.5 (5)].

We use mostly a special case of Definition 2.3 where B is given by the following operation.

6Strictly speaking the elements of LP(§2) are equivalence classes of measurable functions f with
Jo IfIPdX < oo, under the relation =y, but we shall take part in the common abuse of terminology
whereby a function f is declared to be in LP(£2) if [, [f[P d)\ < oc.
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Definition 2.6 (Meet of sub-o-algebras). Let (€2,.4, ) be a probability space. For sub-
o-algebras By, By of A, we denote by By Ay By the sub-g-algebra of A consisting of all sets
A € A such that there exist By € By and B; € By satisfying A(AABy) = A\(AAB;) = 0.

When the ambient measure A is clear, we omit it from the notation, writing just By A Bs.
It is readily shown that By A By is indeed a sub-o-algebra of A (see Lemma [A.2]).

Given a o-algebra A’ on a set ' and a function f : Q — ', we denote by f~}(B')
the preimage o-algebra (or preimage of B' under f), that is f~Y(B') = {f~}(S) : S € B'}.

Remark 2.7. The g-algebra By Ay By clearly includes the intersection o-algebra By N By,
but this inclusion may be strict. For instance, consider Q = [0, 1] x [0, 1] = [0, 1]{®!} with
the product o-algebra B ® B where B is the Borel o-algebra on the interval [0,1]. For
i=0,1let B; = p; }(B) where p; : [0,1]*> — [0,1], (wo,w1) + w;. Then By N By = {0, Q}.
Let D denote the diagonal {(wp,w;1) € ©Q : wy = w1} and A the probability measure on
0, 1] defined as the image of the Lebesgue measure on [0, 1] under the map ¢ + (¢,¢) (in
particular A(D) = 1). Then for every A € B® B we have A(AAp; " (p;(AN D))) =0, for
1 =0,1. It follows that By Ay B = B® B.

The above example shows also that we can have By Ay By ¢ B; for ¢« = 0,1. However, we
do have inclusion up to null sets in general, in the following sense. Recall that, for sub-o-
algebras B, B’ of A, the relation of inclusion up to null sets, denoted by C,, is defined by
declaring that B C, B’ if for every A € B there exists A" C B’ such that A\(AAA") = 0.
We clearly have By A\ By Cy B; for i = 0,1. We write B =, B’ to mean that B C, B’ and

B’ Cy\ B. Let us record the following basic fact about the relation C, (for a proof, see

Lemma [A.3]).

Lemma 2.8. Let (€2, A, \) be a probability space, and let B, B' be sub-o-algebras of A with
B C\ B'. Then for every integrable function f: Q — R we have E(E(f|B")|B) =, E(f|B),
and also E(f|B") =) E(f|B'V B).

We may also use the notation C, with sets A, B € A, writing A C), B to mean that
A(A\ B) =0. We write A =) B to mean that A Cy B and B C, A, i.e. \(AAB) = 0.
The special case of Definition that we shall use is the following.

Definition 2.9 (Conditional independence of two sub-o-algebras). Let 2 = (2,4, \)
be a probability space and let By, B; be sub-o-algebras of A. We say that By, B; are
conditionally independent in X (or in 2), and we write By L, By, if By, B; are conditionally
independent relative to By Ay By as per Definition

When the ambient measure A is clear, we omit it from the notation and terminology,

writing just By L By and saying that By, B; are conditionally independent.
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The following result characterizes conditional independence in terms of conditional

expectation, and we use it many times in the sequel.

Proposition 2.10. Let (2,.A, \) be a probability space, and let By, By be sub-c-algebras of
A. Then By 1L By holds if and only if, for every bounded measurable function f :Q — R,

the following equation is satisfied for i =0 or, equivalently, for i = 1:
E(E(f|Bi) |Bi-i) =x E(f[Bo A By). (2)

This result appears in a similar form (stated for standard probability spaces) in [51]
Theorem 9]; we include a proof in the appendix for completeness (see Proposition [A.4)).
As in Theorem 2.4l we may replace “bounded” by “integrable” in this proposition.

Note that (2]) implies that the conditional expectation operators for By and B; com-
mute. This motivates the terminology from [51] which says that By, By are stochastically
commuting if By 1L B;. We shall stick with the conditional independence terminology,
motivated by the relation of this notion with Definition 2.3l There is also a useful interpre-
tation of this notion in terms of certain subspaces of a Hilbert space being perpendicular.

To detail this we use the following fact (for a proof see Lemma [A.F]).

Lemma 2.11. Let (2, A, \) be a probability space, let By, By be sub-o-algebras of A, and
let 1 <p<oo. Then LP(By) N LP(By) = LP(By A\ By).

Recall that L?(By) and L?*(B;) are closed subspaces of the Hilbert space L?(.A), and
the expectation operator f +— E(f|B;) is the orthogonal projection onto L?*(B;) (see [20,
Chapter 5, §3]). Then, by ([2) and Lemma 2TIT] conditional independence of By, B
means that projection from one of these subspaces to the other is the same as projection
to the intersection of these subspaces. This yields the intuition that By 1L B; holds when
L?*(By) and L?*(B;) are in a sense perpendicular. This intuition is illustrated further by

the following result, which we also use repeatedly in the sequel.

Lemma 2.12. Let (Q, A, \) be a probability space, and let By, By be sub-o-algebras of
A. Then for By 1L By to hold it is necessary and sufficient to have that every bounded
By-measurable function f:Q — R such that E(f|By A B1) =» 0 satisfies E(f|By) =, 0.

Proof. The necessity follows from (2) and the fact that f =, E(f|By). To prove the
sufficiency, we let f be any integrable function 2 — R and we show that (2]) holds.
Let g be a function equal to E(f|By) — E(f|By A By) almost everywhere. Note that since
By ABy Cy By, it follows from Lemma 2.8 that E( f|By AB;) is almost-surely equal to a By-
measurable function. Hence this is also true of g, i.e. there is a By-measurable function h

such that g =, h. By linearity of conditional expectation and the first equality in Lemma
[ZS], we have E(h|Bo/\Bl) =\ E(g|l§’o/\l31) = E(E(f|Bo)|Bo/\Bl) —E(f|80 /\Bl) =\ 0. By
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our assumption we therefore have E(h|B;) =, 0. Hence E(E(f|By)|B1) —E(f|Bo A By) =x
E(g|B1) =x E(h|B1) = 0, and (2)) follows. O

We shall need to handle interactions between joins and meets of sub-o-algebras. One result

on this is the following (recorded here mainly for illustration; for a proof see Lemma [A.6]).

Lemma 2.13. Let (2, A, \) be a probability space and By, By, By be sub-c-algebras of A.
Then (By V By) A Bs D (By ABs) V (Ba A Bs). The opposite inclusion can fail.

While the inclusion in this lemma cannot be reversed in general, we can replace it with
equality up to null sets in some situations, assuming conditional independence. This is
the case in the following useful result, which can be seen as a special case of the modular

law from lattice theory.

Lemma 2.14. Let (2, A, \) be a probability space, let B and C be sub-c-algebras of A
satisfying B 1L C, and let By be a sub-o-algebra of B. Then (CVB1)AB =5 (CAB)V By.

For a proof see Lemma [A.7l A similar result appears in [52], Corollary 16].

We conclude this subsection with a few remarks on more specific types of probability
spaces. From the next subsection onward, most of the key results from measure theory that
we shall use (and, therefore, our main results in Section [] themselves) can be established
under the assumption that the probability spaces in question are standard probability
spaces (also called Lebesgue—Rokhlin spaces [7, §9.4]). This is the case for instance in the
result concerning the topological properties of coupling spaces, Proposition .21l Aiming
for our main results to be applicable to any standard probability space is natural, given
that these results are intended in particular for applications in ergodic theory. However,
for the use of certain tools it is more convenient to work instead with the following closely

related probability spaces.

Definition 2.15 (Borel probability spaces). A measurable space (2, .A) is a standard
Borel space if there is a Polish topology 7 on € such that A is the Borel o-algebra o(7).
A probability space (2,4, ) is a Borel probability space if (Q, A) is a standard Borel

space and A is a probability measure on A.

To obtain our main results for general standard probability spaces, there will be no loss
in assuming in several places that the spaces we work with are Borel probability spaces,
because on one hand (as we detail in Section M]) our main results are invariant under mod
0 isomorphisms of probability spaces, and on the other hand every standard probability
space is mod 0 isomorphic to a Borel probability space (indeed this can be taken as a
definition of standard probability spaces; see |14, Definition 6.8]).

Situations in which Borel probability spaces are especially convenient for us include

those where we have to work with disintegrations of measures. For these spaces we have
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a usefully simple form of the measure disintegration theorem; see [39, (17.35), ii)].” This

usefulness is illustrated by the following result, which we shall apply several times.

Lemma 2.16. For i = 1,2 let (Q;,A;, \;) be a Borel probability space, let 1 be a Borel
measure on (2 = Q x Qo, A = A; ® As), suppose that the projection f; : Q — Q;
is measure-preserving (i.e. o ft = N\;) for i = 1,2, and that f; (A1), fy ' (As) are
independent in . Let (1,)weq, be a disintegration of p relative to fo. Then for Ay-almost

every w the restriction fi : fy ' (w) — Qy is still measure-preserving (i.e. py,o fi ' = A).

Proof. First we claim that for an arbitrary fixed set B € Ay, for As-almost every w € €2y
we have p1, 0 f;(B) = A\ (B). To see this, fix any C' € A, and note that the disintegration
implies that (£ (B)NfH(C)) = fo, 1o(w) £ (B)) dha(w). Since £ (A1), £ (As)
are independent, we have u(f; {(B)Nf; 1(C)) = p(f; H(B)) p(fy H(C)) = M (B) A\(C). We
have thus shown that for every such set C' we have [, ju,(fi ' (B)) dAa(w) = Ai(B) A2(C).
This implies that the function f : w + u,(f; *(B)) equals the constant A\;(B) for A,-
almost every w. Indeed, otherwise Ao({w : [f(w) — Ai(B)] > }) > 0 for some n € N,
and then there would be C' € A, such that | [, (f(w) — Ai(B)) dda(w)| = X(C)/n >0, a
contradiction (we must be able to take C' to be one of the sets {w : f(w) > A(B) + 2},
{w: f(w) < A\(B) —2}). This proves our claim.

Now we apply this claim to each term of a sequence (B;);en of sets in A; that is closed
under finite intersections and generates A;. The existence of such a sequence is clear when
)y is countable, and when it is uncountable the standard Borel space (£1,.4;) is Borel
isomorphic to the interval [0, 1] with the Borel o-algebra (see [39, Theorem (15.6)]), so
in this case we can let the B; be the sets corresponding under this isomorphism to the
open intervals in [0, 1] with rational end points. For each B;, by the previous paragraph
there is C; € Ay with A\y(C;) = 0 and such that p,of;' = A for all w € Qy \ C;. The
set D = U;enC; is then a Ag-null set such that for every w € Q5 \ D, for every i € N we
have pi, 0 f; 1(B;) = A1(B;), whence by [6, Lemma 1.9.4] we have p, o f; '(B) = A\ (B)
for every B € Aj;. O

To close the subsection let us recall the following standard fact (for a proof see [47]).

Lemma 2.17 (Doob property of Polish spaces). Let (Q2,.A), (2, A") be measurable spaces,
let p: Q — Q' be measurable, and let X be a Polish space. For every p~'(A’)-measurable
function f:Q — X there is an A’-measurable function f': Q" — X such that f = [’ op.

In particular, if A is a probability measure on (£2,.4) and ¢ : 2 — C is a bounded A-

measurable function, then E(g[p~(A’)) can be regarded as a function on (¥, i.e. there

"The disintegration results valid for more general standard probability spaces come with less convenient
additional technicalities, such as the fact that the o-algebras on the fibres cannot be guaranteed to be

almost all equal to the original o-algebra; see for instance [44] Example 1.2].
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is a bounded A’-measurable function f’: ' — C such that E(g|p~}(A")) =x ffop. A
simple but useful consequence is that if (€2;,.4;, \;), i = 1,2 are probability spaces and
¢ : Q — Qs is measure-preserving (i.e. ¢ is (A, Ay)-measurable and X\ 0¢™! = ),), then
for every sub-o-algebra B C A, and every function f € L!'(Ay) we have

E)\Q(f|B)O¢:>\1 E)\1(fo¢|¢_18)' (3)
2.2. Couplings.

Given sets T' C S and a Cartesian product of sets [ [, .4 X, we denote by pr the projection
[Toes Xo = Toer Xos (@0)ves = (Tp)ver. (When T = {w} we write p,, rather than pg,}.)
Given probability spaces £2, = (€2, Ay, Ay), v € S, we denote by [, s(€0,A,) the

product measurable space, consisting of the Cartesian product [ . €, and the product

a—algebra ®v€5 Av = \/UGS p171 (AU>

Definition 2.18 (Coupling). Let S be a set and for each v € S let 2, = (Q,, Ay, \,) be
a probability space. A coupling of the probability spaces (£2,),es (or of the measures \,)
is a measure p on ], .¢(€%, A,) such that for each v € S we have pop,t = \,. When
2, = (2 for every v € S, we call u a self-coupling of 2 (or of ) indexed by S.

In this paper S denotes a finite set, except in certain clearly indicated places where it can
also denote a countably infinite set (for instance in Section [6]). Note that if every (2, is a
Borel probability space then, for every coupling u of these spaces, the probability space
(IToes v, @,eg Avs 1) is Borel (since ], 4(€, A,) is standard Borel [39, p. 75]).

In our analysis of couplings, the following functions play a key role.

Definition 2.19. Let u be a coupling of (£2,),es. Let F' = (f, : Q, = C),es be a system

of bounded measurable functions. Then we define

&(u, F) :2/ [17.0p0 du. (4)
[Toes Qv yes

Note that the L'-norm of each function in F controls the function &(u,-) : F +— &(u, F),

more precisely, for every w € S we have |[{(u, F)| < [[fullrov) [oes quy 1ol We

can use the functions & to define a topology on a set of couplings, as follows.

Definition 2.20 (Coupling space). Let 2 be a probability space and let S be a set.
We denote by Cg(£2,5) the topological space consisting of the set of self-couplings of (2
indexed by S and the initial topology generated by the functions (-, F)) : u — &(p, F),
for systems F' = (f,),es of bounded measurable functions f, : 2, — C.

The following result gives a property of coupling spaces that is crucial for the sequel.
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Proposition 2.21. Let S be a finite set and let §2 be a Borel or standard probability
space. Then Cg(£2,5) is a non-empty convex® compact Polish space.

Proofs of similar results appear in the literature, for instance in work of Kellerer [40),
Proposition 1.2], and of Furstenberg [19, Lemma 5.2] (where couplings are called standard
measures). We include a proof of Proposition 22T in the appendix (see Proposition [A.S]).

We now turn to several constructions of new couplings out of given ones, and other

useful properties of couplings.

Definition 2.22 (Factor coupling). Let (£2, = (€2, A, )\U>)UES be a system of probability
spaces, and let p be a coupling of this system. A factor of p is a coupling obtained by
restricting 4 to a product o-algebra &), g B, where B, is a sub-c-algebra of A, for each
velS. If02,=0=(QA N\ forall v € S and p € Cg(2,5), then given a sub-o-algebra
B C A we write gjp to denote the factor coupling of u corresponding to B.

Note that for a general standard probability space (2,4, \), for a sub-o-algebra B the
probability space (2, B, A\|z) may not be standard, for it may not be separable in the sense
of Rokhlin (as defined in [7, §9.4] for instance). However, there exists a standard proba-
bility space (€, B’, \') and a measure-preserving map ¢ : € — ' such that ¢=1(B') = B
(see [37, Theorem 57]). Similar facts hold for a standard Borel space (€2,.4). Indeed
it follows from [39, Corollary (15.2)] that the only sub-c-algebra of A that makes Q a
standard Borel space is A itself. However, if B is a countably generated sub-o-algebra of
A, then by [39, (14.16), (18.20)] there is a standard Borel space (£, 8’) and a Borel map
f:Q — @ such that B = f~1(B'), and then (', B, o f~1) is a Borel probability space.

Definition 2.23 (Relative independence over a factor). Let (£2, = (€2, Ay, )\v>)v€S be a
system of probability spaces, let 1 be a coupling of this system, and let u’ be a factor of
i corresponding to o-algebras B, C A,, v € S. We say that u is relatively independent

over ' if for every system G = (g, : 2, — C),es of bounded measurable functions, the

system G’ = (E(gv\Bv))ves satisfies {(u, G) = &(u, G').

In particular, if p € Cg(£2,S) is relatively independent over a factor ' = B then the
multilinear map G — &(u, G) is uniquely determined by /. This notion agrees with that

of a conditional product measure from [19, see Lemma 9.1].

Remark 2.24. We have p relatively independent over p’ if and only if for every w € S
and every system G = (g,),es of functions g, € L>*(A,) with E(g,|B,) = 0, we have
&(u, G) = 0. This equivalence follows from a basic argument using the linearity of the
8This convexity property involves the vector-space structure on the set of signed measures on (Q,.A)%, of

which Cg(£2,5) is a subset. The convexity property states that for every Borel probability measure v
on Cg(2,5) we have that ng(Q ) M dv(p) is a measure in Cg({2,.9).
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map G — &(u, G) in each entry g,, and the decomposition of any .4-measurable function
g as the sum E(g|B,) + (9 — E(g|B,)).

Definition 2.25 (Subcouplings along subsets). Given u € Cg(f2,5), and a set T' C S,
the subcoupling of i along T, denoted by 7, is the image measure pop,;' € Cg(£2,T).

Note that the o-algebra on which pip is defined is the power o-algebra &), . A. From now
on we denote such a power o-algebra by A”7. We shall often need to handle preimages
of such o-algebras A7 under projections pr : Q% — Q7. We denote this sub-o-algebra
prt(AT) of A° by AZ. Thus A3 is the sub-o-algebra of A° consisting of sets whose
indicator functions depend only on coordinates indexed by 7. Note that A3 C A7,
whenever T' C T”, that Aj is the trivial o-algebra on Q°, and that A2 is just A°. When
T is a singleton {v} we denote the o-algebra .A*{gv} simply by A5 (this notation will not clash
with previous notations A, above, because from now on we only consider self-couplings

of 2, so the ambient o-algebra A is the same for every v € §).

Definition 2.26 (Subcouplings along injections). Let u € Cg(£2,S) and let 7: R — S
be an injection. The subcoupling of 1 along T is the coupling u, € Cg(f2, R) obtained as
follows: in the coupling p.(g) along 7(R) C S, each v € 7(R) is renamed w = 7' (v) € R.

We often consider two couplings that are equal up to renaming the indices. Let us

formalize this as follows.

Definition 2.27 (Isomorphism of couplings). Let p € Cg(£2,5) and u' € Cg(2,5"). We
call a bijection o : S — S" an isomorphism of p and p' if p/ = p. If there is such an
isomorphism we say that p and p' are isomorphic and write u = i/, or pu =, ' if we wish

to specify the isomorphism.

Thus for instance the couplings y, and fi-(g) in Definition [2.26] are isomorphic.
In general a coupling with index set S is not determined by subcouplings on two
subsets 17, Ty with 77 U1, = S. However, under certain additional conditions it is

determined, and the following result gives a useful example.

Lemma 2.28. Let u € Cg(£2,S) and let T1,Ty C S with Ty UTy = S. Suppose that
A% =, A} nr,- Then p is uniquely determined by pr,, fir,.

Proof. Let F' = (f,)ves be a system of bounded .A-measurable functions. We show
that &(u, F') is uniquely determined by the subcouplings pg,, pir,. The function g :=

' op, on QF satisfies clearly g = ¢’ opr, for an A"2-measurable function ¢’ (we can
[Loer, foop y9=4gopn g

just take ¢’ = [[,cp,
since by assumption L2(A™2, jup,) = L*(A7? ., pit,), by Lemma 2.2 we can approximate

f» op, where now p, is defined on Q72). Fix any € > 0, and note that
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g within € in L*(ug,) by Zie[m] h; where h; = [] e, Giw 0Py for some bounded A-
measurable functions g;, (note that this is done entirely in the known coupling pr,). For
each i € [m] define the system G; = (i, )ver, by gi, = fo for v € T1\T; and g; , = g;,, for
v € TiNTy. It follows that [§(u, F') =3 ¢, €(Gis iy )| < €, where each (G, pr,) involves

only the known couplings p7,, pr,. Since € > 0 was arbitrary, the result follows. U

Recall from Definition [2.9] the notation By 1L, By for conditional independence. We now

use this to define a related notion for subsets of the index set of a self-coupling.

Definition 2.29 (Conditionally independent index sets). Let pu € Cg(§2,5) and let
Ty,T, C S. We say that Ti,T5 are conditionally independent in p, and write Ty L, T, if
we have A7, 1L, A7 and

A'Jsﬂl /\,U« A'JS—'Q :/J« A'JSHQTQ' (5)

As for previous notations, when the ambient coupling pu is clear we just write 77 L Ts.

Let us note the following useful equivalent definition of the relation L.

Lemma 2.30. Let € Cg(£2,5) and let T1,To, C S. Then Ty L T3 if and only if for
every bounded A§, -measurable f : Q° — C there is a A3, -measurable function h such
that E(f|A3,) =, h.

In particular for every T'C S and F' C T, we have ' 1 T.

Proof. To see the forward implication, note that from Definition and Proposition
it follows that E(f[A7,) =, E(f|A7, A AJ,), and by Definition we have A7, A
A3, =, AJ . In particular A9 A A7, C,, A7, p, and so by Lemma 2.8 we deduce that
E(f|A7, A A7) has a AJ, -, -representative under =,. But then E(f|.A7,) also has such
a representative h, as claimed.

For the backward implication, let By = A7, Bi = Aj,, and let h be an AJ, -
measurable representative of E(f|By). In particular E(E(f|B;)|Bo) =, E(h|By). Since
.»45’:1@2 C By N B, we have that h is both Bp-measurable and By A Bi-measurable, so
E(h|By) =, h =, E(h|By A B1), so E(E(f|B1)|Bo) =, E(h|Bo AB1) =, E(E(f|B1)|Bo A By).
But the latter is =, E(f|By A B1), by Lemma 28] so () holds, whence By L B;. On the
other hand, for every set B € A7 A A7, we have E(15|A7,) =, 1z, but by assumption
we also have that E(1p|A7,) is A7, -, -measurable. Therefore A3, A A, C, A7, . Since

we also clearly have AJ, A A7, D A 7, the result follows. O

Remark 2.31. Note that if Vi, V5 C S satisty V3 L, Vs for pp € Cg(£2,.S) and some set
T c S with T' D> Vy; U Vs, then we have Vi L, , V5 for every 7" C S with TV D V; U V5.

Example 2.32. Let us illustrate some of the previous definitions and results with a basic

example of a coupling familiar in arithmetic combinatorics. Consider the probability space
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consisting of a compact abelian group Z equipped with the Haar probability measure A,
let S = {0,1}?, and let pu € Cg(Z,S) be supported on the group of standard 2-cubes
G = {x = (200, T10, To1, T11) : Too—T10 = To1 —T11} < Z° and equal to the Haar probability
measure on (. (This is a coupling since each projection p, is a continuous surjective
homomorphism G' — Z.) The sets T} = {00,10}, T, = {00, 01} satisfy 77 1, T5. Indeed,
letting A be the Borel o-algebra on Z, let f be any bounded A°-measurable function, and
consider the function a, defined on Z° by ar (x) = S, F(zo0, 10, o1 + k, x11 + k) dA(E).
Let a7, be the function defined on 7° by ar, (oo, T10, To1, T11) = ar, (Too, T10, Too, T10)-
Note that af, is A7, -measurable (it depends only on zgy, z19), and that a/, =, ar,, since
1 is supported on G and af, (z) = ag, (z) for all € G. For any g € L®(A7,), let ¢’ be
the A”'-measurable function such that g =, ¢’ opr, (given by Lemma 2.17). Then, using
the parametrization z = (y,y + h,y + k,y + h+ k), y, h, k € Z for x € G, we have

/fgdﬂ = / f,y+hy+ky+h+k)gly,y+hy+ky+h+k) d\(y, hk)
Z3

= /29’(y,y+h)(/f(y,y+h,y+k,y+h+k)dk) dX*(y, h) =/aTlgdu-
VA VA

Hence ar, is a representative of E(f|.A7,) under =,. Similarly, a representative of E( f].A7, )
is the function  — [, f(z0, 210+ h, To1, z11 +h) dA(h), and yet another similar argument
shows that the function z +— [,. f(2o0, Z10 + h, Zo1 + k, 211 + h + k) dX(h, k) represents
E(f|A7,~r,)- From this it is seen clearly that the composition of the operators E(-].A7, ),
E(-|A7,) is E(-|A7, ) (in particular these operators commute), whence T; L, T5 holds
indeed, by Lemma 23301 Now let us take instead 73 = {00} and T = S\ 7}. A similar
consideration of the operators E(-|.A7,), E(-|A7,) reveals that they still commute, whence
we still have A7, 1, A7, (see [51, Theorem 9]). However, now we do not have Ty L, Tb,
because A7, A A7 is not the trivial o-algebra A7, = Aj. Indeed, note that for
any character y € 2, on the group G we have yopypy = (xopio)(xopor)(Xopi1), S0
X ©opoo € L¥(AF, A A7), which shows that A7, A AJ, is indeed non-trivial.

Definition 2.33 (Conditionally independent system of sets). Let u € Cg(£2,5). We say
that a system (7;);cp of subsets of S is conditionally independent if for every Ry, Ry C [k]

we have (UjeR1 T;) L (UjERQ T;).

An example of this property is given by a 3-dimensional generalization of Example 2.32]
letting 1 € Cg(Z, {0,1}3) be similarly given by the Haar measure on the group of standard
3-cubes on Z, and letting (77, T, T3) be the system of the 2-dimensional faces of {0,1}?
containing the point 0%. It can be checked directly that this system is conditionally
independent (for example by computing what the various expectation operators are, as
in Example 2.32)). This is also established more generally in Section [3] (see Remark [3.9)).
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The following notion enables us to “glue” together two couplings by identifying parts
of their index sets, in such a way that the two index sets become conditionally independent
in the new coupling. The definition uses the following notation: given two finite sets .S,
S’ two subsets T'C S, T" C 5’, and a bijection o : T'— T", we denote by S U, S’ the set
obtained by first taking the disjoint union of S and S” and then identifying every t € T
with o(t) (thus |[S U, S| = |S|+|S'| — |T).

Definition 2.34 (Conditionally independent coupling along a bijection).

Let 2 be a Borel or standard probability space, and let u € Cg(£2,5), u' € Cg(£2,95),
T CS, T C8. Let 0 : T — T be a bijection such that pur =, p,p, and let U =
S U, S'. The conditionally independent coupling of u, ' along o is the unique coupling
p' e Cg(92,5 U, S) such that SL,»5".

This definition requires the following justification.
Lemma 2.35. The coupling p" € Cg(§2,S U, S") in Definition [2.3]) exists and is unique.

Proof. Using the notation in the definition, let B; € A%\, B, € AT, By € AS\T', and let
U=_S5U,S". We have that B; x By x B3 C QY and AY is generated by such sets. Since
E,(1p, ops\r|A7) is Aj-measurable, it can be regarded as an A”-measurable function on
QT (by LemmaZI7). Similarly E,/ (15, opgn1|A3,) can be regarded as an A”-measurable

function on QT (since pur =, 1if). We can therefore define (abusing the notation)
W' (By x By x Bs) := /T Eu(1s, ops\r[AF) 15, Ew(lgsopsnr| A7) dur. (6
Q

This formula implies that (B x By x Bs) is additive in each entry Bj, By, Bs, which
implies that it satisfies property (i) in Definition [A.9. Property (ii) from that definition
clearly holds as well, so the existence of the coupling ;" follows from Lemma [A.T0l

To prove that S L, S’, let us first show that, by (@), for every function f € L>(AY)
and [’ € L>(AY), we have

f e = / E(f|AY) E(f/|A%) du". (7)
QU QU

This can be deduced by approximating f in L*(AY) by simple functions involving sets of
the form By x By X QS/\T/, similarly for f” with sets of the form QOS\T x B, x Bs, and
applying (@) to intersections of such sets. Now, if g € L=(AY), then applying (7)) with
f =1 = E(g|AY) we deduce that |E(g|AY) 120y = |E(g|AY)||£2(ury, which implies
that E(g|.AY) is AY-measurable, and then S L, S’ follows by Lemma 230

To see that p” is unique, suppose that v € Cg(£2,S U, S’) satisfies S L, S’. Then
given any sets Bj, Bs, B3 as above, we have fQU(lB1 ops\r)(1s, opr) (1, opsn) dv =
Jov E(1B, 0ps\rAS) (1, 0pr)1p, 0 psnr dv, where E(1p, ops\r|Ag,) = E(15, ops\r| A7)
since S L, S', so the last integral is [,; E(1p, ops\r|AY)1p, oprE(1p, opsnr|AY) dv,
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and this yields the right side of (@). We have thus shown that v(B; x By x Bs) =

1" (By X By X B3), and so v = p” by uniqueness in Carathéodory’s extension theorem. [J

The next definition and result will be used in Section [l for applications in ergodic theory.

Definition 2.36. Let 2 = (92,4, \) be a probability space, and let u € Cg(£2,S). For
each v € S let 0, be a measure-preserving transformation on 2. We denote by 6 the

corresponding transformation Q° — Q) (w,)ves = (O (Wy))ves-

The following result enables us to view a measure-preserving group action as a family of

continuous maps from a coupling space to itself.

Lemma 2.37. Let (6,)es be a system of measure-preserving transformations on € and
let  be the corresponding transformation Q° — Q. Then the map Cg(£2,S) — Cg(92,5),

o o=t is continuous.

Proof. Fix any system F' = (f,)yes of bounded measurable functions on €2, and let F”
denote the system (f,00,),es. Then for every u € Cg((2,S), the assumption that each
0, is measure-preserving ensures that pof=' € Cg(42,95), and the functions from ()
generating the topology on Cg({2,S) satisfy {(uof~', F) = &(u, F'). Let (pin)n>1 be a
sequence in Cg(£2,S) with p, — po. Then the last equality implies that p,o6~ ' —
to o671, and the result follows. UJ

2.3. Closed properties in a coupling space.
The results in this subsection identify certain useful closed subsets of a general coupling

space (for a general probability space (2).

Lemma 2.38. Let S be a finite set, and let T, Ty C S be disjoint sets. Let Q) be the set of
couplings p € Cg(£2,S) such that Aé’:l and A% are independent in p. Then Q) is a closed
set in Cg(2,.9).

Proof. We can describe this independence property in terms of equations involving the
functions £ from Definition 2.20. More precisely, the property holds if and only if we have
E(p, F) = &(p, Fy) £(p, Fy) for every system F of functions fi, € L>(A) with f1, =1
for v ¢ T}, every system F; of functions fy, € L>(A) with fo, =1 for v € T5, and F the
system with f, = fi, if v € T}, with f, = fo, if v € T3, and f, = 1 otherwise. For every
such system F} and Fy, the set of couplings satisfying &(u, F) = &(u, F1)&(u, F) is closed
(by continuity of the functions &(+, F') in general). Since @) is the intersection of all these

sets, the result follows. O

Lemma 2.39. Let S be a finite set, let T C S, and let v € Cg(2,T). Let Q) be the set of
couplings p € Cg(£2,S) such that pp = v. Then Q is a closed set in Cg(£2,S).
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Proof. The property pur = v holds if and only if we have &(u, F') = £(v, F') for every
system F' of functions f, € L>(A) with f, =1 for v € T, where F' = (f,)ver. For every
fixed F, the condition &(u, F') = &(v, F') defines a closed set of couplings u € Cg({2,5).

The set () is the intersection of all such sets over all such systems F, so it is closed. [

Lemma 2.40. Let S be a finite set, let Ty, Ty C S be such that Ty N'Ty = {w} for some
w €S, and let v € Cg(§2,T1). Let Q be the set of couplings p € Cg(§2,5) such that
pr, =v and Ty L, Ts. Then Q is a closed set in Cg(§2,.5).

Proof. We can describe the properties defining () again in terms of equations involving the
functions €. For ¢ = 1,2 let F; be a system of functions f;, € L>(£2) for v € T;, and let
F be the function system with f, = fi, for v € T \ {w}, with f, = fa, for v € Tp \ {w},
with f, = fiwfew, and with f, = 1 otherwise. Let H be the function system with h, =1
for v € S\ Ty, with h, = fo, for v € To \ {w}, and hy, = E([],cr, fro0polAS) o0
It follows from Lemma 2.30] and approximation by rank-1 functions (Lemma 2.2]) that
Ty L, T5 holds if and only if we have {(u, F') = &(u, H) for every such F. Let Q' = {p €
Cg(92,95) : ur, = v}, which is a closed set by Lemma [2.39 Note that if 4 € @ then the
function h,, (and therefore H) does not change as p varies. We have that () is the set of
couplings p € Q' such that {(u, F') = {(u, H) for every system F'. For a single F', the fact
that H does not change as p varies implies that the last equation defines a closed subset
of Q. The set () is the intersection of all these closed subsets of @', so it is closed. OJ

Remark 2.41. One may wonder whether the property 77 L, T always defines a closed
set of couplings o € Cg(2,5) for T7, T, C S. It turns out that this is not true, as shown by
the following example. Let 6 be a mixing invertible measure-preserving transformation
on 2 = (2, A \). For each n € N, let p, € Cg(£2,[3]) be the image of A under the
map z — (0"x,x,0"x). It is readily seen that {1,2} 1, {2,3} for every n (in fact we
have Ai]@} = Agﬁ} = Ag}). Furthermore, the mixing property implies that pu,
converges to the coupling p defined as the image of the product measure A x A on 2
under the map (z,y) — (z,y,z). However, we do not have {1,2} L, {2,3} (we still have

A[{?’l} 2y = A[{?’Q} 3y =u A~[{31] gy A[{?’Q} 33, but the latter o-algebra is strictly larger than Ag}).

