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6Alfréd Rényi Institute of Mathematics, Budapest, H-1053, Hungary
*karsaim@ceu.edu
+these authors contributed equally to this work

ABSTRACT

Near-real time estimations of the effective reproduction number are among the most important tools to track the progression of
a pandemic and to inform policy makers and the general public. However, these estimations rely on reported case numbers,
commonly recorded with significant biases. The epidemic outcome is strongly influenced by the dynamics of social contacts,
which are neglected in conventional surveillance systems as their real-time observation is challenging. Here, we propose a
concept using online and offline behavioral data, recording age-stratified contact matrices at a daily rate. Modeling the epidemic
using the reconstructed matrices we dynamically estimate the effective reproduction number during the two first waves of the
COVID-19 pandemic in Hungary. Our results demonstrate how behavioral data can be used to build alternative monitoring
systems complementing the established public health surveillance. They can identify and provide better signals during periods
when official estimates appear unreliable due to observational biases.

Introduction
Behavioral patterns strongly influence the outcome of an epidemic, yet observing how they change during an unfolding
pandemic is among the largest challenges 1, 2. Alongside conventional survey methods, recent online and digital technologies
provide new solutions to this problem. However, it is not evident how to translate large-scale observational data into actionable
input for operational processes such as epidemic surveillance or modeling. Moreover, the dynamical estimation of social
interaction patterns for large representative populations is problematic without entering privacy issues. We built an online/offline
data collection infrastructure to continuously follow age-stratified contact matrices in a large population during the COVID-19
pandemic3. Integrating these self-reported contact numbers from voluntarily provided anonymous online questionnaires
into disease transmission models, we demonstrate how to estimate the dynamics of the effective reproduction number from
behavioral data. Alongside the conventional solutions based on medical statistics and population testing, our ecosystem provides
a complementary surveillance system for disease monitoring.

There are several reasons why people change the way they interact, travel, or protect themselves during a pandemic.
Non-pharmaceutical interventions (NPIs)4 such as lockdowns, school closures, mask mandates, and other regulations are
the most direct causes that might induce change in people’s behavior. However, fear of contamination5, lack of trust in
governmental communication6, or belief in misinformation7 can also cause a radical shift in one’s social and mobility patterns,
sometimes even leading to counter-effective situations like mass protests against regulations in the middle of a pandemic8.
Therefore, it is challenging to dynamically observe the convoluted effects of all these behavioral forces, not to mention their
explanation by disentangled causal reasons.

It is essential to understand how people alter their social behavior3, 9, 10 and mobility patterns11–13 during a pandemic2, 3, 14–17.
These changes directly influence the way people meet, mix and interact with others, which then determines the dynamics
of the disease spreading. The follow-up of direct physical contacts or proximity interactions of people are crucial from
an epidemiological point of view as they provide the underlying conditions to transmit various types e.g. influenza-like
illnesss9, 18–20. Therefore, the social networks of people that encode physical and proxy interactions might provide critical input
to epidemic models at different levels of aggregation, like in forms of age-stratified contact matrices9, 21–23. Even though the
dynamical monitoring of such social networks is a prime goal during epidemic crises, conventional methods like surveys and
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contact diaries cannot provide the necessary frequency24, 25 for their precise observations. As a solution, it is possible to exploit
novel digital data collection methods with new ways of consented observations of people’s social dynamics, like using online
social platforms, online questionnaires, or contact tracing apps23, 26.

One of the broadly adopted metrics to characterize the actual state of an epidemic is the basic reproduction number27

R0. This measure determines the expected number of secondary infection cases induced by a single infected individual in a
fully susceptible population. If this number R0 > 1, the number of confirmed cases will rise, whereas if R0 < 1, there will be
no sizeable outbreak. Nevertheless, during an evolving real epidemic with a large fraction of infected people, the spreading
dynamics is better estimated by the effective reproduction number Rt . This quantity takes the actual size of the remaining
uninfected population into account and incorporates all other aspects that influence the course of the epidemic. It is affected
by several factors, such as the transmission rate of the infection, the duration of infectiousness of infected individuals, or the
contact frequency in the host population28. For a given population, Rt is usually calculated with statistical tools29, 30 from
epidemiological data like the number of fatalities or the detected number of infected cases. These numbers are collected via
centralized national surveillance systems, which are not only expensive but also difficult to verify. Moreover, none of these
observables provide a good solution to nowcast the actual Rt values. Fatalities are usually well documented, thus, their count
could potentially provide a precise measure to estimate Rt . However, identified COVID-19 deceased are reported usually with
delays after their initial infection, due to the different course of the illness for different individuals, and also due to reporting
delays. Such delays fluctuate and can mount up to weeks, which makes fatality counts impossible to use for the real-time
monitoring of the epidemic. The number of detected cases are usually reported more rapidly but they provide less precise
observables. These counts easily fluctuate due to extreme events or other biases. One of their most significant observational
bias is caused by limited testing capacities, inducing high positivity rates. Following the recommendation of the World Health
Organization (WHO), the test positivity rate should not exceed 5%31 for reliable observations. However, during the early phase
of the pandemic, due to the shortage of tests and later upon the emergence of highly transmissible variants, this condition
was difficult to maintain. This caused severe underestimation of Rt during major epidemic waves in many countries32. Other
biasing factors come from case importations and local epidemic clusters, testing campaigns, or the slow data retrieval due to
delayed case reporting. All these shortcomings make these conventional observables difficult to use for the precise and real-time
inference of the actual Rt values during an emerging pandemic. This calls for novel methods to estimate Rt dynamically from
alternative data sources in order to provide independent monitoring tools to follow the actual epidemic and to help operative
decisions.

