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Abstract

We generalize subgraph densities, arising in dense graph limit the-
ory, to Markov spaces (symmetric measures on the square of a stan-
dard Borel space). More generally, we define an analogue of the set of
homomorphisms in the form of a measure on maps of a finite graph
into a Markov space. The existence of such homomorphism measures
is not always guaranteed, but can be established under rather natural
smoothness conditions on the Markov space and sparseness conditions
on the graph. This continues a direction in graph limit theory in which
such measures are viewed as limits of graph sequences.

1 Introduction

Dense graph limit theory is arguably the most complete graph limit theory:
There is a rather satisfactory duality between the local and global points

2



of view; subgraph densities and large scale structures (such as Szemerédi
partitions) are connected via the counting lemma and the inverse counting
lemma; limit objects, called graphons, are well known. Furthermore, the
problem of soficity does not arise: every potential limit object is the limit of
finite graphs.

Substantial work has been done pushing these things into the sparse
regime. Graphons are bounded functions on [0, 1]2, and a natural next step
is to explore the regime of “unbounded graphons”. Borgs, Chayes, Cohn
and Zhao [5] extended various results in dense graph limit theory to “Lp-
graphons” (symmetric functions in Lp([0, 1]2)); here only degree-restricted
simple graphs were guaranteed to have finite densities. The authors [16]
introduced a very general framework that was among other things meant
to encode homomorphism convergence of multigraphs, and allows for finite
densities for all decorated graphs in all limit objects. In the simplest case,
this corresponds to symmetric functions in Lω =

⋂
p∈[1,∞)L

p([0, 1]2), which
is the largest function space in which all elements have finite densities for all
simple graphs. Other work in this direction includes [3, 4, 23, 12].

To go beyond unbounded graphons, the authors [17] developed a limit
theory for not necessarily dense graphs, in which limit objects are symmetric
measures on [0, 1]2 called “s-graphons”. (The [0, 1] interval can be replaced by
any standard Borel space.) Backhausz and Szegedy [1] developed a stronger
convergence theory with similar limit objects, which they call “graphops”.
While these approaches have the potential to unify various branches of graph
limit theory, both of them are based on convergence notions which could be
called “global convergence” or “right convergence”. The local point of view
seems to be lost: subgraph densities and subgraph distributions in general
have not been defined in symmetric measures on [0, 1]2.

Graphons or more generally unbounded graphons correspond to measures
on [0, 1]2 that are absolutely continuous with respect to the uniform measure.
The main purpose of this paper is to study local aspects of graph limit theory
for singular measures. Our results show that this is possible as long as the
measure has certain smoothness properties, whilst the graph to be mapped
has certain sparseness properties. The smoother the measure, the more finite
graphs will have well-defined densities in them. This leads to a remarkable
hierarchical viewpoint on graph limit theory, where smoothness of limit ob-
jects corresponds to certain sparsity properties of graph sequences. At the
top of this hierarchy are the bounded and the Lω-graphons of [16] as the
smoothest objects. Lp-graphons from [5] form the next level of smoothness.

The hope that one may extend local properties to singular measures has
already emerged in a previous work by the authors of the present paper. In
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[18] we investigated random orthogonal representations of finite graphs by
vectors on n-dimensional unit sphere Sn. As it turns out, such representa-
tions can also be viewed as random homomorphisms into a singular measure
defined on Sn ×Sn: namely, the uniform distribution ηn on orthogonal pairs
of vectors in Sn. Quite surprisingly, for every finite graph H and sufficiently
large natural number n one can introduce a robust notion for the density
of H in ηn. Moreover one can introduce a measure on copies of H in ηn; if
the total measure is finite, then one can normalize it to a probability mea-
sure. See Section 3.2 and also [18] as source of concrete, illustrative examples
supporting the more general and abstract content of the present paper.

To keep our treatment relatively simple, in this paper we address a special
case of s-graphons, which we call Markov spaces and (in their bipartite ver-
sion) bi-Markov spaces. A Markov space is a standard Borel sigma-algebra
(J,B) endowed with a probability measure η on B × B. We restrict our
attention to symmetric measures on B × B. We will denote the marginal
distribution of η on J by π. For a (finite) graph G, the uniform distribution
on E(G) defines a Markov space. Markov spaces are essentially equivalent to
reversible Markov chains with a specified stationary distribution. Graphops
and s-graphons can be obtained by adding a probability measure on the
points, generalizing the uniform distribution on the nodes of a graph. See
also Remark 2.6.

We address the following three questions:

(i) How to define a reasonable notion of the density of a graph G = (V,E)
in a Markov space (J,B, η)?

Subgraph densities play a crucial role in graph limit theory, in the defini-
tion of local convergence, extremal graph theory and graph property testing,
just to name a few applications; they also arise as Feynman integrals in quan-
tum physics (see e.g. [13], Section 8.2). Subgraph densities can be viewed as
analogues of the moments of functions defined on product spaces (cf. [21] and
[19], Appendix A4). We can calculate densities of finite graphs in analytic
objects representing graph limits such as graphons and graphings. More gen-
eral Markov spaces are also known to represent limits of finite graphs, but
the right notion for subgraph density is still missing. Examples can be given
showing that subgraph densities satisfying reasonable conditions cannot be
defined in full generality.

(ii) How to define the homomorphism set Hom(G, η) where G is a finite
graph and (J,B, η) is a Markov space?

If H is a simple finite graph then Hom(G,H) is a subset of the set
V (H)V of all maps from V = V (G) to V (H). However, if we consider
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an edge-weighted graph H , then there is no general, natural way to inter-
pret Hom(G,H) as a subset of V (H)V . Rather, the edge weights induce a
function on V (H)V , the function value being the product of the edge weights
of the images of the edges of G under the corresponding vertex map. More
generally, if (J,B, π) is a probability space and W : J2 → [0, 1] is a graphon,
then our interpretation of Hom(G,W ) is a measure ηG on JV whose density
function (Radon–Nikodym derivative) with respect to πV is the function

WG(x1, x2, . . . , xn) :=
∏

(i,j)∈E(G)

W (xi, xj), (1)

where V = {1, 2, . . . , n}. With this definition, the total measure ηG(JV )
is the familiar homomorphism density t(G,W ). If we apply this definition
to a graphon that represents a finite graph H by its adjacency function
V (H)×V (H) → {0, 1}, then we obtain the counting measure on Hom(G,H)
normalized by the number |V (H)||V (G)| of all maps from V (G) to V (H).

Our goal is to introduce similar measures representing Hom(G, η) for
Markov spaces. The fact that generalized homomorphism sets are represented
by measures and not by sets is perfectly in line with the fact that the ”edge
set” of a Markov space is not a set either: It is represented by the measure
η which tells us how to choose a random edge. Unfortunately, the product
formula in (1) does not make sense if η is singular with respect to π2, and so
we have to use different methods to define ηG.