Lemma 2.42. Let S be a finite set and for each v € S let B(v) be a sub-o-algebra of A.
Let Q) be the set of couplings p € Cg(£2,S) such that p is relatively independent over its
factor corresponding to @Q,.s B(v). Then Q is a closed set in Cg(2,5).

Proof. As mentioned in Remark 2.24] we have that p is relatively independent over this
factor if and only if for every system F' = (f,),es such that E(f,|B(v)) = 0 for some v,
we have £(u, F') = 0. For every such system, the set of couplings p with £(u, F)) = 0 is

closed. Since @ is the intersection of all these sets, the result follows. O
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2.4. Localization.
We now turn to properties of couplings that involve measure disintegration. To handle
disintegrations and related tools in a convenient way, in this subsection we assume that
2 is a Borel probability space. The main type of disintegration that we use applies to a
coupling u € Cg(£2,5) relative to a projection pr : Q% — QT and the subcoupling pr. A
reference for this result is [39, (17.35) ii)].

First we want to ensure that in such a disintegration almost all the fibre measures are
couplings in Cg(£2, 5\ T'). This will be shown to hold when T is of the following kind.

Definition 2.43 (Local set). Let u € Cg(£2,S). We say that a set T C S is p-local (or
local in p) if for every v € S\ T the o-algebras AY and A7 are independent in .

Note that the family of local subsets of S is closed under intersection. We also have the

following fact, which is a straightforward consequence of Lemma [2.38|

Lemma 2.44. For a fited T C S, the couplings in Cg(£2,S) in which T is local form a
closed set in Cg(2,95).

The following lemma ensures the property relative to disintegrations mentioned above.

Lemma 2.45. Let u € Cg(§2,S5) and let T C S be local in . Then there is a Borel
measurable function f,r : QT — Cg(2,S\T), x — u, such that for every function
f € L=(A%) we have Jos fdu = [or [qsur fdue dur.  Any other function g with the

same properties as f,r satisfies g =,, fur-

Proof. By [39, (17.35) ii)] there is a Borel function x — p, from Q7 to the space of Borel
measures on 2%\ such that (i, ),cqr is a disintegration of u relative to pr : Q5 — QT
and pir = popy!', and such that any other such function agrees with this one pr-almost
surely. We have p,, € Cg(£2,S\T) for pur-almost every z, indeed for each v € S\ T we see
that . op, ! = A, by applying Lemma ZI6 with Q; = Q, fi = p,, Qo = QT and f, = pr.
Letting F denote a pp-null set such that for every z € Q7' \ E we have pu, € Cg(£2,S\T),
we can now define an appropriate function f, ;- by fixing some arbitrary v € Cg(£2,5\T)
and setting f,r(x) = p, for x € Q\ E and f, r(r) = v otherwise. O

Next we define an operation that will play a key role in the definition of certain topological

spaces using couplings.

Definition 2.46 (Localization). Let p € Cg(£2,.5) and let T' C S be a p-local set. The
T-localization of p1 is the measurable function f, 7 : Q7 — Cg(2,S\T)),  — p, defined
(uniquely up to a change on a pp-null set) in Lemma [2.77]

When the coupling p is clear from the context, we shall write fr rather than f, r. We can

use the T-localization to define a probability measure on the compact space Cg({2, S\ T,
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namely the image measure pr o f - 7. This construction is important for the sequel, because
it enables us to define certain topological spaces that will turn out to be the compact
nilspaces involved in our main results in Section 4l These spaces will be defined to be the
supports of measures of the form pro f,- 7. Let us recall here the notion of the support of

a Borel measure (see also for instance [7, Proposition 7.2.9]).

Definition 2.47 (Support of a regular Borel measure). Given a regular Borel measure
w on a topological space X, the support of p is the closed set Supp(u) = {x € X :
for every open set U 3 = we have pu(U) > 0}.

We use the notation Supp to distinguish this from the purely set-theoretic notion of the
support of a complex-valued function f on a set X, that is supp(f) = {x € X : f(x) # 0}.

Remark 2.48. The localization construction, when applied in particular to cubic cou-
plings (discussed in Section []), can be seen to yield a common generalization of construc-
tions that have played important roles both in arithmetic combinatorics and in ergodic
theory, and that are centered on the notion of dual functions. To see an example from
arithmetic combinatorics, consider again the coupling p € Cg(Z, {0,1}?) from Example
232, with Haar measure A, and let 7" = {00}. Then the T-localization of p assigns to
each © € Z a coupling u, € Cg(Z,{10,01,11}), which is determined by the constants
§(pa, (fr0, for, f11)) = fzz fro(z + 21) for(x + 2z2) fr1(x + 21 + 22) d)\2(2’1, 25), for bounded
Borel functions fig, fo1, fi1 on Z. The functions x — (s, (f10, fo1, f11)) are the U? dual-
functions on Z as defined in [26], (6.3)], and the same construction for the cubes {0, 1}"

with n > 2 yields higher-order U™ dual functions. Dual functions can also be defined

on nilmanifolds (see [34, Chapter 12, §3.2]), and in this setting again they can be seen
as special cases of the above construction, when this is applied to the Haar measures on
cubes on the nilmanifold. Another example, from ergodic theory, is given by the dual
functions defined in [35, (35) and (By)], which can also be seen as special cases of the

above construction, when it is applied to the measures p™ from [35].

When using disintegrations of couplings, it can be very useful to know that some given
property of the coupling is inherited by almost every fibre measure in the disintegration.

The next lemma ensures this for the property of conditional independence of index sets.

Lemma 2.49. Let u € Cg(£2,S5), let T\, Ty be subsets of S with Ty N1y = {w}, let
v e Ty UTh, and suppose that Ty L, Ty. Let (py)zeq be a disintegration of p relative to
po: Q% = Q and X\. Then for A-almost every x we have (Ty \ {v}) L, (Tx\ {v}).

Proof. We first prove the case in which v # w. In this case we can assume without loss
of generality that v € T} \ 1. Let S’ = S\ {v} and 7] = T} \ {v}. We will prove that

for A\-almost every x € €, for every bounded Asi—measurable function ¢’ : Q% — C and
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bounded A%-measurable function A’ : Q% — C, we have

LLaman = [ BT d ©

Thus we will have E,,, (¢/|A3) = E,, (¢'|A3,), implying by Lemma 230 that 77 L, Ts.

Let f, g, ho be bounded functions Q% — C and suppose that f is AJ-measurable, that
g is Aj,-measurable, and that hg is A7, -measurable with E,(ho|A5) = 0. Since f, g are
both ASI measurable, we have [ fghodp= [ fgE,( h0|AT1) dp. Since Ty L, T, we have
by (@) that E,(ho|A7,) = E.(ho|A3). Hence [,s fghodu = 0. By the disintegration we
have [,s fghodp = [, f/(x)(fﬂsl g'hy duw) d, where f', ¢, h{, are the functions given by
Lemma 2. 17 such that f = f op,, g = ¢’ opsr and hg = hjopg:. Let ¢t denote the function
x fﬂsf g hidp,. We have thus shown that for every function f € L*°(AY) we have
Jo f/(@)t(z) dX = 0. In particular, choosing f = top,, we deduce that [, |t(z)]*dX = 0,
sot Vamshes A-almost surely. Applying this fact to each term of a sequence of bounded
functions (g;);en that is dense in LQ(AS{), we deduce that for A-almost-every = € ), we
have [,q ' hy dp, = 0 for every function g € LOO(.A%,). Now we let (h;);en be a sequence
of bounded functions dense in the closed subspace of LQ(A%) consisting of functions hg
with E,(ho|AJ) = 0, and we apply the last sentence to each term h;. We thus deduce
that for some set £ C Q with A(F) = 0, for every € Q\ E, we have [, ¢’ h{ du, = 0 for
every bounded AS{—measurable function ¢ : 2° — C and every bounded A%—measurable
function hg : % — C with E,(ho|A2) = 0.

Now fix any z € Q \ F, any bounded A‘%—measurable g : Q% — C and any bounded
Af -measurable &' : Q¥ — C. Let r be a version of E,(h'opgs/|A3). By Lemma 217
there is a function ' € L®(A%) such that r = 7/ opg.. Applying the last sentence from

the previous paragraph to the functions ¢ = ¢’ opgr and hy = (k' — ') opg/, we obtain

/QS/ g b du, = /st g ' dpiy. 9)

Since 1 is already A3 -measurable, the last integral above equals [,s E,., (¢/|A3) ' dy,.
By (@ applied (in the opposite direction) with E,, (¢'|.A%) instead of ¢, we obtain that
the last integral equals [,s E,,, (¢/|A3) B dj,. This proves (8).

Now we prove the case v = w. Let f € L®(AY), g € LOO(ATl\{U}) h e LOO(ATQ\{U})
We have [,s fghdp = [,s fE(g]A7,)h dp. This last integral equals [,,s f E(g|.AY)hdp =
Jos FE(g]A3) (h|AS) dp, since TyL,T5. By [7, Proposition 10.4.18], for A-almost every
z we have E(g|AY)(z) = [ 9 dp, (and similarly for k), so [, f( (fﬂs/ (gh) d,ux> d\ =

fos Fghdi = foe fE (g AS) E(hAS) dyu = [, f(x (fQSf 9dfts Joo hdp, ) dA. Since this
holds for any such f, we deduce that stf (gh)dp, = stf gdu, stf hdu, for almost
every x, i.e. the desired independence. By an argument similar to the previous case, using
L?-dense sequences of functions g, h, we conclude that for almost every z the last equality
holds for all g, h. Hence the result holds in this case as well. O
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The following lemma is almost trivial but we shall need it for the next result.

Lemma 2.50. Let p € Cg(£2,5), let T C S be local, and let x — p, be (a version of)
Jur. Let A € AE\T, let f:=E(laops\r | A}), and let f' be AT-measurable such that
f =, ['opr. Then f'(z) = p.(A) for ur-almost every x € Q.

Proof. Let g denote the function z — u,(A) on 27. By the essential uniqueness of condi-
tional expectation, it suffices to prove that for every set B € A" we have [, g(z) dpr(z) =
w(ANpyt(B)). But this holds by definition of the disintegration (i,)ycqr of p. O

Definition 2.51 (Conditional coupling). Let u € Cg(£2,S) and let T" C S be local.
Let M € AT satisfy pup(M) > 0. Let g/ be the probability measure defined on A\" by
W(N) = pu(MxXN)/ur(M). Then, letting f be the T-localization of u, by Lemma 250 we
have p/(N) = pp(M)~" [y, f(2)(N) dup(z). In particular, by convexity of Cg(£2, S\ T)
we have u' € Cg(£2,S\ T). We call i/ the conditional coupling of u relative to M.

The gist of the following result is similar to that of Lemma 2.49] but here the property

that is inherited by the fibre measures is the locality of some index set.

Lemma 2.52. Let p € Cg(£2,95), let T C R C S, and suppose that R,T are local in .
Let v € Cg(2,S\T) be a coupling in Supp(pur of;%). Then R\ T is local in v.

Proof. We prove that for every w € S\ R, any events G € A;g, H e A5 satisty
the equation v(G N H) = v(G)v(H). First note that it suffices to prove this assuming
that GG is a measurable product-set, i.e. of the form (HveR\T G,) x Q\E where G, € A
for each v. Indeed, this clearly implies that the equation holds also for G being any
pairwise disjoint union of finitely many such product sets, and then this in turn implies
the equation in full generality, by approximating any G € Azgp by such a disjoint union
(see Lemma [A]] for more details on such approximations). So we may assume that
G = (HveR\T G,) x Q\E. Let F = (fy)ves\r With f, = 1lg, for v € R\ T, f, = 1
for H' € A such that H = p'(H'), and f, = 1 otherwise. Let f,r : x — pu, be the
T-localization of . Let d be a metric generating the topology on Cg(£2, S\ T). For every
e>0,let A. ={z € QT : d(p,v) <€} = f;%(BE(V)), where B,(v) is the ball of radius €
with center v. Since v € Supp(uTOfu_}), we have ur(Ae) > 0.

By the disintegration of p in Lemma 2:45] and the continuity of £(-, F), we have
V(G N H) = limeo pu(A x QS\T)~1 ,u((Ae % QY M (G % Q) N (H x QT)>. Similarly

V(@) = lime o (A x QS\T)1 u((AExQS\T)ﬂ(GxQT)). Since A x5\, Gx QT € AS,

we have M((Ae < Q\T) N (G x Q) N (H x QT)> - u((AE x O5\T) (G x QT)) u(H x Q7),
by the locality of R in p. Combining the last three equations, we deduce that v(GNH) =
v(GQ) p(H x QF). Finally, we have u(H x Q) = \(H') = v(H). O
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2.5. Conditional independence in set lattices.

Definition 2.53. Let S be a set. A set lattice in S is a family of subsets of S closed
under intersection and union. If F C 2% is a family closed under intersection, then the

family A of all unions of sets in F is a set lattice, and we say that F generates A.

Definition 2.54. Let S be a finite set, let u € Cg({2,5), and let A be a set lattice in S.
A set T' € A has the conditional independence of subsets (C1S) property in A if for every
Ty, T, € A with T, T, C T we have Ty L, T5.

If the ambient coupling u needs to be specified, we say that T" has the CIS property in A

and p. The main result of this subsection is the following fact concerning the CIS property.

Proposition 2.55. If T1,T; in A both have the CI1S property and Ty L Ty, then Ty U Ty
has the CIS property in A.

To prove this we shall use the following result about the relation L, which will also be

useful in later sections.

Lemma 2.56. Let u € Cg(£2,5), and let A, B,C be subsets of S satisfying the following
conditions: A L B, (AnB)LC, (AuB) L C, AD(BNC). Then we have
B1LC, ALlL(BUC), and (AUC) L B.

Proof. We first prove that B 1 C. Let f be bounded AZ-measurable, and let f’ =
E(f|A5, p)- Since (AU B) L C, we have by Lemma 230 that f/ = E(f|A?AUB)mC)' This
in turn equals E(f|A%.), since (AU B)NC = ANC (using that A D BN C). Thus

f'=E(f|Aus) = E(f|A%nc)- (10)

Since A% 5 D A%, we have E(f|A3) = E(f'|.A%). We also have E(f'|.A%) = E(f'|A%5),
since f' is A%-measurable and A | B. Now using that C' L (AN B) and the fact that f’
is AZ-measurable (by (1)), we obtain by @) that E(f'|A%5) = E(f'|A5p~c). The last
three equalities imply that E(f|.A%) is A5, pnc-measurable. Since A% 5.0 C Ao, We
deduce that E(f|A%) is A%~ -measurable. This proves that B 1 C (by Lemma Z.30).
To show that A 1 (BUC'), we use the fact that every function in L?(A% ) is a limit in
L? of finite sums of functions of the form fg where f € L>=(A2) and g € L>(A3%) (this can
be seen using that by Lemma 2.2 any function in L?(A% ) is an L2-limit of finite sums of
rank-1 functions [ [, . g e fo 0Py With each f, being A-measurable; then each of these can
be written as fg with f = [[,c5 foop, and g = HveC\B foopy). For every such f, g, let
f' be defined as in (). Then E(f g|A%) =E(f'g|A%) = f'E(g| A%) = f'E(g] Alnp),
where the second equality uses that f’ is measurable relative to A5, C A% (by ([@0)),
and the third equality uses that A L B. Hence E(f g|.A%) is a product of a function



ON CUBIC COUPLINGS 27

in L>(A5p) (ie. E(g] A5.p)) with a function in L>=(A5.-) (i.e. ), so E(fg]|.A3) is
AS An(BuC)-measurable. Since this holds for every such function fg, it holds more generally
for every function in L?*(A% ). By Lemma we therefore have indeed A L (BUC).

Finally we claim that (C'U A) L B. To prove this, as in the previous paragraph, it
suffices to show that if f € L>(A%) and g € L>=(A2) then E(fg|A%) is in L> (A(CuA AB)-
To see this, note first that E(fg|A%) = E(E(fg| A% 5)A%) = E(fE(g] A% 5)]A%). Using
that C' L(A U B) we have E(g| A3 5) = (g|A(AUB ~c), and since (AUB)NC =ANC,
we have E(g|.A5 5) is A5-measurable. It follows that E(fg|.A5 p) is Aj-measurable, and
since A L B, we have that E(fg|A3) = E(E(fg|A5 p)|Az) is A5, g-measurable. Since
ANB=(AUC)N B, the claim follows. O

Proof of Proposition[2Z.50. We argue by induction on |T3ATy|. If [Ty AT;| = 0 then there
is nothing to prove. We can assume that |77 \ 73| > 1. Let F' € A be minimal with the
property that ' C T} and |F'\ T3] > 1. We then have the following fact:

VG e Awith G CThbUF and |GN(F\Ty)| > 1, we have FF C G. (11)

Indeed, otherwise G N F' € A would contradict the minimality of F'.

By the cis property of T} we have (13 N'Ty) L F. Since F' C T, we also have
(Ty UTy) L F (see the sentence after Lemma 2.30). This together with our assumption
that T} L T, implies, by Lemma 256 (applied with A =T}, B =Ty, C = F), that

TQ 1 F and T1 1 (T2 UF) (12)
The following observation will also be useful:
V@ € Awith Q CT;,, we have F' 1 Q. (13)

To see this, note that if ) C 75 is in A then, since T5 has the CIS property, we have
(To,NF) L @, and F L @ then follows by Lemma 256 with A =T, B=F, C = Q.
Now we prove the ciIs property for F'UTy. Let U,V € A be subsets of FFUT;. If
both U and V are contained in T then the CIS property of T implies that U L V. If
[UN(F\Ty)| > 1and |[VN(F\Ty)| > 1, then by (Il) we have FF C U, F' C V, and so we
have U = FUU', V = FUV’ forthesets U' :=UNTy, D FNT,, V' :=VNT, D FNTs.
Note that U’, V" are both in A and contained in 7. By the cCIS property of T, we have
U L V'. By (03] applied with @ = U'NV’' and Q@ = U’ UV’, we have (U’ UV’) L F
and (U'NV’') L F. Now we apply Lemma 256 with A = U’, B = V', C = F (noting
that U' D V/'N F since V' N F =T, N F), obtaining U’ L V, and we apply it similarly
with A = V', B =U’, C = F, obtaining U’ L F. Thus, now we have V L F (because
V D F), we have (VNF) L U’ (because VNF = F and F L U’), we have (VUF) L U,
and V' 2 (F'NU’). Hence, by one more application of Lemma 256, with A=V B =F,
C =U’, we obtain V' L U, as required. The final case is when (without loss of generality)
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|[UN(F\T)| > 1 (which as above implies F' C U) and V' C T,. Then we can again write
U=UUF for U :=UnNTy, € A. We then have V' L U’ by the CIs property of T5, by
(I3) we have FF L (U'UV) and F L (U'NV), and we also have U" D V N F, whence by
Lemma 2.56] applied with A =U’", B=V, C' = F, we obtain again V' L U.

We have obtained that (FUT) L T (by (I2)) and that both FUT, and 77 have the
c1s property. Since |(F U Ty)ATy| < |ToATi|, we have by induction that (F U Ty) U T}
has the IS property, and since (F' U Ty) U T} = Ty U Ty, the proof is complete. U

2.6. Idempotent couplings.
In this section we introduce and study the following special class of couplings.

Definition 2.57 (Idempotent coupling). We say that a coupling p € Cg(£2,{a,b}) is
idempotent if the following holds. Let ' € Cg(£2,{da’,0'}) be such that o : {a,b} — {a’,V'},
a +— a', b — b is an isomorphism of p and u/, and let v € Cg(£2,{a,d’,b}) be the
conditionally independent coupling of p and y’ obtained by identifying b and ¥'; then the

bijection o’ : {a,b} — {a,ad’}, b — a’ is an isomorphism of p and v, 4y

This notion leads in a natural way to the following more general notion of idempotence

that will be crucial in the next section.

Definition 2.58 (Idempotence along an isomorphism). Let p € Cg(£2,5), let a,b be
subsets of S forming a partition S = a U b, and let 8 : @ — b be a bijection. We then
say that u is idempotent along B if we have p, =4 up, (as per Definition 2.27) and, letting
2 = (Q* A% u,), we have that u is idempotent as a coupling in Cg((2', {a, b}).

Example 2.59. Consider the coupling from Example 2.32] thus {2 consists of a compact
abelian group Z with Haar measure A, and p € Cg(£2,[2]) is given by the Haar measure on
{(z00, T10, To1, T11) : Too — T10 = To1 — T11} < 712l Let a, b be the faces {00, 10}, {01, 11}
respectively, and let 5 : a — b be the bijection that switches the second component from
0 to 1. Then p is idempotent along . Indeed, the coupling v from Definition .57 here is
the Haar measure on { (0, Z10, Ty, 1o, To1, T11) : Too — T10 = Thy — Tho = To1 — 711} < Z°,

and projection to the first 4 components here yields a coupling isomorphic to .

Remark 2.60. Note that the coupling v € Cg((2',{a,d’,b}) in Definition 257 is also
a coupling in Cg(f2,a U a’ U b). The construction of v as a conditionally independent
coupling then implies that (a U b) L, (a’ LUb), by Definition 2341

The main result of this subsection is a characterization of idempotent couplings, stating
that every such coupling is a product of the original probability space with itself relative
to some factor of the space, in the sense of the notion of relative product of measure spaces
from [20, Definition 5.7]. We only use the special case of relative products where the two

measure spaces are the same, which we recall as follows.
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Definition 2.61 (Square of a probability measure relative to a factor). Let 2 = (2,4, \)
be a probability space and let B be a sub-o-algebra of A. The square of \ relative to B
is the coupling p € Cg(£2, {a,b}) defined by the following property:

VA B A p(AxB)= / E(14B) E(15|B) dA. (14)

Note that formula (I4) indeed defines uniquely the coupling y, by Lemma [A. 0] since the
formula determines the multilinear map F' +— &(u, F') in that lemma.

For every coupling 1 € Cg(£2, {a,b}), we define a Hermitian form (-, -), on L>(2) by

:/ fopamduz/ (o) g(ws) dpp(a, ).
02 02

Property (I4) is equivalent (via L?*-approximations by simple functions) to the following:

Vg L°(A), (fg) = / E(f|B) E(gB) dA (15)

The notion of relative square should be carefully distinguished from Definition[2.34l In the
latter definition, the index sets of the two couplings may have some parts glued together,
whereas if we take the relative square of a coupling u € Cg(£2,S) then the result can be
viewed as a coupling of {2 with index set being the disjoint union of two copies of .S, and

here we are focusing on a sub-c-algebra B of A.

Lemma 2.62. Let pu be as in Definition[2.61. Then we have the following properties.

(i) If A € B then u(p;'(A)Ap, ' (A)) = 0. In particular p;*(B) =, p, ' (B).

(i) AL and Aia’b} are conditionally independent relative to G == p; 1 (B) =, p, ' (B).
(i) G = AL A Aia’b}. In particular we have Alaty A, Al{)“’b},
)

(i) w is an idempotent coupling.

Proof. For (i), note that p;1(A) = A x Q and p,'(A) = Q x A, so we have to show
that p((A x Q) \ (2 x A)) =0 = p((Q x A)\ (A x Q). We prove the first equal-
ity (the second follows similarly). Note that (A x )\ (2 x A) = A x A. Then

A x A) = [(E(14|B)E(14|B)dX\ = [,1al4d\ = 0. For (ii), note that by (@) we
have Jop E(f 0palG) Gopp At = [ E(f|B) opa gop, du. By ([@H) the latter integral is
JoE(fIB)E(g|B)dX = [, fops gop, du. Since G C, AlePd A Aga "} these equalities
imply that E(f o pa|A£a’b}) = E(f op,|G), which implies conditional independence over
G. Now (i) follows from (zi) and the fact that G C, AL A Ag‘“b}. Finally, to see
(1v) consider the coupling v € Cg(2,{a,d’,b}) from Definition 2.57, and note that for
every A, A € A, we have v(A x Q x A') = [ E(1s0pa A" NE(1y o p | AL ") dA, by
(@) applied with ¢ = v and By = Q. This is [, E(14]|B)E(14/|B)dX\ = u(A x A"), by part
(i) of Lemma It follows that the subcoupling of v along {a,d’} is p. O
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We thus know that a square relative to a factor is always an idempotent coupling. We
will see in this subsection that in fact every idempotent coupling is of this form. This
enables us, in particular, to define a generalization of uniformity seminorms in the sequel.

To achieve these goals we begin by showing that for an idempotent coupling p the

form (-, -), has the following useful reduced expression.

Lemma 2.63. Let pn € Cg(£2,{a,b}) be an idempotent coupling. Then for every f, g €
L>(82) we have

(b= | B(F o Al®) Blgopd AT du (16)

Proof. Let S = {a,d’,b} and let v be the coupling associated with p as in Definition 2.57]

with index set S. We then have the following sequence of equalities, explained below:
<f7 g),u = fopa goPa dV{a,a’} = / fopa g O P dv
02 03

= /SE(fopa\A{Saf,b}) JOPa dv:/ E(f opa|A}) gopa dv
Q

Q3

= / E(S opl ) Bgepal A7) dv = [ B(f opl AP Elgop AT dn

02
The first equality uses that y is isomorphic to v, q} (since p is idempotent). The second
equality uses that vy, .y is a sub-coupling of v. The third equality uses that gop,
is Afa,b}-measurable. The fourth equality follows from {a,b}1,{a’,b} and fop, being
Afa7b}—measurable. The fifth equality is clear. The sixth equality uses firstly the fact that
in the left side the term E(g o py|.A7) can be replaced with E(g op,|.A7) (this follows from
the definition of these conditional expectations upon checking that for every bounded .A3-
measurable function A we have fm h(gopar) fm (g opa) dv, this equality following
from p, p' being isomorphic subcouplings of 1/), and secondly uses that vy, and u are

isomorphic. O

Example 2.64. Let us illustrate (I6) with the coupling from Example 2.59] i.e. the Haar
measure g on G = {x = (zo9, T10, To1,T11) : Too — T10 = To1 — T11} < 712 Note that u
can be viewed as an idempotent coupling by viewing [2] as {Fp, F1} with Fy = {00, 10},
Fy = {01,11}, thus p € Cg(£2,5) where S = {Fy, F;} and 2 = (Z*, A\ x \). Then, for
all bounded Borel functions f, g : Z*> — C, we have (f, o fG T00, T10) md,u.
Using (I6) we obtain (f,9), = [q E(fopr|AZ,) (gop—F(MFl)d,u(fL‘le‘Fl) as an al-
ternative formula. Reasoning as in Example 2.32] one can check that E(fopg|A7,) is
represented by the function x — [, fopg (xoo + h, 10 + h, zo1, x11) dA(h), that is the

integral of f over the set {(u,v) € Z* 1 u —v = 20, — 11 }-

Part of the usefulness of the alternative formula (I6) for (f,g), is that it reveals clearly

that (f, f), is always non-negative, which is unclear in the first formula for (f, g), above.
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Corollary 2.65. Let p € Cg(£2,{a,b}) be idempotent. Then for every f € L*({2) we
have (f, ), ‘fﬂfd)\}

Proof. By Lemma 2.63] and the Cauchy-Schwarz inequality, we have

/’E (f opal AL du>)/ fopa

We can now prove the main result of this subsection.

Proposition 2.66. Let 2 = (£, A, \) be a probability space. A coupling u € Cg(£2,{a,b})
is idempotent if and only if there is a o-algebra B C A such that u is the square of A

relative to B.

Proof. The backward implication follows from (iv) in Lemma For the forward im-
plication, let S = {a,d’,b} and let v € Cg(2,5) be the coupling in Definition 2.57]

We first prove that

Ale®t g1, Al (17)

Let 7 : Q5 — QF be the map that interchanges the a and a’ components. Then 7 preserves
the measure v. Indeed, since vq 5y = Vfqr 4y, it is checked from the definition of conditional
expectation that E(gopy|AS) = E(gop,|AY) for every g € L>®(A). Using this together
with {a,b}L,{a’, b} (Cf. RemarkZ.60), for every product set in A° we have v(Ax A’ x B)
= [E(Liop A))E(Ly opu|AF) 1 popydy = [E(Lsopa|AY)E(La opa| A7) 1popydv =
V(A" x A x B), so 7 is v-preserving on product sets and hence on all A% by standard
results. Now, to prove (7)), by Proposition (and Lemma 2.17) it suffices to show
that for every function f € L*°(A) we have that E,(fo pa|Al{)a’b}) is AL" _measurable.
We prove this by showing that ||E(E(f opa\Aéa’b})\A({z“"’})HLQ(M = ||E(f opa\Aga’b})HLz(“)
To this end, note first that ||[E(f opa|u4£a’b})||%2(u) = [os [E(f opa|A3)|? dv (since p =
V{aay Dy idempotence). Since A3 C, A%, thisis [,s [E(E(f opal A3 ) AS)[? dv, which
equals [i,s [E(E(f opa|A})|AS)[>dr (since {a,b}L,{da’,b}). Since 7 preserves v, this
is [os |E(E(f opa|A))|AS)[Pdr. By the remark involving g above, this in turn equals
Joos E(E(f 0 pal A AS)[? dv = [E(E(f opal AL AL |2, ). This proves (7).

Let D = Al A A,ﬁ“"’} and let B C A be the image of D on {2, i.e. the o-algebra
of sets B C Q such that p;'B (equivalently pb_lB) is in D. It then follows from the
definitions that p; 1B =, D =, p, ' B. This together with (7)), @) and (3)), implies that

Ve LX), E(fop A = E(f opulD) = E(f|B) op. = E(f|B)op.  (18)
We can now deduce that (I5) holds, by combining (I6]) with (I8). O

We now deduce several consequences of Proposition 2.66]

Lemma 2.67. Let u € Cg(£2,{a,b}) be an idempotent coupling, and let v be the associated

coupling from Definition[2.57. Then v is symmetric under every permutation of {a,d’,b}.
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Proof. By Proposition there is a o-algebra B C A such that p is the square of {2
relative to B. Letting S = {a,d’,b} as before, for arbitrary sets A, A’, B € A we have
V(Ax A" x B) = [4s(1a0pa) (1aropa) (15 0p) dv, which equals

/ E((1a0pa)(1a 0pa) (1 0pp)| Ay py) dv = / E(laopa| Afyyy) 1aope 1gop, dv.
Qs Os

Since {a,b} L, {d/,b}, by Lemma we have E(140p, | A{a, n) = E(laop,| A7), By
@) and [I8) we have E(140p, | AS) = E(140p, | AL oprapy = E(14|B) opy. Therefore
V(AxA' xB) = fQS (14|B) opy 1a4r 0par 1Bopbd1/—fma/b} 1a opy ( (14]B) 1) opy du,
where the last equality uses that vy = p. Finally, using formula (I5]) for 4 we obtain

V(A x A x B) = / E(1,4B) E(1y|B) E(15|B) dA. (19)

The symmetry follows readily from this formula. O

Lemma 2.68. Let T' C S, and suppose that u € Cg(§2,S x {0,1}) is idempotent when
viewed as a coupling in Cg(£2%,{0,1}) (identifying ()11} with QA0 " and similarly
that pirx o1y is idempotent as a coupling in Cg(£27,{0,1}). Then (T'x{0,1}) L, (Sx{0}).

Proof. Let S" = S x {0,1}, T" = T x {0,1}. It suffices to show that for every pair
of functions f,g € L*(A”T) we have that E(f oprxi gopTX{0}|A§lX{O}) is A‘;IX{O}—
measurable. Indeed, if this holds then using Lemma 2.2 we can deduce that every function
h € L'(A"") has E(h | ASX{O}) € LI(ATX{O}) and the result then follows from Lemma
230 Note moreover that for any f, g as above, we have E(f opry 1y g 0prx{oy | Aglx{o}) =
goprxoy E(foprxpy| Ag;{o}). Hence it suffices to show that for every f € L>(AT) we
have that E(f opryqy | Ag;{o}) is A‘%’X{O}—measurable.

Let By C A and By C AT be the sub-o-algebras given by Proposition 2,66, thus
Py (Br) = AZy 0y NuAS s 1) =i Pswoy (Br), and prs 11y (Be) =y AT 10y NeAT S (1) =
p;i{o}(BQ). Let pg denote the subcoupling jigy oy of ps viewed as a measure on 0
and similarly p7 denote the subcoupling piry oy of pgr viewed as a measure on QT By
(@) applied to By we have [,o foprxyfoprxioydp = [os |E(f OpT‘Bl)‘2dﬂg. By
(I5) applied to By we have fQT/ foprxqy md,ugp/ = fQT }E(f|l§’2)’2d,uT. Since
pure is the image of p under pr., the left sides of the last two equalities are equal.
Moreover, since pr is the image of ug under pr, and E(f|Bs)opr = E(fopr|BS) for
B, = p;'B, C A%, we have [, }E(f|82)}2d,uT = Jos |E(f opT‘Bé)‘Qdﬂg. We deduce
that ||E(f opr|Bi)lla = ||E(f opr|Bs)|l2. Since By C Bj, the last two expectations are
equal, whence E(f opTX{1}|p§i{1} (B1)) =E(f opTX{l}\p;lx{l}(BQ)). Lemma (i) and
Proposition imply that E(f OpTX{1}|A§/x{0}) = E(f OpT><{1}|p§>1<{1}(Bl))- The last
two equalities imply that E(f o pTX{l}\AgX {0}) is .A*;’X (o measurable, as required. O
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Lemma 2.69. Let € Cg(£2,S x {0,1}). Let S1,S2,535 C S be such that Sy N Sy = S5
and S; U Sy = S. Suppose that for i = 1,2,3 we have that pis,<101) 15 idempotent as a
coupling in Cg(Q2%,{0,1}). Suppose that Sy x {0,1} L, Sy x{0,1}. Then p is idempotent
as a coupling in Cg(Q°,{0,1}).