To answer this challenge, we have built an infrastructure that can estimate the effective reproduction number Rt in real-time
with remarkable precision using contact dynamics data collected online and via telephone surveys. More precisely, we collected
daily age-stratified contact matrices during the first and second waves of the COVID-19 pandemic in Hungary using an online
questionnaire, which was answered 538,684 times by 235,072 unique users since its launch. Meanwhile, we recorded the
same questionnaire each month on a representative population of 1,500 individuals via telephone surveys (for more details, see
Methods). With the combination of the two datasets, we reconstructed a sequence of age contact matrices at a daily resolution,
that we share through an open repository33 along this paper. In turn we feed these matrices as an input to a deterministic
epidemic compartment model, which this way not only considers the age-stratified contact patterns of the modeled population
but incorporates the effects of contact behavioral changes in its dynamics. The numerical solution of this model served us with
an inferred Rt function at a daily resolution, that better estimated the Rt values computed from fatality rates for a reference
period, as compared to case-number base estimations.

This solution provides a cheap alternative monitoring system complementing observations made via conventional surveil-
lance infrastructures relying on the public health system. It allows for cross-validating and indicating weaknesses of official
surveillance when the inference of Rt is biased. Moreover, our monitoring method can closely follow the effects of NPIs on
contact numbers of individuals, thus allowing us to evaluate the impact of regulations in almost real-time. In the Results section,
first, we briefly describe our data collection, integration, and modeling infrastructure. Subsequently, we present our findings on
the observed contact dynamics in Hungary and the reconstructed Rt function that we compare to the official surveillance data.
Finally, we discuss the potentials, limitations, and future directions of our results.

Results

Data collection and pre-processing
Ten days after the first officially reported COVID-19 case in Hungary, an online data collection platform was initiated to
track the social and individual behavioral changes of people during the unfolding pandemic3. The so-called Hungarian Data
Provider Questionnaire ("Magyar Adatszolgáltató Kérdőív" - MASZK)34 data collection started on March 23, 2020 and has
been continued ever since. Over this period, the online questionnaire has been answered 538,684 times by 235,072 unique
users, which is roughly 2.4% of the total population of Hungary.
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Figure 1. Average contact numbers calculated from the online survey (black line), parallel to the number of confirmed cases
in the same period (red dashed line). The timeline of the most important NPI measures in Hungary is below the horizontal
axis35. Case numbers are smoothed by a 7-day sliding window, similarly to the calculated average contact numbers, that also
aggregate online survey data into 7-day sliding windows. Four selected contact matrices for the 8 age groups are shown above
the curves. The effects of lockdowns and school closures (or the lack of them) are evidently visible in the matrix elements.

Respondents were asked to estimate the number of people from eight different age groups (0−4, 5−14, 15−29, 30−44,
45−59, 60−69, 70−79, and 80+) they got in contact with during the previous day without mask protection. Such proxy
contacts were defined as having spent more than 15 minutes within 2 m distance with someone, while at least one of them being
without a mask. Relevant to this study, people also provided several of their socio-demographic characteristics (e.g. their age,
gender, education level, resident municipality, etc.). Although the data collection involved only adult participants (over the age
of 18), parents were asked to give their estimations about the contact numbers of their underage family members. As reference
period, responses were also recorded about respondents’ contact patterns from the period before the COVID-19 pandemic. In
the actual study, we limit our observations to the first two epidemic waves in Hungary, falling between the 1st April and 31st
December 2020, during which the same virus variant was dominantly spreading.

Although a large number of people participated in the data collection, since the online questionnaire was fully voluntary
and anonymous, it did not provide a representative sample of the whole population of the country. We addressed this problem
by collecting the same questionnaire in parallel using a phone-assisted survey method on a monthly basis. The interviewed
population of this survey was representative for the Hungarian population along several dimensions, namely age, gender,
settlement type, and education level. We summarize this data collection pipeline in the Methods section in Figure 3 with more
details on data collection, filtering, and pre-processing23. As a result, we could reconstruct daily contact matrices (using a
statistical method explained in Methods) and follow the average number of contacts per person over the course of the pandemic,
as demonstrated in Figure 1 for the first two epidemic waves. While for the pre-pandemic period, we measured roughly
19.2 contacts per a person on an average day (estimated from answers between 1 April 2020 and 1 June 2020), this number
drastically reduced by more than 80% in 2020 March, after which contact numbers conversely followed the actual number of
infected cases in the country, as shown in Figure 1.
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Estimation of the effective reproduction number
We used the obtained daily contact matrices as an input for modeling the transmission dynamics. We estimated the time-varying
reproduction number during the course of the epidemic waves by employing a deterministic compartmental model. This
model contains classes for latency, infectious and hospitalized period, and relaxes the condition for homogeneous mixing via
tracking transmission routes between age groups in the population. For the visual representation of all transitions between the
compartments, see Figure 5 and for the system of resulted equations, see 1. To incorporate age-stratified transmission patterns,
we used the previously computed dynamical daily contact matrices. They represent the heterogeneity of the social contacts
among individuals of different age groups, thus, they form the basis for the calculation of the associated effective reproduction
number. Further, we considered seasonality effects deeming periodically lower transmission rates of the epidemic during the
summer periods. The model includes an age-dependent parameter for susceptibility, which is smaller for young individuals
implying less effective transmission. For details about the compartment structure, parametrization, and seasonality integration
of the epidemic model, see Supplementary Information.