Our main approach relies on axiomatizing the properties of homomor-
phism measures. We introduce some relatively simple and natural properties
(related to, but different from, the notion of a Markov random field; see Ap-
pendix 9.2) that are strong enough to uniquely define the measures ηG. This
also allows us to define the subgraph density

t(G, η) = ηG(JV ),

answering (i) in this case. We warn that t(G, η) can be infinite. However, if
the total measure t(G, η) is finite, then we can turn the measure ηG into a
probability measure by normalizing it. These normalized versions can then
be used to define random copies of G in η.

(iii) Can Markov spaces be approximated by a sequence G1, G2, . . . of finite
graphs, so that the density of every finite graph F in Gn (suitably normalized)
tends to the density of F in the limit space?

A Markov space that can be approximated this way will be called sofic.
In the case of dense graphs, the limit objects (graphons) are sofic; this takes
an easy construction via sampling. In the case of bounded-degree graphs,
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soficity of the limit objects (involution-invariant distributions or graphings)
is the famous Aldous–Lyons conjecture, which is stronger than the soficity
problem for finitely generated groups.

We offer two approaches (and their combination) to these problems.

(a) The first approach builds on the fact that the generalization of (i) to
(ii) allows for a recursive definition of these “Hom-measures”. The “axioms”
for these measures enable us to build up the measure corresponding to a graph
G recursively from the measures pertaining to smaller graphs, by attaching
their nodes one-by-one. The independence of the construction from the order
in which the graph is built up is the main difficulty of this approach, and in
fact it does not hold in general (see Example 3.1 below). We can prove this
independence for triangle-free graphs (under smoothness assumptions on the
measure η).

(b) In the second approach, we consider approximations of η by sequences
of graphons. By considering the densities of subgraphs within each graphon
of the sequence, and taking their limit, one naturally obtains a notion of
subgraph densities (more generally, homomorphism measures) in η. However,
in order to obtain a robust, well-defined notion through this approach, we
have to make sure that subgraph densities in these approximating sequences
have a limit, and that this limit is independent of the sequence considered.
This independence also hinges on certain smoothness properties of η.

Soficity is clearly related to our second approach, the discretization of the
Markov space, which can be used to produce a sofic approximation.

The equivalence of these two approaches is a nontrivial problem that is
also addressed in this paper. As remarked above, our methods do not work
in full generality; very likely there is some theoretical limitation on how far
one can go with defining ηG in arbitrary Markov spaces. However, the full
analysis of this problem is left as an important open question.

In the next part of the introduction we will state our main definitions
and results more precisely. We start with our definition of discretized Markov
spaces. Let P = {J1, J2, . . . , Jn} be a finite measurable partition of the space
J such that every partition class has positive π-measure. If the Markov space
is given by the measure η on J × J , then it makes sense to “project” η to
P. When restricted to a product set Ji × Jj , the new measure ηP is a scaled
version of π2 such that ηP(Ji × Jj) = η(Ji × Jj) holds. In other words, the
Radon–Nikodym derivative W of ηP with respect to π2 is a graphon whose
value on Ji × Jj is constant η(Ji × Jj)π(Ji)

−1π(Jj)
−1.

We call a sequence of partitions of J a generating partition sequence, if
the partition classes are Borel, have positive π-measure, each partition is a
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refinement of the previous one, and the partition classes generate all Borel
sets. If we are more interested in generating the measure algebra rather than
the Borel sets proper, i.e., we only require the partition classes to generate
a sigma-algebra whose π-completion contains all Borel sets, we obtain the
slightly more general class of exhausting partition sequences (see Section 2.6).

Let (Pi)
∞
i=1 be an exhausting partition sequence. We can then try to

define ηG as the limit of homomorphism measures of G in the graphons ηPi
.

The existence of these limits and the independence from the chosen partition
sequence is nontrivial and not always true.

The definition of what we mean by the convergence ηGPi
→ ηG should also

be clarified. Let (Jm,Bm) be the product sigma-algebra of m copies of (J,B).
A set of the form C = B1 × · · · × Bm, where Bi ∈ B, will be called a box.
For measures (µ, µ1, µ2, . . . ) on Bm, the relation µn → µ on boxes means that
µn(C) → µ(C) on every box C. This is a rather weak notion of convergence,
and in fact it is equivalent to weak convergence if we put a compact topology
on (J,B), and all of the measures µn as well as µ have the same marginals –
this is left as an exercise to the reader.

If ηGPi
→ ηG on boxes for every exhausting partition sequence, then we

say that ηG is partition approximable. Note that this in particular means
that t(G, ηPi

) → t(G, η).
Since graphons can be approximated by finite graphs via sampling, and

the homomorphism measures of these finite graphs approximate the homo-
morphism measure of the graphon, the results on partition approximability
of ηG can be interpreted as a partial answer to the soficity problem (iii).

Now we turn to the definitions needed to generalize homomorphism sets.
As we mentioned above, our goal is to construct measures ηG[S] on BS for
each induced subgraph G[S] of a graph G = (V,E). This measure should
depend on the induced subgraph G[S] only1. Intuitively, the measure ηG

represents some kind of normalized homomorphism counting of G in η.
To motivate our approach, consider a graphon W : J2 → R+, represent-

ing η. Then ηG is the measure on JV whose Radon–Nikodym derivative with
respect to πV is equal to WG (see (1)). These measures satisfy a certain log-
modularity property, which relates ηG to measures corresponding to smaller
graphs. Assume that V (G) = V = U ∪ T such that there is no edge between
U \ S and T \ S, where S = U ∩ T . Then WGWG[S] = WG[U ]WG[T ]. We can
rewrite this equation:

WG/WG[S] = (WG[U ]/WG[S])(WG[T ]/WG[S]). (2)

1More formally, if f : S1 → S2 is an isomorphism between G[S1] and G[S2], then it
contra-variantly induces a function f# : JS2 → JS1 by f#(x)v := xf(v), and we require

the pushforward measure f
#
∗ µG[S2] := µG[S2](f#)−1 to be equal to µG[S1].
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Note that these quotients have a natural meaning even if W is allowed to
vanish. For example

(WG/WG[S])(x1, x2, . . . , xn) =
∏

(i,j)∈E(G)\E(S)

W (xi, xj).

One of the key observations is that equation (2) has a measure theoretic
interpretation that allows us to extend it to singular measures. The function
WG/WG[S] can be interpreted as a disintegration of the measure ηG with
respect to ηG[S] (see Proposition 2.1). The only condition that we need for
this type of disintegration is that the marginal of ηG on JS be absolutely
continuous with respect to ηG[S]. We will call this property of the family of
measures decreasing.

For a Markov space η for which the homomorphism measures ηG[S] are
defined and have the decreasing property, disintegration yields a family of
measures νS,T,x, where x ∈ JS (S ⊆ T ⊆ V ), and νS,T,x is a measure on JT\S .