Proof. The result is clear if one of 57, S5 is S, so we suppose they are both proper subsets,
and so none of them includes the other, since 51 US; = S. Let 4/ € Cg(£2, S x {0,1,2})
denote the coupling constructed in Definition 2571 Let 77 = {0,1}, T = {1,2}, T3 = {1}.
Let F = {S; xT; : 1 <14,j < 3}. It is clear that F is closed under intersections. Let A be
the set lattice in S x {0,1,2} generated by F. We claim that every set in F has the CIS
property in A. To see this, note first that for all sets in F other than the four sets .S; x T},
1 <i,5 < 2, the c1s property holds just by inclusion. Furthermore, for each of those
four sets, the relation L, is equivalent to L, (since for such a set p restricts to p by
construction). For all pairs of such sets except one pair, the relation L, holds because of
inclusion, and for the remaining pair the relation holds by Lemma 2.68] (e.g. for S; x {0, 1}
the proper subsets in A are Sy x {1}, S3x{0,1}, S3x {1}, and (S; x{1})U(S3x{0,1}), and
the pair in question is S; x {1}, S3 x {0, 1}); this proves our claim. By our assumptions
and the symmetry of 1/, we have Sy x Ty L, Sy x Ty and Sy x Ty L, Sy x Ts. Proposition
gives that S x T} and S x Ty both have the C1s property. By construction of /' we have
SxTy L, SxT,. Hence Sx{0,1,2} has the CIS property, by Proposition 2581 It follows
that S; x 17 Ly S1 x Ty, So x Ty Ly Sy x Ty and S x Ty L,y S x T, The idempotence
of .7, implies by Lemma that ugix (0,12} IS invariant under the permutations of
{0,1,2} for s = 1,2. Since S7 x{0,1,2} L Syx{0,1,2} and S = S;US,, we have that y is
the (unique) conditionally independent coupling of pf (01,2 and s, (012} BY @) 1 is
also invariant under these permutations. Therefore ji,, 02 = ey (0.1} which completes

the proof that u' is idempotent. O

The following result will be used in the next section to establish the nilspace composition

axiom for non-injective morphisms on a cubic coupling; see the proof of Lemma [4.7]

Lemma 2.70. Let 2 = (2, A, \) be a probability space such that 2 is a compact space
and X is a Borel measure with Supp(A\) = Q. Let p € Cg(£2,{a,b}) be an idempotent
coupling. Then the support of i on Q x Q includes the diagonal {(x,z) : © € Q}.

Proof. Let A C Q be an arbitrary non-empty open set. Then p(A x A) = (14,14),. By
Corollary .65, this is at least A\(A)2. Since A is supported on €2, we have A(A) > 0, so
p(A x A) > 0. Let (z,z) € Q2 and let U be an arbitrary open set containing (z,x).
By definition of the product topology on 2%, there is an open set A such that (z,z) €
A x A CU. From the above argument it then follows that x(U) > 0. Since this holds for

U an arbitrary such open set, we have that (z,x) is in the support of pu. O
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3. CUBIC COUPLINGS

In this section we begin to study the main objects in this paper, namely cubic couplings.

Definition 3.1. A cubic coupling on a probability space 2 = (2,4, ) is a sequence
(ul"l e Cg(12, [[n]]))n>0 satisfying the following axioms for all m,n > 0:

1. (Consistency) If ¢ : [m] — [n] is an injective cube morphism then Mﬁ[én]] = plml,
2. (Ergodicity) The measure ul'l is the independent coupling A x .
3. (Conditional independence) We have ({0} x [n —1]) L ([n — 1] x {0}) in pl"l.

The notation pl™ is inspired by the notation p[™ used by Host and Kra in [35] §3].° In
particular, just as in [35], the superscripts [n] in our notation are used only to label these
measures, and do not have the meaning of the power notation for maps that was defined
in the introduction (just before Theorem [LT]).

Remark 3.2. Applying axiom 1 with automorphisms®™® ¢ € Aut([n]), and combining this
with axiom 3, we deduce that axiom 3 can be stated equivalently as follows: for every
pair of (n — 1)-faces Fy, F} in [n] that are adjacent (i.e. with Fy N F; # (), we have
Fy L F1. In particular, if axiom 1 holds for every ¢ € Aut([n]), then to verify axiom

3 it suffices to check that Fy L uIn1 F1 holds for some such pair of faces in [n], for each n.

Note that we must have ull = X\ (indeed, axiom 1 implies that pl°l = MEZE, and since pl"

is a coupling of A we have ugﬂ = \). We can also define a cubic coupling on a measurable
space (£, .A), as a sequence of measures as above, but without prescribing A as pl°l.

Given a face Fy = {v € [n] : v(s) = 0} of codimension 1 in [n], and letting F} denote
the opposite face F; = {v : v(i) = 1}, from now on we denote by J the bijection that maps
an element v € Fj to F} by switching v(i) to 1. Recall that a discrete cube morphism
¢ : [m] — [n] is a face map if its image is an m-face in [n] ([10, Definition 1.1.4]).

We shall establish that Definition B.1]is equivalent to the following one, in which the
consistency axiom is weakened and conditional independence is replaced by an axiom

involving idempotent couplings.

Definition 3.3. A cubic coupling on a probability space 2 = (2,4, ) is a sequence
(ul"l e Cg(12, [[n]]))n>0 satisfying the following axioms for all m,n > 0:

1. (Face consistency) If ¢ : [m] — [n] is a face map then ,ugb"]] = plml,

2. (Ergodicity) The measure pI' is the independent coupling A x \.

3. (Idempotence) For every pair of opposite (n — 1)-faces Fy, F; in [n], the coupling
plnl € Cg(2=1 {F,), F1}) is idempotent along 3.

9Host and Kra use the notation [n] instead of [n], but we already use the former for the set {1,2,...,n}.
0T hese are the bijective morphisms from [n] to itself; see [I0, Definition 1.1.1].
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Note that in the idempotence axiom, the possibility to view ull as a self-coupling of
(QIn=1 yIn=11) with index set {Fy, F1} follows from the face consistency axiom, since
the latter axiom implies that the images of ul™ under the projections pg,, pr, are both
isomorphic (as couplings) to "'l This alternative definition of cubic couplings is useful
for applications in ergodic theory. In particular, this alternative axiom system is simpler
to verify for the measures constructed by Host and Kra in [35]; this observation leads to
our applications in Section

To prove the equivalence of Definitions [3.1land [3.3], we begin with the following result.

Lemma 3.4. Suppose that ((2, (M[[n]])nzo) satisfies the three axioms in Definition [3.1.
Then it satisfies the three axioms in Definition[3.3.

As we shall see, the implication stated in this lemma has a somewhat simpler proof than
the converse. In this sense, the axiom system in Definition may be viewed as more
basic than the one in Definition Bl From the viewpoint of the notions involved, however,

the conditional independence axiom can be deemed simpler than the idempotence axiom.

Proof. Clearly ((2, (Mw)nzo) satisfies the face consistency and ergodicity axioms. Con-
cerning the idempotence axiom, note that the coupling v on {Fy, Fy, F{|} from Definition
257 can be realized as a subcoupling of "+l by taking two adjacent n-faces Vi, V4 in

[n + 1] and identifying Vo N'V; with F, identifying V; \ Fy with Fy, and V; \ F} with F{.

[n+1]
F()UF1UF6

sentence, by the consistency axiom and the fact that Vy L V; (by the conditional indepen-

The subcoupling can then indeed be viewed as the coupling v from the previous
dence axiom). The idempotence now follows, since the subcoupling of v on { Fy, F{|} equals

pl"l by the consistency axiom applied with a bijective morphism ¢ : [n] — Fo U Fj. O
We now prove the converse of Lemma [3.4]

Lemma 3.5. Suppose that (Q, (N[M])nzo) satisfies the three axioms in Definition [3.3.
Then it satisfies the three azioms in Definition [31.

Proof. We begin by proving that the conditional independence axiom holds. Let Fj be
the n-face [n] x {0} in [n+ 1], and let F; be the n-face [n — 1] x {0} x {0,1} in [n + 1].
By Lemma .68 applied with S = [n], T'= [n — 1] x {0} C 5, we have Fy L o1 Fy. (To
apply this lemma we use the idempotence axiom for pl"*1 and also for ,u%“ﬂ >~ )
The conditional independence axiom follows (using Remark [3.2]).

To prove the consistency axiom, let us first prove the following special case. Let
¢ : [n] — [n + 1] be the morphism (v(1),v(2),...,v(n)) — (v(1),v(2),...,v(n),v(n)). Let
Fy, Fy be the n-faces defined in the previous paragraph, so in particular FjL 1 Fo.
Let a = [n — 1] x {(1,0)}, b = [n — 1] x {(0,0)}, o’ = [n — 1] x {(0,1)}. By the

face consistency axiom, the couplings with index sets a LI b and o' U b are isomorphic,
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and since Fi L i Fa, we have that u[["ﬂﬂ restricted to a U o’ U b is the conditionally
independent coupling of ,u%“ﬂ and u%ﬂﬂ (as per Definition [2Z34]) along the bijection
Fy — F, that permutes the coordinates v(n),v(n+1). But then the idempotence axiom
implies that ugﬁl] is isomorphic to ul", as required. Combining this special case with
the face consistency axiom applied with automorphisms, we deduce that the consistency
axiom holds for every morphism ¢ : [n] — [n + 1] that duplicates a coordinate, i.e. of
the form ¢(v) = (v(1),...,v( —1),v(), v(i), V(i +1),...,v(n)) for some i. Then, composing
these maps we deduce consistency for every morphism ¢’ : [m] — [n] that replicates k;-
times each v;, with ky + - -+ + k,,, = n. (For instance ¢ : (vq,v2) +— (v1, v1, Vg, U2, Vg) is the
composition @3 o ¢y 0¢p; where ¢y : (vy,v9) — (v1,v1,v2), P2 : (v1,v2,v3) — (v1, V2, U3, V3),
o ¢ (01,02, 03,01) 1 (01,02, 00,01, 01). wehence 1 = (1) g0, = (), = S = )
Every injective morphism is a map of the form #opo¢’, where ¢’ is as above, where
@ is a face map that simply adds some coordinates equal to 0 or 1, and where 6 is an

automorphism. The result follows. O

Before we continue the study of cubic couplings in general, let us pause to look at examples
of such objects. The following result establishes that compact nilspaces with the Haar
measures on cube sets are examples of cubic couplings. This provides a large supply
of examples, including compact abelian groups and filtered nilmanifolds. In fact, the
examples provided by compact nilspaces are in some sense exhaustive. Indeed, this is the
content of our main result in Section 4, namely Theorem ATl

We say that a cubic coupling ((2, (Mﬂnﬂ)nzo) is a Borel cubic coupling if {2 is a Borel
probability space and each u[™ is a Borel measure on the standard Borel space ([, Al"]).

Proposition 3.6. Let X be a k-step compact nilspace, and for each n > 0 let pl"l denote

the Haar measure on the cube set C"(X). Then (X, (ul"l) is a Borel cubic coupling.

nZO)

Proof. By basic nilspace theory we have that each space C"(X) is a compact Polish space
and that the Haar measure ul" is a Borel probability measure on C"(X) (see [9} 1], in
particular [IT, Proposition 2.2.5]) so each space (C"(X), ul") is a Borel probability space.
We now check that the three axioms from Definition [3.1] are satisfied.

To see that the consistency axiom holds, let ¢ : [m] — [n] be an injective morphism
(in particular m < n) and consider the set ¢([m]) C [n] equipped with the cubespace
structure induced from that on [n]. If this cubespace ¢([m]) has the extension property
in [n] in the sense of [I1], §2.2.3], then applying [11, Lemma 2.2.14] with P, = () and
P, = ¢([m]) we have that the restriction from [n] to P, preserves the Haar measures,
and the axiom follows. To check the extension property, let g : ¢([m]) — X be any
nilspace morphism to a non-empty nilspace X. Then from the definitions we deduce that

¢ := go¢ is an m-cube on X, and our aim is to show that g can be extended to an
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n-cube on X. Let ¢ : [n] — [m] be a morphism such that for every w € [m] we have
Yop(w) =w. We can construct ¢ as follows: let J C [n] be a set of cardinality m with
the property that for each i € [m] there is a unique j € J such that for all w € [m] we
have ¢(w)(j) = w(i) or 1 — w(i) (J exists by the injectivity of ¢; see [10, (1.2)]); the map
w +— ¢(w)]; has an inverse ¢’ : {0,1}7 — [m], and then we can see that ¥ (v) := ¢'(v];) is
a morphism of the desired form. Now note that since ¢ o4 is a morphism [n] — ¢([m]),
we have ¢ := gogorp € C"(X), and by construction ¢’ agrees with g on ¢([m]).

To check the ergodicity axiom we can argue by induction on k. Note first that the
axiom clearly holds for every 1-step compact nilspace X, since this is a (principal homo-
geneous space of a) compact abelian group 7 ([I1, Lemma 2.1.4]) with Haar probability
measure A, and the Haar measure on X x X is then A x \ as required. For k > 1, we
have by [IT, Lemma 2.1.10] that C'(X) = X x X is a compact abelian bundle with base
Cl(Xk,l) = Xy_1 X Xj_1 and structure group Z; @ Z;. By induction the Haar measure
on Cl(Xk_l) is the product measure g1 X pp_1 where pg_; is the Haar measure on the
(k—1)-step nilspace factor X;_; of X. Then it follows from [I1, Lemma 2.2.4] that for any
Borel sets E1, By C X we have ulll( B, x E,) = fxifl s ((E1 X E2) N~ 1(s)) d(ptp—1 X pt—1),
where f, is the Haar measure on the fibre 771(s). By nilspace theory this fibre is
C'(Dy(Zy)), which is a principal homogeneous space of the group Z, ® Z; (the defini-
tion of Dy(Zx) may be recalled from [I0, (2.9)]). Hence pg is the image of the Haar
measure on this group, which is pg, X pgz, for py, the Haar measure on Z;. Hence
Pl (B x By) = TTici o fx,, #s:(Bi Nty (s)) dpg—1(si) = ME1)A(EB»), as required.

Finally, we check the conditional independence axiom, arguing again by induction on
k. For k = 1 this can be checked directly as follows. We may assume as above that X is
a compact abelian group Z with Haar probability A and then p["} is the Haar measure on
the group C"(Z) = {(:E+v(1)h1 +v@2)hs+-- '+v(”)h"))ve[[n]] :x,h; € Z}. For every i € [n]
and j € {0,1}, let V;; denote the face {v € [n] : v(i) = j} C [n]. For any measurable
function f on ZI"l, we have for every ¢ € C"(Z) that E(f|15’£[21 = [, flc+h; e Y dA(hy),
where for V' C [n] and h € Z we define Y (v) to equal h if v € V and 0z otherwise (see
[10, Definition 2.2.2]), and B denotes the Borel o-algebra on X. In particular we have

E(E(f|B{;),)IBY,)(c) = / (e B X, ha) = B(FIBEL ),

so by Lemma[2.30we have Vi o LV}, ¢, as claimed in the axiom. For k& > 1, let V; denote the
face {v(i) = 0} in [n] for each i € [n], and suppose that f : C"(X) — C is B&H—measurable.
Let H (Vi) denote the abelian group homy, o([n], Dx(Zy)), that is the group of degree-k
cubes on Zj that send each vertex in Vj to Oz, (recall [10, §2.2.4] for the notion of degree-k
cube on an abelian group). Let g : C"(X)_1) — C, ¢y — fH(Vl) f(co+c)dvy(c), where
¢y € C*(X) is any cube with 7,1 ocy = cp. For almost every ¢ € C"(X), we have that
E(f\BE[Z]])(C) is the integral of f over the fibre p.' (py; (c)). By [11, Lemma 2.1.10], this fibre
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is a compact abelian bundle with structure group H(V;) and base the set of morphisms
M(c) = homz, _, oc)y, ([n], Xi-1) C C"(X4-1). Letting v be the Haar measure on M(c)

and By_; be the Borel g-algebra on the nilspace Xj_;, we then have
E(/|By;')(c) = / o 91€0) do(co) = Byl (B} (s o).
M(c

Now observe that the BE/Z H—measurability of f implies that g is (By_ I)H"H—measurable Since
by induction we have V; LV, in ,ugn]]l, it follows that E(g|(By— 1)M) E(g|(B- 1)[‘[2];“@)
Moreover, the B[[ H—measurablhty of f also implies that g(co) = [ nvinvy S (cp+2) dr(z),
where H(VinV,) = homy, v, »o([n], Dr(Z)). We thus deduce, using again [11, Lemma
2.1.10], that E(g\(Bk,l)EZLVn)(m,l oc) is an integral of f over the fibre pi;y, (pviav, (€)),
and is therefore E( f |B£[Z ];Wn)(c) Lemma .30 now implies that V; L 1V, as required. [

3.1. Conditional independence of simplicial sets.

In this subsection we establish a property of cubic couplings that will play a crucial role in
the sequel, namely Theorem [3.8 below, which tells us that the conditional independence
in Definition B.1] holds in a more general sense.

For v € [n] we denote by |v| the cardinality of supp(v), i.e. the number of elements

i € [n] with v(s) = 1. Given another element u € [n], we write u < v (resp. u < v) if

supp(u) C supp(v) (resp. supp(u) & supp(v)).

Definition 3.7. A set H C [n] is simplicial'" at if for every v € H and w < v we have
w € H. We denote by S, the set of all simplicial sets in [n].

Thus every simplicial subset of [n] encodes a family of subsets of [n] that is closed under
the operation of taking a subset. Note that &, is closed under intersections and unions,
and is therefore a set lattice in [n]. Our goal in this subsection is to prove that this lattice

has the IS property defined in the previous section (recall Definition [2.54)).

Theorem 3.8. Let (12, (M[[n]])nzo) satisfy the three axioms in Definition (3.3, and let m be
a positive integer. Then for every Hy, Hy € S,, we have Hy L Hy in pul™l,

Remark 3.9. Theorem B8 implies that the faces in [n] containing 0" form a conditionally
independent system of sets (as per Definition 2.33)). This implication follows from the fact
that H C [n] is simplicial if and only if it is the union of some family of faces containing
0", indeed H = (J

maximal element w; € H in the partial order <.

icim) £ where for each i we have F; = {v € [n] : v < w;} for some

As mentioned above, the idempotence axiom from Defnition is useful for applications

in ergodic theory. On the other hand, the properties of cubic couplings given in Theorem

HThe term downset is also used, especially in combinatorics.
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and Remark are in a sense closer to the corner-completion axiom from nilspace
theory (see [10, Definition 1.1.1]), and are useful for the proofs of the main results in
Section [ which characterize cubic couplings in terms of compact nilspaces.

Before we turn to the proof of Theorem B.8| let us record the following consequence.

Corollary 3.10. Let (Q, (N[M])nzo) be a cubic coupling, and let m € N. Then every face

in [m] is local in pt™.

Proof. Let F be an arbitrary face in [m]. We need to show that for every w ¢ F the
o-algebras Aﬁ[mmﬂ and A" are independent. First we claim that there is a face B 3 w
such that |FF'N B| = 1. To see this, recall that by definition of faces there is some in-
dex set J C [m] and some vy € {0,1}7 such that F' = {v € [m] : v|; = w}. Let
V1 = W|imp\s. Then the face B = {v € [m] : v|pps = v1} contains w and intersects
F only at the point v with v|p,p\s = v1 and v|; = vy, which proves our claim. With-
out loss of generality, we can assume that F' N B = {0™}, using the consistency axiom
if necessary (for some ¢ € Aut([m])). Let f be bounded Al measurable and g be
bounded Agmﬂ—measurable. Then [opm fgdul™ = [ fE(g|AE[Bm]]) dpl™l | and since by
Theorem [B.8 we have F' L B (using Remark B.9)), it follows that E(g|A[][3m]]) = E(g|Ag?Z]]).
Since the latter expectation is Ag’ﬁﬂ—measurable, there exists a bounded measurable 7 :
2 — C such that E(g|AE[)7,ZH) = hopgm, and similarly f = f’op,. We thus obtain that
S f 9 dplml = Joytma (f 0 Dw) (h o pom) dul™l. By the consistency axiom this last integral
equals [0, (f op1)(hopo) dul'l. By ergodicity, this is ([, f/dA)( [, hd)), which equals
(Sorma f A ( foypmy g dpel™) as required. O

Observe that if H € S, then we have H x {0,1} € S,,. To prove Theorem we shall

use the following result.

Lemma 3.11. Let H € S,_; such that H x {0,1} has the 1S property in S,, and pl"l.

Then the coupling ugﬂ]x{o 1y is wdempotent along H x {0} — H x {1}, (h,0) — (h, 1).

Proof. We argue by induction on |H|. If |[H| = 1 then H = {0" !}, so by the face-

consistency axiom we have ugﬂ]x 0.1}

axiom. If |H| > 1 then we have two cases, according to whether H is a face or not. If H is

= 1 and this is clearly idempotent by the ergodicity

a face then H x {0, 1} is also a face, so the result follows from the idempotence axiom. If H
is not a face then there exist Hy, Hy € S,_1 with |H;|, |Hs| < |H| such that H = H; U H,.
The c1s property of H x {0,1} implies that Hy x {0,1}, Hy x {0,1}, (Hy N Hy) x {0,1}
have the CIS property, so by induction these sets satisfy the conclusion of Lemma [B.11]
From the c1S property of H x {0,1} it also follows that H; x {0,1} L Hy x {0,1}. The

result now follows from Lemma [2.69] ]

We can now establish the main result.
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Proof of Theorem [3.8. The result is equivalent to the statement that [n] satisfies the c1s
property in S, and pl"l. We prove by induction on |H| that if H C S, then H satisfies
the c1s property. We distinguish two cases.

Case 1: H is a face. Let T, Ty € H be such that 71,7y € S,,. If T} U T5 is strictly
smaller than H then we can use our induction hypothesis for T} UT; € S,, to conclude
that Ty L Tp. If Ty UT, = H then either T} = H or T, = H (indeed since H is a face
containing 0" there is v € H such that H = {w € [n] : w < v}, and if v € T}, say, then
H =T). If for example T} = H, then T, C T7, whence 77 L T5 (see Lemma 2301 and the
sentence thereafter).

Case 2: H is not a face. Since H is simplicial, we must have for each i € [n] that
|HNA{v :v@) =0} >|HN{v:v@ = 1}|, and we claim that this inequality is strict
for some . Indeed, let v € H have maximal |v|, note that some coordinate v(i) must be
0 (otherwise H = [n]), and that the point v’ obtained by switching v(i) to 1 is not in
H (by maximality of |v]|). On the other hand, for every v’ € H N{w : w(i) = 1}, the
element obtained by switching w’(i) to 0 is in H. Hence the above inequality is indeed
strict for this ¢. By transposing the coordinates i and n of all elements of [n], we can
assume that |[H N ([n — 1] x {0})| > |H N ([n — 1] x {1})|. Let Hy, H; C [n — 1] be
such that H N ([n — 1] x {i}) = H; x {i} for i = 0,1. Tt is clear that H; C Hy and
Hy, Hy € S,,_1. We also have that H = (Hy x {0}) U (H; x {0,1}). Since H; x {0,1} is a

proper subset of H, by induction it has the cIs property. It follows from Lemma [3.1T] that

[n]
oy x{0,1}

along the bijection 8 : [n — 1] x {0} — [n — 1] x {1}. It then follows by Lemma [2.68
that Hy; x {0,1} L [n — 1] x {0}. Now Lemma applied with A = [n — 1] x {0},
B = H; x {0,1}, and C = H, x {0}, shows that H; x {0,1} L Hy x {0}. By our
induction hypothesis, both H; x {0,1} and Hy x {0} have the cis property. It follows
from Proposition that H also has the CIS property. 0

is idempotent. By the idempotence axiom we have that ul"l is also idempotent

3.2. Tricubes.

We recall from [10, Definition 3.1.13] that the tricube of dimension n can be defined as
the set T, = {—1,0,1}" equipped with a certain cubespace structure (that we shall not
recall here). Another useful way to view this cubespace is as a subset of [2n], obtained

as the image of {—1,0,1}" under the injection ¢, defined as follows. First we define
¢ {-1,0,1} = {0,1}%, =1 = (}), 0= (J), 1 = (). Then we define

qn :{—1,0,1}" = [2n], t — (U(Z(Bl) U(Z(i)Q) ;Eg%), where (U(Z(Qiﬂ = q(t;), Vi.

We shall often denote by T, this alternative version of the tricube, that is T, = qn(Ty).
Note that T, = {v € [2n] : Vi € [n], v;vi4n = 0}, which makes it clear that T}, is simplicial
in [2n]. Note also that ¢;* : T}, — T, is defined by ¢;(v) =t with t; = v; — vi4n.
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The direct power S¥ of the symmetric group S5 acts in a clear way on 7, by permuting
the coordinate of t. Via the map g,, this group S§ acts on fn Given a cubic coupling on
(02, (p"1),,), we can use this action of Si on fn to define a coordinatewise action of S¥
on Q7. The main purpose of this subsection is to record the following very useful fact

concerning this action.

Lemma 3.12. Let (2, (ul"),>0) be a cubic coupling. Then for each n the subcoupling

M?ﬂ"ﬂ of ul?"l is preserved by the coordinatewise action of S§ on O

Proof. Fix n and consider the following subsets of Tj,: A = {-1,0,1}""! x {-1,0},
B = {-1,0,1}""' x {1,0}, C = {-1,0,1}*" x {0}. Let A = ¢,(A), B = ¢.(B),
C = ¢n(C), and note that A= {v e T, : v(n) = 0}, that B = {v e T, : v(2n) = 0}, and
that C = ANB, so these sets are all simplicial in [2n]. By Theorem 3.8 we have Al ul2n] B.
By Lemma B.11] applied with H = fn,l, we have that ,LLE[;"H is an idempotent coupling of
[2(n—1)] 2n] 414 ,u[[}n}]
To1 A B

and Tn — AUB , and thus ,ugznn] is the coupling v obtained by applying Definition 2.57]
to ,u%nﬂ. Hence Lemma implies that ugfn"]] is symmetric under the action of S3 on
{—1,0,1} applied to the last coordinate of ¢ *(v). Using that ugfn"ﬂ

respect to the permutation of the coordinates in g, ! (v), the result follows. O

two copies of u indexed by v(2n). Moreover p are isomorphic couplings,

is also symmetric with

[2n]
Tn
invariant under the action of the wreath product of S,, and S3. However we are only

Note that the above lemma together with the S,, invariance implies that p~ - is also
going to use the S symmetries.

Recall from [10] that we denoted by w, the outer point map of T,, that is the map
[n] = T, v— (2v(1) — 1,...,2v(n) — 1).

Corollary 3.13 (Outer point coupling). The subcoupling of ,LLE?"H along the map q, ow,
is equal to ™.

This fact is an analogue for cubic couplings of the tricube composition lemma for nilspaces
(see [10, Lemma 3.1.16]), and it is used in particular in Subsection B4 below to prove a

key property of higher-order Fourier o-algebras (see Lemma [B.19).

ol
Tn

qn 0wy ([n]) is isomorphic to the subcoupling of ;™) on an n-dimensional face of [2n]
(using an element of S} that maps {—1,1}" to [n]). O

Proof. By the S¥ invariance, we can see that the subcoupling of p= " along the index set

3.3. U%-convolutions and U%seminorms associated with a cubic coupling.

We begin with the definition of a generalization of convolution that can be defined on a

cubic coupling using the measures p[". To that end, let us denote by C the conjugation

operator on L'(2), defined by Cf(y) = f(y). We denote by K, the set [d] \ {0¢}.
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Definition 3.14 (U?-convolution). Let (£2, (u["), ) be a cubic coupling. For each d >
1, and any system F = (f,),ex, of functions f, € L*°(§2), we define the U?-convolution of
F, denoted by [F]ya, to be a function in L>(£2) such that we have pl¥-almost everywhere

E( I] ¢ foops | ALL) = [Flya o poa. (20)

veEKy
This defines the function [F]y« up to a A-null set (using Lemma [ZT7)). When (2 is a Borel
probability space, an alternative equivalent definition of [F|;a can be given as follows.
Letting (u&dﬂ)xeg be the disintegration of pl¥ given by Lemma 245 (thus ;L;[,[;d] € Cg(£2, Ky)

for all x), we can define [F]ya(x) as the integral [, [T ek, Clv+1 £, op, dul®.

Definition 3.15 (U%-product). Let (£2, (ul"1),50) be a cubic coupling. For every d > 1,
and every system F = (f,)e[q) of functions f, € L>({2), we define the U%-product of

these functions by the formula

(Fya = ((f)vegat)s = /Q L pop (21)

ve[d]

If all f, are equal to the same function f, we denote ((fv)ve[[dﬂ)llj/fd by || flea-
Note that for every f € L>°({2), by the idempotence of the coupling pl¥ € Cg (2, {Fy, F1})
and Corollary 265, we have when f, = f for all v € [d] that ((f,)ve[qp)ve is @ non-negative
real number; hence || f||y¢, as the 29-th root of this number, is a well-defined non-negative
real number.

We denote by [F]7, the rank-1 function [, g, Cl+1 £ op, - QU — C.

The above definitions are related by the following observation: given a system F =

(fo)vepap, letting F' = (f,)vek, we have

<F>Ud = /Qfod WUd dA = - Jod ©Poa [F']Ed dﬂ[[dﬂ- (22)

We now prove a generalization, for this U9product, of the Gowers-Cauchy-Schwarz in-

equality, using the idempotence axiom for the couplings pl"l.

Lemma 3.16. Let (12, (M[[n]])nzo) be a cubic coupling and let d € N. Then for every

system (fy)vefq) of bounded measurable functions on Q, we have

[((folvera vel < 1T Iollve. (23)

ve[d]

The idea of the proof is that the idempotence axiom makes it possible to apply a standard

argument, originating in [22], that uses the Cauchy-Schwarz inequality repeatedly.
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Proof. For i = 0,1 let F; = {v € [d] : v(d) = i}, thus Fy, F] are two opposite faces of
codimension 1 in [d]. Letting g; : Q"1 — C, y [ocgayg Cl f.) opu(y), we have

((fo)vela)vs = /M goopr, giopr duldl.
Q

The idempotence axiom tells us that the coupling ul¥ € Cg(£2',{F,, F\}) is idempo-
tent along the bijection Fy — F) that switches the coordinate v(d) in v € Fy from 0 to
1, where 2 = Q=11 Letting B denote the sub-o-algebra of Al*~ given by Propo-
sition 266, we then have by ([I5) that ((fo)vepq)ve = Jouu E(90|B)E(g1|B) dpl1.
By the Cauchy-Schwarz inequality, this integral is at most a product of two factors,

namely ( [y E(9:|B) E(g:|B) d,u[[d_l]])l/2 for i = 0,1. By (IH) again, these factors
equal (g;, g,)/lﬁl, 1= 0,1, and these in turn can be seen to equal respectively ((fz'})ve[[d])llj/f
and <(f;’)v€[[d]]>[1]/3, where f) = fo, vy 10 and f) = f,. v, 1) for all v € [d]. Thus we
have obtained [((fy)vea) | < ((f{))ve[[dﬂ)[lj/f <(f{,’)ve[[d]]>(1]/f. Repeating this argument for

each of these two factors, and so on inductively, we obtain (23] after d steps. O

Corollary 3.17. Let (£2, (ul"),50) be a cubic coupling and let d € N. Then || - ||y is a
seminorm on L*°(§2). We call |||y the uniformity seminorm of order d, or U?-seminorm,

on this cubic coupling. We also have
| flloe < || fllgasr, for every d > 1 and every f € L*(£2). (24)

Proof. Given (23), the triangle inequality for || - ||y« follows by the same argument that
proves it for the Gowers norms (see [22, Lemma 3.9]). To see (24]), note that the con-
sistency axiom implies Hf”gid = (F)ya+1, for F' = (fy,)vepar1) the system with f, = f for
v(d+1) =0 and f, =1 otherwise. Then (F)par1 < Hf”%;dﬂ, by 23)), and (24]) follows. O

3.4. Fourier o-algebras.

In this section we study the following special sub-o-algebras of the ambient o-algebra A

in a cubic coupling, which play a crucial role in Section [l

Definition 3.18. Let (2 = (2,4, ), (/J[[n]])nzo) be a cubic coupling. For each d € N,
the d-th Fourier o-algebra on €2, denoted by Fy, is the sub-o-algebra of A generated by

all U _convolutions of bounded A-measurable functions.

A first observation about these o-algebras is that
Fo is the trivial o-algebra, and F;_ 1 C Fy for every d € N. (25)

Indeed the inclusion F,;_; C Fy follows from the fact that every convolution of order d can
be viewed as a convolution of order d+ 1. More precisely, given any system F' = (f,)vek,,

note that if we extend this to a system F' = (f)ek,,, by embedding K, in some d-face
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S C [d + 1] containing 0%*! and letting f’ be the constant 1 function for every v ¢ S,
then [F]Ud = [F/]Ud+1.

Most of the properties of the o-algebras F, given in this subsection are consequences

of the following key fact about cubic couplings (which was illustrated in Example 2.32]).
Lemma 3.19. Let ((2, (M[[n]])nzo) be a cubic coupling and let d € N. Then AEZH AL AE?E.