We iteratively solved the system defined by the model, starting from the state of the previous day and replacing the contact
matrix of the next day in the simulation. During the model solution, the time-dependent age vectors of susceptible individuals
were used to calculate the effective reproduction number on a daily basis. Since the number of infections during the first wave
in Hungary was very low, the significance of tracking the depletion of susceptibles in age groups appeared only in the second
wave. Consequently, we started our modeled epidemic from a fully susceptible population in April 2020 and simulated it for
nine months, until January 2021, which corresponded roughly to the end of the second pandemic wave in Hungary. We chose a
reference period, when the case number based Rt estimate is deemed accurate, and used this reference point to calibrate the
relation between social contacts, fraction of susceptibles, and Rt value. The selected reference period was mid-September, since
for this period we obtained the most reliable Rt estimate, which was confirmed by different types of epidemiological data, such
as incidence data, hospitalizations and mortality trends (see36). Having this reference point fixed, following our methodology,
we could calculate the Rt rates for periods prior and posterior to the reference point. As a model output, we computed the Rt
effective reproduction number using the so-called Next Generation Matrix (NGM)37, 38 method, which partitions the model
structure to transition (focusing on the flow between the classes) and transmission (involving age-specific social patterns) parts.
At a time point t, we compute a matrix whose dominant eigenvalue provides the value of Rt . For complete description of the
methodology, see the Supplementary Information.

Note, that in a GitHub repository we share the epidemic simulation code incorporating the dynamical contact matrices33.

Alternative reproduction number surveillance for Hungary
The estimated effective reproduction numbers are shown in Figure 2 during the first two pandemics waves in Hungary. There,
the dark blue curve corresponds to the Rt estimated from our model solutions, which relies on online data and it takes into
account the dynamical change of contact patterns. On the other hand, during the same period, several other methods have
been proposed and applied to track the effective reproduction number in real time29, 30. These estimations commonly rely on
the reported case numbers, which suffer from numerous biases, which could even change during the pandemic. We use one
such estimate publicly available at39 that we indicate by a light blue curve and the corresponding 95% confidence interval in
Figure 2. This curve represents an estimation of Rt computed by the Cori method29 using the official Hungarian case numbers.

By looking at Figure 2, both the official and simulated Rt values were smaller than one in the spring of 2020, confirming
that the first wave was successfully suppressed. It was hovering around one during the summer and started grow distinctly
above one from September onward, signifying a large second wave. The Rt value dropped below one at the end of November,
marking the peak of the second wave, and remained below one afterwards, indicating the decay phase of the second wave.
Generally, the effective reproduction numbers estimated from online data and model simulations were following surprisingly
well the officially reported Rt numbers for the entire period. Moreover, given a past reference point, this method allows us to
make Rt estimates not only retrospectively, but also in real time, presuming that social mixing data is collected continuously in
real time as well.

At the same time, it is evident that the two estimated Rt curves deviate from each other during some periods. We indicate
these periods with colored boxes, during which the official reproduction number was deemed less reliable and deviated from the
modeled curves. Following a chronological order, the first wave in Hungary in the spring of 2020 was dominated by outbreaks
in healthcare and social care institutions. Therefore, these outbreaks generated a sharp increase in reported cases, leading to
some short living spuriously high Rt values in the case number based estimate. Yet, although these cases increased the number
of confirmed cases, these high values did not represent the spread of the infection in the general population, as they correspond
to well-contained local outbreaks38. This was captured by the modeled Rt values, which remained under one during this period.

Subsequently, in mid summer 2020, reported values have been noisy due to low case numbers (<10, yellow period in Fig. 2).
This explains the very low numbers of case based Rt numbers, as compared to the modeled values, which remained higher due
to the relatively large number of social contacts during the summer. After lifting the border closure measures, during the late
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Figure 2. Effective reproduction numbers between 1st April 2020 and 31st December 2020 in Hungary estimated from the
daily contact matrices of the online survey (dark blue), and from the case numbers using the Cori method (light blue)29 with
statistical confidence intervals shown as blue shaded area. Reference Rt estimated from the 3rd October 2020 using
hospitalization numbers is shown by a red dashed line. The black dotted line indicates the Rt = 1 critical reproduction number.
Colored stripe below the horizontal axis depicts the test positivity rate as a percentage of positive tests of all tests taken in the
country on the given day. Annotated boxes show periods where methods based on case numbers either overestimate (red) or
underestimate (blue) the reproduction number, and where the method exhibits uncertainty due to very low case numbers
(yellow). The inset presents the comparison of the contact matrix based and case number based Rt estimations to the reference
curves based on hospitalization numbers to estimate Rt . Differences between curves were measured by the Pearson correlation
as a similarity, and Dynamic Time Warping and Euclidean distance as distance metrics with 95% confidence intervals shown.

summer, there was a period of time when the infection numbers were driven by case importations from abroad, inflating again
the Rt estimate above the modeled values. From mid august 2020, the government carried out a large screening campaign in
freshmen camps before the start of the higher education autumn semester. This has lead to an artificial peak in the infected case
number based curve. Meanwhile, the convoluted effects of case importations, mass events like weddings and freshmen camps,
the increased social contact numbers due to the beginning of the school year, and the seasonally augmented transmission rates
led to the emergence of the second wave in Hungary. This was actually well reflected by the modeled curve using contact
numbers that signaled increasing Rt numbers from 2020 September.