In particular, when U ⊆ V is such that S = U ∩ T , V = U ∪ T and there
are no edges between T \ U and U \ T , the equation (2) translates to the
condition

νS,V,x = νS,U,x × νS,T,x. (3)

In the special case when S = ∅, this means that the measure assigned to
the disjoint union of two graphs is the product of the measures assigned to
them. We will call (3) the Markovian property of the family of the measures.
As stated above, this type of Markovian property is not simply a property
of a measure ηG by itself, but instead it describes how various measures ηG

corresponding to a graph and its induced subgraphs are related to each other.
In addition, we impose the natural condition that the family of measures

(ηG[S] : S ⊆ V ) is normalized, in the sense that ηK2 = η for a single edge K2

and ηK1 = π for a single node K1. We say that G is well-measured in η if
there is a family of measures (ηG[S] : S ⊆ V ) that is normalized, decreasing
and Markovian. It will be an important additional property that ηG is finite.
This easily implies that all other measures ηG[S] are finite. In this case we
say that G is well-measured in η with finite density.

This Markovian property concept (3) allows for a recursive construction
of measures for a graph utilizing measures of smaller graphs, decomposing
G along a cutset. To initialize the construction, we need the normalized
property. To apply it, we need a proper cutset of nodes in G; this is not
available for complete graphs, and this is our main reason for having to
exclude triangles.

This recursive construction has important consequences.

8



Theorem 1.1 If G is a triangle-free graph, and there is a normalized, de-
creasing and Markovian family of measures on its induced subgraphs, then
this family is uniquely determined.

This implies, in particular, that ηG[S] depends on the induced subgraph
G[S] only. More precisely, if G[S] and G[T ] are isomorphic induced subgraph
and ξ : S → T is an isomorphism, then the pushforward of ηG[S] to JT is
ηG[T ].

We will use this construction to prove the existence of such families of
measures, but it will be a nontrivial question under what conditions are the
measures independent of the choice of the particular way of building up the
graph.

To guarantee the decreasing property for our measures thus constructed
we will have to assume the decreasing property for small stars, which trans-
lates to the following “smoothness” property of the Markov space η. Choose
a point x from the stationary distribution π, and make k independent single
steps y1, . . . , yk each starting from x so that (x, yi) ∼ η, and the yi’s are
conditionally mutually independent given x. Let σk denote the joint dis-
tribution of (y1, . . . , yk). We say that the Markov space is k-loose, if σk is
absolutely continuous with respect to πk. We shall also make use of a fur-
ther refinement of this notion: a k-loose Markov space is (k, p)-loose, if the
Radon–Nikodym derivative dσk/dπ

k is in Lp(πk). This technical condition
will turn out to be equivalent to the property that the complete bipartite
graph Kk,p is well-measured in η with finite density (see Corollary 6.17).

The following result (see Section 5.4) will allow us to define the measure
ηG (which is not a finite measure in general, see Example 5.10).

Theorem 1.2 Let G = (V,E) be a triangle-free graph, and let M = (J,B, η)
be a Markov space such that every complete bipartite subgraph Ka,b of G is
well-measured in M. Then G is well-measured in M.

The condition implies that the Markov chain is k-loose, where k is the
maximum degree of G. If the graph contains no 4-cycles, then the stars
are the only complete bipartite subgraphs; hence we can state the following
corollary.

Corollary 1.3 Let (J,B, η) be a k-loose Markov space. Then every graph of
girth at least 5 and with all degrees at most k is well-measured in η.

It will turn out that densities of bipartite graphs are much better behaved,
and we have more transparent formulas for them. Using these formulas, we
will prove the following (see Sections 6.5 and 6.6).
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Theorem 1.4 Let (J,B, η) be an (a, b)-loose Markov space. Let G = (V,E)
be a bipartite graph with bipartition V = U ∪W such that deg(w) ≤ a for all
w ∈ W and deg(u) ≤ b for all u ∈ U . Then G is well-measured in η with
finite density, and ηG is partition approximable.

Densities of cycles are particularly interesting because of their connec-
tion with operator theory. Every Markov space (J,B, η) acts naturally as a
bounded operator Aη on L2(J, π). We prove the next theorem (see Theorem
7.5).

Theorem 1.5 If the k-th Schatten norm of Aη is finite for some k ∈ N, then
Ck is well-measured in η with finite density, ηCk is partition approximable,
and t(Ck, η) = tr(Ak

η).

Note that the finiteness of the k-th Schatten norm implies that Aη is
a compact operator with eigenvalues {λi}∞i=1 such that the series

∑∞
i=1 λ

k
i

is absolutely convergent, and we have tr(Ak
η) =

∑∞
i=1 λ

k
i . This suggests a

third way to define the density of a graph in Markov spaces using spectral
approximations provided that the operator Aη is compact. This direction,
however, is not explored in this paper.

2 Preliminaries

2.1 Notation

All graphs considered are finite and simple. A bipartite graph is a graph that
is 2-colorable. A bigraph is a bipartite graph with a fixed bipartition, where
the order of bipartition classes is also specified. Formally, a bigraph is a triple
G = (U,W,E), where E ⊆ U ×W . Let Ka,b denote the complete bipartite
graph with bipartition U ∪W , where |U | = a and |W | = b. With a slight
abuse of notation, we also denote the bigraph (U,W,U ×W ) by Ka,b.

For a map x ∈ JV , we denote by xV the image of V under this map, as
a labeled set (xv : v ∈ V ).

For a measurable space (I,A), we denote by M(I,A) (or simply by
M(A)) the set of all finite measures on A. If µ ∈ M(A) and f ∈ L1(µ),
then we define the measure f · µ and the number µ(f) by

(f · µ)(B) =

∫

B

f dµ, µ(f) = (f · µ)(J) =
∫

J

f dµ.

10



If (I,A, π) is a probability space and f, g : I → R are measurable
functions, then we define

〈f, g〉 = 〈f, g〉π =

∫

J

f(x)g(x) dπ(x).

If V is a finite set, ∅ 6= S ⊆ V , and µ is a measure on AV , then we denote
by µS the marginal of µ on AS.

2.2 Derivative and disintegration

Let µ and ν be two measures on the same Borel space (J,B). We say that a
function f : J → [0,∞] is the Radon–Nikodym derivative of ν with respect to
µ, denoted by f = dν/dµ, if ν = f ·µ. Note that we allow infinite values for f ,
under the convention

∫
B
∞ dµ = 0 whenever µ(B) = 0. The existence of the

Radon–Nikodym derivative is usually stated for two sigma-finite measures,
but we’ll need a slightly more general fact (see Appendix 9.1).

Let (I,A) and (J,B) be measurable spaces, and let Φ = (µx : x ∈ I) be
a family of sigma-finite measures on (J,B). We say that Φ is a measurable
family, if µx(B) is a measurable function of x for every B ∈ B. Note that if
Φ is a family of probability measures, then this essentially corresponds to a
Markov kernel (see Subsection 2.4).

We need the following version of the Disintegration Theorem (which is
usually stated for the case when α = γ1); see e.g. [8] or [2], Section 10.6.