Proof. We use the tricube coupling. Consider the following subsets of Ty = {—1,0, 1}¢:

Vi={-1, 1\ {19}, Va=Ty\{-1%,
Vs={veTs: Vi, o6 e {~1,0}}, Vi={-17, Vi={-1,1}"

For each i let V; = A%, where \Z,fd are the corresponding subsets of [2d] under the
bijection g4 from Subsection Let g be any bounded A%ﬂ-measurable function on QL.
It suffices to prove that E(g\Agf?]) is still A%—measurable. Let §: Q% = C, z — g(m(x))
where 7 : Q¢ — QI is the projection to the outer-point coordinate-set gg({—1,1}%)
(composed with the bijection Q=11 — QI induced by w;'og;'). By Corollary
B.13, we have that g is V;-measurable. By the face consistency axiom, the subcoupling of
e

@) to relate conditional expectations of g and g) that it suffices to show that E(g|Vs)

along Vj is isomorphic to uldl (since Vj is a face in [2d])). We therefore have (using

is 'Az;d\f/ -measurable. We first claim that Vo L V5 in ,uggdﬂ. To see this note first that
3 4 d
Vs L V3, by Theorem [3.§] applied to ,u[pdﬂ, using the fact that V5 is a union of faces

sharing the “central point” of fd (i.e. the point 0%¢

04 in Ty) and that V3 is also such a face. The claim then follows by Remark 231l Given
this claim and the fact that Vo, N V3 = V3 \ V4, it now suffices to show that E(g|Vy) is

Vs A Vy-measurable. To this end, note first that E(g|Vs) = E(§]Vs), since V; = V3N Vs and
[24]
T, »
and Theorem B.8 combined with Remark 2.31] again. More precisely, note that V3
and V; are not both faces in [2d] (so we cannot conclude the fact directly from Theorem

3.8 as before) but, by Lemma [B.12] applied within ugfdﬂ, if we apply the transformation
d
corresponding to the element of S§ that transposes —1 and 0 in each coordinate in 7},

, which corresponds to the central point

since we also have the fact that ‘73 L ‘75 in p a fact that can be seen using Lemma

then 17}, remains globally invariant while 17}, becomes now a face containing 02¢, so we
can then conclude the conditional independence of these sets by Theorem B.8, and then
revert the transformation to conclude that indeed 17}, L 175 Having thus shown that
E(g|Vs) = E(g]Vs), it now suffices to show that E(g|Vs) is Vi A Vs-measurable. But this
follows from ¢ being A‘:C/d—measurable and the above fact that Vp L 17}, O
2
Let us record a useful immediate consequence of Lemma 3.9
Corollary 3.20. For every U?-convolution [F|ya we have that [F)ya opoa is Agiﬂ A A%—

measurable on QI
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Proof. We have F' = (f,)vex, for some functions f, € L>=(£2). By definition we have pl-
almost everywhere [Fya opga = E(] ], fv|Ag§]), and since [[,cx, fo is A%—measurable,
the result follows by Lemma [3.19l O

The following theorem is the main result of this subsection.

Theorem 3.21 (Properties of Fy). Let (2 = (Q,A,\), (ul"),50) be a cubic coupling.

For every positive integer d, the following statements hold:

(i) In pll we have (.Fd,l)gf?] = EZH A A%.
(i) For f € L>®(£2) we have || f|ya = 0 if and only if E(f|Fa—1) = 0.

(iii) In 19 we have (fd,l)gf?] = AEZH A (Fd,l)%.

(i) || - ||a is @ norm on L*(Fy_1).

Proof. To see statement (i), note first that the inclusion (]:d_l)giﬂ C AEZH A AE?E follows
immediately from Corollary B.20, since this tells us that, for every set B that is the
preimage of a Borel set by a U9convolution, we have po_dl(B) € Agiﬂ A AE?E. To see
the opposite inclusion, let f be a bounded Agfliﬂ A A%—measurable function and, since
this is Agiﬂ—measurable, let f’ be bounded A-measurable such that f = f’ opga almost
everywhere (using Lemma 2ZT7). We have by Lemma that for any fixed € > 0 there
is a finite sum h = >, [l,cx, 9iw ©Pv such that [|f — hl[z2 < e. Now note that by
linearity and (20) we have E(h|Agfliﬂ) = (X icpm [Filua) opoa, where F; = (giv)vepay, and
then || — Y Floallzzoy = I1f — ERIALD | 2gany = [E(f — hlASD 2 my < € so
f"is an L*-limit of F,_;-measurable functions and is therefore F,_;-measurable.

To see (ii), let R denote the set of rank-1 bounded A%—measurable functions on QI
We claim that E(f|F;_1) = 0 holds if and only if f opga is orthogonal to every function
in R. To see the forward implication, fix any ¢ € R and let G’ be the system of functions
9v, v € Ky such that g = [G]7,. We have [G]ya € L™(Fy-1), 50 E, a1 (f 0 poa m) =

Ex(f [Glya) = E(E(f [GlyalFa-1)) = E([G]ya E(f|Fa-1)) = 0.
To see the backward implication, note that if fopga is orthogonal to R then by

Lemma we have that fopg is orthogonal to every function in LQ(A%), hence,
since E(f o p0d|A%) is the orthogonal projection of fopy: to the subspace L%AE?E), it
is 0. By statement (i) we have E(f op0d|A%) = E(f op0d|(.7:d,1)gfliﬂ) and since this is
E(f|Fa-1) opoa, we deduce indeed that E(f|Fs—1) = 0. Having proved our claim, note
now that by inequality (23) we have that || f||y« = 0 if and only if f opga is orthogonal to
R, and statement (i7) follows.

To see (i4i), note that by statement (i) we clearly have (Fd,l)gf?] D Agfliﬂ A (Fdfl)%,
so we just need to prove the opposite inclusion. To do this, first note the following fact:

for all f € L>(A) with ||f||gpe =0 and g € L>(F4_1), we have || fg||ya = 0. (26)
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Indeed, by (i) applied to f we have E(fg|Fa—1) = g E(f|Fa-1) =0, and then ||fg|/yp« =0
follows by (i7) applied now to fg. We claim that it follows from (26) that for every system

F = (fv)ve[q) of bounded A-measurable functions, we have pll-almost-everywhere
B([T#on| Fi!) = [TEGZr) op (27)

To prove this, fix any such system F' = (f,)uc[q), and note that it suffices to show that
for every system (Gv)ve[qy of functions in L>°(F4—;) we have fm[dll Hve[[dﬂ (fo o) 0Py dpldl =
Jota I1 ve[[d]] E(fy|Fa-1)gs) 0po dul?. Using multilinearity, the difference between these in-
tegrals is seen to be a sum of finitely many integrals of the form fm[dl] Hve[[d]] (hygy) 0 py dpul]
where for some v we have h, = f,—E(f,|Fa_1). By statement (4i) this function h,, has U-
seminorm 0. Hence, since by (26) we have ||h,g,|ye = 0, by LemmaB.16 we conclude that
each such integral is 0, which proves the above equality of integrals, and our claim follows.
To finish proving (i), fix any system F' = (f,)vc[qy as above, and note that for every
€ > 0 we have ||[F]yaopos — > [yex, Giw 0Pull 2 < € for some bounded A-measurable
function g;, and some m, € N. Since trivially [F]yeopge = E([F]ya opga|(Fa1)),
Fluaopos = S0 BT, 9o opel (Fa )| | < ¢, and by @) the
sum here is 3 " [],cx, E(gi0|(Fa—1) opy, which is (.Fd,l)[[ I_measurable. This shows that

[F)ga opoa is an L*-limit of (Fd,l)%—measurable functions, and (izi) follows.

we conclude that ’ [

To see (iv) note that the seminorm || - ||;7« is indeed non-degenerate on L*(F,_;), for
if f € L®(Fy_1) then f =E(f|F4_1), so if this is O then so is || f||y« by statement (i7). O

The following consequence of statement (i7) above is useful and can be viewed as an
alternative definition of Fourier o-algebras (but note that it would be less clear from such

a definition of F, that this is indeed a o-algebra).

Corollary 3.22. Let f € L*(A). We have that f € L®(Fq_1) if and only if for every
g € L™(A) with ||g||y« = 0 we have E(fg) = 0.

Proof. For the forward implication note that if f € L*(F;_1) then for every such g we
have by statement (i) above that E(g|F,;_1) = 0 and so E(f ) = E(f E(g|F4_1)) = 0. For
the backward implication, note that if f is orthogonal to every such ¢ then in particular
for g = f — E(f|Fui-1), since by statement (ii) above we have ||g||ya = 0, it follows that
E(fg) = 0, and this implies that E(| f|*) = E(|E(f|Fa_1)]?), so f must be in L=(F; ;). O

3.5. Properties of U%convolutions.
Let us introduce the following notation:
[n]<a = {v e [n] : |v| <d}, Kp<a={veK,:|v| <d}. (28)

Recall also that the height of a simplicial set S C [n] is max,eg |v].
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Lemma 3.23. Let (12, (ul"),50) be a cubic coupling, let n € N, and let S be a simplicial
subset of [n] of height d > 1. Let F = (f,)vek, be a system of bounded measurable
functions on Q where f, =1 forv e K, \S. Then [F|yn is Fy_1-measurable.

Proof. We prove this for each fixed n by induction on |S|. Since d > 1, we must have
|S| > 2. If we have equality, then we must have S = {0", v} with |v] = 1, so d = 1.
Then by (20) and the consistency axiom we have [F]yn opon = E (fv op1|Ag1H), and by
the ergodicity axiom pl'l = X x A, so this expectation equals A-almost everywhere the
constant [, f, dA, and is therefore in L>(F;) as required.

For |S| > 2, by ([0) it suffices to show that E([],cx g fo opv\Agﬁﬂ) is (Fd,l)gﬁﬂ—
measurable. Fix any maximal element w € S, i.e. an element with |w| = d. Let ¢ : [d] —
[n] be a face map satisfying ¢(0¢) = w and ¢(v) < w otherwise (in particular ¢(1¢) = 0"),
let V(w) denote the image of ¢ (i.e. the d-face with maximal element w) and let K(w)
denote the corner ¢(Kj), which is included in S. Let B = AL Since B o Agﬁﬂ and

S\{w}
every f,op, with v # w in the product [], ;. ~g fo 0Py is B-measurable, we have

E( II foord i) =E(E(fwopalB) [ foow AR (29)
veEK,NS veKpNS\{w}

Now note that S\ {w} is still simplicial, so by Theorem B.8 we have S\ {w} L V(w) in pl.
Since f,, 0p, is AM j-measurable, and since we have (S\ {w}) NV (w) = K(w), it follows
that E(f, opw|B) = E(fw opw\AE?%]w ). Now Lemma [B.19 implies that .AM J_I_.AM
the last expectation is E(f, opw|AW A Aww)). Statements (i) and (’m) in Theorem
B2T imply that this expectation is in fact E(f,, o pw|.A£[ZL IA (Fa-1 )M ). This expectation
can then be approximated in L?(ul™) arbitrarily closely by (Fy_1) Kg]w)-measurable rank-1
functions (by Lemma 2.2]). Thus, fixing any € > 0, substituting such an approximation of
E(fu opw|B) into (29) we obtain that

HE( I foondAB) = > gioope B( I fluope AR

veEKL,NS i€[m] veKpNS\{w}

where f; = fi, for v ¢ K(w) and f{, = fugi, for v € K(w)\ {0"}, and each g; , is Fy_1-

measurable. The sum on the right side above is F;_;-measurable by induction. Since €

<e€
L2 (ulrl)

9

was arbitrary, we deduce that E([ [, . g fo oD |A£[{,t“) is an L%-limit of F;_;-measurable

functions, and the result follows. O

We now use Lemma [3.23] to deduce the following result.

Lemma 3.24. Let (£2, (ul"),50) be a cubic coupling and let n,d € N. Let F = (f,)vex,

be a system of functions in L= (Fy). Then [Flyn is Fq-measurable.

Proof. If n < d 4 1 then by (28) the result is clear. Assuming then that n > d +
1, by ([@0) it suffices to show that E([],cx foo pJAEZH) (]:d) ! measurable. Now
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IL, K., foop,is (.Fd) —measurable and we claim that it suffices to show that (Fd) i, Culnl
(fd)ﬂ[,?ﬂ —uy,- Indeed, if this holds then [],cx foopy is in fact (.Fd) _,“measurable, and
then it is an L2-limit of finite sums of rank-1 bounded (]:d) Ko<t -measurable functions
hs; but for each such h; we have that E(h;]AIY) is F-measurable, by Lemma 323, so
E(I ek, foo pU|A0n ) is an L2-limit of Fy- measurable functions and our claim follows.
Now, to show that (Fd)ﬂnﬂ Cplnl (Fd)

|w| = d+2 and note that (Fd)%ﬂ canrUfw} Calnl (Fd)K 4y, Decause for any rank-1 function

, we can proceed as follows: fix any w with
n ,<d+1
I1.c K <as1U{w} f» op, measurable relative to the former U—algebra, the function f,, op,, is

an L2-limit of sums of rank-1 bounded A" -measurable functions. Applying this

{viv<w}
recursively for each w with |w| = d+ 2, we deduce that (.Fd)@ cuin ﬂm (Fd)[[ £<d+1 Ar-
guing similarly for the next height level d+3, we deduce that (‘Fd)%}i cays Cplnl (]:d)[[ 3 cara”
Continuing thus up to level n, the result follows. O

For the next result we introduce the following notation: given a simplicial set S C [n],
we define the degree of an element v € S, denoted by d(v), to be the maximal value of
|w| over all w € S with w > v. In particular we always have d(v) > |v|, with equality if

and only if v is maximal in S.

Lemma 3.25. Let S be a simplicial subset of [n], let u € S and let d = d(u) > 1. Let
F = (fo)vepy be a system of functions in L>(A) with || fu|lye =0 and f, =1 forv € S.
Then (F)y» = 0.

Proof. We argue by induction on |S|+d(u)—|ul, starting with the case |S|+d(u) — |u| = 2.
In this case note that we must have |S| = 2 (otherwise S = {0"} and d = 0),s0 S = {0", v}
for some v of height 1, and the result then follows from the ergodicity axiom and the
assumption that || fu[l;r = | [;, fudA | =0.

For |S|+ d(u) — |u| > 2, we distinguish two cases: either there is some w € S with
w > u, or u is maximal in S.

In the first case, take w > u to have |w| = max{|v| : v € S, v > u}. Firstly,
we can reduce f, to a function that is F; ;-measurable. Indeed f,, = ¢, + h, where
Gw = E(fu|Fs_1) is Fy_i1-measurable, and h, = f, — g, has zero U%-seminorm by
statement (i¢) in Theorem B.2T} then the U™-convolution with h,, is 0 by induction because
|S] + d(w) — |w| < [S|+ d(u) — |u| (since |w| > |u| and d(w) = d(u)). Hence we can
assume that f, is Fy_i-measurable. Using Theorem B.21] and Lemma as in the proof
of Lemma (since |w| = d), for any fixed € > 0, letting M = maxyeg || fo||z~ (which
we can suppose to be positive, to avoid trivialities), we can approximate f, op, within
¢/M'S in L?(ul"l) by a sum of rank-1 functions [ock (w) Giw ©Pvs Giw € L=(Fy1), 1 € [m]
(where K (w) = {v:v < w}). Then we have |{(f,)vep)vm — Zie[me]«fil,u)vE[[n}])U”‘ <,
where fi, = f, for v € S\ K(w), fi, = fugin for v € K(w), and f;, = 1. For each
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i € [mc], note that in (f] )uefs) the functions are non-trivial only for v in the simplicial
set S\ {w}, and note also that by (26]) we still have || f/, ||y« = 0. Hence, by induction,
we have ((f],)ve[n))vm = 0. Since this holds for each i we deduce that [{(fy)ve[n])on| < ¢,
and since € was arbitrary, we are done in this case.

In the second case we have |u| = d. Let V(u) denote the d-dimensional face {v € [n] :
v < u}, and let S” denote the simplicial set S\ {u}. Since f, op, is Ag’fﬂ—measurable for
every v € S', we have (F)yn = E(E(f, opu|A[gfﬂ) [Toes foopy). By Theorem B8 we have
S LV (u). Since S'NV (u) = V(u)\{u}, we have E(f, o pu|A5") = E(fu opul AVL) 10y)-
By Lemma 3.9 this expectation is E(f, opu|Awu Wuy AM), and by statement (i) in
Theorem B2T this in turn is E(f, o pu|(Fa—1)I?) = E(fulFa_1) 0pu. By statement (ii) in
Theorem [3.21] the last expectation is 0, since || f,||ye = 0. Thus we obtain that (F')y» =0

in this case as well. O

For the following result we consider the notion of a U"-convolution of a system F =
(fo)ven) taken at a vertex r # 0". By this we mean a function g € L*(A) satisfying
pll-almost everywhere gop, = E(TLepup ey foo pv\Ag"ﬂ). We denote such a convolution
by [Flun ., to distinguish it from the original one [F]y» (which is taken at 0").

Corollary 3.26. Let S be a simplicial subset of [n] and let u,r € S, u # r. Let K =
[n] \ {r} and let d = d(u). Let F = (f,)vex be a system of functions in L=(A) such that
| fullpe =0 and f, =1 forve K\ S. Then [Flyn, is zero A-almost everywhere.

Proof. We claim that the result is equivalent to Lemma [3.251 To see this, let F' be the
system supposed in the corollary, let f be any function in L>*(A), and let F’ denote the
system (f))vepny with f), = f, for v # r and f/ = f. Applying Lemma to I we
obtain 0 = (F")yn = Ex(f [F']yn,). In particular letting f = [F']yn, we deduce that
|[£"]un ||z = 0, which implies the conclusion in the corollary. The opposite implication
is also clear using that (F")yn = Ex(f [F']yn ). O

Another consequence of Lemma [3.25] is the following useful fact about U¢-products.

Corollary 3.27. Let S be a simplicial subset of [n] of height at most d, and let (f,)ven]
be a system of functions in L®(A) such that f, =1 forv € [n] \' S. Let G = (gu)veln]
with g, = E(fy|Fa-1) for each v. Then (F)yn = (G)yn.

Proof. We decompose each f, for v € S as g, + (f, — g») where || f, — gu||p« = 0. By the
multilinearity of (F)y=, this U"-product expands as a sum of (G)y» plus finitely many
U"-products, each involving a function with U%seminorm 0 at some v € S. By Lemma
B.23], every such U™-product is 0, and the result follows. O

We say that two vertices wy, wy € [n] are neighbours if they are neighbours in the graph

of 1-faces on [n]. The following third consequence of Lemma B2 gives a sufficient
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condition for a U™-product to vanish. The condition can be more useful than asking for

some function in the product to have zero U™-seminorm.

Lemma 3.28. Let F' = (f,)ve[a+1] be a function system in L>*(A) such that for some
neighbours wy, we € [d+1] we have f,, € L>®(Fy_1) and || fu,|lye = 0. Then (F)ya+r = 0.

Proof. By the consistency axiom we can assume that w; = 191, We have that (F)ya =
E, ta+11 (HU fuo pv). Using part (iii) of Theorem B.2T] as in previous proofs, we have that
this expectation is the limit of similar expectations but with fs+1 opjar1 replaced by a
finite sum of bounded (fd_l)ggﬂﬂ-measurable rank-1 functions, where K is a d-corner of
the form K = {v : vy < v < 1%*!} for some (any) vy of height 1. It therefore suffices
to show that the expectation for each such rank-1 function is 0. For each such function
[T,cx 9v 0P, the corresponding expectation is of the form E a1 (Hve[[d+1]]\{1d+1} f! opv),
where f) = f,g, for v € K and f] = f, otherwise, and where |/ f;, |y« = 0 by (28]).
Applying Lemma with u = wy and S = [d + 1] \ {191}, we obtain that the last

expectation is 0, and the result follows. O

Lemma 3.29. Let ' = (fy)ver,., be a system of functions in L>(A), for each v let
Gy = E(fv|fd,1), and let G = (gv)UEKd+1- Then [G]Ud-H =2 E([F]Ud-kl‘f.dfl)-

Proof. By Lemma B.24] the function [G]ya+1 is Fy_1-measurable. Therefore it suffices
to prove that for every h € L*(F4_1) we have E)\([G]yar1h) = E\([F]ya+1h). Let us
decompose f, into f, = g, + 7y, for each v € Kgi1, where ||r,||ga-1 = 0. Let F' =
(fl)vefa+1) be the function system with f, = f, if v # 09 and fJ,., = h. By @22)
we have E([F|yarih) = (F')yar. By multilinearity of the U%™l-product, we can expand
(F")gar1 into a sum of 22" =1 different U%'-products, each of which involves one of g,,
r, for each v # 097! and h at v = 097!, By Lemma we have that of all these U9+1-
products the only one that can be non-zero is the one involving g, for every v # 0¢+!.
Indeed if there are both r, and g, factors, or if all factors are r,, then we can find two
neighbour vertices wy, w9, such that the function corresponding to wy is gy, or h, and the
function corresponding to wy is ry,, whence Lemma implies that this U%!-product

is 0. The only remaining term is equal to E([G]ya+1h), and the result follows. 0

We close this subsection with a result that is natural and is also useful in what follows.

Proposition 3.30. Let ((Q, A, ), (uI"),>0) be a cubic coupling. Then for each d we
have that (€0, Fy, X), (1"),50) is also a cubic coupling.

Proof. The first two axioms in Definition [3.T] clearly hold for the restriction of the measures
pl?l to Fy, so it suffices to prove the conditional independence axiom, that is, to show that
for the faces A = [n] x {0}, B = {0} x [n] in [n+ 1] we have A L B in z,ul"*1l. Letting
F = AN B, by Lemma .30 it suffices to prove that for every function f € L*™ ((fd)ﬁ””])
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we have E(f|(.7—"d)gl+1ﬂ) = E(f|(.7:d)5[§+1ﬂ). Let @ = [n + 1]<q. By an iterated application
of statement (iii) in Theorem B.2I] we have (fd)E(‘“ﬂ = In+1] (.Fd)gﬁgﬂ (indeed we can
use the statement to generate each copy of Fy at a vertex v € A\ @ by copies at
vertices w < v forming a copy of K;, and thus we can eliminate the copy of Fy at
v). Similarly we have (.Fd)%ﬂﬂ = In+1] (fd)gﬁéﬂ and (J—“d)ﬁ[;‘“ﬂ =, In+1] (J—“d)%éﬂ. Hence f
is (Fd)gﬁgﬂ—measurable and it suffices to show that E(f\(}"d)%r%ﬂ) = E(f|(.7:d)¥ﬁ5ﬂ) We
have E (f|(Fa)ig') = E(E(f|AS) [(Fobng') = E(E(IARLD [(Fabig'), where the
last equality uses that (AN Q) L (BN Q) in the original coupling pl™ (by Theorem B8]
noting that A N Q, B N Q are simplicial sets). Now E(f|A¥L:5]) is an L? limit of finite
sums » iern 9i of bounded Agﬁéﬂ—measurable rank-1 functions g; = ], . rno Jiw 0Py Each
factor g;, is the sum of the Fy-measurable function E(g; ,|F4) and the function with zero
Udtl_seminorm g;, — E(g; .| F4). Expanding the product, we write g; as a sum of A&fﬁéﬂ—
measurable rank-1 functions h; o, hi1, ..., him, where h; o has all factors F4-measurable,

and h; ; has at least one factor of zero U%"!-seminorm, for every j > 0. We claim that

for every i and j > 0 we have E(hm\(]:d)gﬁéﬂ) = 0. This will follow if we show that each
h; ; is orthogonal to every bounded (Fd)%ﬁéﬂ—measurable rank-1 function, since the latter

functions are dense in LQ((.Fd)gﬁéﬂ) (Lemma[22]). To see the orthogonality, note that the

inner product of h; ; with any of these rank-1 functions is a U™ !-product in which, for
some v in the simplicial set S = B N Q of height at most d, we have || f||garr = 0 (by
(26))), so this U™ -product is zero by Lemma

We deduce that E(gi\(Fd)gﬁéﬂ) = E(hi,o\(Fd)%&;ﬂ) = hi o, so this is indeed (Fd)g[;ﬁéﬂ—

measurable, as required. O

3.6. Topologization of cubic couplings.

Given a cubic coupling (82, (1I"1),,50), the goal of this subsection is to define a compact
topological space X associated with {2 that is fine enough to capture all the information
about the couplings p["! that is relevant for us. More precisely, the space X will be such
that, letting B denote the Borel g-algebra on X, there is a measurable map v : 2 — X,
defined A-almost everywhere, such that each coupling pl™, n > 0 is relatively independent
over the factor corresponding to the o-algebra F = v~ B (recall Definitions 222 and 2.23)).

We will obtain X by first introducing a sequence of measure space homomorphisms
v; « 0 — X, for increasingly finer topological spaces X;, i € N, and then letting X be
the inverse limit of the spaces X;. By “increasingly finer”, we mean that for every pair
of natural numbers ¢ > j there is a surjective continuous maps 7, ; : X; — X, such that
for every ¢ > j > k we have 7, om; ; = m;; everywhere on X;, and we have m; j o7, = ;
A-almost-surely on €.

Recall from Definition the notion of localization of a coupling. To use the tools

related to that notion, in this subsection we assume that {2 is a Borel probability space.
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Definition 3.31 (Topological factors of a Borel cubic coupling). Let 2 = (2,4, A) be a
Borel probability space, and let ((2, (uﬂnﬂ)nzo) be a cubic coupling. For each k£ > 0, let
Y o Q= Cg(£2, Kiy1) be (a version of) the {0+ }-localization of ul**1J. We define the
topological space X;, = Supp(Aov; ') C Cg(£2, Kj11). For each n > 0 we define the set of
n-cubes on Xy, denoted by C"(Xy), to be the set Supp (pl"! o(ygn]])*l).

Thus X is a closed subspace of Cg({2, K1), so it follows from Proposition 221 that X
is a compact Polish space. Let us add the following justification of the above definition,

motivated by the fact that ~, is defined only up to a change on a A-null set.

Lemma 3.32. In Definition [3.31] the space Xy, is well-defined and we can assume that
() € Xi. Thus we also have C™(X,,) ¢ X",

Thus 74(£2) is a subset of Xj, of (Ao, ')-measure 1. Note that X, is the closure of ().

Proof. To see that X, is well-defined note that, since 7, is Borel measurable, we can use the
fact that if a Borel function g : Q@ — Cg(£2, K1) satisfies g =5 4 then Supp(Ao~, ') =
Supp(Aog~!) (this fact follows from the definitions). Hence it suffices to show that ~;
can be redefined on some A-null set so that 7;(€2) C Xj. By definition of the support, the
complement of Xj, is a Aoy, Lnull set, which means that the complement of Vi Y(Xy) is
a A-null set, so we can redefine 7 as desired simply by re-assigning the same single value

in X, to every w € €2 that was mapped outside X; by 7. O

Remark 3.33. As explained in Remark 2.48 dual functions from previous works in this
area are generalized via the notion of localization of a cubic coupling. Dual functions have
been used before to define topologies in related settings; see for instance the definition of
intrinsic topologies on systems of order k in [35, Chapter 13, §3.1]. The latter definition
is a posteriori, once structure theorems have been proved for these systems. In contrast
to this, here the topologization occurs at the start of the argument, and in Section 4 we

then work with the topological space X to prove that it yields a compact nilspace.

A wuseful fact about the spaces Xj, is that certain properties holding almost-surely on 2

translate into properties holding everywhere on X,. This works with the following lemma.

Lemma 3.34. Let P be a closed subset of Cg(§2, K,+1), and suppose that P N X,, has
probability 1 in X,, (relative to the regular Borel measure Ao~y,* on X,,). Then X,, C P.

Proof. The set X,, \P is open in the relative topology on X,,, and by assumption we have
Aoy H(X, \P) = 0. But Ao, ! is strictly positive, so X,, \P must be empty. O

Remark 3.35. As a first use of Lemma [3.34] let us show that every coupling v € X
has the following symmetries: for every automorphism 6 € Aut([k + 1]) that fixes 0%
we have vy = v. Indeed, for any such 6 the set P = {v € Cg(§2, Ky11) : vy = v} is
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closed (using that v +— vy is continuous, and the closed graph theorem). Moreover, the

consistency axiom implies that ,u([gkﬂﬂ = pl*11 ) and since the disintegration (ul’”lﬂ)m
yielding the 0**!-localization is unique up to a A-null set, we have (pg;k+1ﬂ)9 = ,u;[,[;kﬂﬂ for

A-almost every z, so Ao, (X, NP) = 1, so the symmetry follows by Lemma 3341
Let us now define the projection maps X; — X; for ¢ > j (this will use Definition 2.26]).

Definition 3.36 (Projections between topological factors). We define the projection 7, ; :
X; — X; as follows. For every coupling 1 € X; we set m; ;(p) = pir, where 7 : K1 — Kjyq,
v = w with w(n) = v(n) for n € [j + 1] and w(n) = 0 otherwise.

Remark 3.37. By the symmetries of p pointed out in Remark B335 the subcoupling
i, in Definition .36 is equal to pgo, for every other € Aut([: + 1]) fixing 0°t1. In
particular, for every other injective morphism 7’ : K;;; — K;;1 with image corner rooted

at 01, we have p. = p,.

Remark 3.38. Since 7; j 0; is a {0/ T }-localization of /!, arguing as in Remark 335 us-
ing the uniqueness of disintegration, we obtain that m; ; oy; = 7; holds almost everywhere
on €. Since there are countably many such equations, the set £ = {w € Q: m; ; oy;(w) #
7v;(w) for some ¢, 7} is A-null. Fixing some sequence (z; € X;);eny with m; ;(z;) = z; for all
i, 7, and changing for each w € E, ¢ € N the value v;(w) to x;, we conclude that we can

actually ensure also the following convenient property for the system of maps v;, 7; ;:
for all i > j and every w € €2, we have 7, jov;(w) = 7;(w). (30)
Lemma 3.39. Each map m;; : X; — X, 1s continuous, surjective, and preserves cubes.

Proof. To see that m;; is continuous, let (u,)neny be a sequence converging to g in X;.
Then for every system F' = (f,)vek,,, of bounded measurable functions we can extend F
to a system ' = (f/,)wek,,, (letting for instance f;, = f, for w = 7(v) € 7(Kj41) and
[/ =1 otherwise, where 7 is the map in Definition B.36)), and since &(F", pu,,) — E(F', p),
we have &(F, m; j(pn)) — &(F, (1)), whence continuity follows.

To see that m; ; is surjective, note that the image of m; ; is closed (by continuity, and
compactness of X;), that this image includes v;(€2) (by (80)), and that v;(€2) is dense in
X, (as noted after Lemma [3.32)), so the image of ; ; is X;.

To see that 7, ; preserves cubes, we have to show that for every ¢ € C"(X;) we
have m; ;oc € C"(X;). Fix any open set U > mjoc. By continuity the preimage
(ﬂz[[zﬂ)*l(U) is open, and it contains c. Then by (B0) we have [l o('yl[["]])*1 o(ﬂl[[f;ﬂ)*l(U) =
pll o(fyj[["ﬂ)_l(U ), and the left side here is positive since ¢ € C"(X;). We have thus
shown that every open neighbourhood of ; j oc has positive measure pll o(fy[.[nﬂ

J
m;joc € C"(X;) as required. O

)~!, so
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In several cases it would suffice to have that property (30) holds just almost-surely, rather

than pointwise. The following pointwise property, however, is crucial.
Corollary 3.40. For alli > j > k we have mjom; ;(x) = m;1(z) for every x € X,.

Proof. The uniqueness almost-surely of disintegrations implies that m;; om; ; = m; 5 holds
Ao~; !-almost-surely on X;. The continuity of the projection maps implies that this
equality holds on a closed set in X;. The result then follows by Lemma [3.34] O

We can now define the space X announced above.

Definition 3.41. We define X to be the inverse limit of the inverse system of compact
polish spaces (m; ; : X; = X;)i>;. Thus, letting X denote the product space [12, X;, we
have X = {(z;)ien € X : m (x;) = x; for all i > j}. The i-th coordinate map X — X;
defines a surjective map, which we denote by m;. Let v : Q) — X denote the measurable
map w — (7;(w))ien. By B0) we have v(2) C X. We equip X with the Borel probability
measure Aoy~ t. We define the set of n-cubes on X, denoted by C"(X), by declaring that
an element ¢ € X" is in C"(X) if and only if for every k € N we have 7, oc € C™(Xy).

The space X is compact by Tychonoft’s theorem, and X is a closed subset of X. Tt follows
that X is a compact Polish space. Note that for each x € X the element 7;(z) € X; is a
coupling in Cg(£2, K;;1). We usually refer to such couplings as corner couplings.

We describe the o-algebra generated by 7, in terms of the Fourier o-algebra F.
Lemma 3.42. Let k € N, and let By be the Borel o-algebra on Xy. Then ;' (By) = F.

Proof. To prove that 7; ' (Bx) D Fi it suffices to show that every U**!-convolution is in
L®(v; ' (Bk)). Let F = (fu)vek,,, be a system of functions in L>(Q2). Recall from the
paragraph after Definition [3.14] that, since {2 is a Borel probability space, for A-almost ev-
ery z, letting v denote the coupling v (), we have [Flyiri(x) =[x, [Lex,,, foopsdv.
Thus, recalling the function &(-, F') on Cg(§2, K1) from Definition 2:20] we have

[Floerr =x &(-, F) oy (31)

Since (-, F) is continuous (by definition of Cg(£2, Kj11)), we have [F]yxe € L= (7,1 (By))
as required. To see the inclusion 7, 1(Bk) Cx Fi, note that since every open set V' C X
can be written as a countable union of finite intersections of sets of the form &(-, F)~}(U)
(the union can be countable since Xy is a strongly Lindel6f space), for U open in C, it
follows by (BI) that v, ' (V) is in Fj up to a A-null set, and the inclusion follows. O

The following lemma explains why it suffices to study the factor v :  — X in order to

describe the structure of the cubic coupling (2.
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Lemma 3.43. For every n € N, and every m > n — 1, the coupling pl™ is relatively
independent over the factor v, (Bp). In particular pl™ is relatively independent over the

factor generated by v : 2 — X.