In the exponential phase of the second wave, Hungary quickly reached its limit in testing capacity, and the reported case
numbers did not grow any further. This resulted in a misleadingly low Rt estimate in the case number based curve36 in October
2020. This phenomenon is especially striking in the period when the test positivity rates, indicated by the colored stripe
below the horizontal axis of Figure 2, grew steadily from the beginning of September until November (blue period on the
main panel). Based on the estimation of Rt derived from case numbers, public health authorities did not assess the pandemic
situation correctly in this period, which delayed the introduction of more serious NPI measures to control the fast spreading.
Interestingly, from our alternative surveillance, we observed more realistic Rt numbers that were significantly higher than one
during this period. The case number based and online estimated Rt curves matched again once the test positivity rate reached a
stationary value around the stagnation period of the second pandemic wave from November 2020. Consequently, if we compare
our contact number based Rt estimations to the case number based approach, we can see that in the indicated periods that suffer
from one of the aforementioned problems, we have a better estimate than the reference curve.

Validation of inferred reproduction numbers
Apart from the previously cited limitations, the case number based Rt estimations also suffer from the time lag that comes from
the disease course (most cases turn positive once the patients have symptoms), and the delays in sample processing and test
reporting procedures. The identification and correction of the biases in these case number based estimations require tremendous
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epidemiological work, high quality data on each individual case beyond raw case numbers, and an intimate knowledge of the
country’s surveillance and reporting system. On the other hand, hospitalization numbers, Intensive Care Unit (ICU) admission
rates, or the number of deaths have even larger time lags due to the temporal disease progression. Nevertheless, these numbers
are more reliable and indicative of the spreading than the reported number of confirmed cases.

We use such an Rt curve, estimated from daily hospitalization counts, to validate whether the contact number based or
the case number based Rt curves meet closer with the reference. The hospitalization number based Rt curve (red dashed
line in Fig. 2) was collected only after 2020 October, as data from earlier periods are not available. We performed pairwise
comparisons between the case number vs. hospital number based and the online contact numbers based vs hospital number
based curves. To compare these temporal sequences we used multiple metrics: the Pearson Correlation as a similarity measure,
and the Euclidean Distance and the Dynamical Time Warping as distance measures. Comparisons were made by using sliding
time windows with different sizes, indicated as the x-axis scale in Fig. 2 inset. There we see that the contact number based
Rt curve is significantly more similar for any window size to the hospitalization based reference curve as compared to the
similarity of the case number based estimates.

Although we could demonstrate that the contact number based Rt estimates approximate the reference values better, our
goal with these proposed methodology was not to replace official surveillance results using case numbers for their estimates. We
rather aimed to propose alternative surveillance observations that complement the official monitoring tools. Remarkably, in the
2020 autumn period of growing test positivity rates, our estimation remains above one, indicating a fast growing epidemic. This
highlights an important aspect of our methodology provided by monitoring social mixing dynamics, as it allows to overcome
some of the biases in the case number based Rt estimations. Interestingly, we can provide an Rt value estimate, which during
biased intervals give a better picture about the unfolding epidemics, this way complementing the traditional surveillance system.

Discussion
Beyond official surveillance relying on detected case numbers and medical statistics, alternative methods can monitor the
unfolding of a pandemic40. Some methodologies rely on geo-localized web search and social media tracking to nowcast trends
in epidemic-related topics41, 42. Despite the popularity of these methods, their vulnerabilities and limitations got evident over
the years43. In several other studies, the reproduction number of an epidemic is estimated from the mobility patterns of people.
Human mobility followed by mobile phone activities, GPS devices, or check-in data could signal the traveling, commuting,
and mixing patterns of people, which largely determine the spread of an epidemic in a larger population. However, despite
the many promising results44–46, the mobility activity of people, quantified by various indices47–49, does not always follow
the epidemic curve of the pandemic. People accept and follow some interventions better, while some others less. Whereas
mask use became a worldwide accepted norm, mobility restrictions became less and less enforced and followed. Therefore, the
trends of people’s mobility and the number of infections may diverge50, 51. Also, statistics, such as the age-stratified mixing
patterns or the fraction of recovered population, are hard to follow with mobility data, which prevents the precise estimation of
the effective reproduction number using this type of data sources. For all these reasons, although mobility monitoring plays an
essential role in estimating mixing patterns, it may appear as a less correlated direct indicator of epidemic prevalence over time.
Our modeling approach could provide a more reliable solution, as it integrates dynamical contact information into epidemic
models in the form of time-varying age-stratified contact matrices. This way, it directly introduces the effects of interventions
and behavioral changes through the recorded dynamics of social interactions, which leads to better approximations of possible
transmission events of disease spreading.

Nevertheless, our proposed methodology has certain limitations. Most importantly, it heavily relies on the respondent
population size and its representative composition (for the change of representativeness of our data see Supplementary
Information). Although by using combined online/offline data collection methods, we accounted for the non-representativeness
of the recorded data, this remains a challenge. We found the representative weighting dimensions robust over the observation
period, but they may change over time. Thus, repeated data collection campaigns via representative telephone surveys are
necessary. At the same time, while we account for seasonality, other environmental factors (like humidity or pollution level)
may influence the epidemic outcome. On the other hand, due to the continuous evolution of new genetic variants, although
the biological profile of the pathogen (e.g. its transmission rate or the length of the incubation period) may change, that can
be considered in our model. We could also incorporate the dynamics of vaccination and waning immunity into our modeling
framework. Finally, voluntary responses may suffer from cognitive distortion, potentially inducing over-representative numbers
of answers from overly alert people during some time of the pandemic. Such biases are difficult to capture with our demographic
variables in the representativity correction process.