Proposition 2.1 Let (I,A) and (J,B) be standard Borel spaces. Let α be
a sigma-finite measure on A, and let γ be a sigma-finite measure on A×B.
Then there is a measurable family Φ of measures on B such that for every
bounded measurable function f : I × J → [0,∞),

∫

I×J

f(x, y)dγ(x, y) =

∫

I

∫

J

f(x, y)dµx(y)dα(x). (4)

if and only if the marginal γ1 of γ on A is absolutely continuous with respect
to α. Furthermore, the measurable family Φ = (µx : x ∈ I) is uniquely
determined up to changing µx for x in a zero α-measure subset of I.

We say that the measurable family Φ is a disintegration of the measure γ
with respect to the measure α.

A key component of our constructions will be a “reverse” of the disintegra-
tion, essentially integrating a measurable family Φ with respect to a suitable
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measure α to obtain a sigma-finite measure on the product space. Indeed,
consider a measurable family Φ of finite measures on B. For α ∈ M(A),
define

α[Φ](A× B) =

∫

A

µx(B) dα(x) (A ∈ A, B ∈ B). (5)

If the measures µx are finite and uniformly bounded, this extends to a finite
measure α[Φ] on A×B, whose disintegration with respect to α is trivially Φ.

The marginal of α[Φ] on A is the measure g · α, where g(x) = µx(J).
The marginal of α[Φ] on B is the mixture of Φ by α. The definition also
implies that if all of the µx, as well as α, are probability distributions, then
so is α[Φ], and α is the marginal of α[Φ] on A. Conversely, if α[Φ] and α are
probability distributions, then µx is a probability distribution for α-almost
all x ∈ J .

An important example of this construction will be the family of distribu-
tions of transition probabilities in a Markov chain; see Section 2.4 below.

The sigma-finite extension also goes through in case we drop the uniform
boundedness condition, by partitioning I into countably many measurable
parts corresponding to the level sets [k, k + 1) (k ∈ N0) of the total measure
function µx(J). On each such set uniform boundedness is satisfied, and the
above applies.

Note, however, that for general families Φ of sigma-finite measures, one
quickly encounters technical difficulties with the extension. Fortunately, as
shown in the following lemma, a family Φ that arises from a disintegration
is well-behaved.

Lemma 2.2 Let (I,A) and (J,B) be standard Borel spaces. Let α1, α2 be
sigma-finite measures on A with α2 absolutely continuous with respect to α1,
and let γ be a sigma-finite measure on A×B such that the marginal γ1 of γ
on A is absolutely continuous with respect to α1. Let Φ = (µx : x ∈ I) be
disintegration of γ with respect to α1. Then α2[Φ] defined via (5) extends to
a sigma-finite measure on A× B.

Proof. As α2 is absolutely continuous with respect to α1, and both are
sigma-finite, we may write I as a countable disjoint union

⋃
k Ik of measurable

sets with αj(Ik) <∞ for all k and j = 1, 2, and it suffices then to prove the
existence of the appropriate extension on each Ik × J . We may therefore
without loss of generality restrict our attention to the case of both α1 and
α2 being finite.

As γ is sigma-finite, consider a partition of I×J into a countable disjoint
union

⋃
kGk of measurable sets with γ(Gk) finite. Let γGk

be the restriction
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of γ to Gk, and Φk = (µk,x : x ∈ I) its disintegration with respect to α1.
Note that

∫

I

µk,x(J)dα(x) =

∫

I

∫

J

1dµk,x(y)dα(x) =

∫

I×J

1dγGk
(x, y) = γGk

(I × J)

is finite, hence we have that µk,x is finite for α1-a.e. x ∈ I.
Since the Gk’s are disjoint, we have that γGk

⊥ γGℓ
for any k 6= ℓ, and thus

also for α1-a.e. x ∈ I, µk,x ⊥ µℓ,x. Consequently, we have that µx =
∑

k µx,k

and it is sigma-finite for α1-a.e. x ∈ I. Since α2 is absolutely continuous
with respect to α1, for product sets A×B (A ∈ A, B ∈ B), we by (5) clearly
have

α2[Φ](A× B) =
∑

k

α2[Φk](A× B).

Since each α2[Φk] extends to a sigma-finite measure on A× B, so does their
countable sum α2[Φ]. �

Remark 2.3 By the above, if Φ is the disintegration of a sigma-finite mea-
sure γ with respect to α, we have γ = α[Φ].

2.3 Markov property

Let (J,B) be a standard Borel space, and let V be a finite set. LetM = (µS ∈
M(BS) : S ⊆ V ) be a family of measures. We say that M is decreasing, if
for S ⊆ T ⊆ V , the marginal (µT )

S is absolutely continuous with respect to
µS. A trivial example of such a family is µS = φS for any φ ∈ M(BV ), which
we call the marginal family defined by φ.

If M = (µS ∈ M(BS) : S ⊆ V ) is a decreasing family of sigma-finite
measures, then for S ⊆ T , the Disintegration Theorem (Proposition 2.1)
gives a measurable family of measures NS,T = (νS,T,x : x ∈ JS) on BT\S such
that

µS[NS,T ] = µT . (6)

This definition implies that the Radon–Nikodym derivative d(µT )
S/dµS ex-

ists and it can be expressed as

d(µT )
S

dµS

(x) = νS,T,x(J
T\S) (7)

for µS-almost all x ∈ JS.
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We can informally think of νS,T,x as the measure on extensions of x from S
to T . This motivates the following “chain rule”. For S, T ⊆ V with S∩T = ∅
and x ∈ JS, y ∈ JT , we denote by xy ∈ JS∪T the union of the maps x and
y. Then for S ⊆ T ⊆ U ⊆ V , we can first extend x ∈ JS to an xy ∈ JT , and
then extend xy to U . Defining NT,U,x = (νS,T,xy : y ∈ JT\S), we can write
this as

νS,U,x = νS,T,x[NT,U,x] (8)

for µS-almost all x ∈ JS. Indeed, for every A ∈ BS, B ∈ BT\S and C ∈ BU\T ,
using (4),

∫

A

νS,U,x(B × C) dµS(x) = µU(A×B × C) =

∫

A×B

νT,U,xy(C) dµT (xy)

=

∫

A

∫

B

νT,U,xy(C) dνS,T,x(y) dµS(x).

This holds for every A ∈ BS, which proves (8).

Let G = (V,E) be a finite simple graph. Let M = (µS : S ⊆ V ) be a
family of sigma-finite measures, with the corresponding disintegrations NS,T .
We say that M is Markovian, or has the Markov property (with respect to
G), if it is decreasing, and for any two sets U,W ⊆ V and S = U ∩W such
that no edge connects U \ S and W \ S, and for µS-almost all x ∈ JS, we
have

νS,U∪W,x = νS,U,x × νS,W,x. (9)

Lemma 2.4 A decreasing family M = (µS : S ⊆ V ) of sigma-finite mea-
sures has the Markov property with respect to a graph G if and only if

νU,U∪W,xy = νU∩W,W,x

holds for all U,W ⊆ V with no edges connecting U \ W and W \ U , for
µU∩W -almost all x ∈ JU∩W and for νU∩W,U,x-almost all y ∈ JU\W .

In particular, the measure on the left is independent of y almost every-
where.