This lemma can be viewed as a measure-theoretic analogue of a fact concerning nilspaces,
namely that for a nilspace X and any factor X,,, with m > n —1, if ¢ is an n-cube on X,,_;

then any lift of ¢ to a map [n] — X,, is also a cube on X,, (see [0, Remark 3.2.12]).
Proof. By Definition 2.23] Lemma 342, and the fact that the functions F ~ &(ul"l, F)

are U"-products, it suffices to show that for every system I’ = (f,)ye[n of functions in
L>(A) we have (F)yn = ((E(fo|Fn )v e[[n]]>Un' This follows by first decomposing each
foas fu+ (E(fv|.7:m) — fu) (note that || f, — E(fy|Fm)|gm+r = 0), then expanding (F)yn
into ((E(fu|Fm)), E[[n]]>U" plus other U™-products in each of which some function has zero
U™ _seminorm, and then using (23)), (24) to see that each such product vanishes. This

proves the first sentence in the lemma; the second sentence follows by definition of v. [
3.7. Continuous U"-convolutions.

Recall from Definition B.14] that a U"-convolution [F]y» is a function in L>®({2) that is
defined up to a change on a null set. We now introduce a “perfected version” of [Fyn

which is a continuous function on X.

Definition 3.44. Let F' = (f,)vck, be a system of functions in L>({2). We denote by
[F;n the function X — C, z — [, [I,ex, foop, dv, for the coupling v = m,_1 ().

Recalling the function £(-, F') from Definition .20 we deduce the following result imme-
diately from the definitions.

Lemma 3.45. Let F' = (f,)vek, be a system of functions in L*>°(§2). Then we have

[Flin =&(-, F) omy_1. In particular [F}. is continuous.
The following lemma is also straightforward.
Lemma 3.46. Let F' = (f,)vek, with f, € L>(£2) for all v. Then [Flgn =\ [F]{mo7.

Proof. We have [Flyn =) &(+, F) oy,_1, by definition of v,_; and the paragraph after
Definition B.14] By Definition B.41] we have ~,_1 = m,_107. Hence we have A-almost
surely [Flyn =5 §(, F) 0yp1 = &(, F) omq 07 = [Flgm 0. O
Lemma 3.47. Let F = (f,)vek, be a system of functions in L>°(£2). If [F]yn =y 0, then
[Flim(z) = 0 holds for every x € X.

Proof. We use again that [F]gn =, &(-,F)o~vy,_1. The assumption then implies that
X,—1 Nsupp (§(-, F)) is a Ao, ' ,-null open subset of X,,_;. By Lemma [3.34] this set is
empty. Hence, for every x € X we have [F}.(z) = {(m,—1(z), F) = 0. O



56 PABLO CANDELA AND BALAZS SZEGEDY

3.8. Topological nilspace factors of X.

In this subsection X denotes the compact Polish space associated with a given Borel cubic
coupling, and 7, : X — Xj, k € N, denote the associated projections (see Definition B4T]).

Recall from [9] [11] that every compact k-step nilspace Y}, can be viewed as a k-fold
compact abelian bundle with structure groups Zi, ..., 7Z; being compact abelian groups
[T, Definition 2.1.8 and Proposition 2.1.9], with factors Y1,Ys, ..., Ys_1, and with con-
tinuous nilspace factor maps Y — Y; (these are the canonical projections the definition
of which may be recalled from [10, Lemma 3.2.10]). We can equip Y with a unique
Borel probability measure satisfying certain natural invariance properties, which we call
the Haar measure on Yy, (see [11, Proposiiton 2.2.5]), and similarly every cube set C"(Yy)
and every rooted cube set C?(Y}y) can be equipped with a Haar measure, since these sets
are also equipped with compact-abelian-bundle structures (see [11, Lemma 2.2.17]).

Our main goal in this subsection is to prove the following result.

Theorem 3.48. Let x € X, and let n,k € N. Suppose that the cubespace Xy from
Definition [3.31) is a k-step compact nilspace, and that for every j € [k — 1] the map
Tk @ Xig — X; 45 equal to the nilspace factor map X, — X;. Then the image of the
coupling m,_1(z) € Cg(£2, K,,) under v} is the Haar measure on G () (Xi)-

To motivate this result, let us record straightaway the following important consequence,
which tells us that the continuous U"-convolutions on X are functions that factor not just
through X,,_; (this being given immediately by Definition B.44] and Lemma B.45]), but also
through spaces X, with k& < n — 1. This will play a key role in the proof of the structure

theorem in the next section (see for instance Lemma [4.22)).

Corollary 3.49. Suppose that X;, together with the cube sets from Definition [3.31 is a
compact k-step nilspace, and let F' = (f,)vek, be a system of functions in L>(Q, Fy, A).
Then there is a continuous function f : Xy — C such that [F]j. = fomy.

Proof. For each x € X we have by definition [Fjn(z) = [« [1, foops dv where v is
the coupling m,_1(x) € Cg(f2, K,). Since each f, is Fp-measurable, by Lemmas 217
and B.42] it follows that there is a Borel measurable function g, : X; — C such that
fo =x gooYk. Let f:X, = C,y+— fCZ(Xk) 1, 9v opy dv, where v, is the Haar measure
on the rooted cube set C}(X;). By Theorem [B.48 we then have [F1j.(v) = f(m()).
To see the continuity of f, note that by combining Lusin’s theorem applied to each g,
with the multilinearity of (g,)vex, — ng(Xk) [I.cx, 90 0Py dyy, we obtain that f can be
approximated arbitrarily closely in the supremum norm by functions of the form f": y —
fcg (X0) 1, 9, op, dv, where each ¢, is continuous. Each such function f’ is continuous by
[T, Lemma 2.2.17], and the continuity of f follows. O
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For the proof of Theorem [3.48 we use the following concepts from nilspace theory.

Definition 3.50. Let Y be a k-step compact nilspace, let Z; be the k-th structure group
of Y, and let x be a character in Z; We denote by W (x, Y) the Hilbert space of functions
f € L*(Y) that satisfy f(x + z) = f(z)x(z) for every x € Y and z € Z;.

These Hilbert spaces were already used in [48, Definition 2.8]. Similar concepts are also

used concerning nilmanifolds (e.g. the concept of a nilcharacter from [31], Definition 6.1]).

Lemma 3.51. Let Y be a k-step compact nilspace and let x € Z; Then there exists
o€ W(x,Y) such that |p(x)| =1 for all x € Y. Furthermore, for every f € W(x,Y) we
have f(z) = ¢(x) hom,_1(x) where h is the function in L*(Yy_1) such that homy_1 = f¢.

Proof. By [11], Lemma 2.4.5] there exists a Borel measurable map s : Y;_; — Y satisfying
mr—108(y) =y for every y € Yj_1. The function ¢(z) = x(z —somy_1(z)) has modulus 1
everywhere and is in W (,Y). Furthermore, for each f € W(x,Y) we have fo(z + z) =
fo(x) for every x € Y, z € Zy, so we have indeed f¢ = hom_, forsome h € L*(Yj_;). O

Recall from [10, (2.9)] that the degree-k nilspace structure on an abelian group Z is
denoted by Di(Z) and defined by declaring its cube sets to be as follows:

C"(Dy(Z)) = {c: [n] — Z | for every face map ¢ : [k + 1] — [n], oxr1(co¢) =0},

where oy41(co@) = Zve[k+1ﬂ(—1)‘”‘ co¢(v). For the purpose of the following result, it is
convenient to define Dy(Z) for k < 0 to be {07} with C"(Dy(Z)) = {04}

Lemma 3.52. Letn be a non-negative integer, let k € 7, let Z be a compact abelian group
and let n : [n] = Z, v n,. Then the character [ocga Clly, op, on ZIM annihilates the
subgroup C™(Dy(Z)) if and only if n € C(Dp__1(Z)).

Proof. First note that for each fixed n the equivalence holds clearly if & > n (for then
C"(Dy(Z)) = ZI" 50 1 must indeed be the 1-map), and it also holds trivially if k& < 0.
Hence we can suppose that k£ and n — k — 1 are both non-negative.

We first prove the backward implication, arguing by induction on n. For n = 0 the
statement is trivial. For n > 0, we suppose that n € C"(Dn_k_l(z)), and we have to
show that for every ¢ € C"(Dy(Z)) we have HveﬂnHC‘”‘nv(c(z})) = 1. Let F denote the
face {(v,0) : v € [n— 1]} and let w = (0,...,0,1) € [n]. Then the last product equals
[Tocr € (noTrw(c(v))) Tloer € (Mosw(c(v) —c(v+w))). The function v — 1,7uyew is in
C"_l(Dn_k_g(z)), so by induction the product on the left above equals 1 (the assumption
in the lemma is satisfied for this product with indices n — 1, k). The function v — 7,14,
is in C"_l(Dn,k,l(Z)), and the function v — c(v) — c¢(v + w) is in C"}(Dy_1(Z)), so the
product on the right above equals 1 as well (the conditions hold with indices n — 1,k —1).
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~

To see the forward implication, suppose that n ¢ C"(D,_x_1(Z)), so there is some
(n — k)-face F such that [],.,C!"ln, is not the principal character in Z, and so there
exists z € Z such that [] .. C"ln,(2) # 1. Let ¢ be the map [n] — Z defined by c(v) = z
for v € F and c(v) = 0 otherwise. Every (k + 1)-face in [n] has intersection with F' of
dimension at least 1, whence ¢ € C"(Dx(Z)). By construction we have [], . ClYIn, (c(v)) #
1, so the character [], C'*ln, op, does not annihilate C"(Dy(Z)), as required. O

We record a consequence of Lemma [3.52] concerning annihilators of rooted cube sets. We
denote by Cj(Dx(Z)) the cube set {c € C"(Dg(Z)) : ¢(0™) = 0z}.

Corollary 3.53. Let n be a non-negative integer, let k € Z, let Z be a compact abelian
group and let n : K, — /Z\, v+ ny. Then the character [, Cl¥ln, op, on ZI"l annihi-
lates Ci(Dy(Z)) if and only if n € hom(Kn,Dn_k_l(z)).

~

Here hom(K.,, D,_j_1(Z)) denotes the space of cubespace morphisms K, — D,_j_1(Z)
(where K, is equipped with the cubespace structure induced from [n] D> K,; see [10,

Definition 3.1.1 and §3.3.2] for a discussion of cubespaces and morphisms).

Proof. We extend 7 to a map 7 on [n] by setting 7jon = [[,cx. Clly, € A

For the backward implication, by Lemma it suffices to prove that the assumption
n e hom(Kn,Dn,k,l(/Z\)) implies that 77 € C"(Dn,k,l(/Z\)). If £k < 0or k> n then this is
clear. Suppose then that 0 < k <n —1 and let F' be an (n — k)-face in [n]. If F C K,
then we have by our assumption that [, . FC‘”‘T]U is the principal character 1 € 7. I
0" € I then note that [ cp,px Cl"ln, = 1 since [n] \ F is a disjoint union of (n — k)-faces
not containing 0", and then we have [] .. Cl"7%, = HUE[M]C‘”‘?% [ocupr clvitip, = 1.
This proves that 77 € C"(D,,_;_1(Z)) as required.

To see the forward implication, note that if 7 ¢ hom(K,, Dp__1(Z)) then 7 ¢
C"(Dp_k-1(Z)) so by LemmaB52 there is ¢ € C"(Dy(Z)) such that | J Cll7, (c(v)) # 1.
Let z = ¢(0"), let ¢’ be the cube in C"(Dg(Z)) with constant value z, and note that
| Cli,(c/(v)) = 1. Then ¢ := c—¢ € C§(Di(Z)) and [] o CMny(c"(v)) =
[Tocpy Cllf, (c(v)) # 1, so [Lex, Clln, op, does not annihilate CJ(Dy(Z)). O

From this corollary we deduce the following two facts about functions in modules W (x, Xy,),
which we shall use in the proof of Theorem [3.48

Lemma 3.54. Let Y be a k-step compact nilspace. Letn : K, — Z;, v — 1, and for each
v € K, let ¢, be a function of modulus 1 in W(n,,Y). Ifn € hom (Kn, Dn_k_l(z;)), then
on every rooted cube set C3(Y) the function [],cx C"'¢, 0p, factors through W,E’iﬂl :

Here 7j,_; denotes the nilspace factor map Y — Y1 [10, Lemma 3.2.10].



ON CUBIC COUPLINGS 59

Proof. By nilspace theory C7(Y) is a compact abelian bundle over C7 ) (Yy-1) with
fiber a principal homogeneous space of the compact abelian group Cf(Dg(Zy)) (see [111
Lemma 2.1.10]). The result then follows clearly from Corollary O

Lemma 3.55. Let Y be a k-step nilspace, let x € Z;, and let ¢ be an element of modulus
1in W(x,Y). Then the function C**' (¢ oprsr) : C¥THY) — C is equal to a function of

the form g - [eqesp sy Cl"*+(pop,), where g factors through W,ER_JEIH.

Proof. By nilspace theory C*™(Y) is a compact abelian bundle over C*'(Y,_;) with
fiber a principal homogeneous space of C¥*!(Dy(Zy)). It then follows by Lemma 352 that
the function g = Hve[[kﬂ}] Cl"lg op, on CF1(X}) factors through W,[Llil]]. Since |¢| is equal

to 1 everywhere we clearly have C**!(¢popiri1) = g - | e Cl'H 1 (pop,). O

The following lemma is purely about the (k — 1)-step setting.

Lemma 3.56. Let n > k, suppose that the space (Xk_l, (Cn(Xk—l))nZO) from Definition
(2.2 is a (k —1)-step compact nilspace and that for every x € X the image of the measure

Tn_1(z) under vi", is the Haar measure on Crr_1(@)(Xk—1). Then for every x € X,
(Fe)™ =pstey (Fn)$e . (32)

Proof. Tt suffices to check the statement for nilspaces, since the assumptions imply that
everything factors through v;_;. Thus we just have to prove that if v is the Haar measure
on the rooted cube set C7, (Xg_1) then (B )% C, <B’f*1)§z,<k (the opposite inclu-
sion is clear). On the (k —1)-step nilspace X;_; we have unique completion for k-corners,
and this implies the result. To see this implication, recall from nilspace theory that the
unique completion function is continuous, hence Borel measurable. This implies the fact
that for every k-face F' C K, letting v be the highest vertex in F, we have that (Bj_)%»
is generated by (Bk,l)fg Fu<ye Indeed, letting f denote the corner-completion function,
this fact is a consequence of the following general result. Let S C A x B be the graph of
a continuous function f : A — B containing the support of u. Let Y C B be a Borel set.
We claim that ((4 x Y)A(f1(Y) x B)) NS = (. Indeed, if a point (a,b) is in S and
in A x Y, then it must be of the form (a, f(a)), so a € f~1(Y), so (a,b) € f~4Y) x B.
Similarly if (a,b) is in S and in f~1(Y) x B, then b = f(a) € Y, so (a,b) € AxY. Having
proved our claim, it follows that p(((A x Y)A(f1(Y) x B)) N'S) = 0. But this proves
that A X Y is (up to a p-null set) in the o-algebra generated by Borel sets of the form
f~YY) x B. To obtain the desired fact we apply this general result with A the space of
k-corners on Xj_; (with vertices identified with the w € F' with w < v), and B = Xj,_;.
Now, applying the above fact iteratively for a sequence of vertices v of decreasing

height, we complete the proof of the desired inclusion (By_1)%" C, (Bk,l)ﬁz o O

We can now prove the main result of this section.
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Proof of Theorem[378 By induction we assume the result for & — 1 (it holds trivially
for k = 0). Let Q = ka(x)( k), let vy = v, be the Haar measure on @, and let
p = T 1(z). Thus po(v{)~! and v, are Borel measures on the compact Polish space
Qr, and 4(Qx) = 1. We claim that we can assume also po(y5™) "1 (Qx) = 1. Indeed,
consider P = {j1 = 7, _1() € X1 : pro(y5") ™" = vga}, ie. the subset of X,,_; where the
conclusion of the theorem holds. It is not hard to show that P is closed (given a sequence
(e = Tp—1(x¢))een in P with py — p = m,—1(x), then also mi(xy) — m(x), and then
o)t
a continuous system of measures [I1, Lemma 2.2.17]). Note also that the assumption
1 o(vE") "1 (Qr) = 1 holds (Ao~ !))-almost surely, by ul"l o(4I")=1(C™(X,)) = 1 and the

disintegration of ul™l given by 7,,_;. Thus, if we prove the conclusion of the theorem under

= U 18 deduced using in particular that Haar measures on sets Cj(X}) form

this assumption, then the full theorem follows by Lemma [3.34] This proves our claim.
Now to check that po(yf™)™' = 14, by the Riesz representation theorem (see [T,
Corollary 7.10.5]) it suffices to prove that for every continuous function g : Qr — C
we have ka gdy, = fQKn goy,f" du. Note that X can be assumed to have finite rank.
Indeed, by [11, Theorem 2.7.3] the original nilspace X, is an inverse limit of a system {¢;; :
Xk = Xg,jtis; of compact finite-rank nilspaces Xy, ;, where the maps ¢;; are continuous
fibre-surjective nilspace morphisms (in particular they preserve the Haar measures [11]
Corollary 2.2.7]). Letting ¢; : X — X, ¢ € N be the projections, it follows by the Stone-
Weierstrass theorem that any given function g as above can be approximated arbitrarily
closely in the supremum norm by functions of the form ¢'op’" : @, — C for some

¢ € N and some continuous ¢’ : C” Xki) — C. Hence it suffices to prove that

s omu(a) (
ka’i g dvy,; = fQKn g’ o(pi o7i) ™" du for any such function ¢, where Qy; = = Co; omi( )(le‘)
and vy ; is the Haar measure on () ;. Note that for the Borel o-algebra By; on X;; we
have (¢; 0y)~ (Bk ;) Cx Fr by Lemma 3420 Thus, we assume that X; has finite rank.
Let C = {f : Xx — C continuous | EIX €7 f € W(x,Xx)}. Let R denote the set
of rank-1 functions on ), of the form HveKn Cl"l f, op, where f, € C for each v € K,.
Note that R is closed under pointwise multiplication, vanishes nowhere, and separates the
points of (). The separation property can be seen as follows: if x,y € X, are distinct,
then either m,_i(z) # mp—1(y), in which case the separation property can be deduced
by induction on k from that on Xj_1; or my_1(x) = mx_1(y), in which case there is a
character y € /Z\k such that x(x — y) # 1, and we can then obtain a continuous function
f € Wi(x, X}) separating z, y, using that there is a neighbourhood of £ homeomorphic to
U x Zj, for some open neighbourhood U of m,_1(z) (as Xj has finite rank, it is a locally
trivial Zg-bundle over X [I1, Lemma 2.5.3]). Given the above properties of R, by the
Stone-Weierstrass theorem every function g as above is a uniform limit of a sequence of

finite sums of functions in R. Hence, it suffices to prove the desired equality of integrals
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for functions ¢ € R. Applying Lemma [B.5]] to each factor of such g, we deduce that it
suffices to prove the following fact: for every map n: K,, — Z;, v — 1, and every choice

of functions ¢, of modulus 1 in W (n,, X;) and a,, € Loo(ﬂ,;,lﬁ_ll?k_l), v € K,,, we have

| I eMaonop, dn = / (Hc'v' o om)orl™ du (3))

veKn
We distinguish two cases, according to whether 7 is in hom (K, ankfl(/z\k)) or not.

If n € hom(K,, Dn_k_l(zk)), then we have by nilspace theory that the left side of (33))
is 0. Indeed, it follows from the construction of the Haar measure v that this integral
can be evaluated by first integrating over the k-th fibre of the bundle Q. (see [11} (2.3)]),
which amounts to integrating the character [ [, ., Cl*ln, op, over Cj(Dy(Z)). By Corol-
lary [3.53] this character does not annihilate this group, so the integral vanishes. Therefore,
we just have to show that the right side of (B3]) vanishes as well. To this end we first note
that, by applying Lemma [B.58 recursively, we may assume that in [T, %, C () 0p, We
have ¢, = 1 for |v| > k. Indeed, if there is v with |v| > k and ¢, # 1, then we take |v| max-
imal with this property, and then by Lemma (using po(yi™)1(Qk) = 1) we replace
C**1¢, op, in the product by an appropriate alternating product of maps ¢, o p,, over ver-
tices w forming a (k+1)-corner under v. Note that if |v| = k+1 then this produces factors
corresponding to the vertex 0", but these cause no problem for the argument since they
come out of the integral on the right side of (B3)) as constant factors (products of constants
of the form ¢, (m(z))). Note also that every such step of the process may modify the func-
tion 7, but it conserves the property that 7 ¢ hom(K,, Dn_k_l(zk)). Now the other part
of the product, namely <Hv€Kn Cllay, Opv) Ofy,f", is (Fy_1)%"-measurable, so by Lemma
it is in fact (fk_l)gz’q—measurable. This product is therefore a limit in L'(u) of

finite sums of rank-1 functions of the form (H clla, opv> oy where o/, = 1 for

vekK,
|v| > k. Consequently, it suffices to prove that the figgkht side of (33)) is 0 under the addi-
tional assumption that a,¢, = 1 for |v| > k. Since n ¢ hom(Kn,Dn_k_l(zk)), there is v
with |v| < k such that n, # 1. Since o, o7y, € L>®(Fy_1), we have E((avqﬁv) oV Fro1) =
(ay 0Vk)E(Py 0 V| Fr1) = (@ 07%)E(do|Br—1) oy by (@), and by nilspace theory this is
0 (indeed it follows from [I1, (2.3)] that E(¢,|Br_1) can be evaluated at = € Xj, as the
integral of ¢, over the Z,-orbit containing x, and this integral is 0 since it amounts to
integrating 7, over Zj). Hence by statement (ii) of Theorem [B.21] we have ||, ¢, ||p+ = 0.
By Corollary and Lemma 347, we conclude that the right side of (B3] is indeed 0.
If n € hom(K,, Dn_k_l(Z;)), then by Lemma [B.54] the function HUeKn Cl"cvypy) 0 oy
factors through ﬂ,f,’; ., so there is g : X" — C such that [Tocx, C"ewdpy) opy =
go77HC 1~ The desired equality (B3) becomes fQ gowk rdve =[x, gowf}; LovEm d,
which is equivalent to kail gdyg_1 = fQKn go*yk_”1 dp, where vy is the Haar measure

on Qp_1 = ngfl(Qk). The latter equality of integrals holds by induction on k. O



62 PABLO CANDELA AND BALAZS SZEGEDY

Another consequence of Theorem [3.48 worth recording is the following, which tells us
that the map ~; carries each measure uI"l to the Haar measure on C"(Xy). This measure-

preserving property is important for the structure theorem in Section [l

Corollary 3.57. Suppose that the space (Xy, (C"(Xg))nz0) from Definition [331 is a
compact k-step nilspace, and that for every j € [k — 1] the map my ; : X — X; is equal to
the nilspace factor map Xy, — X;. Then for each n € N the measure pll o(fy,[g"ﬂ)_l is the

Haar measure on C"(Xy).

To prove this we use the following lemma, which is also used several times in the next

section. Recall from Definition 2.26]the notation v, for subcouplings along injective maps.

Lemma 3.58. For every corner coupling m,(x) € Cg({2, K,+1) and every m-face map

¢ : [m] = [n+ 1] with image included in K1, the subcoupling m,(x)4 is plml.

Proof. Let v = m,(z). First we claim that the conclusion holds for almost every coupling
in the disintegration of ul"*1 relative to pgn. To see this, recall from Corollary B.I0 that
the face F' = ¢([m]) is a local set in ul"l, which implies (recall Definition 2Z46) that the
o-algebras AE?HH and Agﬁ“ﬂ are independent in p["l. Our claim now follows from Lemma

2.16] since this gives us that for A-almost every w € €2, the subcoupling of /,LL[J"H]] along ¢

is equal to u£n+1ﬂ, and this in turn is ™! by the face consistency axiom in Definition
Finally, let us deduce from our claim that the result holds for every m,(x). By Lemma
2.40] the set of couplings in Cg({2, K1) satisfying the conclusion of the lemma is closed,

and then by Lemma B34 it follows that all couplings m, (z) satisfy this conclusion. 0

Proof of Corollary[3.57. Let F' be an n-face of [n+1] with F' C K41, let u € Cg(, K,11)
be an element of X,,, consider the image measure v = uo(%f”“)_l on XkK"“, and let
¢r : [n] = [n + 1] be a morphism with image F'.

Note that the measure pl"l o(ygnﬂ)*l in the lemma is equal to the subcoupling vy,..
Indeed vy, is equal to pug,. o(fy,[in]])_l, and by Lemma 358 we have y,, = pul"l. By Theorem
[3.48 the measure v is the Haar measure on C;L:(;)(Xk). Now one can use nilspace theory
to show that v, is the Haar measure on C"(Xj) as required. Indeed, this follows from
[T, Lemma 2.2.14] applied with P = [n + 1], P, = {0"™'}, P, = F, f : 0" > u, using
the fact that Py, P, form a good pair (as per the terminology from [9] or [11, Definition
2.2.13]). To see this fact, note that if ¢ : F' — Dy(Z) is a cube (identifying F with [n—1])
and w is the unique vertex in F' with |w| = 1, then the map ¢’ defined by ¢’(v) = ¢(v)
for v € F and ¢/(v) = c¢(v + w) — c¢(w) otherwise, satisfies ¢/(0""!) = 0, and we also have
¢ € C""Y(Dy(2Z)) by [10, Lemma 3.3.37). O
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4. THE STRUCTURE THEOREM FOR CUBIC COUPLINGS

In this section we establish the main result of this paper, Theorem [L.1, which we restate

here in slightly more precise form.

Theorem 4.1. Let (Q, (,u[["ﬂ)nzo) be a cubic coupling. Then there is a compact nilspace
X and a measure-preserving map v : Q — X such that for each n € N the map ") is
measure-preserving (QM, u[["ﬂ) — (XM, ,ucn(x)). Furthermore, for each n the coupling
pl?l is relatively independent over the factor generated by vIM.

Here the factor generated by vI"! is just pl™ o(4[")=1 on X"l As we shall see, one can
take the space X and the map 7 to be those given in Definition [3.41l More precisely, what

we shall prove in this section is the following result.

Theorem 4.2. Let ((2, (uﬂnﬂ)nzo) be a cubic coupling. For each k € N, let v, X and
C"(Xy) be as given in Definition[3.31. Then Xy, is a k-step compact nilspace for every k,
and for each n > 0 the image of pl™ under fy,[g"ﬂ is the Haar measure on C"(Xy). Moreover
pltt11 Gs relatively independent over its factor induced by %Ekﬂﬂ.

The last sentence here can be rephrased as saying that Xj is the characteristic factor
for || - ||x+1 (in the usual sense, namely that the factor satisfies [35, Lemma 4.3]). This
rephrasing follows by Lemma and Theorem B21] (i7). Thus, Theorem tells us

that the characteristic factor for the U**!-seminorm on (2 is a compact k-step nilspace.

Remark 4.3. Given Theorem [£.2] we can deduce that Theorem [Z.1] holds with the space
X and map 7 : Q — X from Definition [3.41

In Section B we use Theorem to study measure-preserving actions of nilpotent filtered

groups. To explain this, let us recall the definition of a filtered group.

Definition 4.4. A filtration on a group G is a sequence G, = (G;)2, of subgroups
G =Gy =Gy > Gy > - such that'? [G;,G,] C Gy for all i,j > 0. We then call
(G,G,) a filtered group. If G; = {idg} for some i, then the degree of the filtration,
denoted by deg(G,), is the least integer k such that Gjy1 = {idg}. We then say that
(G, G,) is a filtered group of degree k. When the condition G = Gy = G; > Go > -+ is
weakened to G > Go > G > -+ -, we say that G, is a prefiltration (see [27), §6, Remarks]).

Recall that for each n > 0 a filtered group (G, G,) can be equipped with the group of
n-cubes, or Host-Kra cubes of dimension n, which we denote by C"(G,) (we recall this

definition in more detail in Section [B} see also [10] §2.2.1]).

By (@G, G ;] we mean the subgroup of G generated by the commutators g, h|=g~'h~'gh, g € G;,h € G;.



64 PABLO CANDELA AND BALAZS SZEGEDY

The above-mentioned use of Theorem in Section [l goes via the following result.
This result describes the structure of a cubic coupling when it is equipped with a measure-
preserving action by a filtered group. Recall from [11, §2.9] the notion of the group of
(continuous) translations on Xy, group denoted by O(Xy), which is naturally equipped
with a filtration of subgroups denoted by 0;(Xy), i > 0.

Theorem 4.5. Let (2, (ul"),50) be a cubic coupling. Let (G, G.) be a filtered group such
that C™(G,) acts on (QIM, uI"l) by measure-preserving transformations for each n > 0.
Let Xy, v be the nilspace and map from Theorem [{.3. Then 7 induces a filtered-group
homomorphism i, : G — O(Xy,) such that for every g € G we have v,09 =x Y&(g) © V-

This result tells us that, given such a group action on the cubic coupling, the map
from Theorem is also a factor map in the sense of ergodic theory (see for example [§]
Definition 1.7]).

Proof. First we define how 4;(g) acts on Cg({2, Ki,1) for each g € G: for every z €
Cg(92, Kiy1), we define 4(g)(x) € Cg(f2, K1) as the image of the measure x under
g%r+1 that is Yp(g) : gf’““(x). It is clear from the measure-preserving property of g
that 7x(g)(z) € Cg($2, Kjy1). Moreover, the map 7x(¢g) is continuous, by Lemma 237
Now we show that the commutativity claimed in the theorem holds, namely that
for A-almost every w € € we have gr**! (7e(w)) = (g - w). Recall that by definition

1 ((g7w)) is also a

disintegration of ul**+1 relative to poe+1, indeed it is clearly a disintegration of g,[y“l]] plel

v is a disintegration of ulF+1 relative to pgr+1. The map w — gf

and this measure is equal to pl**1. Then, by uniqueness of disintegrations, we have
gf Frt ('yk(g*1 w)) = Yk(w) for A\-almost every w, and the commutativity follows.

We now show that if x € Xj, then 4;(¢g)(x) € Xy. By Lemma we know that Xy is
the closure of v, (£2). It follows from this, and the almost-sure commutativity above, that
if x € Xy then there is a sequence (w;);en in Q2 such that v,(w;) — = in Cg($2, Kii1) as
i — oo and for each w; we have J(g) ('yk(wl)) = V(g - w;) € Xg. Now, by continuity of
9k(g) and the closure of Xy, we have 7;,(¢g)(x) = lim;_0 71(9) (v (w;)) € Xi.

Finally, we show that 7} is a filtered-group homomorphism (G, G,) — O(X}), i.e. that
Yk is a homomorphism G; — ©;(Xy) for each 7. From the definition and continuity of each
map Jx(g), we see that 7, is a homomorphism from G into the group of homeomorphisms
of Xi. We prove that 7;(g) € 6;(Xy) for every g € G;. By definition of ©;(Xy) (recall [11]
Definition 3.2.27]), this means proving that for every i-codimensional face F' C [n], the
map J5.(g)" preserves C"(X). By assumption g” preserves the measure pl”l, so by the
l[L"ﬂ)—l

above commutativity 7 (g)” preserves ull o(y . Thus .(g)* is a homeomorphism

preserving pl" o(%En}])q’ so it maps the set Supp(ul"l o('y,[gn]])*l) = C"(Xy) toitself. O

To prove that X with its cubic structure is a nilspace we need the following result.
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Lemma 4.6. Ifi > j are natural numbers then X; is the j-step factor of X; and m; j : X; —

X is the corresponding nilspace factor map. In particular m,; is a cubespace morphism.

This lemma will be obtained as a consequence of the inductive argument proving Theorem
42l From now on in this section we assume that both Theorem and Lemma are
true for the factors X; for every 0 < ¢ < k — 1. Our goal is to show that Theorem
holds with 7, the map from Definition 331] and that Lemma holds for 7 = k.

4.1. Verifying the ergodicity and composition axioms.

We now check the first two nilspace axioms for Xj.

Lemma 4.7. The space Xy together with the cube sets from Definition [3.31] satisfy the

composition and ergodicity axioms.

Proof. To check the composition axiom, let ¢ : [m] — [n] be a morphism. We have to
show that for every ¢ € Supp (ul"! o(ygnﬂ)*l) we have co¢ € Supp (pl™! o(ygm])*l).
Suppose first that ¢ is injective. Let V = ¢([m]), let o : Q"1 — QV be the bi-
jection that relabels each coordinate w, to we(), and let & : X;[gmﬂ — ka be the similar
bijection. By the consistency axiom in Definition B we have pulm™ = Mﬁlbn] = u[‘[f] 01,
and o(fy,[gmﬂ)_l = (7¢) ' o&, whence Supp (pI™! o(fy,[gm]])_l) = ¢ (Supp (,uw o(v¥)™)).
Hence it suffices to show that py(c) € Supp (uw 0(7,‘?/)*1). Fix any open set U 3 py(c).