The dynamically varying number of social contacts are one of the primary indicators of social mixing that can potentially
estimate the transmission rate of an influenza-like illness. To demonstrate this approach, we described a data collection effort to
record age-stratified contact matrices in Hungary at a daily resolution. We integrated them into a deterministic compartment
model to estimate the temporal evolution of the reproduction number of the COVID-19 epidemic. This innovative solution
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provides a cheap and near real-time surveillance system independent of public health data. Instead of using contact tracing,
frequent representative surveys, or medical statistics, it relies on the combination of alternative data sources collected online
and offline with the involvement of thousands of individuals. It provides a powerful solution to cross-validate results from
conventional surveillance systems or to identify biases or uncertain estimation periods.

The overall goal of NPIs is to suppress the possible epidemic transmission by decreasing the number of contacts of people
through different ways of regulations. Our framework provides a way that can directly monitor the effectiveness of these
restrictive measures. It allows to immediately evaluate their impact on larger populations compared to behavioral patterns
before and after the regulated period. This method provides an inventive tool for disease monitoring with easy implementation
in many countries. Beyond its scientific merit, it may provide effective monitoring of the consequences of national interventions,
to follow the effects of population-level behavioral changes, and to inform intervention planning and policy design. Moreover,
as we demonstrated in the case of Hungary, it allows to complement traditional surveillance systems in two ways: by signaling
periods when official monitoring infrastructures are unreliable due to observational biases; and by providing more accurate
signals of the epidemic dynamics during these periods. For all these reasons this methodology should be integrated into future
public health surveillance systems for more precise epidemic monitoring.

Methods
Data collection and reconstruction pipeline
Online data collections
We collected data via an online questionnaire52 that users could fill using web browsers or mobile phone apps. Our data
collection was completely anonymous using local encrypted browser cookies to improve user experience, without requiring
participants to share any personal identifier that could be used for their identification. The data collection was fully complying
with the actual European and Hungarian privacy data regulations and was approved by the Hungarian National Authority
for Data Protection and Freedom of Information53, and also by the Health Science Council Scientific and Research Ethics
Committee (resolution number IV/3073- 1 /2021/EKU). During our analysis all methods were performed in accordance with
these relevant guidelines and regulations.

The responses contained information on the demographics and family structure of the anonymous users, their contact
numbers from the previous day by the age of the contacted people in different situations (e.g. indoors, outdoors, at the workplace
etc.), and other questions relevant to their behavior during the epidemic (see23 for further description of the questionnaire). To
define what counts as a contact, as explained in the questionnaire, we considered two people to be connected if they spent at
least 15 minutes without mask protection at a distance less than 2 m (proxy contacts) from each other. Household members were
automatically counted as contacts (family contacts) using the family members’ age to consider them in the age-contact matrix.
Although data was not directly collected about children, adults (typically parents) could fill a special part of the questionnaire to
give their estimations about the proxy contact numbers of their underage family members (typically children).

Our observations were focusing on the period from 26/03/2020 to 31/12/2020, during which we collected 429,267 responses
from 230,878 unique users. To avoid high noise rates, we aggregated daily online answers with a 7-day sliding window that we
shifted by one day through the observation period. To make the answering more comfortable for the respondents (and thus, to
increase the willingness for participation), we provided intervals for their estimated number of contacts, that we converted to
their midpoints before calculations (category conversions were 0:0, 1-2:1, 3-6:4, 7-15:11, 16-30:23,31-60:45, 60+:80). We
used these numbers to estimate 8×8 age contact matrices from the online data on a daily basis. For a detailed schematic
representation of the data collection pipeline see Figure 3.

Representative data collection
As the participation in the online data collection was voluntary, respondents were not representative for the whole population of
the country, moreover, their composition could change on a daily basis (see SI Figure 4). To account for these shortcomings
and to record a representative sample, we started a smaller scale data collection campaign with different methodology but
using the exact same questionnaire. This survey has been conducted with CATI (Computer Assisted Telephone Interview)
survey technique by a public research company. The data collection started in April 2020 and has been repeated monthly. The
respondents were selected by a multi-step stratified probability sampling technique from a database containing both mobile-
and landline phone numbers. The sample is representative for the Hungarian adult (18 years old or older) population in terms
of gender, age, education level and type of settlement; sampling errors were further corrected by post-stratification weights.
Depending on the month, the numbers of recorded complete responses in each wave of the data collection were between
1,000 and 1,500, which fits the standard size of representative surveys in Hungary. The overall response rate was relatively
high, ∼ 49% as compared to other similar size surveys. In comparison, according to the data collection company, the average
response rate of similar data collection methodologies at a nationally representative survey is between 15-20 percent. The
collection of one wave generally took one week, where two-third of the responses corresponded to weekdays, and one-third to
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Figure 3. Schematic diagram of the data collection, data processing, and modeling pipelines. The representative phone survey
is used for calculating the most important demographic dimensions that influence the average contact numbers of people, and
for estimating mask use percentage in different age groups of children. Daily contact matrices are created using a 7-day sliding
window from the online survey, adding user weights to correct for sample representativity using the relevant demographic
dimensions and their population distribution from official census statistics 54, 55. Daily contact matrices are then used as input
parameters to the compartmental model that uses also biological and medical parameters, as well as a seasonality correction
function for the estimation of the daily effective reproduction number Rt .

weekend days. Although telephone survey data has been collected once per month only with smaller sample size as compared
to the online survey, it provided us with generalizable information about the contact patterns of the Hungarian adult population.