Proof. To prove the necessity of the condition, let U and W be as in the
lemma, and set S = U ∩W . Suppose that (9) holds, then for all B ∈ BU\W

and C ∈ BW\U , and µS-almost all x ∈ JS we have

νS,U∪W,x(B × C) = νS,U,x(B)νS,W,x(C),
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but also by (8) and the chain rule,

νS,U∪W,x(B × C) = νS,U,x[NU,U∪W,x](B × C)

=

∫

B

νU,U∪W,xy(C) dνS,U,x(y).

It follows that

νU,U∪W,xy(C) = νS,W,x(C)

must hold for all C ∈ BW\S, µS-almost all x ∈ JS and νS,U,x-almost all
y ∈ JU\S. This proves the necessity of the condition in the Lemma. The
reverse implication follows by a similar computation. �

Markovian measure families are related to, but different from, Markov
random field on graphs. See Appendix 9.2 for the details of this connection
(which we don’t use in this paper).

2.4 Markov spaces, graphons and bigraphons

AMarkov space consists of a sigma-algebra (J,B), together with a probability
measure η on (J × J,B × B) whose marginals are equal. In this paper, we
assume that (J,B) is a standard Borel sigma-algebra. In the probability
literature, η is often called the ergodic flow, or ergodic circulation, and its
marginals π(A) = η(A× J) = η(J ×A) are the stationary distribution of the
Markov space (B, η). A Markov space is symmetric, if η(A×B) = η(B×A)
for all A,B ∈ B. We note already here that beyond Remark 2.5, all Markov
spaces will be assumed to be symmetric unless stated otherwise.

Markov spaces are intimately related to Markov chains. A Markov chain
is usually defined on a sigma-algebra (J,B), specifying a probability measure
Pu on B for every u ∈ J , called the step distributions. One assumes that for
every A ∈ B, the value Pu(A) is a measurable function of u ∈ J . The map
u 7→ Pu is called a Markov scheme or Markov kernel. To get a Markov space,
we also have to assume that the Markov chain has a stationary distribution
π on B satisfying

∫

J

Pu(A) dπ(u) = π(A) (10)

for all A ∈ B, and we fix such a distribution. (A Markov scheme may have
none or more than one stationary distributions.) Then

η(A×B) =

∫

A

Pu(B) dπ(u) (A,B ∈ B) (11)
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defines a Markov space. Conversely, every Markov space arises from an
essentially unique Markov scheme this way; this can be constructed by dis-
integrating η with respect to π (see Section 2.2). The Markov scheme is
time-reversible precisely when this Markov space is symmetric.

As a generalization of the notion of bigraphs, we define a bi-Markov space
as a quintuple M = (I, J,A,B, η), where (I,A) and (J,B) are standard Borel
spaces, and η is a probability measure on A × B. We denote the marginals
of η on I and J by πI and πJ , respectively. While a bi-Markov space does
not directly define a Markov chain, the disintegration of η according to πI
still makes sense, and gives a measurable family (Pu : u ∈ I) of measures on
(J,B) such that

η(A×B) =

∫

A

Pu(B) dπI(u) (12)

for A ∈ A and B ∈ B, similarly to the symmetric case. However, from a
point u ∈ I you step to a point w ∈ J , so the step cannot be repeated.

In a bigraph G = (U,W,E), we can interchange the bipartition classes
to obtain another bigraph G∗ = (W,U,E∗), which is isomorphic to G as an
undirected graph. Similarly, for every bi-Markov space M = (I, J,A,B, η),
we can construct the reverse bi-Markov space M∗ = (J, I,B,A, η∗).
Remark 2.5 If we identify the Borel spaces (I,A) and (J,B) (which is usu-
ally possible), we get an (asymmetric) Markov space, which is a generalization
of directed graphs (digraphs). A symmetric Markov space is a generalization
of undirected graphs, and a bi-Markov space is a generalization of bigraphs.
If we identify (I,A) and (J,B) and also assume that πI = πJ , then we look
at a generalization of Eulerian digraphs; these are also equivalent to (not
necessarily reversible) Markov chains with a fixed stationary distribution.

Extending our results to digraphs (Eulerian or not) would be interesting,
but in this paper we only deal with Markov spaces generalizing undirected
graphs and bigraphs: symmetric Markov spaces and bi-Markov spaces. For
the rest of this paper, we drop the adjective “symmetric”.

Let (J,B, π) be a standard Borel probability space, and letW : J2 → R+

be a graphon, a symmetric integrable function with respect to π. In the theory
of dense graph limits, graphons are assumed to be bounded by 1, but since
then, much of the theory has been extended to the unbounded case [16, 5].
If a graphon is bounded, then it can be scaled to a 1-bounded graphon. We
call W 1-regular, if

∫
J
W (x, y) dπ(y) = 1 for all x.

Every 1-regular graphonW determines a Markov space ηW =W · (π×π).
Trivially, ηW is absolutely continuous with respect to π2. Conversely, if we
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have a Markov space for which η is absolutely continuous with respect to
π × π, then the Radon–Nikodym derivative W = dη/dπ2 is a corresponding
1-regular graphon.

Let (I,A, πI) and (J,B, πJ ) be standard Borel probability spaces. A
bigraphon is a bounded measurable functionW : I×J → R+. The bigraphon
is 1-regular, if

∫

I

W (x, · ) dπI(x) =
∫

J

W ( · , y) dπJ(y) = 1. (13)

Every 1-regular bigraphon defines a bi-Markov space by

η = W · (πI × πJ).

2.5 Graphops and linear functionals

Let us survey some notions related to Markov spaces with a functional anal-
ysis flavor; these were introduced in the theory of action convergence [1].

Every Markov space defines an operator A = Aη : L
1(π) → L1(π) by

(Aηf)(x) = E(f(x′)) = Px(f) =

∫

J

f(y) dPx(y),

where x′ is the point obtained by a random step from x. The integral on the
right is well-defined for π-almost-all x ∈ J . We call A the adjacency operator
of the Markov space. This operator is contractive with respect to any Lp-
norm (p ≥ 1). Hence it maps every subspace Lp(π) into itself, and ‖A‖p→p =
1 for every p ∈ [1,∞]. The adjacency operator is monotone, self-adjoint, and
1-regular (which means that 1J is an eigenfunction with eigenvalue 1). A
monotone and self-adjoint bounded linear operator L∞(π) → L1(π) is called
a graphop, so the adjacency operator, restricted to L∞(π), is a 1-regular
graphop.

We also note that for every B ∈ B and π-almost-all x,

(A1B)(x) = Px(B), (14)

since for every A ∈ B,
∫

A

(A1B)(x) dπ(x) =

∫

A

∫

J

1B(y) dPx(y) dπ(x) =

∫

J2

1A(x)1B(y) dη(x, y)

= η(A×B) =

∫

A

Px(B) dπ(x).
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Theorem 6.3 in [1] implies that, conversely, every self-adjoint, monotone, 1-
regular and contractive operator A : Lp(J, π) → Lp(J, π) (p ≥ 1) is the
adjacency operator of a Markov space with stationary measure π.