Then, since F‘w o(y/)! is the image of ul"l O(,y][gnﬂ)q

under py, and the latter map is
continuous (so that py,' (U) is an open set containing c), we have u[‘[f] o(v/)"HU) > 0, so
py(c) is indeed in Supp (uw o(v) ™).

For the case where ¢ is not injective, we first claim that if ¢ € C"*(X},) then the
map obtained by copying ¢ on two opposite faces of [n] is also a cube. More precisely,
letting ¢ : [n] — [n — 1] be the morphism v + v|p_y, we have co¢ € XE"]]. This
claim follows from Lemma applied with £2 = C"*(X}), provided the fact that the
measure "] o(fy,[gnﬂ)_1 on C"(Xy) is an idempotent coupling of two copies of the measure
plr=11 o(ygn_l]])*l on C"1(X,). To see this fact, note that by Proposition B30 the coupling
pl?l restricted to Fj, is idempotent, and then Lemma implies that g™ o(fy,[gnﬂ)_1
inherits this idempotence (this is checked in a straightforward way from Definition 2.57]
using (B) to relate the case of this definition for z,u[" to the case for ul"! o(yI")=1). This
proves our claim. This claim combined with the consistency axiom for automorphisms
implies that the composition axiom holds whenever ¢ : [n] — [n—1] is a projection along
a single coordinate. The composition axiom for general morphisms now follows by noting
that any such map is a composition of coordinate projections with an injective morphism.

The ergodicity axiom follows readily from the fact that the support of the product
measure (Aov, ') x (Ao, ') is the Cartesian square of Supp(Aor; ') = X;.. O]
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4.2. Complete dependence of corner couplings.

Definition 4.8. Let 2 = (Q, A, \) be a probability space. A coupling u € Cg (Q, S) is
said to be completely dependent if for every v € S we have A5 C, Ag\{v}.

In this subsection we prove the following result towards Theorem .1l (Recall Definition
2.22] for the notion of a factor coupling.)

Proposition 4.9. Let © € X and k € N. The factor coupling of mi(x) € Cg(£2, Kjy1)

corresponding to Fy is completely dependent.

This proposition can be viewed as a measure-theoretic analogue of the following property
of k-step nilspaces, which is a consequence of the uniqueness of completion of (k + 1)-
corners: let Y be a k-step nilspace and for any fixed y € Y consider the rooted cube set
CZH(Y); then for every cube c in this set, for every u € Ky the value c(u) is determined
by the other values c(v), v € K1 \ {u} (since the remaining value ¢(0¥+1) = y is fixed).
In fact, using this property, one can see that the Haar measure on Cly”l(Y) is a completely
dependent coupling in Cg(Y, K} 1); this is precisely what Proposition L9 says in this case.

Recall that the height of a simplicial set S C [n] is max,eg |u|, and that the degree
d(u) of an element u € S is the greatest height of an element v € S with v > u. An
element u € S is mazimal in S if |u| = d(u).

To prove Proposition 4.9, from now on in this subsection we assume that the complete
dependence in question holds for the factor r,mq(z) for each d < k — 1, and we establish

the case d = k by induction. To this end we use the following result.

Lemma 4.10. Let x € X, let n € N, and let yu be the coupling m,—1(x) € Cg(§2, K,,). Let
S1, Sy C [n] be simplicial sets such that Sy has height at most k, let w € Sy \ S1, and let
us define the following o-algebras on Q5n: D) = (‘Fk)(S1USQ)\{O",w}7 Dy = ('Fk>52\{0”,w}'
If (]:k)fu(" Cu Dy, then (]:k){v(" Cu Ds.

Thus, if we want to cover (Fi)E» by a join of o-algebras (F;)5», v € K,, \ {w}, then a

v

simplicial set S of height at most k not containing w is always superfluous.
Proof. We argue by induction on |S; \ S3|, and we assume that S; ¢ Sy (otherwise the
result is trivial). Let u € Sy \ Sz be a maximal element, and let d = d(u) = |u| < k. Note
that v is also maximal in S;. Indeed, for every v € S; dominating u we have v € Sy \ Sy,
since Sy is simplicial, so v = u by maximality in S \ Ss.
Let S1 = S1\{u} and define the o-algebra D] = (]:k)f;?usg)\{on,w} = (‘Fk)@iusg)\{omu,w}'
Since S is still a simplicial set of height at most k, it suffices to prove that
(Fi)5m c, D, (34)

for then by induction on |S; \ S2| we would have (Fy)5» C,, Dy, as required.
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To prove (B4]), we shall use the o-algebra Dy = (Fk){;?usg)\{on} = (‘Fk){gﬁusg)\{on,u}'
Note that D} C D;. The key fact that we shall use is that (F;)%» 1L, Ds. By Lemma 212
this fact follows if we show that for every bounded (F})%»-measurable function f op, such
that E,(f opu|(Fr) 5 A, Ds) = 0, we also have E,,(f op,|Ds) = 0. To show this, it suffices
to prove that ||f||y« = 0. Indeed, if the latter equation holds then, for any bounded
Ds-measurable rank-1 function h = HvE(SiUSg)\ (0n} Yv O Do, applying Corollary with
S = 851USy, r=0" and F the system with f, = 1 for v € K,, \ S, with f, = g, for
v € S\{0" u}, and f, = f, we have that the convolution [F]y~ vanishes A-almost-surely,
so by Lemma B4T we have [F]}.(z) = 0, which means that E, ((fopy)h) =0, so fop,
is orthogonal in pu to every such rank-1 function h, whence indeed E,(f op,|Ds) = 0.
To show that || f||y« = 0, we use the inductive hypothesis stated in the paragraph just
before Lemma HI0. From this hypothesis we deduce that (Fy_;)5» C, (.Fd,l)éi"#vgu
(the deduction uses the fact that, by Definition and Remark B.37, the subcoupling
[fv:0m £v<uy 18 isomorphic to m4_1(z)). Hence (Fy_1)5 C <(.7:d,1)ff" A (]:d,l)éi"#v@) C
(Fi)5n A Ds. Hence our assumption above that E(f op,|(Fi)E» A, D3) = 0 implies that
Ex(f|Fa-1) = Eu(f opul(Fa1)5") = 0, whence by property (ii) in Theorem B2 we have
| flle = 0 as required.

Having proved that ()5~ 1L, D3, let us now prove ([34)). It suffices to show that

(Fi)E» c, DiADs, and (F)5"AD; c, D). (35)

Indeed Dy ADs = ((Fi) X" vD]) AD3, and by Lemma 214 this equals ((F)5" AD3) vV D;
(since (Fy)En 1L Ds), so we have indeed that (34) follows from (35]).

To see the first inclusion in (3], note that clearly (F)E» C Ds and therefore, since
(Fr)En C, Dy by assumption, the inclusion in question is clear.

To prove the second inclusion in (35]), we show that in fact
(Fo)u" ADs =y (Far)y" C Dy (36)

To prove the equality in (B6]) it suffices to show that (Fj)5» A D3 C, (Fu1)En (the
opposite inclusion was proved above). Suppose for a contradiction that there exists f €
L®((Fi)En A Ds) that is not (Fy1)X-measurable. Then g = f — E(f|(Fu1)E") is
non-zero, and is still (F;)E» A Ds-measurable (by the opposite inclusion). In particular
g is (Fr)Er-measurable, so g = ¢’ op, almost surely, for some Fj-measurable g’. Then
since E,, (g|(Fa—1)X") = 0, we have Ey(¢/|F4—1) = 0, so by statement (ii) in Theorem
B2 we have ||¢'||7« = 0. This implies, by the argument above using Corollary B.26] that
E(g|D3) = 0, and so (since g is also Ds-measurable) we must have g = 0, a contradiction.

To see the inclusion in (B6]), we use our induction hypothesis for d — 1, as we did
above, to obtain that (F4_1)%" C, (}"d,l)éfgév —u» and then note that the latter o-algebra
is included in D}, since Fy_; C Fr and {v: 0 # v <u} C (S1US5) \ {0, u, w}. O
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We can now move on to the proof of Proposition €9 Our goal is to show that for every

r € X and u € Ky, we have

| K,
(Fi) i Crp(a) (Fe) K1\ fu} (37)

To prove this we shall use the notation g1, recalled in Subsection [8.2] for the embedding
of the tricube Ty 1 as the simplicial subcubespace Tyyq of [2k + 2].

Consider the following simplicial sets in [2k + 2], which are subsets of Tk-_i_l:
Vi={ve2k+2]:v6)=0forie[k+ 1]},
Vo={ve2k+2]:vi+k+1)=0forie [k+ 1]},

Vs ={v e Th1:v2k+2) =0, [v] <k},
Vi={v € Tpp1 : v(2k+2) = 0}.

The set V} is the image under g of the subcube of T}, with all coordinates non-positive,
and V5 corresponds similarly to the subcube with all coordinates non-negative. The set
V3 corresponds to the set of v € Ty, having at most k non-zero entries and having last
entry either 0 or 1 (but not —1). Finally V, corresponds to the set of v € Tj,; having
last entry either 0 or 1.

Note that every v € Ty has |v| < k+1. Note also that V5 UV3 C Vj, and that in V}
there may be elements v with |v| = k+ 1, but these elements must then have v(k +1) = 1.
It is also clear that all sets V;, i € [4], are simplicial (they are all defined by monotone
decreasing properties).

Now since u is assumed to lie in K} ; and therefore u # 05, we can suppose without
loss of generality that u(k+1) = 1. Let w € V; be the element such that w(i) = 0 and
w(i+k+1) =u(i) for i € [k+ 1]. Let us now define some auxiliary o-algebras. Here 0 will
stand for the element 022 € [2k + 2].

Definition 4.11. We define the following o-algebras: let G = <Fk)€/(12\k{+£,o}v and for i € [4]

Kopya

let gl = <‘Fk>V1\{O}

Proof of Proposition[{.9 Let v denote the coupling mori1(z) € Cg(£2, Kori2). We begin
by noting that to obtain (37) it suffices to prove that (Fj)u***> C, G (this follows from
Definition and Corollary B.40]). To prove this we first show that

(Fr) > C, GV Gy (38)

0 - 0 1—v(k‘+1)>

Consider the injective morphism ¢ : [k + 1] — [2k +2], v — (v(l) k) okt 1)

Note that ¢(u) = w (since u(k+1) = 1). Let K = [k + 1] \ {u}.

For every v € K we have ¢(v) € V1UV}. Indeed, either ¢(v) has coordinates ¢(v)(i) = 0
for all ¢ € [k + 1], in which case ¢(v) € Vi, or ¢(v)(k+1) = 1 and then ¢(v)(2k+2) = 0
whence ¢(v) € V. Since we also have that ¢([k + 1]) C Koge, it follows that for every
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v € K we have (F),; 2’““ C GV G,. To prove ([B8) it now suffices to prove the inclusion
(Fr )f(ff)“ C, (Fk)K%“ By Lemma 358 the subcoupling of v along ¢ is equal to plF+11,
and the desired inclusion then follows by statement (ii) in Theorem B.21]

Having proved (38)), the next step is to prove that
G1 =02V G3. (39)

As noted above, we have V5 U V3 C Vj, whence Gy D Gy V Gs. For each v € [2k + 2] let
us define 2" (v) = >,y v(i +k +1). We prove by induction on h*(v) that if v € Vj then
(Fu)s?* C Gy V Gy. If h*(v) = 0 then v € V, and the statement is trivial. Suppose then
that for n € [k + 1] the statement holds for every v € Vj with A*(v) < n — 1, and suppose
that b € Vj satisfies h*(b) = n. If |b| < k then b € V5 and the statement is trivial, so we
can assume that |b] = k + 1. This means that b(i) + b(i + k+1) = 1 for every i € [k + 1].
Consider the injective morphism ¢ : [k + 1] — V} defined by

Y()[@) =v@E) b))+ (1 —v@) bli+k+1) , Y()i+k+1) =vGE) bl +k+1).

Note that 1 (1¥+1) = b. Moreover, since n > 0, we have b(i + k + 1) = 1 for some i € [k+1],

(w(v)é(ﬁz(liL 1)) # (7) for all v, whence ¥([k + 1]) C Koo

Let K' = [k + 1] \ {1¥™'}. We claim that for every v € K', either h*(¢)(v)) < n or

Y(v) € V3. Indeed, if ¢(v) ¢ V3 then since 1(v) € V4 we must have |¢(v)| =k + 1 = |b];
»(v)(7) ) £ ( ( b(j)

SO

moreover since 1 is injective we have ( ) for some j, and since by

P)(j+k+1) b(j+k+1) ‘
definition Qf 1 we have ¥(v)(j + &+ 1) < b(j + k + 1), the only possibility is (w( )I(p(ﬁ(/jfl 1)) =
((1))7 ((] Jl:(i)Jr 1)) = ((1)), whence h*(¢(v)) < h*(b) = n, as claimed. Now, by this claim

and the induction hypothesis, for every v € K’ we have (F),(; 2’““ C Go V G3. By Lemma
J again we have v, = pl 41l so by property (iii) of Theorem B.21] and the fact that
b = (1%1) we have (.7-",6)1(2‘“+2 C (]:;C)KQ’“+2 Since (Fk)K%“ C GV gg, we deduce (39).
By (B8) and (89) we have (]:;.C)w%+2 C GV G,V Gs. By Lemma [£10, we can omit Gs,
s0 (Fi)n? ™ C GV Gy. Now Gy = (Fu)h? VG, and (Fi)e?*** C (GoVG) AGy. Moreover,
since Vi L p2e2) V2 (by Theorem (., it follows from combining Lemma[2.49 with Lemma
and Lemma B34 that V1 \ {0} L, V5\ {0}. In particular G;, G, are independent (since
Vi \ {0}, Vo \ {0} are disjoint). By Lemma 2.14] we have (Go V G) A Gy = (G2 A Gy) V G.
The independence of G;, Go implies that Go A Gy is the trivial o-algebra (up to null sets,
as usual). We thus obtain (.7-"/19)52'“+2 C, (GoVGING, = (GoNG1) VG =G, as desired. [

4.3. Convolution neighbourhoods.

In the proof of the corner-completion axiom in Subsection B4l a crucial role will be
played by certain special open sets in X;,. Let F' = {f, : @ — {0,1} },ek,,, be a system of
measurable indicator functions. Recall that the function (-, F') : Cg(£2, Kxy1) — [0, 1] is
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continuous (by Definitions and 220). In particular, the set U = X; Nsupp (§ (-, F))

is open in Xy, and since [F]7,., = £(+, F) o7, we have supp([F|i 1) = 77, ' (U).

Definition 4.12. We say that an open set U C Xy, is a convolutional set if there is a sys-
tem F' of indicator functions of measurable subsets of {2 such that U = X Nsupp (f (F )) =
75, (supp([Fle41)). We then say that F is a system generating U. Given a point z € Xy,

we call a convolutional set U containing x a convolution neighbourhood of x.

Note that if F' is a system generating U then x € U if and only if £(x, F') > 0.

The main result in this subsection, Proposition 4.19, tells us that convolution neigh-
bourhoods form a basis for the topology on Xj. This fact will be crucial for the proof of
the corner-completion axiom (specifically, in the proof of Lemma [.23]). To obtain this

fact we first prove the following result.

Proposition 4.13. Let o : Kyy1 — X be some function. Then there is at most one
element z € Xy, with the following property: for every system of open sets U(v) 3 o(v) in
Xg, v € Kpi1, we have z € 7y, (supp([F]’;]kH)), where F' = (1y () 0 k) vk -

Here supp([F]};.41) denotes the closure of supp([F];;.+1). Proposition A3 has the follow-

ing important consequence.

Corollary 4.14. Let ¢ be a (k+1)-corner on Xy. Then there is at most one (k+1)-cube

on X completing c’.

Proof. Without loss of generality (using a discrete-cube automorphism sending 1*** to
0%*1) we can suppose that ¢’ is a map K11 — Xp. Let z € X}, be an element yielding
a completion ¢ of ¢/, that is, such that the map ¢ : [k + 1] — X, with ¢|g,,, = ¢
and c(0*") = z is in C**(Xy). By Proposition EI3] it suffices to prove that for ev-
ery system (U(v))vek,,, of open sets U(v) 3 ¢'(v), for F' = (1U(u)O’Yk)veKk+1 we have
x C m(supp([F711)). Let V be the complement of m(supp([F]7.,)) (the latter set
is closed by the continuity of 7, and the closed map lemma, so V' is open). Suppose
for a contradiction that 2 € V. We have [\[FJ5,., (1yom) d(Aoy™!) = 0 by defini-
tion of V. On the other hand, this integral equals the plF+1l o(fygkﬂ]])_l—measure of the
product set Hve[[k ] U(v) where U(0**') = V. This product is an open set containing

li[:kJrl}])fl)

¢ € Supp (,u[[k“ﬂ o7y , SO its measure must be positive, a contradiction. O]

To prove Proposition [£.13] suppose that there exists such an element z = m(z) € X and
consider the factor-coupling of 7 (x) corresponding to Fi. Then it suffices to show that
this coupling is uniquely determined by the factor couplings r,|0(v), v € Kj41. Indeed,
note that every (k + 1)-corner coupling v (in particular the element m(x)) is uniquely

determined by its factor x v. This follows from the fact that for every system F =



ON CUBIC COUPLINGS 71

(fo)vekys, of bounded measurable functions we have &(F,v) = &((E(fu]Fk))very,,, V), as
can be shown by applying Lemma and Lemma [3.47]

To prove that z, 7 () is uniquely determined by the couplings r,j0(v), v € Ky, we
shall use a tricube structure to construct a large coupling T in which all the couplings

o(v) are included as subcouplings in a useful interrelated manner.

Construction of the coupling 7.
For every v € K} let us choose a decreasing sequence (U;(v));en of open neighbourhoods
of o(v) which forms a neighbourhood basis in Xj;. Let F; = (1y,) ©Vk)vek,,, and let
(7:)ien be a sequence in X such that lim;_. mx(2;) = 2z and z; € supp([Fifj;s) C X.
(This sequence exists by the assumptions on z.) Again we work with the embedded tricube
ﬁHl = Grs1(Tes1) in [2k +2]. Let V = {v € ﬁcﬂ cv(i) = 0 for i € [k + 1]} be the set
V} from the previous subsection, i.e. the subset corresponding to {—1,0}**! C Ty ;. Let
t € [2k+2] be the element with ¢(i) = 0, t(i+ k+1) = 1 fori € [k+1], i.e. t = g1 (—1%1).
Let 7: [k+1] — fk+1 be the injective morphism with image V' defined by 7(v)(i) = 0 and
7(v)(i+k+1) = 1 —v() for each i € [k+1]. In particular 7(0¥+1) = ¢ and 7(1%¥+1) = 0%+2,
We now consider the corner coupling mog11(z;) € Cg(§2, Kox42), and for convenience we
take it to be rooted at the vertex t € [2k+2] defined above, rather than at the usual vertex
02#+2 (these two versions of the coupling are isomorphic, by the symmetry of pl?+2 given
by the consistency axiom). Let M; = {w € QMM+ 4, (p_ ) (w)) € Ui(v), Yo € Kiy1}.
Observe that the measure of M; in the coupling mox41(2;) is equal to [Fi]j . (;), which
is positive by our assumption on x;. By Corollary B.10, we have that V is local in p[2¢+2],
By Lemma applied to {t} and V', we have that the set V' \ {¢} is local in mor 1 (x;).
Let Y. be the coupling mor11(z;) conditioned with respect to M;, as per Definition 2511
As explained in that definition, we have that Y, € Cg({2,[2k + 2] \ V). Let T, be the
factor coupling of T’ corresponding to Fj, C A. We can now define the coupling Y.

Definition 4.15. We define T as the limit of some convergent subsequence of (1;);en in
the compact space Cg ((Q, Fi, A, [2k + 2]\ V).

Now that we have the coupling T, the next step is to prove that it satisfies the properties
that we announced, namely that it includes the corner couplings associated with o in a
suitable interdependent way. To do so, for each w € [k + 1] we shall use a discrete-cube
morphism ¢,, : [k+ 1] — [2k + 2] that sends 0¥*! to some point of V and all other points
of [k +1] to Tp1 \ V.

Definition 4.16. For each w € [k + 1] let ¢y, : [k + 1] — Tji1 be the injective map
defined by ¢, (v)(i) = v(i) and ¢, (v)(i+k+1) = (1 —w(@))(1 — v()), for i € [k + 1].

Thus for every w the map ¢,, is a cube morphism [k + 1] — [2k + 2]. Note that the

point u := ¢,,(051) is equal to g i (w — 1¥+1) = (173(1) 17w(2+ 1)>, in particular u
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is indeed in V' = g1 ({—1,0}**!). We also have for every w that ¢,(1¥!) = (1),
which corresponds to 171 € T}, and is not in V. More generally, we have ¢, (v) ¢ V
for all v # 0%, since for any such v there is i € [k + 1] with ¢,,(v)(i) = v(i) = 1, whereas
for ¢, (v) to be in V requires ¢, (v)(i) = 0 for all i € [k + 1].

In what follows we shall argue by induction on the height |v|. To that end, for
J € [k + 1] we denote by Bj; the set [2k + 2]<; := {v € [2k + 2] : |v| < j}, and we define

D; = B; N Tiy1. (40)

One can think of D; in R¥*! as the intersection of the tricube Tj;q = {—1,0, 1}* with
the closed ¢!-ball of radius j centered at the origin.

Recall from Definition 2.23] the notion of a relatively independent coupling.

Lemma 4.17. The coupling T has the following properties.

(7) The subcoupling of T along the bijection ¢k, , K1 — Tis1 \V is equal to Foo(w)
for every w € Kyi1, and is equal to r,my(x) for w = 0%,

(i) Let Y9 denote the subcoupling of Y along the set B; \'V C [2k +2]\ V. Then Y7 is
relatively independent over its factor corresponding to F;_1, for all j € [k + 1].

Proof. Throughout this proof we denote by v; the coupling moy1(z;) (rooted at ¢ as
mentioned above). To prove property (i) we will show that for every ¢ > 0, for all i
sufficiently large the coupling T; satisfies the property up to e. More precisely, we first
metrize the Polish space Cg ((€2, Fi, A), [2k+2]\ V) so that balls in the metric are convex
(see Proposition[A.§)), and then we use this to show that for every e > 0, if 7 is sufficiently
large then for every w € Kjyq the subcoupling of T; indexed by ¢, (Kxy1) is e-close in
this metric to £, jo(w), and is equal to 7 m(z) for w = 0FFL.

To prove this in the case w € K4, it suffices to prove that the subcoupling of T;
indexed by ¢, (Kk11) is a convex combination of couplings all of which are e-close to
F.jo(w), as this implies that T; also has this property (since the e-ball centered on £, o(w)
is convex in the chosen metric). We prove this by considering an integral of an arbitrary
rank-1 function for this subcoupling of T;. Since these integrals characterize uniquely this
subcoupling, considering just these integrals will suffice. So, for each v € ¢, (Ky11), let f,
be a function in L>(F). Recall from the definition of Y; that we take M; C QI2F+21\¢}
to be the cylinder-set ﬂvEKkH p;(i)yk_l(Ui(v)), and that v;(M;) > 0. The integral of the

rank-1 function that we have just fixed is then

[)¢w(Kk+1) H fv O Py de (41)

vEPuw (Kp41)
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By Definition 2511 this is (abusing the notation in U;(v) by identifying V' with [k + 1])

m/ shaol\le 1U¢(w)07kopu H lUi(v)OVkopv H fv O Py dVia
Qlzkrzh veV\{tu} vEdw(Kys1)

2k+2
where we recall that u = ¢, (0**!). Let g = E( [Toevftuy Lvsw) 060Dy | Agbw(j[[LkL}])) The
integral above is then equal to m fﬂﬂ2k+2ﬂ\{t} 1,(w) © VK OPu g HUE%(KHI) foop, dy;.
We claim that V' \ {t} L,, ¢,([k + 1]). This can be seen by the following argument

similar to one used in the proof of Lemma B.19. Letting u denote the tricube coupling
mr
action of Séf“ (established in Lemma B.12]), we can apply an element o € S:];H that
leaves V' globally invariant but turns ¢, ([k + 1]) into the set gr+1([k + 1]), which is
now a face in [2k 4 2]; in p the faces V' and g4 1([k + 1]) are conditionally independent
because they are so in pl?+2 by Theorem B.8 (here we use Remark 231]). Since this
conditional independence is not affected by this action of S§, we conclude indeed that
V Ly ¢u([k +1]), and so V' L k2 ¢u([k + 1]) (again by Remark 23T)). Combining
lemmas [2.49] (for which we use Lemma B.58)), and B34 we obtain our claim.

Noting that (V' \ {t}) N ¢ ([k + 1]) = {u}, we see that, by the above claim, the
Ag2k+2}]\{t}

, we have V' L, ¢, ([k + 1]), because by the symmetry of this coupling under the

function g is
for some [0, 1]-valued measurable function ¢/, (by Lemma 2.I7). It follows that the last

integral equals m fgmm\{t}(ly;lm(w) gl) opu Hve¢w(Kk+1) foop, dy;. But now this
is an integral of a function depending only on components indexed by ¢, ([k + 1]) so,

-measurable, and is therefore equal almost everywhere to g, op,

letting v;,, denote the subcoupling of v; indexed by ¢, ([k + 1]), this integral is equal to
m fmw([[kﬂﬂ) (1%_1Ui(w) gh) opu HUE%(KHI) fvopy dvi,. Now note that by Lemma [3.58]
(combined with the S§ symmetry again), we have that v; ,, = plFH11 We now disintegrate
Vi relative to the map p, : Qoe* 1) 5 Q. into measures v, for z € Q which are
isomorphic to corner couplings in X;, for almost every x. We thus conclude that the

integral in ([{I]) equals

(1,10, (w) 90) (%)
/Q ,/é]\);) ( /QWKW [I Fopdn) dr@).

VEPw (Kr41)

Note that this is indeed a convex combination of the kind we claimed. Indeed, the weight
(L1 (1) 9) (@)
k 2
vi(M;)
Now by the presence of the indicator function of U;(w) in the weight function, whenever

function x — is a non-negative function having integral over (2 equal to 1.
v, is a corner coupling (which is the case for almost every x), we have that v, is e-close to
F.0(w), by definition of U;(w). This completes what we needed to prove for w € Kj44.

The case w = 0! is simpler. Here note first that by an argument similar to the one

above, we have that AZS:i}§2k+1) and A‘T,‘“\E;{t} are independent in ;. This then implies

the result, since the conditional coupling Y; is then equal to z,m;(x) (this is seen by
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applying the formula p/(N) := u(M x N)/ur(M) in Definition 251 in this case, where
independence yields the factorization u(M x N) = pup(M)mg(z)(N)).

To see property (ii), let Tf denote the subcoupling of T; indexed by B;\ V. If we show
for every i that Tf is relatively independent over its F;_;-factor, then we obtain property
(77) by passing to the limit as ¢ — oo and using that the desired relative independence
is a closed property, by Lemma 242l Let F' = (f,)ven;\v be a system of functions
fo € L*(F), and suppose that for some v' € B; \ V we have E(f,|F,;_1) = 0, so that
| follos = 0 by statement (i7) of Theorem B2I. We have to show that £(Y7, F) = 0. Let
G = {gv}vepar+2)\ g1y be the extended function system defined as follows. If v € B; \ V
then g, = f,, if v € [2k+ 2]\ (B; UV) then g, = 1 and if v € V' \ {¢} then g, is the
characteristic function of U;(7~'(v)). By definition we have that £(1?, F) = (G 2nsa (4)
where the convolution here is rooted at ¢. Using that V U B; is simplicial and that
d(v") < j, we obtain using Corollary and Lemma B3.47 that [G]}2.42(2;) = 0, and the

result follows. O

The next lemma, which is the main one in this step of the proof, establishes that the

coupling T is the only one that has the properties in Lemma .17

Lemma 4.18. There is at most one coupling 6 € Cg ((2, Fy, )\),ﬁHl \ V) satisfying the

following two properties:

(i) Yw € Kjyq, the subcoupling of 6 along ¢y, = Ky — Tkﬂ \'V is equal to r,jo(w).
(1i) Let 67 be the subcoupling of 6 indexed by D; \'V C fk+1 \ V. Then ¢’ is relatively

independent over its factor corresponding to F;_y, for every j € [k + 1].

Proof. Suppose that 6 is such a coupling. We prove by induction on j that by properties ()
and (41) in LemmaZT8 the subcoupling ¢’ is uniquely determined. For j = 1, by property
(i7) the coupling ¢’ is the independent coupling with index D;\ V', which is indeed unique.
Let 7 > 1 and suppose that the uniqueness holds for j — 1. Property (ii) implies that
it suffices to prove the uniqueness of the F;_j-factor coupling of 67 (this suffices indeed
since, as mentioned after Definition 223 by (i) the maps £ for this F;_;-factor uniquely
determine those for #7). We prove this by another inductive argument.

Recall from the previous subsection that h*(v) = 3,y v(i+k+1) for v € [2k + 2],
and recall from (40) that D; = B; N Tj41. Let D;,, = D;_y U{v € D; : h*(v) < n}. We
shall prove the following statement by induction on n = h*(v):

The F;_;-factor of the subcoupling Gg)j’n of # is uniquely determined  (42)
by the F;_;-factor of the subcoupling ng

—1°

We start by establishing the base case n = 0 by using the case j—1 of the global induction.
Suppose that v € Ty, satisfies v € D;\ D;_; and h*(v) = 0. In particular |v| = j and
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every v € [2k + 2] with ' < v isin D;_;. (Note that {v € Tis1 ¢ h*(v) = 0} is the
(k + 1)-face V4 from the previous subsection.) The set P = {v' € [2k+2] : 0 # v < v}
can be identified with K;. From the assumed property (i) for 6, applied with w = 151
and the composition rule Corollary .40, we have that the subcoupling of # indexed
by P is isomorphic to m;_1(o(1*1)), and then the factor r,_,jm;_1(o(1"1)) is just the
subcoupling of ¢~! indexed by P. (Note that o(1¥*!) corresponds to 0%*2 in [2k + 2].)
By Proposition the subcoupling ;J,flmj_l(g(lkﬂ)) is completely dependent. Hence

(Fio1)ok" (]:j,l)IT:'“\T{L}, and this is included in (.Fj,l)ig’?tll by the above remarks. Now,
applying Lemma with 71 = D;_; and T, = P we deduce that the subcoupling of ¢’
indexed by D;_; U {v} is uniquely determined. Applying this argument recursively for
each vertex v with A*(v) = 0 (with 7} including each time all the vertices v from the
previous steps in the recursion), the base case follows.

Now suppose that n > 0, that ;].71‘«9{)], __, is uniquely determined, and that h* (v)=n
(and v € D;\ D;_; as above). Let v/, w € t[k;+1]] be defined by v/(i) = v(i) +v(i + k + 1) and
w(i)=1—v(G+k+1). Let R= {7’ elk+1]: 0L £ < v’}, and consider the restriction
to R of the map ¢,, from Definition .16 We claim that if » € R satisfies ¢, (1) # v, then
either ¢, (1) € D;_1, or h*(¢(r)) < n— 1. Indeed, if ¢,,(r) & D;_1 then |¢,(r)| > j, and
by definition of R

{fielk+1]:0u(r)i) + du(r)i+k+1)=1} C {i€[k+1]:v6) +vi+k+1) =1}

(indeed if v(i) + v(i+k+1) = 0 then ¢ (r)(i+k+1) = vi+k+1)(1 —7r@6) = 0 and r <
v" implies that ¢, (r)(@) = r(@) = 0). Considering the sizes of the sets in the above

inclusion, we deduce that these sets are equal; then for ¢, (r) # v to hold there must

$u(r)(7) ) = ( 1-o(i)
¢w(7’)(i +E+ 1) 1*1}(2' +k+ 1)
that ¢, (1)) = ¢uw(r)i) = 0 # 1 = v(i), then by definition of ¢, (r) we would have

¢Gw(r)(i+k+1) = v(i + k+ 1), which contradicts the equality ¢, (r)(i+k+1) =1—v(i+k+1)

exist ¢ in this set such that ( ) But if it were the case

established in the previous sentence. Hence we must have ¢, (r)(i) = z(:) = 1 and then
Gw(r)(i+k+1) = 0, whence indeed h*(¢,(r)) < h*(v) = n. This proves our claim.
This claim implies that ¢,(R) \ {v} C Dj,-1. Now, by property (i) for 6 we have
that 0,,r = mj_1(0(w)), so by Proposition we have (.7-"]»,1)3’“+1 Co (E,l)sz(}%)\{v}.
Applying Lemma 228 with T} = D;,,_ and Ty = ¢,(R), we deduce that the subcoupling
of ¢/ indexed by D,, 1 U {v} is uniquely determined. Applying this argument again
recursively for each such v (similarly as in the base case), we deduce that the subcoupling

of ;j_1|9j indexed by Dj,, is uniquely determined. This completes the induction on n. [
We can now complete the proof of the main result in this subsection.

Proof of Proposition[{.13. Let T be the subcoupling of T indexed by ﬁﬁq \ V. Lemmas
417 EI8 imply that T is uniquely determined by the function o. As explained after
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Corollary B.T4] the coupling z = 7;(x) is uniquely determined by its factor £, z. Since
the latter is a sub-coupling of T, we deduce that z is uniquely determined, so the proof

is complete. O

We can now use this to establish the fact announced at the beginning of this subsection,

namely that convolutional sets form a basis for the topology on Xj.