Taking the collected raw data we built up a data-cleaning pipeline to prepare the data for further analysis. This pipeline
has been applied on both online and representative data. First, to avoid skewed averages due to outliers, we filtered survey
answers if they contained very high out-of-home total proxy contact numbers added up for all age group. In this case we chose
to drop the top 0.5 percentile of total contact numbers corresponding to a cut at more than 90 proxy contacts. Moreover, in the
online survey we also omitted the answers from the analysis if the contact numbers have been larger than the average plus
two standard deviations within the respondents’ own age group within the given time window or in the representative survey.
In the exceptional cases when the number of responses within a time window for one age group was insufficient to calculate
the standard deviation, we took an age-independent upper threshold computed from the system average. The latter filtering
process was necessary for the online age-stratified matrices, since the Rt calculation that was based on the spectral radius of the
Next Generation Matrix method was very sensitive to sparse elements, and global filtering was unable to capture age group
dependent outliers.

Because online responses for children did not contain information on their mask use, we estimated their contact numbers
by re-scaling their reported contact numbers using their mask use percentages based on age and contact numbers from the
representative survey of October 2020. Contact number is an important factor in this variable, because children tended to use
masks in higher percentages in more crowded settings such as classrooms. Table 1 shows the mask use correction factors from
the representative survey applied to the online responses of children.

Contact matrix reconstruction
To account for the non-representative biases in the online data, we worked out a method to dynamically estimate weights
for each online respondent to re-weight the online data to create a close-to-representative population. For the selection of
the weighting dimensions our goal was to identify socio-demographic variables with available population-level distributions,
which were also present in our online questionnaire. First, we tested which variables affect the proxy contact numbers of the
respondents using the representative survey. As the proxy contact numbers of the respondents can only be non-negative integers,
we used negative binomial regression models on the first two waves (conducted in April and May, 2020) of the representative
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Age 0-22 contacts 23+ contacts
3-6 0.1324 0.1509
7-10 0.2720 0.5635
11-14 0.3665 0.6979
15-17 0.3665 0.7100

Table 1. Mask use fractions of children based on age and contact number from representative survey

data collection together. Based on this model (see results in SI Table 2), we identified age, highest education level, region, type
of settlement, and the interaction of gender and work status as significantly affecting the number of proxy contacts. For the
validation of the weighting dimensions see Supplementary Information.

Using these variables and the latest census data54, 55, we calculated wx weights for every user x using the iterative proportional
fitting method56 in each 7-day time window. This weighing methodology adjusts the cells of a contingency table created by the
empirical distribution of the weighting dimensions in a way that their marginals fit to the expected distribution of the same
dimensions. Empirical distributions were taken from the online survey, expected distributions were provided by the census
data. One of the main advantages of this weighting methodology compared to standard cell weighting is to induce less likely
extremely high or low weights - which could make the estimations unstable57. Thus, the actual weighted user sample within a
one-week daily sliding window had marginals fitted to official census marginal distributions along the selected variables. We
summarize this data construction pipeline in Figure 3, while for a detailed description of a similar regression choice we refer
to23.

Finally, to construct age-stratified contact matrices for each period, we categorized each respondent into eight age groups,
namely 0− 4, 5− 14, 15− 29, 30− 44, 45− 59, 60− 69, 70− 79, and 80+. We constructed 8× 8 matrices with column
indices corresponding to the age group of the respondents and row indices correspond to the age group of their contacts. To
formally define this matrix on the population level we follow the same procedure as described in23: Let assign by X be the set
of respondents (ego), and by Y the set of individuals who are contacts of some x ∈ X . For a specific x, let Nx ⊂ Y be the set of
individuals who are contacts of x. We assign by a(x) ∈ A = {1, . . . ,8} the age group of an individual x. We define the matrix
Mx,y for each x ∈ X and y ∈ Nx as (Mx,y)i, j = 1 if a(x) = j and a(y) = i, and zero otherwise. For an ego x we can now compute
its individual contact matrix as Mx = ∑y∈Nx Mx,y. Finally, we use an individual weight wx assigned to each ego, coming from
the IPF weighting method described above. This weight effectively describes how much an ego and its contacts should be
considered in order to receive a contact matrix for a closer-to-representative population. Finally, the population level contact
matrix is computed by M = ∑x∈X wxMx

/
∑x∈X wx.

Data availability

In this repository33 we share all code and data necessary for the reproduction of our results. The shared data incorporates the
source code for epidemic simulations and the data recording the empirical dynamical contact matrices. Other datasets are
openly available as referenced in the text.
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előrejelzések szerepe a pandémiás hullámok megelőzésében, mérséklésében–hol tartunk most, és hová kellene eljutni. Sci.
et Secur. 2, 38–53 (2021).

37. Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. On the definition and the computation of the basic reproduction ratio r0
in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990).

38. Röst, G. et al. Early phase of the COVID-19 outbreak in Hungary and post-lockdown scenarios. Viruses 12 (2020).

39. Ferenci, T. The real-time epidemiology of the hungarian coronavirus pandemic https://research.physcon.uni-
obuda.hu/covid19magyarepi/ (date of access 2022.07.07).

40. Kostkova, P. et al. Data and digital solutions to support surveillance strategies in the context of the COVID-19 pandemic.
Front. Digit. Heal. 3, 89 (2021).

41. Dugas, A. F. et al. Influenza forecasting with google flu trends. PLOS ONE 8, e56176 (2013).

42. Tang, L., Bie, B., Park, S.-E. & Zhi, D. Social media and outbreaks of emerging infectious diseases: A systematic review
of literature. Am. J. Infect. Control. 46, 962–972 (2018).