It is clear that the k-th power of the adjacency operator is itself an adja-
cency operator of a Markov space. In the Markov chain setting, this corre-
sponds to considering k consecutive steps as one. The edge measure of this
new Markov space will be denoted by ηk.

If a Markov space is defined by an L2-graphon (a function in L2(π2)),
then its adjacency operator A is a Hilbert-Schmidt operator, and hence it is
compact. It is well known that for a symmetric operatorA on a Hilbert space
and any integer k ≥ 1, Ak is compact if and only if A is compact. Often we’ll
be concerned with Markov spaces for which a finite power of Aη is defined
by a graphon, and so Aη is a compact operator. However, see Example 6.19
for a Markov space with an “almost” compact adjacency operator, to which
extensions of our results would be particularly desirable.

Remark 2.6 The finite version of the probability measure η of a Markov
space is the uniform measure on the edges of a finite graph. The marginal π
is the stationary distribution of the random walk, where the probability of
a vertex is proportional to its degree. It is natural to introduce the uniform
measure on the vertices as well. In the general case, this means endowing a
Markov space (J,B, π) with an additional probability measure λ on (J,B).
This richer structure would then include non-regular graphons, general (not
necessarily 1-regular) graphops, and s-graphons as defined in [17]. Putting
it in a slightly sloppy form,

reversible Markov chain + stationary distribution ∼= Markov space

and

Markov space + vertex distribution ∼= graphop ∼= s-graphon.

Extending the results of this paper to the case when a vertex-measure is
present is an important task for further research.

For bi-Markov spaces, the operatorA can be defined just as above, except
that A will not be self-adjoint.

2.6 Partitions

Let (J,B, π) be a standard probability space, and let P = {J1, . . . , Jn} be a
finite, measurable, non-degenerate partition of J (this means that Ji ∈ B and
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π(Ji) > 0). Let P̂ denote the (finite) set algebra generated by the partition
classes in P. We denote by Pk the partition of Jk whose classes are the
product sets Ji1 × · · · × Jik .

Definition 2.7 Let R be a countable family of Borel sets. Let σ(R) denote
the sigma-algebra generated by R. We say that R is generating, if σ(R) = B.
We say that R is exhausting with respect to a measure π on (J,B), if for
every A ∈ B there is a set B ∈ σ(R) such that π(A△B) = 0. Clearly every
generating family is exhausting.

A partition sequence is a sequence (Pi)
∞
i=1 of finite measurable nondegen-

erate partitions of (J,B, π) such that Pi+1 is a refinement of Pi. We associate

with every partition sequence the set families R =
⋃

i Pi and R̂ =
⋃

i P̂i. We
say that a partition sequence is generating [exhausting], if the family R is
generating [exhausting].

It is easy to see that every set in R̂ is a finite union of disjoint members
of R. The family R̂ is closed under finite union, finite intersection, and
complementation, so it is a set algebra.

We note that there is not much difference between talking about exhaust-
ing or generating partition sequences: every exhausting partition sequence
can be transformed in a generating one by changing partitions on a π-null-set
(see Appendix 9.3).

3 Subgraph densities: known cases

We recall a couple of special classes of Markov spaces where subgraph den-
sities have been introduced and studied.

3.1 Graphons

Subgraph densities (or, to be more exact, homomorphism densities) can be
defined for bounded graphons. In fact, all densities are still finite if we extend
our attention to unbounded symmetric functions W : [0, 1]2 → R+ in Lω,
see [16]. If the degrees of the graphs mapped into the graphon are bounded
by p, then subgraph densities can actually be defined for all of Lp-graphons
[5]. Subgraph densities can also be defined in graphings, but this seems to
be rather different from the dense case. It is possible that this notion cannot
be extended to all Markov spaces; but we will be able to do so for Markov
spaces which are sufficiently rich.
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For the question to make sense in more general situations, we modify the
normalization of subgraph densities. Recall that for a graphon W : J2 →
[0, 1]), the density of a graph G = (V,E) in W is defined by the integral

t(G,W ) = πV (WG) =

∫

JV

WG(x) dπV (x), (15)

where

WG(x) =
∏

ij∈E(G)

W (xi, xj) (x ∈ JV ). (16)

If W =WH is the graphon associated with a graph H , then

t(G,WH) = t(G,H) =
hom(G,H)

|V (H)||V (G)|

is the homomorphism density of G → H . In this paper we use the normal-
ization

t∗(G,W ) =
t(G,W )

t(K2,W )|E(G)|
. (17)

Note that the right hand side of (17) is invariant under scaling the func-
tion W . If

t(K2,W ) =

∫

J2

W dπ2 = 1,

(in particular, if W is 1-regular) we have t∗(G,W ) = t(G,W ) for every G.
It will be very useful to consider the measureWG·πV with density function

WG on JV . This measure has nice properties, for example, it is Markovian.
We call this the density measure of G in W . This construction will be par-
ticularly useful when we generalize the above formulas to the case when W
is not bounded. Then the density (15) may be infinite, but we still obtain a
sigma-finite measure WG ·πV on maps V → J . See Section 5.3 for a detailed
discussion of this generalization.

For a bigraph G = (S, T, E) and a bigraphon M = (I,A, J,B, πI , πJ ,W ),
there is a natural version of the subgraph density:

t(G,W ) =

∫

IS

∫

JT

∏

ij∈E

W (xi, yj)dπ
T
J (y)dπ

S
I (x). (18)

Clearly t(G,W ) = t(G∗,W ∗).
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3.2 Orthogonality spaces

Consider the Borel sets in the (d− 1)-dimensional unit sphere Sd−1, and let
η be the uniform measure on orthogonal pairs of vectors in Sd−1. This class
of Markov spaces was studied in detail in [18]. Maps V → Sd−1 that map
edges onto orthogonal pairs are called ortho-homomorphisms.

Example 3.1 The case of complete bipartite graphs will be important. Con-
sider the complete bigraph Ka,b = (U,W,U ×W ), where |U | = a, |W | = b,
and a+ b = d+1. The first relevant example is mapping the 4-cycle into S2.
Let x ∈ (Sd−1)V be an ortho-homomorphism. Since the image of U spans a
subspace that is orthogonal to the subspace spanned by the image of W , one
of the color classes must be mapped onto linearly dependent vectors. If this
degenerate color class is U , then W can be mapped freely into x(U)⊥. So ev-
ery homomorphism is degenerate, and if a, b ≥ 2, then there are two possible
degenerations. This means that there is no “natural” or “canonical” way of
defining a measure on ortho-homomorphisms. It is also easy to observe that
the trouble is caused by the fact that making d random single steps each
starting from a given point of Sd−1, we obtain d linearly dependent points,
so the joint distribution of these d points is singular.

To motivate some of our later arguments, let us try to construct an ortho-
homomorphism of the 4-cycle into S3 by mapping the nodes one-by-one. The
first three nodes can be mapped in an arbitrary order (taking care of the
orthogonality of images of edges). Almost surely the neighbors of the fourth
node will be neither equal nor antipodal, and so this node must be mapped
either on the image of its non-neighbor, or on its antipodal. Leaving instead
one of its neighbors for last, the other pair of non-neighbors will be parallel,
so we obtain a totally different distribution.