Proposition 4.19. Let U be an open set in Xy, and let x € U. Then there are open sets
Uw) C Xy, v € Kjyq such that x € ﬂk(supp([F]’&kH)) C U, where F' = (1y(y) © Vi )veKy1 -

Proof. Recall that x is a measure v € Cg(§2, Kj41). Let o : K41 — X be an element of
Supp(v o(%ﬁ(’““)*l). By definition of this support, for every system F' = (1y () ©Vk)vek, .
with open sets U(v) > o(v) for each v € Kjyy1, we have [F]7,.,(x) > 0. Therefore it
suffices to prove that there is some such system F satisfying also 7, (supp([F]jx41)) C U.
To show this, for every i € Nlet (U;(v))vex,,, be a system of open sets such that (U;(v))ien
is a nested decreasing neighbourhood basis for o(v) for each v. Let F; = (1y,() ©Vk)veky, ;-
Suppose for a contradiction that (X; \U) N 7 (supp([E;]5k:1)) # 0 for every i. The sets
B; = (Xp \U)Nmy (W), 1 € N, form a decreasing nested sequence of closed sets
in the compact space Xy, so there exists y € ();2; B;. By Proposition 13| this implies
that = = y, which contradicts the fact that x and y are separated by the open set U. [J

4.4. Verifying the corner-completion axiom.

For the proof of the completion axiom we shall use the following lemma concerning sup-

ports of conditional expectations.

Lemma 4.20. Let (2, A, \) be a probability space, and let B be a sub-o-algebra of A.
Then for any non-negative function f € L>(A), we have supp(f) Cx supp (E(f|B)).

Proof. Let B = Q\supp (E(f|B)). The desired conclusion is equivalent to [, f-15dA = 0.
Since B is B-measurable, we have [, flgd\ = [E(f|B)1zd\, and this last integral is
zero by definition of B. O

Lemma 4.21. Let u € Cg($2,5), let F = (fy)ves and G = (gy)ves be systems of non-
negative functions in L>((2), and suppose that supp f, Cx suppg, for every v € S. If

fQS [Leg foopydu >0 then st [T,cs 90 0Py dp > 0.

Proof. Recall that for a bounded non-negative function h on a probability space (2 we
have A(supph) > 0 if and only if [hd\ > 0. Using this, since [[], foop,du > 0 we
have that u(supp(HU fo opv)) > 0, and since supp([[, foops) C supp([[, goopv), We
have also (supp([], goopys)) > 0, so (by the previous sentence again) [ [], g, op, du

must be positive. O
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We now show that the functions supported on convolution neighbourhoods in X factor

through functions on X;_; in a useful way.

Lemma 4.22. Let x € Xy, let F' be a system of indicator functions generating a convo-
lution neighbourhood of x. Then there ezists a continuous function g : X_1 — [0, 1] such
that E([F)yr | Fr1) =x goyu—1 and g(me_1(z)) > 0.

Proof. We have by assumption that F' = (f,)vek,,, is a system of A-measurable indicator
functions on € such that £(z,F) > 0. Let G = (guv)vek,,, be the system of functions
gv = E(fy| Fr—1). Observe that, by Corollary and our inductive assumptions on X;_1,
we have that [G];.,, = gome_; for some continuous function g : X;_; — [0, 1], which
means that g(m,_1(2')) = {(mx(2'), G) for every o’ € X. Note also that by Lemma B.29 we
have [G]yre1r =) E([F]yr+1|Fr—1), so by LemmaB.46lwe have g oy,_1 =) E([F]yrs1|Fr_1).
To see that g(m_1(x)) > 0, note that g(me_1(2)) = &(z, G), and supp(g,) D supp(f,) for
each v by Lemma [£.20] so £(x,G) > 0 by Lemma 211 OJ

We can now proceed to the proof of the completion axiom. We shall first prove the
existence of a completion for any morphism from [n]<; to X, that is, any map p :
[n]<k — X such that for every cube morphism ¢ : [k] — [n] with image included in
[n]<i we have go¢ € CF(X}).

Lemma 4.23. Let o : [n]<x — X be a morphism. Then there exists a cube ¢ € C"(Xy)
such that ¢ |[n)., = 0

Proof. 1t suffices to prove the following claim: let H = (hy)ve[n] be a system of functions
h, € L*(A) such that for |v| > k we have h, = 1 and for |v| < k we have h, =
[H,|yr+1 where H, is a system generating a convolution neighbourhood U (v) of o(v); then
(H)y» > 0. To see that this suffices, for each v € [n]<y let (U;(v));en be a decreasing open
neighbourhood basis of g(v) in X;. Then by Proposition for each 7 there is a system
H; of such functions h;, that generate a convolution neighbourhood of p(v) included in
Ui(v). The claim above implies that for every i there is a cube ¢; € C"(X}) such that
¢;(v) € U(v) for each v € [n]<x. By compactness of C"(X}) there is then a subsequence
of (c;); converging to some ¢ € C"(X}), and by construction we then have ¢ |f,)_, = 0.
To prove the claim above, for each v with |v| < k let g, be the function obtained
by applying Lemma to hy, and let G = (gy ©Vk—1)ve[n) Where g, = 1 for |v| > k.
By Corollary applied with S = [n]<, we have (H)yn = (G)yn. By our inductive
assumptions and the fact that X;_; is a compact nilspace and m;,_ is measure-preserving,
we have (G)yn = an(inl) I1, gv op, dv where v is the Haar measure on C"(Xj_1). It
follows from Lemma that 7p_1 00 is also a morphism, and then by nilspace theory
(see [10, Lemma 3.1.5]) there is a cube ¢ € C"(X;_1) such that c|p,)., = m—100. By
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Lemma 22, we have g, (m;_1(o(v)) > 0 for each v, whence | gu(c(v)) > 0. This
implies [, O™ (Xpr) L, 9o opvdv > 0, since the integrand is continuous and positive at ¢, and

v is a strictly positive measure (this is seen as in the proof of [I1], Proposition 2.2.11]). O
Proposition 4.24. The corner-completion axiom holds on Xj.

Proof. Let ¢’ : [n] \ {1"} — X} be an n-corner. Let ¢ = c’|[f,).,. By Lemma there
exists a cube ¢ € C"(X}) such that ¢ |, = o. It suffices to show that c¢|pp ) = ¢
Note that for each v € [n] with |v] = k + 1, the restrictions of ¢ and ¢’ to the (k + 1)-face
{w € [n] : w < v} are both completions of the restriction of ¢’ to {w € [n] : w < v}. By
Corollary [4.14] these restrictions are equal. Arguing similarly for each such v, it follows
that actually ¢ [pn),,, = ¢ |[n]<,,,- We can then argue similarly to deduce that ¢ |p,_,,, =

for j =2,3,..., and thus we deduce that c |, q1n} = ¢/, as required. O

/
C ‘[["ﬂgkﬂ'
5. ON CHARACTERISTIC FACTORS ASSOCIATED WITH NILPOTENT GROUP ACTIONS

In [35], Host and Kra carried out their groundbreaking analysis of ergodic Z-actions by
first defining a sequence of probability measures, denoted by u™, n > 0, and then studying
the characteristic factor associated with each such measure. In the language developed in
this paper, these measures /™ can be checked to form a cubic coupling (see Definition [5.4]
below and the explanation thereafter). We refer to this cubic coupling as the Host-Kra
coupling associated with the given Z-action. The Host—Kra seminorm associated with
pl? is then the corresponding U”-seminorm in our language.

Our goal in this section is to generalize the Host-Kra couplings and related semi-
norms from [35], and combine this with the main results from Section @l to treat measure-
preserving actions of countable nilpotent groups. In particular, we obtain Theorem
below, a generalization of the Host—Kra structure theorem [35, Theorem 10.1].

Recall the notion of a filtered group (G, G,) from Definition 4l We may consider
also the prefiltration G¥*, defined by setting its i-th term to be G;,%. In this section we
also assume that G is countable and discrete.

As we saw in Theorem [4.5], the cubic coupling that we associate with an action of
a nilpotent group G depends on a choice of a filtration G4 on G. Indeed, the filtration
yields the cube structure on G consisting of the groups of n-cubes C"(G,), n > 0, and in
Theorem the measure pl"l is supposed to be preserved by the action of C"(G,). Recall
that this group is the subgroup of GI" generated by elements of the form ¢*', defined by
gF(v) = g if v e F and g% (v) = idg otherwise, where F' is some face in [n] of dimension
d and g € G,,_,4 (these cubes are detailed in [10} §2.2.1] for instance). More generally, for
each integer k > 0 we denote by H, the group C"(G*) (this is shown to be a group
in [27], §6], for instance, where the notation HK" is used instead of C"). Note that if no

filtration is specified on GG then we can always let G4 be the lower central series.
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We shall use the following basic result.
Lemma 5.1. Let (G,G.,) be a filtered group. Then (H,k)k>o0 is a filtration on H,, .

Proof. We aim to show that for every ¢; € H, ;, ¢, € H, we have [c;,c;] € Hy jik.
Note first that this holds for all generators g* € H,;, h'" € H,y, since [¢" h''] =
g, B}

to arbitrary elements ¢; € H, ;, ¢, € H,}, let us use this case of generators to prove

, which is easily seen to be in H, j;;. Before we generalize from generators

that H,, < H,o for every k > 0 (this will be used for the general case). For every
¢ € H, and generator gt € H,, since ¢ = hf{ R " for some generators hf{, we have
(gF) L gF = (¢) 'R gT (¢F) 'hi2gF - (¢F)"'h" ¢, and this is in H, . since each
factor (gF)*lhfi/gF is in H,; by the case of generators. Now, given any ¢ = gt gt e
H,o and ¢’ € H,, using the previous case we have (gfl)_1 ¢ gfl = ¢ € Hyy, then we
have (g?)’1 c1gi?=cy € H, 1, and so on iteratively until we conclude that ¢! ¢’c € H,, .
We have thus proved that H, , < H,o. Now, to show that [c;, ck] € H, ;i in general,
we can argue by induction on £(c;) + ¢(ci), where £(c;) is a positive integer such that
there is an expression of ¢; as a product of generators gfl x -gf[ with ¢ < /(c;). For
{(c;) 4+ €(cx) = 2 we are in the case of generators. For ¢(c;) + ¢(ci) > 2, we show that the
coset [c;, ] Hy ok 15 Hyjip Letting ¢; = gi'---g;" and ¢}, = hf{ - ~h52/, we have
lejoeel = ()™ ()™ ()% ()™ gl gl byt (43)
We then have gf‘zhf{ = hf{gf‘[gf‘,hf{], where [gf“,hf{] € H, jr. This together with
H,, j+r < Hy, o implies that the coset [cj, cx] H, j1+ is equal to the coset represented by the
product in the right side of (@3] with gf “and hf{ swapped. Applying this repeatedly, the
term hf{ can be moved to the left in the product until it cancels (h;')Fi. We can then

conclude by induction that [c;, cx] Hy jik = Hp j+k, SO [¢j, ck] € Hy jyk as required. O

We identify GI"l x GI"l with GI"*11 by viewing an element (go, g1) of the former group as
the element of GI"*1 whose value restricted to {0, 1}" x {i} is equal to g;, for i = 0, 1. For
a group K and a normal subgroup K, <1 K, we define the following subgroup of K x K:

dlag(Ka KQ) = {(g(l,gb) ‘g€ Ka a'ab € KQ}
Lemma 5.2. Let (G, G,) be a filtered group. For alln,k >0, H, .1, =diag(H, k, Hp gt1)-

Proof. The group diag(H, x, Hnr+1) is clearly generated by the elements of the form

(gfl,gfl), (ng, 1) and (1,g§2), for some faces Fy, F; in [n], where g1 € G_gim()+r and

92 € Gp_dim(r)+k+1- Using that (gfl,gfl) = gflx{o’l}, it is checked in a straightforward
way that diag(H, x, Hp 1) and H,1 1, have equal sets of generators. O

Recall from Definition 2.61] the notion of the square of a measure relative to a factor. If

G acts on 2 = (€, A, \) by measure-preserving transformations, then a set B € A is said
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to be G-invariant if we have A((g - B)AB) = 0 for every g € G. The G-invariant sets
form a sub-c-algebra of A, and the action of G is ergodic if every G-invariant set B has
A(B) € {0,1}. Recall also that a factor of the measure-preserving system (£2,G) is a
o-algebra B C A such that for every g € G and B € B we have g- B € B.

Lemma 5.3. Let K be a group and Ky be a normal subgroup of K. Suppose that K
acts on a probability space 2y = (Qo, Ao, Ao) by measure-preserving transformations. Let
A1 € Cg(£2,{0,1}) be the square of Ao relative to the o-algebra of Ko-invariant sets. Then
the group diag(K, K3) acts by measure-preserving transformations on (ng’l}, Aéo’l}, A1).

Proof. Let B denote the o-algebra of Ky-invariant sets in Ag. Since K, <{K, we have'® that
B is a factor of (£2y, K). In particular E(f?|B) = E(f|B)¢ for every g € K and f € L>(f2)
(where f9(w) := f(g(w))). By Lemma 2.2 it suffices to prove that for every function h on
Q({]O’l} of the form (foopo)(fiop1) with fo, fi € L>((2), for all ¢t € diag(K, K,) we have
[ ht d)\l = fhd)\l Let g € K, a,b € K, satisfy ¢t = (ga, gb). By [15) we have [h'd)\; =
JEGE* BB 1B) o = [ E(f IBI*E(fY 1B AN — [ E(fS |B)E(f{ |B) dAo, and this
equals f ( (f0 \B) E(f11B)) d\o = [E(fo |B)E(f1|B)dXo = [ hdA;. O

In what follows we shall often say that a filtered group (G,G,) “acts on a probability
space” just to mean that G acts on the space by measure-preserving transformations. We

can now generalize the couplings introduced by Host and Kra in [35].

Definition 5.4 (Host—Kra couplings for filtered groups). Let 2 = (©,.4, \) be a prob-
ability space, and let (G,G,) be a filtered group acting on {2 by measure-preserving
transformations. For each n € N we define an H,, o-invariant measure ul"l € Cg(2, [n])
recursively as follows. We set ul’) := \. Having defined ul™l, let I, be the o-algebra of

H,, ;-invariant sets. Then we define u[["“]] to be the square of ,u[["]] relative to I,,.

The fact that H, ; is normal in H,, ¢ implies that I, is a factor of the measure-preserving
system ((QM, plly, Hn,o), so we can apply Lemma and then Lemma to deduce
that "t is indeed H, 11 o-invariant, and the recursion can thus proceed.

The construction in Definition [5.4] generalizes the construction of the measures ™
in [35], §3.1]. Indeed, the latter construction concerns the Z-action generated by a single
transformation 7', and if we let Z, be the lower central series on Z then H,,; = (TI"), so
the o-algebra of TI"-invariant sets used in [35] is precisely the o-algebra I, used above.

Given a power (2% of a probability space (2, and given a bijection  : S — S (more
generally, a group G of such bijections), recall that the coordinatewise action of 6 (or
G) on 29 is the measure-preserving action defined by 6 - ((wy)ves) = (Wow))ves (for each

0 € G). To study the symmetries of Host—Kra couplings we use the following result.

BIndeed, for every k € K, ky € Ky and B € B, since k™ kyk € Ky we have ky-k-B = k-(k~'kok)-B = k-B.
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Lemma 5.5. Let K be a nilpotent group and Ky be a subgroup of K with K, K] <
K. Suppose that K acts on a probability space 2 = (Q, Ao, No) by measure-preserving
transformations. Let Ay be the square of \g relative to the o-algebra of K-invariant sets.
Let \y be the square of A\ relative to the o-algebra of diag(K, Ks)-invariant sets. Then

the measure Ay is invariant under the coordinatewise action of Aut([2]).

Here Aut([2]) denotes the group of automorphisms of the cube [2] = {0,1}?, that is, the
group of bijections {0,1}? — {0,1}? that extend to affine homomorphisms Z* — Z2.

Proof. We first claim that A; is invariant under the action of diag(K, K5). To prove this,
we first note that by Lemma 5.3 applied with the pair K < K, we have that \; is invariant
under the action of K x K (note that K x K = diag(K, K)). Now using Lemma [5.3 again
for the pair diag(K, Ky) < diag(K, K5) we obtain that A\ is invariant under the action
of diag(K, K») x diag(K, K5). In particular Ay is invariant under the action of KPP we
will use this to show that A, is relatively independent over its factor g, A2, where B, is
the o-algebra of Ks-invariant sets. To this end it suffices to prove that for every system
(fo)vepz of functions f, € L>*(Ay) we have

/ H foopy dXs :/ H E(fv‘82) opy dAs. (44)

ve[2] vel2]

By the mean ergodic theorem for amenable groups, for every function f € L®(Ap) the
projection E(f|By) is the limit in L?(Ag) of averages of the form |F,|™' > . f9, where
(F)nen is a Folner sequence in Ky (see [50, Theorem 2.1]). Replacing the conditional
expectations by such averages and using the Kém] invariance, we deduce ([44]), and the
claimed relative independence follows. Given this relative independence, to show that
Ao is invariant under the action of Aut([2])) it suffices to prove it for the factor coupling
Bo|A2. Since Ky acts trivially on By, we have that s, /A is in fact equal to the Host-Kra
coupling pl?! for the action K /K5 on (€, By, \o). But K /K, is an abelian group, so now
the desired invariance follows from the original argument of Host and Kra, which was
extended for actions of arbitrary countable abelian groups in [8, Appendix A] (see [
Lemma A.14] and [35, Proposition 3.7]). O

The following theorem will enable us to apply our main results from Section [l

Theorem 5.6. Let (G,G,) be a filtered group acting ergodically on a probability space
2= (2,A,N), and let (ul"),~q be the associated sequence of Host-Kra couplings. Then
((2, (,M[M)nzo) is a cubic coupling. Moreover, the group C"(G,) acts on Q" by transfor-

mations preserving the measure pulml.

Proof. We check that the three axioms from Definition [3.3] are satisfied.
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For the ergodicity axiom, note that since Hy; = G and the action of G is ergodic, we
have that I; is the trivial o-algebra, so pl'l is the product measure A x A on (£, .4)2.

To check the other two axioms, first we prove the fact that pl™ is invariant under
the coordinatewise action of Aut([n]). We argue by induction on n, noting first that this
fact is clear for pl'l, since Aut([1]) consists only of the reflection v(1) — 1 — v(1), which
indeed leaves A x A invariant. Suppose by induction that pl*~! is invariant under the
action of Aut([n — 1]). It follows that pl"! is invariant under all automorphisms ¢ of the
form ¢(v)|p-1) = ¢'(v(1),...,v(n-1)), p(v)(n) = v(n), for some ¢' € Aut([n — 1]). To
prove that pl"l is invariant under all of Aut([n]), we apply Lemma with Ao = pl*=2,
K = H,_5;, and Ky = H,_55. This gives us that the measure ,u[["ﬂ, when viewed as
Ay in that lemma (i.e. as a self-coupling of "2} indexed by [2]) is invariant under the
action of Aut([2]). In particular, it is invariant under swapping the two coordinates of
elements of [2], and this implies by induction that pl" is invariant under every element
of Aut([n]) that just permutes coordinates of v. Moreover ul™ is also invariant under
the reflection o, that sends v(n) to 1 — v(n). Indeed we have o, = 0~ oo,_; 0f where
0 permutes v(n),v(n—1) and o,,_1 is the reflection sending v(n —1) to 1 — v(n — 1), and we
already know that ul" is invariant under  and o,_;. It follows by induction that p!l is
invariant under all reflections o, j € [n]. The claimed invariance of ul™ follows.

To check the face consistency axiom, let ¢ : [m] — [n] be a face map, assuming with-
out loss of generality that m < n. To show that ,ug)n]] = ™ we can suppose, by composing
¢ with an element of Aut([n]) and using the last paragraph, that ¢([m]) = [m] x{0"~™}.
But then the desired equality ,ug)"]] = ™ follows clearly from the construction of pl"l.

The idempotence axiom holds, in the case of faces F; = {v € [n] : v(n) =i}, 1 = 0,1,
by construction of ul™ as a relative square of ul*~'l and by Lemma2.62 (iv). This together
with the invariance under Aut([n]) implies the idempotence axiom in full generality.

Since C"(G4) = H, 0, by Definition [5:4] the action of C"(G,) preserves ul"l. O

Definition 5.7 (U*-seminorms for ergodic filtered-group actions). Let (G, G,) be a fil-
tered group acting ergodically on a probability space 2. The k-th uniformity seminorm
on (£2,(G,G,)) is the seminorm || - || associated with ul*l as per Corollary BI7

We shall use Theorem to describe the characteristic factors corresponding to these

seminorms. First let us define these factors, which requires the following result.

Lemma 5.8. Let (G,G,) be a filtered group acting ergodically on a probability space
2 =(Q,A,N). For every k € N, there is a o-algebra Hy, C A such that

L®(Hy) ={f € L™(A) : Vg € L=(A) with ||g||gr+1 = 0, we have E(fg) =0}.  (45)

Moreover Hy, is a factor of the system ({2, G) and is unique up to A\-null sets.
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Proof. We know by Theorem that  together with the Host-Kra couplings ul"! is a
cubic coupling. We then let H; be the Fourier o-algebra Fj, corresponding to this cubic
coupling. Corollary then gives us ([A3). To show that H; is factor of (£2,G), we
first note the fact that for each n the diagonal action'* of G on QI"! preserves pl™l. This
follows from Definition [5.4] since this is a sub-action of the action of H, o, and we know
that the latter action preserves ul”l. Given this, we can show that Fj, is preserved by
the action of G as follows. Let F be a system of functions f, € L*(A), v € Ky,1, and
for any g € G let 9 denote the system (f{)vex,,,- Then for every function h € L>(A),
the invariance of A under g implies that ([F|yr+1,h) = ([F]};1, h7), and the invariance
of pl*11 under the diagonal element (g),epr1) implies that ([Flyesi, h) = ([F9)yrs1, h9).
Since h was arbitrary it follows that [F9]yx+ = [F]7,,,. Hence, shifts of convolutions
[F]yx+1 by elements g are again such convolutions. Since these convolutions generate Fy,
the invariance of Fj follows. To see the uniqueness, note that Hy is defined by describing
L*>(Hy) in ([45]), so any other o-algebra B satisfying (45]) must satisfy B =, Hy. O

Definition 5.9. Let (G, G,) be a filtered group acting ergodically on a probability space
2 =(Q,A,\). We call the og-algebra H, from Lemma 5.8 the k-th Host-Kra factor of the
system (§2, (G, G,)). We say that (£2, (G, G.)) is a system of order k if A =) Hj. When
we do not specify a particular filtration on GG, and speak only of the Host-Kra factors on

(2, G), we always take implicitly G, to be the lower central series on G.

This notion of system of order k extends the one introduced by Host and Kra in [35]
Definition 4.10]. Every factor as defined above, with the induced action of G, is it-
self a measure-preserving system, and we can now characterize these systems using our
results from Section 4l We formulate this characterization in terms of a class of measure-
preserving systems which we define next. As recalled in the previous section, a compact
nilspace X is naturally equipped with a filtered group ©(X) of translations on X; see [9]
or [I1], §2.9]. These translations are a special kind of homeomorphisms from X to itself

that preserve the cube structure and also the Haar measure on X.

Definition 5.10 (Nilspace systems). A nilspace system is a triple (X, G, ¢) where X is a
compact nilspace, where G is a group, and ¢ : G — O(X) is a group homomorphism. If G,
is a filtration on G, and ¢ is a filtered-group homomorphism, then we call (X, (G, G,), ¢) a
filtered nilspace system. We say that (X, G, ¢) (or (X, (G, G,), )) is k-step if X is k-step.

Thus the action of G on X is defined by ¢ -z := ¢(g) (z). Note that (X, G, ¢) can be
viewed as a measure-preserving system by equipping X with its Haar probability measure
ix, which is invariant under any translation. We say that the nilspace system is ergodic

if G acts ergodically relative to px. We can now obtain the main result of this section.

MThat is, the action defined by ¢ - (Wo)ven] = (9 - Wo)ve[n), for any g € G.
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Theorem 5.11. Let (G, G,) be a finite-degree filtered group acting ergodically on a Borel
probability space (2. Then for each k, the k-th Host-Kra factor of (£2,(G,G,)) is isomor-
phic to the ergodic k-step filtered nilspace system (Xk, (G, G.),%), with Xg, Y as given
by Theorem [4.5.

Proof. By Theorem the Host—Kra couplings associated with the given system form a
cubic coupling, and the action of each group C"(G,) on QI"l preserves ul"l. Applying
Theorem we obtain that the k-th Host-Kra factor of (2, (G, G,)) is isomorphic to
(Xk, (G,Ge), 7). The ergodicity of this system follows from that of (£2, (G, G.)). O

Recall from [34, Chapter 11, §1.1] that if L is a k-step nilpotent Lie group, with a lattice
I, with Haar measure g on L/T", and T : L/T" — L/T is a transformation z — 7 -z
for some 7 € L, then (L/T',u,T) is a (measure theoretic) k-step nilsystem. There is a
natural generalization to multiple transformations: for a discrete group G, we say that
(L/T, u,G) is a nilsystem if G acts on L/T" via a group homomorphism ¢ : G — L, i.e.
(9,2) = ¢(g) - «. Turning L/T into a nilspace using the natural cube structure (see [11]
Proposition 1.1.2]), and noting that = +— 7 - x is then a translation in ©(L/I"), we see
that nilsystems are examples of nilspace systems. It turns out that the latter systems can
often be usefully expressed in terms of the former. For example, from the existing theory
of compact nilspaces it follows that every ergodic nilspace system (X, G, ¢) with finitely
generated group G is an inverse limit of nilsystems. This is proved in [I2, Theorem 5.1],
and can also be derived from [30, Theorem 1.29]. Thus, Theorem 511 yields the following

generalization of the Host—Kra structure theorem [35, Theorem 10.1].

Theorem 5.12. Let G be a finitely generated nilpotent group acting ergodically on a Borel
probability space (2, and let G4 be a filtration on G. Then for each positive integer k the
k-th Host-Kra factor of (2, (G, G,)) is isomorphic to an inverse limit of k-step nilsystems.

In particular, if (£2, (G, G,)) is of order k then it is an inverse limit of k-step nilsystems.

Proof. By Theorem B.11] the k-th Host-Kra factor of (§2,(G,G,)) is isomorphic to an
ergodic k-step filtered nilspace system. Since G is finitely generated, this nilspace system

is an inverse limit of k-step nilsystems, by [12, Theorem 5.2]. U

Remark 5.13. Using Theorem [5.11] (resp. Theorem [5.12)), the analysis of the asymptotic
behaviour of a multiple ergodic average for a nilpotent group action can be reduced to
the analysis of the corresponding average on a nilspace system (resp. nilsystem), provided
that the average can be controlled by one of the seminorms from Definition 5.7 (in the
usual sense of “control” used in this area; see [16, §2.3] and the estimates in [16, (7)]).
While the family of averages controllable this way clearly includes the ones treated in

[35], there are also averages of interest in the area which it does not include (for instance,
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the averages in [33] are treated with seminorms whose construction differs from ours).
Determining exactly which averages are controlled by each of the seminorms in Definition

(.7 is an interesting and potentially vast project which we do not pursue in this paper.

6. ON CUBIC EXCHANGEABILITY

In this section we denote by S a countable set. We denote by [S] the set of elements v €
{0, 1}° with only finitely many coordinates v(i) equal to 1, that is [S] = {0, 1}NP, s Z.

Definition 6.1. A map ¢ : [Si] — [S2] is a cube morphism if it extends to an affine

homomorphism from P, g Z to P;cg, Z.

Remark 6.2. This generalizes the notion of a morphism between discrete cubes of finite
dimension, introduced in [9] (see also [10], §1.1]). It can be checked that ¢ : [S1] — [S2]

is a morphism if and only if for every j € S, the function v — ¢(v)(j) is either constant,

or for some ¢ € S; it is v +— v(i) or v — 1 — v(i), and the following properties hold:

(i) There are only finitely many j € Sy such that v — ¢(v)(j) is either the constant
1 oris v+ 1— (i) for some i € Sy.

(ii) For each i € Sy there are only finitely many j such that v — ¢(v)(j) is v — v(3).

If for each i € Sy there is exactly one j € Sy such that v — ¢(v)(j) a non-constant function
of v(i), then we call ¢ a face map. Note that, for k& € N, face maps from [k] to [k] are
bijective, but this is not necessarily true for face maps from [N] to [N].

A set F' C [9] is a face if it is of the form [S'] x z where S" C S and z € [S\ 5'].
We say that S’ is the set of free coordinates of F. We say that two faces are independent
if they have trivial intersection and their sets of free coordinates are disjoint. Note that
face maps take faces to faces, but this is not true for cube morphisms in general.

Let B be a standard Borel space, with Borel o-algebra B. Since [N] is countable, the
product set BIN with the o-algebra ®U€[[N]] B is also a standard Borel space. Our goal is

to characterize Borel probabilities on B that have the following properties.

Definition 6.3. A Borel probability measure p on BN is cubic exchangeable if it has
the following consistency property: for every k > 0 and every pair of injective morphisms
®1, @2 ¢ [k] — [N], we have jiy, =pg,. We say that p has the independence property if for
all finite independent faces Fy, Fy C [N], the o-algebras B@lﬂ], Bgﬂ are independent in .

Note that the consistency property above is the consistency axiom from Definition [3.1]

formulated for a measure on a product space of the form BIN.

Remark 6.4. Let x be a cubic exchangeable measure on B and let ¢ : [N] — [N] be
an injective morphism. Since y and the subcoupling ji4 are determined by their marginals

on finite subsets of [N], and [N] is the union of finite-dimensional faces, the consistency
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property of p implies that p, = p. Let 8 be the map BIYl — BIN obtained by first
projecting to the coordinates in ¢([N]) and then relabeling the coordinates using ¢~1.
Then the property 14 = p implies that <$ preserves the measure pu.

Remark 6.5. A useful probabilistic viewpoint concerning measures on BN is to consider
them as joint distributions of B-valued random variables Y, indexed by the elements v €
[N]. In this language, the independence property of ;1 means that {Y, },cr is independent

from {Y,},cr, whenever F} and F; are independent faces.

Remark 6.6. As mentioned in the introduction, in [2, §16] Aldous considered a property
related to cubic exchangeability. A measure p on BN has this property if it is invariant
under all transformations of B induced by automorphisms of [N]. These automorphisms
form the group that we denote by Aut([N]), which is isomorphic to S*° x Z3°, where S
denotes the group of finitely-supported permutations of N, and Z3° = @, Z2. Note that
cubic exchangeability as per Definition 6.3/ implies this Aut([N])-exchangeability property
of Aldous. Indeed, given # € Aut([N]), for m sufficiently large, the set [m] x {0M\™}
is globally invariant under 6. We can thus view 6 as an injective morphism [m] —
[N], and deduce from cubic exchangeability of p that p is f-invariant. Note also that
cubic exchangeability is strictly stronger than Aut([N])-exchangeability, because not all
injective morphisms can be viewed as automorphisms this way (automorphisms take faces
to faces in [N], whereas injective morphisms can take faces to subcubes that are not
faces). In [4], §5.3], Austin observed that it is also natural to consider a stronger variant
of Aut([N])-exchangeability, in which p is required to be invariant not just under the
action of Aut([N]), but rather under the action of the full affine automorphism group
of [N], denoted by Aff(F3°) (identifying [N] and F$° as sets), which is isomorphic to
GL(F3°) xZ3°. It can be checked that this stronger property implies cubic exchangeability,
using the fact that for every injective morphism ¢ : [n] — [m], viewing ¢ as a map from
[n] x {0™ "} C [m] to [m] the obvious way, there is a matrix M € GL(F4") and w € FJ’
such that the affine linear map F3* — F5', v — M (v) 4+ w agrees with ¢ on [n] x {0™~"}.

Recall that a compact nilspace X is equipped with cube sets C"(X) for each n > 0, on each
of which we can define a Haar probability measure jicn(x). We can then define morphisms
from [N] to X by declaring that ¢ : [N] — X is a morphism if for every integer n > 0,
for every cube morphism 1 : [n] — [N] we have ¢ otp € C"(X). The measures jicn(x) can
be put together to determine a well-defined probability on XN (see Remark below),
which enables us in particular to define a random morphism ¢ : [N] — X.

To formulate the main theorem of this section, the following construction is crucial.

The nilspace construction of cubic exchangeable measures: let P(B) denote the standard

Borel space consisting of the set of Borel probability measures on B equipped with the
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o-algebra generated by the maps A — u(A), A € B (see [39, p. 113]). Let X be a compact
nilspace and let m : X — P(B) be a Borel map. Let ¢ : [N] — X be a random morphism.
Then (¢(v))ueﬂNﬂ is a sequence of X-valued random variables. Now we introduce a second
randomization in which for every v independently we choose an element Y, € B with
distribution m(¢(v)). We denote by (x ., the resulting Borel probability measure on BINI,
thus (xm, is the joint distribution of the sequence of random variables (Y;’)ve[[N]]'

The main result of this section can now be stated.

Theorem 6.7. Let pu be a Borel probability on BN, Then the following statements hold:

(i) The measure p is cubic exchangeable with the independence property if and only if
p = (x.m where X is a compact nilspace and m : X — P(B) is Borel measurable.
(i) The measure p is cubic exchangeable if and only if it is the conver combination of

cubic exchangeable measures that have the independence property.
The rest of the section is devoted to proving Theorem [6.7. We use the following notion.

Definition 6.8. A weak cubic coupling on a measurable space (£),.4) is a sequence
(,u[["]])n>0 of measures pl"l on (QI"; Al") satisfying the consistency axiom and the con-

ditional independence axiom from Definition [3.11

Remark 6.9. Every weak cubic coupling on {2 can be viewed as a single cubic exchange-
able measure ;i on QN such that each measure p[™ in the definition is the marginal of y
corresponding to the index set [n] x {0M™} (where in general 0° is the element of [S]
with all entries 0). Note that the consistency axiom implies at once that each measure
pl" s a self-coupling of pll indexed by [n], that these measures ul™ can be put together
to determine a well-defined probability x on QN and that j is cubic exchangeable.