43. Lazer, D., Kennedy, R., King, G. & Vespignani, A. The parable of Google Flu: traps in big data analysis. Science 343,
1203–1205 (2014).

44. Vanni, F., Lambert, D., Palatella, L. & Grigolini, P. On the use of aggregated human mobility data to estimate the
reproduction number. Sci. Reports 11, 1–10 (2021).

45. Jung, S.-m., Endo, A., Akhmetzhanov, A. R. & Nishiura, H. Predicting the effective reproduction number of covid-19:
inference using human mobility, temperature, and risk awareness. Int. J. Infect. Dis. 113, 47–54 (2021).

46. Gozzi, N. et al. Anatomy of the first six months of COVID-19 vaccination campaign in Italy. PLOS Comput. Biol. 18,
e1010146 (2022).

47. Bao, R. & Zhang, A. Does lockdown reduce air pollution? evidence from 44 cities in Northern China. Sci. Total. Environ.
731, 139052 (2020).

48. Szocska, M. et al. Countrywide population movement monitoring using mobile devices generated (big) data during the
covid-19 crisis. Sci. Reports 11, 1–9 (2021).

49. Wang, S., Liu, Y. & Hu, T. Examining the change of human mobility adherent to social restriction policies and its effect on
COVID-19 cases in Australia. Int. J. Environ. Res. Public Heal. 17, 7930 (2020).

50. Gottumukkala, R. et al. Exploring the relationship between mobility and COVID- 19 infection rates for the second peak in
the united states using phase-wise association. BMC Public Heal. 21, 1–14 (2021).

51. Bokányi, E., Pollner, P. & Joó, T. Kontaktkutatás, vezetői információs rendszer. Sci. et Secur. 2, 17–29 (2021).
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Supplementary Information
Validation of the weighting dimensions
To identify the main weighting dimensions for the iterative proportional fitting, Table 2 shows the results of the negative
binomial regression model on the proxy contact numbers of the respondents. Here the independent variables are the dimensions
with available population-level distribution, and which were also present in the questionnaire. We can observe that in each
dimension, there is at least one category that significantly affects the proxy contact numbers compared to the reference category.
These results suggest that all dimensions from this regression model should be considered as weighting dimensions on the
online data since they all influence the contact patterns of people.

Independent Variables B Std. Error Wald Chi-Square Significance
Intercept 0.270 0.098 7.61 0.006

19-29 years old 0.846 0.072 137.24 0.000
30-44 years old 0.983 0.063 242.37 0.000
45-59 years old 0.964 0.062 240.67 0.000
ref: 60 years old or older

max. vocation 0.078 0.062 1.58 0.209
secondary education 0.212 0.058 13.17 0.000
ref: higher education

other region 0.143 0.066 4.72 0.030
ref: Central Hungary

Budapest -0.096 0.083 1.34 0.248
county town -0.167 0.064 6.74 0.009
city -0.128 0.052 6.16 0.013
ref: village

man works 0.756 0.055 189.55 0.000
man does not work 0.386 0.066 33.99 0.000
woman works 0.661 0.063 111.57 0.000
ref: woman does not work

Table 2. Negative binomial regression model on the number of contacts with the potential weighting dimensions as
independent variables

Change in the population composition
In the online survey, users were not representative of the population of Hungary. Moreover, their composition could change
on a daily basis. Figure 4 shows the composition as a function of time throughout the time period of this analysis alongside
with the representative percentages obtained from official statistics of the Central Bureau of Statistics of Hungary (KSH)54, 55.
Variables correspond to the significant dimensions that have been determined from the representative survey regressions, and
that have the largest influence on people’s contact behavior.

Epidemic model

For investigating the dynamics of the COVID-19 epidemics, we use a slightly modified deterministic model from38. In the
following, we briefly introduce the mechanisms of the epidemic model. This model is defined on a population of people where
we denote by S the susceptibles, i.e. who can contract the disease. If individuals who get contracted the disease first get latent
(L), i.e. carry the virus, but they have no symptoms yet. Then a large fraction of the latents transit to the class for asymptomatic
cases, i.e. having at most mild symptoms (denoted by M), but with the ability to infecting susceptible individuals. Others
develop more severe symptoms, they proceed first to the pre-symptomatic (P), then to the infected compartment (I). Individuals
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Figure 4. Distributions of users with respect to the demographic attributes used for the IPF weighting in the online survey.
Reference percentages representative of the adult population obtained from official census data54, 55 are to the left of each
subplot labeled as HCSO (Hungarian Central Statistical Office). Central Hungary refers to whether a user lives in the EU
region of the capital city, Budapest, and its surrounding county, called “Pest megye”. Employment status is measured for both
genders, M=male and F=female.

from A compartment will all recover and consequently proceed to class for recovered (denoted by R), while symptomatically
infected individuals may either recover without requiring further treatment or become hospitalized.

As we have seen in the COVID-19 pandemic, it is of high importance to be able to estimate number of hospital beds and
intensive care unit (ICU) beds, thus we differentiate symptomatically infected individuals who need hospital and critical care
(ICU), denoted by H and C, respectively. We assume that patients admitted to non-intensive treatment will all recover, thus
proceed to class R, however, fatal outcome may occur for individuals from class Ic implying the transition from C to the D
compartment. Those who are out of ICU and on the path to recovery are first collected in the compartment Cr from where they
proceed to class R.