It was shown in [18] that a canonical “nice” Markovian sigma-finite mea-
sure on the ortho-homomorphisms into Sd−1 can be defined for every graph
G not containing Ka,b with a + b = d + 1. Furthermore, the density of G
in ηd can also be defined (it may be infinite). The construction followed the
same lines as our treatment in Section 5 below, providing explicit formulas
in this special case.

4 Trees

The case of mapping trees into Markov spaces is easy, but it will be a very
useful starting point for the more general case. For a tree F , we denote by
L(F ) the set of its leaves and by M(F ) the set of its interior nodes. In the
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case of a tree denoted by F , we will set L = L(F ) and M = M(F ). So
F \ L = F [M ] is the subtree induced by the internal nodes of F .

Let Sn and Pn denote the star and the path with n edges, respectively.
Unless stated otherwise, we label V (Sk) = {0, 1, . . . , k} with 0 in the center.
The tree consisting of a single edge uv can be viewed either as a path P1,
or as a star S1. We distinguish them by letting P1 have two leaves, so
L(P1) = {u, v} and M(P1) = ∅, and designating one of the nodes of S1

(say u) as its center, and the other one as its leaf, so that L(S1) = {v} and
M(S1) = {u}. It will be convenient to consider the tree S0 with a single node
u, where we have L(S0) = ∅ and M(S0) = {u}.

Let F be a tree and uv ∈ E(F ). The subtree F1 of F induced by u and
all nodes separated from u by the edge uv is called a branch of F attached at
u. We denote by F \ F1 the subtree obtained by deleting from F the nodes
in V (F1) \ {u}.

4.1 Random mappings of trees

Our first step is to show that a random mapping of a tree into a Markov
space can be defined in a robust (and, as we shall see, useful) way. This
simple construction is well-known (branching Markov chains etc.), but we
need some special properties of it.

Definition 4.1 Let F = (V,E) be tree, and (J,B, η), a Markov space. We
define a random homomorphism of F into η as a random map h : V (F ) → J ,
recursively as follows. If |V (F )| = 1, then we define h as a random point
from π. If |V (F )| > 1, then let u be a leaf of F , incident with a single edge
uv. The random map h′ : V (F \ u) → J is already constructed. We let
h|V \u = h′, and we define h(u) by making a Markov step from the point
h′(v). We denote the distribution of h by ηF . In formula, for W ∈ BV \u and
A ∈ B,

ηF (W ×A) =

∫

W

Pxu
(A) dηF

′

(x). (19)

We can also describe this construction slightly differently. Let (v1, . . . , vn)
be a search order of V (F ), i.e. an ordering for which every node vi different
from the “root” v1 is adjacent to exactly one earlier node vi′ (1 ≤ i′ < i).
We select h(v1) from π, and for i = 2, . . . , n we generate h(vi) by making
a Markov step from h(vi′). We call this the sequential construction of the
random map.
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Lemma 4.2 The recursive definition (19) gives a distribution ηF that is
independent of the leaf chosen. Equivalently, if constructed sequentially, it is
independent of the search order chosen.

Proof. We proceed by induction on the number of vertices in F . If
|V (F )| = 1, then clearly ηF = π, and if F = P1, then we have

ηP1(A1 × A2) = ηS1(A1 ×A2) =

∫

A1

Px1(A2) dπ(x1) = η(A1 ×A2),

which remains the same when the indices are interchanged by symmetry.
Now suppose that |V (F )| > 2, and let u, w be two leaves, with neighbors v
and z, respectively (v = z is possible). Then u and w are not adjacent, and
so F ′′ = F \ u \ w is a tree. We have

∫

∏
(Ai: i∈V \u)

Pxv
(Au) dη

F ′

(x) =

∫

∏
(Ai: i∈V \{u,w})

Pxv
(Au)Pxz

(Aw) dη
F ′′

(x). (20)

We get the same if the roles of u and w are interchanged. �

4.2 Marginals and conditioning on trees

We need some properties and associated constructions for the measure ηF ,
where F is a tree. The marginal (ηF )U on a set U ⊆ V is particularly simple
when U = V (F1) for a subtree F1, since then we can start a search order of
F with a search order of F1, which implies that

(ηF )V (F1) = ηF1. (21)

Another simple but useful fact about node sets U of subtrees is that we
can condition on any map x ∈ JU , since a random extension of it can be
constructed in a well-defined way.

In the case when U = L is the set of leaves of F , we will denote the
marginal (ηF )L by σF .

We also need conditioning on maps z ∈ JU , where U ⊆ V is a general
subset. This is not straightforward, since the measure of a singleton z ac-
cording to the marginal α := (ηF )U is typically zero. However, we can use
disintegration: Using the marginal α = (ηF )U , Proposition 2.1 implies that
there is a measurable family Θ = ΘF,U = (θFz : z ∈ JU) of distributions on
BV \U such that ηF = α[Θ], or explicitly

∫

A

θFz (B) dα(z) = ηF (A× B) (22)
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for all A ∈ JV \U and B ∈ JU . It will be convenient to define ΘS0,∅ (recall
that S0 is the tree with a single node, no leaves) by θ∅ = π for the empty
sequence ∅.

We can (informally) think of θz as the distribution of a random copy of
F , conditional on the set U being mapped by z. Note, however, that θz
is determined only up to an α-nullset of mappings z. This fact (and that
θz is only implicitly defined) make this construction useless without some
smoothness condition on η.

It is easy to extend the definition of ηF to forests F , by taking the product
measure over the connected components. This way we have a measure ηF [S]

for every S ⊆ V (F ). This family of measures, however, does not have the
decreasing property: for example, the marginal of ηF on the set L of leaves
is not necessarily absolutely continuous with respect to πL. In the next
subsection we introduce properties of the Markov chain that fixes this (and
will play a crucial role for more general graphs as well.)

4.3 Looseness

We start with one of our main definitions.

Definition 4.3 We say that the tree F is loose in the Markov space M =
(J,B, η), if σF is absolutely continuous with respect to πL(F ). In this case we
can define the Radon–Nikodym derivative

sF (z) =
dσF

dπL
(z) (23)

(determined for πL-almost all z ∈ JL).

For the tree F = S0 with a single node u, we define sF (z0) = 1 for the
empty sequence z0. The edge F = S1 (with one endpoint in L) is loose in
every Markov space, since σF = π, and so sF (z) ≡ 1. The edge F = P1

(with both endpoints in L) is loose in η if and only if η is induced by some
(possibly unbounded) graphon W ; we have then sP1(x1, x2) = W (x1, x2). If
η is induced by a graphon, then every tree is loose in η (cf. Section 5.3).