As a key step towards the proof of Theorem [6.7] we obtain the following result.

Proposition 6.10. A probability measure on BN is cubic exchangeable if and only if it

s a factor coupling of some weak cubic coupling.
The proof relies mainly on the following lemma.

Lemma 6.11. Let Fy, F, be faces of [N] such that the face FyNFy has infinite dimension,
and let T C Fy be a finite subset. Then there is a face map T : [N] — [N] such that
T(Fy) = F1 N Fy and 7(t) =t holds for everyt € T.

Proof. Let z € Fy N Fy and let ¢ : [N] — [N] be the bijective face map such that for
every 7 in the finite set supp(z) C N we have ¢(v)(i) = 1 — v(:) and for all i € N\ supp(z)
we have ¢(v)(i) = v(i). We have ¢(z) = 0. Note that it suffices to find the map 7
for the faces ¢(F}), ¢(F») and the set ¢(7T), since then, by conjugating with ¢ we obtain
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a map satisfying the conclusion of the lemma for Fj, F, and T. Hence without loss of
generality we can assume that O € F} N Fy. In this case we have F; = [S;] x {0} for
some sets S, Sy C N. Let S3 C S; be a finite set such that T C {0,1} x {0M\%}. Let
P S2\ S3 — (S1NS2)\ S3 be a bijection, and let p : N — N be the injection equal to the
identity on N\ (Sy \ S3) and equal to p’ on Sy \ S5. Let 7 be defined by 7(v)(i) = v(p~'(i))

if i € p(N) and 7(v)(i) = 0 otherwise. The map 7 satisfies the required conclusion. O

Lemma 6.12. Let v be a cubic exchangeable probability measure on BN Let Fy, Fy be
faces of [N] such that Fy N Fy has infinite dimension. Then Fy L, F.

Proof. We need to show that if f € LOO(BE?H) then E(f |B£Ej]]) is BE?]% r,-measurable. It is
enough to show this for functions that depend on a finite set of coordinates, since every
other bounded measurable function can be approximated in L? with arbitrary precision
using such functions (Lemma[2.2]). Suppose that f € LOO(BFE[FNH) for some finite set T C F}.
By Lemma there is a face map 7 : [N] — [N] fixing 7" pointwise and with 7(F3) =
FinFy. Let 7 : B — BIM denote the map that first projects to the coordinates in 7([N])

and then renames the coordinates using 7—!. By Remark the map 7 preserves v. By
@) we then have E(f|B},) o7 = E(fo7|BYY, ) = E(f|BiLy,), whence ||E(f|BR))|z2 =

7(F2
|E(f \BE?PW #,)||L2. Since the latter expectation is a projection of the former, this equality
of their L?-norms implies that E( f |B¥jﬂ) =E(f |15’£,[§yj ), and the result follows. O

Proof of Proposition[6.10. The backward implication is clear. For the converse, let v be
a cubic exchangeable measure on BN, Let N = E L O where E and O denote the set of
even and odd numbers respectively. We can write BINYl = (BIDIFI, Let V' = BIOT and let
¢ : V — B denote the projection p, where v = 0l°]. Since BNl = VIZ] we can view the
measure v as a coupling on VIPl. To avoid confusion we denote this coupling by /. Tt is
easy to see from the cubic exchangeability property of v that 1/ is also cubic exchangeable.
Lemma applied to v implies that v/ satisfies the conditional independence axiom.
Hence /' is a weak cubic coupling. Let ¢ : [E] — [N], (vi)ice — (v2:)ien. Equipping
BIF] with the measure Vg, it is clear that q!"1 is a measure preserving map from VI¥I to
BIZ). n this construction the coordinates in the cubes are all indexed by even numbers.

Renaming these coordinates by halving their indices, we obtain a weak cubic coupling u
on VIN such that ¢INI: VINI — BN satisfies v = g o(gIN) 1. O

Proposition [6.10 will be combined with the following result, which tells us that every weak

cubic coupling on a Borel probability space is a convex combination of cubic couplings.

Proposition 6.13. Let (nl"l),>o be a weak cubic coupling on a standard Borel space
(Q, A), and let n denote the corresponding cubic exchangeable measure on QN Then
there is a probability measure k on P(Q[[N]]), supported on the set of cubic couplings (viewed

as measures (1 on QN such that n = f’P(Q[[N]]) pdk.
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Proof. We show that there is a o-algebra G C AN such that in the disintegration of 7
relative to G, almost every measure is a cubic coupling.

For every 1-dimensional face {v,w} in [N] let G,,, = AN Ap AN Fix some (any)
{v,w}, and let G be a countably generated sub-o-algebra of G, ,, such that G =y Gow-
(We can obtain G by taking a countable subset T" of G, ,, that is dense in the n-metric,
and letting G = o(T').) For any other face {w, z} intersecting {v,w}, by the weak cubic
coupling axioms we have that {v,w} L, {w, 2} and that the marginal distributions on
{v,w}, {w, z} and {v, z} are all equal. It follows that the coupling 7y, .} is idempotent.
By Lemma we have G, ,, =, Gy,. and AE[,N]] i, Aq[M[UN]]. By iterating this for other such
faces, we deduce that G =, G, . for every face {v',w'} C [N]. By Proposition and
Lemma[2.62 we also have that there is a g-algebra H such that G =, p, ' (H) holds for every
v € [N], and for every set H € H and pair v, w € [N]] we have p, '(H) =, p,,'(H). By [39,
(17.35) i)] (applied with Y the quotient standard Borel space QINl/G and f : QINl — v
the canonical quotient map) we obtain a Borel map ¢ : y ~ 1, from Y into P(QIN) such
that, letting k = no f~tot™!, we have n = fp(g[{N}]) pdr. It now suffices to show that, for
almost every y, the images of p1, on faces [n] C [N], for increasing n, form a sequence
satisfy the axioms in Definition 3.1

Firstly, suppose that the consistency axiom failed for every u, in some set of positive
no f~'-measure. Then there would exist a set X € G with n(X) > 0, such that the
measure 7x obtained from 7 by conditioning on X (as per Definition 251]) does not
satisfy the consistency axiom. We shall obtain a contradiction by showing that nyx must
in fact satisfy this axiom. Let ¢1,¢9 : [k] — [N] be two injective cube morphisms. Let
; : BB — BI* be the map that projects to the coordinates in ¢;([k]) and then renames
the coordinates using ¢;'. Our goal is to show that for every Borel set Q C BIF we
have 7x oq/b\l_l(Q) = Ny 052_1(@). Let v; = ¢;(0%) and recall that there is a set Y € H
such that p; (V) =, p;(Y) =, X. Then nxod; (Q) = (@ (Q)Np (Y)) =
ﬁn 05[1 (Q ﬁpo_kl(Y)) = ﬁn@ (Q ﬂpo_kl(Y)). By the consistency axiom for 1 we have
Mg, = N¢y, and the consistency axiom for nx follows.

By the consistency axiom, almost every pu, has all its marginals pu,op, ', v € [N]
equal to a single measure @[Pﬂ. Moreover, for any fixed face {v,w}, since we disintegrate
n relative to G =, AQ[)NH A AE[UNH, basic facts from probability imply that for almost every y
the image of j, on this face is ME,OH X /,LEP“. Hence p, satisfies the ergodicity axiom.

For the conditional independence axiom, note that if Fj, F, are n-dimensional faces
with (n — 1)-dimensional intersection, then by construction we have G C,, A@ﬂw r,- Lhen

Fy L, I, implies, by similar basic facts as above, that I L, F; for almost every y. [

Propositions [6.10l and [6.13] together imply directly the following result, which tells us that

cubic exchangeable measures are convex combinations of factors of cubic couplings.
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Theorem 6.14. Let v be a cubic exchangeable probability measure on B, Then there
i1s a standard Borel space €2, a Borel measurable map q : 2 — B, and a Borel probability

measure k& on P(QMN) supported on the set of cubic couplings (viewed as measures ju on
QIND) | such that v = Jpuny 1 o(g"N =1 dr(p).

Now we turn to the independence property. We need two lemmas.
Lemma 6.15. Every cubic coupling has the independence property.

Proof. Let Fy, Fy be independent finite-dimensional faces in [N]. Note that there is a
finite dimensional face 5 D Fy with [F1NF;3| = 1. Let v = FiNFs and let f € L“(.Agﬂ).
By Remark B.9 we have Fj 1, Fy, and it follows that E(f|A§]]) = E(f|AQ[)Nﬂ). Now it
suffices to show that AEH, N are independent. This follows from Corollary [3.10l O

Lemma 6.16. Let Q be a standard Borel space. Let k be a probability measure on P(Q)
such that, for some € P(Q), if i’ is taken with distribution r then the average of ' x p’

is equal to p x p. Then K is the Dirac measure 9.

Proof. Fix any measurable set B C ). Since p’ is a random measure we have that p/(B) is
a random variable. We have E(u/(B)?) = E((i/' x ¢//)(B x B)) = (ux u)(B x B) = u(B)?,
and E(¢/(B)) = E((i/ x /) (B x Q) = (. x p)(B x Q) = p(B) (by our assumptions).
These equations and the linearity of expectation imply that E((u(B) — 1/(B))?) = 0. Tt
follows that p/(B) = pu(B) holds almost surely. Now using this argument for a countable
generating set S of the Borel o-algebra of @) we get that almost surely we have p/(B) =
w(B) for every B € S simultaneously. This completes the proof. O

Theorem 6.17. A probability measure v on BN s cubic exchangeable with the indepen-
dence property if and only if for some Borel probability space §2 there is a cubic coupling

p on QN and a Borel measurable map q : Q — B such that v = po(qIN) =1,

Proof. Let k and q : Q — B be as given by Theorem [6.14], so that v = E,.(yz o(¢I")~1). Let
v/ denote the random measure 1 o(¢I")~! on BY. The independence property is preserved
under composition with (¢I"l)~!, so Lemma implies that v/ has the independence
property almost surely. Let n > 0 and let F}, F; be independent faces of dimension n
in [N]. Now, almost surely, the marginals of v/ on F} and F; are equal; we denote this
marginal by pj. Moreover Bg\fﬂ, Bgﬂ are independent in v/ almost surely, so v/ is of the
form gy x )y on B* x B2, The same independence holds in v (by assumption), so v is
similarly of the form p; x y£; on B x B2, Applying Lemma G106 with Q = B (identified
with Bf?), we obtain that almost surely p} = j;. Since this holds for every n, we must

have v = 1/ almost surely, so v is indeed the image under ¢I™ of a cubic coupling. O

To complete the proof of our main result, the last step is to express a factor of a cubic

coupling as a measure of the form (x ,, as in the nilspace construction.
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Lemma 6.18. Let pu be a cubic coupling on QN and let v : Q — X be as in Theorem
[ Let B be a standard Borel space, let q : Q — B be a Borel map, let ¢’ : @ — P(B),
w > Oyw), and let m : X — P(B) be such that E(q'|y) = mo~y. Then po(¢™)~! = (x,n

Proof. Let V' C [N] be a finite set and {A,}.ev a collection of Borel subsets of B. Let
A C QI be the preimage of X,ey A, under py : BN — BY. Tt suffices to show that
po(qI"N=1(A) = (x.m(A) for every such set A. By Theorem [A.1] the coupling x is inde-

pendent relative to the factor v, so p o(¢™)~1 = [qma [Les E(14, 0q|y) opy dpu. Now
for each v and A-almost every w € Q0 (where )\ is the original measure on (2), note that

E(14, 0q|y)(w) is the measure E(¢'|y)(w) evaluated at A,. Plugging this into the right

side of the last equality gives us p o(qN)~ = Joma [oes (mov(wy))(Ay) dp(w), and
letting 1 = po(yIN)~1 the last integral is fxﬂNﬂ [Toes (m(z))(Ay) di/(z). Now note that
this integral is precisely (x m(A). O

Proof of Theorem[6.7. Statement (i) follows from Theorem [6.17 and Lemma [6.I8. For
the second statement we use Theorem [6.14] and Lemma [6.15 O

7. LIMITS OF FUNCTIONS ON COMPACT NILSPACES

Let B C C be a compact set, let X be a compact nilspace, and let f : X — B be a Borel
measurable function. Nilspace theory enables us to define densities in f of configurations

given by systems of linear forms. In this section we focus on the following configurations.

Definition 7.1. A cubic pattern is determined by two multisets S; and Sy in a cube [£].
The density of such a pattern in f : X — B, denoted by (51, Ss, f), is defined by

(1.5, f) = /Ck(X(Hf o)) (TI 7)) dull (o), (16)

vESy

where pl*l is the Haar probability measure on the cube set C*(X).

For example if S; is the set of vertices with even coordinate sum and S, is the set of
vertices with odd coordinate sum in [k] then we have ¢(S1, S, f) = ||L]C||2Uk,c We say that
a sequence of functions (f; : X; — B)ien is cubic convergent if lim; . t(S1, So, fi) exists
for every cubic configuration (57, S2). It can be seen in a straightforward way from the
definitions that cubic convergence is equivalent to the convergence of the measures (x; po,
in the weak topology on P(BINl), where p : B — P(B) is the function that maps z € B
to the Dirac measure 9,. Note that for a Borel function f : X — P(B) we can also define
(51, Ss, f) using (EQ) for the [k]-marginals of the probability measure (x, ;. The following

result provides limit objects for cubic convergent sequences of functions.

Theorem 7.2. Let B be a compact subset of C, and let (f; : X; — B)ien be a cubic

convergent sequence of functions on compact nilspaces. Then there is a compact nilspace
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X and a measurable function f : X — P(B) such that lim;_,. t(S1, Ss, f;) = (51,52, f)
holds for every cubic pattern (Si,Ss).

Proof. Let v be the weak limit of the measures (x, pof,. Since each (x oy, is cubic ex-
changeable with the independence property, and independence is preserved under weak
limits, we have that v is cubic exchangeable with the independence property. The result
now follows from Theorem 0J

Remark 7.3. It can indeed happen that limits of functions that take values in B cannot
be represented by functions with values in B and the more general P(B)-valued functions
have to be used. A simple example is when f; is a random function on the cyclic group
Z; with independent values in {1, —1} with probability 1/2 each. Then with probability
1 the limit of the sequence f; is the function which goes from the one point nilspace to
the probability distribution (d1)/2 + (0-1)/2.

Remark 7.4. The convergence of the densities of cubic patterns provides a rich enough
limit concept to study various interesting phenomena in arithmetic combinatorics. To
obtain limit objects for more general collections of patterns, apart from the additional
technicalities in defining the associated densities for functions on compact nilspaces, there
is also a more general corresponding exchangeability problem involved, which consists
in describing the structure of the joint distribution of a sequence of random variables
(Xy)vezee (where Z*° = @, .y Z), assuming that this distribution is invariant under the

action of the affine automorphism group of Z*, that is GL(Z>) x Z°.

APPENDIX A. BACKGROUND RESULTS FROM MEASURE THEORY

We begin with the proof of Lemma 2.2 which we restate here.

Lemma A.1. Let (2, A, \) be a probability space, let p € [1,00), let (B;)!, be a sequence
of sub-c-algebras of A, and let B =\/]_, B;. Let R denote the set of functions on Q of the
form w — T, fi(w), where f; € U®(B;) for all i. Then for every f € LP(B), and every

€ > 0, there is a finite linear combination g of functions in R such that ||f — g||z» < €.

Proof. In LP(B) the set of simple functions is everywhere dense [6, Lemma 4.2.1], so it
suffices to prove the lemma assuming that f is simple. Then by the triangle inequality
for || - || z», it suffices to prove the lemma for indicator functions of sets in B. In fact, it
suffices to show that the sets of the form M;cp, B; with B; € B;, form a semiring (to recall
the notion of a semiring of sets see [3, p. 166]). Indeed, if this holds then by [5, Theorem
11.4] for every set B € B and every € > 0 there is a finite disjoint union F of such finite
intersections satisfying A(BAFE) < ¢, which implies our result for indicator functions of

sets in B as required.
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To check the semiring property, the nontrivial part is to check that if A, B are sets
of the above form and A C B, then there exist disjoint sets C1, ..., Cy, each being of the
above form and such that B\ A = er) - To show this, we first prove the following
basic case. Let By, By be sub-g-algebras of B and let X;,Y; € B; for « = 1,2. Using the
partition YUYy = (YFNYS) U (YN Yse) U (Y1 NYY), where Y = Q\ Y, we obtain that

(X1NX5)\(1NY2) = ((X1\Y1)N(X2\Y2)) U (X1 \Y1)N(X2NY2)) U ((X1NY1)N(X2\Y2)).

It follows from this and the fact that By, By are o-algebras that sets of the form X; N X,
indeed form a semiring. By induction on n we then deduce the general case, namely that

sets of the form A;N---NA,, A; € B; for each i, form a semiring (using the equation above
with X; = ﬂ?;llAl-, Xo=A, Y= ﬂ?;llBZ-, Ys = B,, to reduce to the case n — 1). O

Next we show that the meet of two sub-o-algebras is indeed a sub-o-algebra.

Lemma A.2. Let (Q, A, \) be a probability space, and let By, By be sub-c-algebras of A.
Then By A By is a sub-o-algebra of A.

Proof. We clearly have Q and () in By AB;. Let A be in ByABy, and fori = 0,1 let B; € B;
be such that A\(AAB;) = 0. Then for i = 0,1 we have A°AB{ = AAB;, so A(A°ABf{) = 0.
Hence By A By is closed under taking complements. If (A,)nen is a sequence of sets in
By A By, then for each n and ¢ = 0,1 there is B,,; € B; such that A\(A4,AB, ;) = 0. We
then have (U, Ax) \ (U,, Bmni) = U,(An N N, Byi) and each set A, N (), By, ; is in A
and included in A, \ By, so it is a null set, whence A((U,, An) \ (U,, Bm.i)) = 0. Similarly
AU, Bmi) \ (U, As)) = 0. Hence By A By is closed under countable unions. O

The following result was stated as Lemma 2.8

Lemma A.3. Let (2, A, \) be a probability space, and let B, B’ be sub-c-algebras of A with
B C\ B'. Then for every integrable function f: Q — R we have E(E(f|B")|B) =, E(f|B),
and also E(f|B") =, E(f|B'V B).

Proof. To prove the first equality, by definition of conditional expectation it suffices to
show that for every set A € B we have [1,fdX\ = [14E(f|B’)d\. Since B C, B, there
is a set A’ € B’ such that ||14 — 1a/||p = A(AA A’) = 0, which implies that [14fd\ =
[ 14 fdX. But the last integral equals [ 14 E(f|B’)dA by definition of E(f|B’). Using
again that |[14—14/||1 = 0, this last integral is seen to equal [ 14 E(f|B') d\, as required.

To prove the second equality, by definition again it suffices to show that for every set
A€ B VB wehave [14fd\ = [14E(f|B)d\. By Lemma [AT] the approximation of
functions in L'(B) and L'(B’) by simple functions, and linearity of the integral, it suffices
to show that for every A € B’ and B € B we have [ 1,15 fd\ = [1415E(f|B’) d)\. But
then since ||[1g—1p/||r = 0 for some B’ € B, arguing as in the previous paragraph we have
f Iulg fdA = f Ialp fdX = flAlng(ﬂB') d\ = f 1415 E(f|B’) dA, as required. O
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Proposition A.4. Let (2, A, \) be a probability space, and let By, By be sub-c-algebras of
A. Then By 1L By holds if and only if, for every bounded measurable function f :Q — R,

the following equation s satisfied for i = 0 or, equivalently, for i = 1:
E(E(f|B:) |Bi-i) =x E(f[Bo A By). (47)

Proof. Throughout this proof let B = By A By. We first prove the necessity of ([@1). For
i =0, 1, for every bounded B;-measurable function g, by the second equality in Lemma[A.3]
we have E(g|B;_;) =\ E(g|B1_; V B). By Theorem 24 we have E(g|B;_; vV B) =, E(g|B).
The last two equalities imply that E(g|B;_;) =x E(g|B). Applying this to g = E(f|B;),
we deduce that E(E(f|B;)|Bi—;) =x E(E(f|B;)|B), and then since B C, B;, by the first
equality in Lemma [A.3] the last expectation equals E(f|B), so we deduce ([@T]).

To see the sufficiency of ([AT), we show that the last equation in Theorem [2.4] holds
for every bounded B;-measurable function, which will suffice (using Remark [Z5]). Thus,
letting f be any such function, since we have f =, E(f|B;), and also E(f|B_; V B) =\
E(f|Bi-;) as noted above, we have thus E(f|Bi_; V B) =, E(f|Bi-;) = E(E(f|B;)|B1-:),
which by ([@T) equals E(f|By A By) =) E(f|B). Hence the equation in Theorem [2.4] holds,
so By, By are indeed conditionally independent relative to By A By . O

The following fact was stated as Lemma 2.TT]

Lemma A.5. Let (Q, A, \) be a probability space, let By, By be sub-c-algebras of A, and
let 1 <p<oo. Then LP(By) N LP(By) = LP(By A By).

Proof. To see the inclusion LP(By) N LP(By) D LP(By A By) we can argue starting with
any f € LP(By A By) and using approximation by simple functions involving sets in
By A By. For the opposite inclusion, we can argue starting with a real-valued function
f € LP(By) N LP(B;) and showing that any set of the form {f > ¢}, c € R, is in By A By,
which implies that f is (By A By)-measurable. O

Let us now prove Lemma [2.13] restated as follows, which gives one half of a distributivity

property for meet over join and shows that the other half can fail.

Lemma A.6. Let (2, A, \) be a probability space, and let By, By, By be sub-o-algebras of
A. Then
(B1V By) ANBs D (By AB3) V (By A Bs). (48)

The opposite inclusion does not hold in general.

Proof. Suppose that A € (By A Bs) V (By A B3). Using Lemma [AJ] we can approximate
14 in LP by finite sums of rank-1 functions of the form g;h;, with g; being bounded
(B1 A Bs)-measurable and h; being bounded (By A Bs)-measurable. Combining this with

approximation by simple functions of each such ¢; and h;, we deduce that for every



ON CUBIC COUPLINGS 95

e > 0 there exist sets B; € By A Bz and C; € By A Bs, j € [N] such that |14 —
> jeiv @ls;1c;l|re < €. From here, replacing each B; and Cj by a Bi-measurable set and
a By-measurable set respectively (modulo a null-set error), we deduce that 1, is within
LP distance € of LP(B; V By), and since this holds for every ¢ > 0, we conclude that A is
BV By-measurable modulo a null set. A similar argument starting from the last inequality
shows that A is Bs-measurable modulo a null set. Hence A € (B; V Bs) A Bs as required.

To see a counterexample for the opposite inclusion, we shall use partitions of [3] =
{1,2,3} with A the counting measure. In this case the operation A is just intersection
and (48) reduces to (By V Ba) N Bz D (Bi N Bs) vV (By N Bs). The following example
shows that this inclusion can be a strict one: let Py = {{1},{2,3}}, P» = {{1,2},{3}},
Py ={{1,3},{2}}, and let B; = o(F;). We then have that o(B; UB,) = 21l > Bs, so that
o(By U By) N Bz = Bs, whereas By N Bz = By N By = {0, [3]}. O

Next we prove Lemma [2.14] which we restate here.

Lemma A.7. Let (Q, A, \) be a probability space, let B and C be sub-o-algebras of A
satisfying B 1L C, and let By be a sub-o-algebra of B. Then (CV By) AB =, (CA\B)V B;.

Proof. The inclusion (CV By) AB Dy (C A B) V B; follows from (48) and the fact that
By A B =) By (using the fact that in general if By =, By then By V By =) By V B3).

To see the opposite inclusion, let f € L>((C V By) A B) and fix any ¢ > 0. Since
f € L*(C V By), by Lemma [A] there is a function of the form f = "  ¢;b; where
¢; € L>®(C) and b; € L>(By), such that || f — f'||z2 < e. Then, since f € L>(B), we have
e > [[E(f1B) — E(f'|B)|| 2 = Hf - Z;‘ZlE(cAB)biHB. Since B L C, we have that E(ci|B)
is B A C-measurable for every i, so the last sum is (C A B) V By-measurable. Since € > 0
was arbitrary, we can let € — 0 and we deduce that (CV B;) AB Cy (CAB)V B. O

We now turn to the topological properties of coupling spaces, and the proof of Proposition

221, which we restate as follows.

Proposition A.8. Let S be a finite set and 2 = (Q,.A, \) be a Borel or standard pro-
bability space. Then Cg(£2,5) is a non-empty convexr compact second-countable Hausdorff
space (in particular it is a Polish space). Moreover Cg(§2,S) can be metrized in such a

way that every ball is a convex set.

Recall that a measure space (2 is separable if its measure algebra (or metric Boolean
algebra) is separable as a metric space (see [6, §1.12(iii)]) or, equivalently, if L'(£2) is
separable (see [7, §7.14(iv)]). Every Borel or standard probability space is separable.
For i € Cg(£2,5), let £(i,-) denote the map L*(2)° — C, F — &(u, F). The
following lemma implies that the map p — &(u,-) is an injection from Cg({2,S) into the
set of multilinear maps L*°(2)° — C. In fact, the lemma tells us that this injectivity holds

even when restricting the function &(pu, -) to systems of measurable indicator functions.
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By a measurable product-set in Q% we mean a Cartesian product R = [[, ¢ B, where

veES
B, € A for each v € S. These measurable product-sets form a semiring of sets (see [40),

Proposition 2, p. 415]), which we denote by R(A,S).

Definition A.9. Let S be a set and let 2 = (€2, A, A) be a probability space. We denote

by H the set of functions h : R(A,S) — [0, 1] that satisfy the following properties:

(i) Additivity on the semiring R(A,S): for every collection of pairwise disjoint sets
Ry,...,R, € R(A,S), we have h(L ", Ri) => i, h(R;).

(ii) If R € R(A,S) is of the form p'(B,) for some B, € A, then h(R) = A\(B,).

Lemma A.10. Let S be a finite set and let 2 = (£2, A, X) be a Borel or standard probability
space. Let & : Cg(£2,5) — [0, 1]%A9) be the map sending p to the function R v+ u(R).
Then &y is a bijection from Cg(§2,5) to H.

Proof. 1t is clear from the definition of Cg({2,5) that &, takes values in H.

To show that & is surjective,'® we shall prove that every h € H is a premeasure on the
semiring of product sets ], ¢ By. Surjectivity will then follow from the Carathéodory
extension theorem, since this theorem yields a measure p on the product o-algebra A°
(generated by the semiring R(.A, S)), and by property (ii) we have p € Cg(£2,.5). Thus, let
us fix any h € H. To prove that h is a premeasure as claimed, the only non-trivial part is to
show that if R € R(A, S) is the pairwise disjoint union of sets R; = [[,cq Bvi € R(A, S),
i € N, then h(R) <), h(R;). To show this, we first note that it suffices to prove it for
R = Q° (since given any other product set R we can obtain Q7 as the disjoint union of R
and a finite number of other product sets, in such a way that the claim for Q% implies the
claim for R). Now, since (2 is standard or Borel, there exists a topology 7 generating A
and such that, on one hand, A is tight relative to 7 (i.e. we can approximate the probability
of any measurable set arbitrarily closely by the measure of some compact subset), and
on the other hand every set B,;, v € S,i € N is open in 7; see [47, Definition 1-1 and
Lemma 3-1], or [39, (13.1) and (13.3)]. Therefore, there exists a compact set K, C € such
that A\, (K,) > 1 — €/|S]. It then follows from properties (i) and (ii) that the compact
set K =]],cq Ky in 75 satisfies h(K) > 1 — e. Since every B,; is open, we have that all
the rectangles R; form an open cover of K in 7, so there is a finite subcover. Applying
property (ii) to this subcover, we conclude that h(R) =1 < h(K) +e < e+ .y h(R;).
Letting € — 0, we deduce that h(R) < >, h(R;). Hence h is indeed a premeasure.

Finally, to see that &, is injective, note that if £(u1) = & (p2) then in particular g
and ps restrict to the same premeasure on R(A, S), so we have p1; = uy by the uniqueness
of the Carathéodory extension |46, p. 356]. O

15This surjectivity can be deduced from similar results in the literature (see for instance [I8, Theorem

454D]), but we include a proof here for completeness.
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We can now establish the main topological properties of coupling spaces.

Proof of Proposition[A.8 The product measure \° shows that Cg((2,5) is non-empty.

Let us equip [0, 1]%*45) with the product topology (where [0, 1] is equipped with the
restriction of the standard topology on R). Note that the map & from Lemma [A.10]
is continuous from Cg(2,5) to H equipped with the relative topology from [0, 1]R(A5)
indeed this follows readily from the definition of the product topology on [0, 1]*4%) and
our choice of topology on Cg({2,5).

It follows from the separability of (2 that there is a sequence (R;);en of sets R; €
R(A, S) such that for every R € R(A, S) and every € > 0 there is i such that u(RAR;) < ¢
for every p € Cg(f2,.5) (this uses that the functions from Definition are linear in each
entry of F and are bounded by the L'(\)-norm as explained after (). Let m denote the
projection from [0, 1]*49) to [0, 1] consisting in deleting coordinates corresponding to
sets B € R(A,S)\ {R; : i € N}. Now [0,1]N equipped with the product topology is
a second-countable compact Hausdorff space, and 7 is then continuous and surjective.
Then we have that 70§, is a continuous surjective map Cg(£2,S) — [0,1]N. Moreover
mo&y is also injective, for if mo&y(u1) = mo&y(ue) then the density of the R; above
implies that &y(u1) = & (p2), and then by injectivity of & we have pu; = po. Finally
note that the inverse of mo¢&, is also continuous. Indeed, fix any system F' = (f,)yes of
functions in L*(f2) and € > 0. Then approximating each f, by simple functions, using
multilinearity of the functions F' +— &(u, F') from Definition .19, and using the density
of the R; above, we obtain a finite collection C' of such sets R;, and some § = d(e, F') > 0,
such that if p,v € Cg(£2,95) satisty |[moéy(u)r — mo&o(v)r| < § for all R € C then
|€(p, F) — &(v, F)| < e. This implies the claimed continuity.

We have thus shown that m 0§ is a homeomorphism between Cg(§2,S) and [0, 1], so
Cg(2,95) is indeed compact second-countable Hausdorff.

To see that Cg((2,5) is convex (as a subset of the vector space of signed measures on
(925, A%)), note that for any probability measure v on Cg(§2, S), the map o : A° — [0, 1],
B+ fcg(st) w(B) dv(p) is a measure, and for each v € S the image of y under p, is A
(since pop, ! = X for each p in the integral), so this convex combination pq is in Cg(£2, S).

Finally, let d* denote the metric (z,y) — >, 27" |z; — ;| on [0, 1]V, and define the
metric d on Cg($2,5) by d(u,p’) = d*(mo&y(u), mo&(i')). It is readily checked that
7 o&, takes convex combinations in Cg(f2,5) to convex combinations in [0, 1]N. Then, a
straightforward argument shows that if g is a convex combination ng(Q, 5) pdv(p), then

d(po, p') < ng(Q,S) d(p, p') dv(p). This implies that balls in the metric d are convex. [

Recall that 0 is a mod 0 isomorphism from (Q, A, X) to (€', A, X') if there are measurable
sets Qo C Q, Qf C Q' with \(Q) = M (©') = 1 such that 6 is a measure-preserving bijection
Qo — Qf [7, Definition 9.2.1]. The last result of this appendix is the fact that the property
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of a probability space {2 having a cubic coupling structure is a measure-theoretic invariant,
in the sense that any mod 0 isomorphism from this space to another probability space
(2" carries the sequence of measures forming the original cubic coupling to a sequence of

measures forming a cubic coupling on (2'.

Proposition A.11. Let 2 = (Q, A N), 2/ = (Y, A", \N) be probability spaces, suppose
that 0 : Qo — S is a mod 0 isomorphism of §2, (2", and let (Q, (,u[["ﬂ)nzo) be a cubic
coupling. For each n let vI") .= pIrl o(@IP1) =1 Then (2, (VIM),,50) is a cubic coupling.

Proof. Let us first note that each measure vl is a coupling in Cg({2, [n]). Indeed, for
every A’ € A’, we have by definition vI"l(p;1(A4")) = pl"l o(9l)) =1 (p1(A N Q) N Q{)M),
and by assumption A’ N Q) = 0(A) for some measurable set A C 5. Hence we have
(AN NI = g1 (p=1(A) N QI so the last measure is ul™ (p;1(A)NQLT). This
equals pl"l(p;1(A)) since A(€y) = 1 and each marginal of "l is \. Hence vI"l (p;1(A’)) =
M (pr 1 (A)) = M(A) = N(A), as required.

It remains to show that the sequence (vI"),5, satisfies the axioms in Definition 3.1l
The consistency and ergodicity axioms are seen to follow in a straightforward way from
the same axioms for the original measures ul™l. Finally, note that the conditional in-
dependence axiom involves just conditional expectations and sub-o-algebras (involved in
the notion of conditionally independent index sets, via Lemma [2Z30). Via the map il
the sub-o-algebras of the trace o-algebra Al" |an]] are in bijection with the sub-o-algebras
of the trace o-algebra A’ [["]]|%[[n]]. Moreover, since 01"l is measure-preserving (by defini-
tion of vI"), the conditional expectations corresponding to index sets 7' C [n] satisfy
E(f OGE"E\AM) = E(f|A’W) 00"l for every measurable f: Q4" — C, by @). Thus the

measures "l inherit the conditional independence axiom from the measures pl"l. 0J
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