Additionally, we assume that the latency and infectious periods are gamma distributed, and for their modeling we use
so called the linear chain trick, i.e. we divide classes L, A and I into further compartments. For gamma distributed latency
period with Erlang parameter m = 2, we introduce classes L1 and L2, for infectious period with Erlang parameter m = 3, for
asymptomatically and symptomatically infected individuals we have M1,M2,M3 and I1, I2, I3 compartments, respectively.

Figure 5. Compartment transmission diagram of the epidemic model

Considering all the introduced compartments, the dynamics of the system is described by the following differential equation
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where the index a ∈ {1, . . . ,8} represents the corresponding age group.
Since we want to take into account the different characteristics of the disease in various age groups, we stratified the

Hungarian population into eight groups, using the same age structure that we used in the questionnaires. The model parameters
are calibrated based on comprehensive literature review and they are aligned to private data provided by the National Public
Health Center in Hungary (for a previously published parameter set, see38). Since the previously mentioned model was
parameterized for seven age groups, we slightly changed the parameter vectors as shown in Table 3. Actually, we added another
aspect to the disease transmission term, which considers age-dependent susceptibility σ of individuals: we set this value to 1.0
except for the first two age groups, for which we use 0.5. This aligns with the observations that children are less likely to get
infected at the contact with an infected individual.

Probability / Age group 0–4 5–14 15–29 30–44 45–59 60–69 70–79 80–
Asymptomatic course pa 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1
Hospitalization or

intensive care (from Ia
3 ) ha 0.00045 0.00045 0.0041 0.0028 0.1094 0.2529 0.4663 0.4965

Intensive care
(given hospitalization) ξ a 0.333 0.333 0.312 0.297 0.292 0.293 0.293 0.293

Fatal outcome
(from Ca

r ) µa 0.2 0.2 0.216 0.25 0.582 0.678 0.687 0.7
Susceptibility parameter σa 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0

Table 3. Age-dependent epidemiological parameters of COVID-19 for eight age groups

Simulating an epidemic model requires determining the epidemiological parameters along with initial state at the start of
the simulation. In our analysis, we assume that for the first wave we do not have population-level epidemic spread, however, for
the second wave we consider that 1% of the population was infected during the first wave, and an additional 1% was recovered
from an outbreak started already in the summer, i.e. we already have infected individuals distributed over all age groups. The
latter approach enables us to pass proper initial values for the deterministic model.
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Effective reproduction number
The transmission part of an epidemic model depends on the contact patterns between people in the susceptible and infected
compartments, and the probability of virus transmission during the contacts, which can differ for different infectious com-
partments. This implies that we have to give estimates for β

(k,a)
X , which corresponds to the transmission rate of an infectious

individual from X and age group k at contact with a susceptible from age group a, where X ∈ {P,M1,M2,M3, I1, I2, I3}. For this
purpose, we compute the Next Generation Matrix (NGM) and baseline transmission rate β0 using techniques of37. Since the
actually defined model only slightly differs from the one in38, we might omit the detailed elaboration and highlight only the
components have to be changed for the calculations, whereas the scheme of the computation remains the same.

For now, the block-diagonal transitional matrix Σ has to be modified at elements (3,2),(4,2),(4,3) and (7,3), therefore we
have

Σa =



−αa
l,1 0 0 0 0 0 0 0 0

αa
l,1 −αa

l,2 0 0 0 0 0 0 0
0 (1− pa)αa

l,2 −αa
p 0 0 0 0 0 0

0 paαa
l,2 0 −γa

m,1 0 0 0 0 0
0 0 0 γa

m,1 −γa
m,2 0 0 0 0

0 0 0 0 γa
m,2 −γa

m,3 0 0 0
0 0 αa

p 0 0 0 −γa
i,1 0 0

0 0 0 0 0 0 γa
i,1 −γa

i,2 0
0 0 0 0 0 0 0 γa

i,2 −γa
i,3


for a = 1, . . . ,8.

The transmission matrix T is affected by the above mentioned age-dependent susceptibility parameter for the first two age
groups (since these parameters differ from 1). In these cases, we have to multiply all elements of the building blocks T1 and T2
with the respective susceptibility parameter value (that we assumed 0.5 for both age groups, see discussion above).

Using NGM methodology, for a given initial contact matrix and observed Rt , we are able to estimate the baseline transmission
rate finalizing the parametrization of the epidemic model. For calculating the effective reproduction number, on the one hand,
we update the online measured contact matrix on a daily basis. On the other hand, for the second wave (when the virus spread
across the whole country), we have to scale the elements of the contact matrices by the proportion of the susceptibles actually
given by the model. We perform this as multiplying each column of the matrix by the respective proportion value.

Seasonality effects

Figure 6. Seasonality function

Since we investigate a nine-month period of 2020, we cannot neglect the effect of seasonal changes, which is incorporated
into the model via scaling the baseline transmission rate by a time-varying function called seasonality function. This function
is usually chosen for a 1-year periodic sine or cosine function38, 58, but our experimental observations from modeling the
pandemic in Hungary show that the function shown in Figure 6 aligns better with the epidemic data. Clearly, during warmer
periods of the year (from end of the spring until early autumn) the transmission rate is reduced in the population e.g. due
to weather conditions and better natural ventilation, while a ramp-up and ramp-down phase are considered after and before
this period, respectively. Furthermore during the winter and summer periods the efficiency rate does not change significantly,
thus we assume that this rate is constant over these time intervals. Finally we set the ratio of 0.6 between summer and winter
time46, 58 and we kept the sinusoidal change in the complementary part for a year.
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