If sF exists, then

∫

JL

sF (z) dπL(z) = σF (JL) = ηF (JV ) = 1, (24)

and hence sF (z) is finite for πL-almost all z.
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If F is loose in M, then we can disintegrate ηF with respect to πL, to get
a measurable family ΨF = (ψF

z : z ∈ JL) of measures on BM(F ) such that

πL[ΨF ] = ηF . (25)

It is easy to see that these measures relate to those obtained by disintegrating
with respect to σF by the equation

ψF
z = sF (z)θFz . (26)

We note that the measures ψF
z are finite for almost all z, but they are not

probability measures in general. In fact,

ψF
z (J

M(F )) = sF (z)θFz (J
M(F )) = sF (z). (27)

The measures ψF
z are not necessarily absolutely continuous with respect to

πM or ηF\L, but we can state the following simple lemma:

Lemma 4.4 If F is loose in η, then for every set B ∈ BM with ηF\L(B) = 0,
we have ψF

z (B) = 0 for πL-almost all z ∈ JL.

Proof. Indeed, ηF\L(B) = 0 implies that ηF (A×B) = 0 for every A ∈ BL

(just start a search order of F with M(F )). In particular

∫

JL

ψF
z (B) dπL(z) = ηF (JL × B) = 0,

thus ψF
z (B) = 0 for πL-almost all z ∈ JL. �

The property of looseness is not inherited by subtrees; in fact, for the two
most important special trees, monotonicity goes in different directions. It is
easy to see that if the star Sk (k ≥ 2) is loose in η, then so is Sj for j < k.
On the other hand, if a path Pk (k ≥ 1) is loose in η, then so is Pj for j > k.

Theorem 4.5 Let (I,A, η) be a Markov space, let F be a tree, let F1 be a
branch of F , and let F2 be obtained from F by removing this branch. If both
trees F1 and F2 are loose in η, then so is F .

Proof. Let F1 be attached at u, and let e be the edge of F1 incident with
u. Let Li = L ∩ V (Fi), then L(F1) = L1 ∪ {u}, and L(F2) is either L2 or
L2∪{u}. Let F ′ = F \e, then F ′ is a forest with two components F ′

1 = F1 \u
and F2. Let τ = π × (σF ′

1)L1 , which is a distribution on JL(F1), where the
first factor corresponds to u.
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Let λx denote the marginal of ηF2 on L2 conditioned on u 7→ x, and let
Λ = (λx : x ∈ J). A random map from λx can be generated by using a
search order of F2 starting with u. We can also denote λx by λz for z ∈ JL(F1),
simply ignoring the coordinates other than zu. Then

σF = σF1[Λ] and (σF ′

)L = τ [Λ].

By Lemma 9.3, we have σF1 ≪ τ , and hence by Lemma 9.2,

σF = σF1[Λ] ≪ τ [Λ] = (σF ′

)L. (28)

Clearly ηF
′
= ηF

′
1 × ηF2. Using that (ηF

′
1)L1 = (ηF1)L1 , we have

(σF ′

)L = (ηF
′

)L = (ηF
′
1 × ηF2)L = (ηF

′
1)L1 × (ηF2)L2 = (ηF1)L1 × (ηF2)L2

= (σF1)L1 × (σF2)L2 .

By hypothesis, σFi ≪ πL(Fi) and hence (σFi)Li ≪ πLi . This implies that
(σF ′

)L ≪ πL, and combined with (28), we are done. �

The notion of k-looseness defined in the Introduction is the special case
of looseness of the tree F = Sk (the star with k leaves). We have σSk = σk;
note that σ1 = π. For every k, σk is a measure on k-tuples of points of J
(ordered, but σk is invariant under permuting the nodes). If η is k-loose,
then we can define the function

sk(x1, . . . , xk) = sηk(x1, . . . , xk) =
dσk
dπk

(x1, . . . , xk). (29)

Also recall that η is (k, p)-loose, if the function sk is not only in L1(πk) (which
follows by the definition) but in Lp(πk).

With this notion, we have the following corollary to Theorem 4.5.

Corollary 4.6 For any k ≥ 2 and tree F , if the maximum degree satisfies
2 ≤ ∆(F ) ≤ k, then F is loose in every k-loose Markov space.

Proof. The proof is by induction on the size of F . As previously mentioned,
Pℓ is 2-loose for all ℓ ≥ 2. Also, note that any tree F with maximum degree
between 2 and k is either a star (and thus loose by definition), a path of length
≥ 2, or we can split off a branch F1 such that both it and the remainder
F2 = F \ F1 have at least 3 vertices, in which case we are done by induction
and Theorem 4.5. �

Looseness in bi-Markov spaces. We don’t define looseness of a general
tree for bi-Markov spaces, we define k-looseness only. Let M = (I, J,A,B, η)
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be a bi-Markov space, and let (Px : x ∈ I) be the disintegration of η defined
in (12). Select a point u ∈ I from πI , and select k independent points
x1, . . . , xk ∈ J from the distribution Pu. We say that M is k-loose from I, if
the joint distribution σI,k of (x1, . . . , xk) is absolutely continuous with respect
to πk

J . If this is the case, we can define the Radon–Nikodym derivative

sk,I(x1, . . . , xk) =
dσI,k
dπk

J

(x1, . . . , xk). (30)

We define k-looseness from J analogously. We also define (k, p)-looseness
from I and from J analogously. (Note that k-looseness from I does not
imply k-looseness from J in general.)

5 Random mapping by tree decomposition

5.1 Sequential tree decomposition

A sequential tree decomposition2 of a graph G is a sequence (F1, . . . , Fm) of
edge-disjoint trees, so that G =

⋃
i Fi, and V (Fi)∩V (F1∪ · · · ∪Fi−1) = Zi is

the set of leaves of Fi, for i = 1, . . . , m. In particular, F1 is a singleton tree.
Let us list some special constructions of sequential tree decompositions.

Edge decomposition. A trivial construction is to start with singleton
trees for each node, and continue with attaching P1’s to get the edges.

Star decomposition. A less trivial decomposition is the following. Let
V = (v1, . . . , vn) be any ordering of V . For each node i, we construct the star
Fi centered at i, with edges connecting i to earlier nodes. This decomposition
will be particularly well-behaved ifG is bipartite, and the ordering starts with
singleton trees for the nodes in one bipartition class, and continues with the
full stars of the nodes in the other class.

Subdivision decomposition. Another useful example is obtained when
G is a subdivision of a graph H with any number of new nodes on each edge.
The sequence starts with the nodes in U = V (H) as singleton trees, and then
it continues with the paths replacing the original edges (in any order).

Double star decomposition. Select an edge ij in a bipartite graph G;
then ij and the edges adjacent to it form a tree Fij (a double star). The
graph G arises from G′ = G \ {i, j} by attaching the tree Fij. Continuing
this with G′ instead of G, we get a sequential tree-decomposition of G (in
backwards order).

2Not to be confused with “tree decomposition” in the theory of graph minors.
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Open ear decomposition. An ear decomposition into paths is a further
example (this will not concern us here).

5.2 Sequential construction of measures

Let M = (J,B, η) be a Markov space, and let F = (F1, . . . , Fm) be a sequen-
tial tree decomposition of the graph G. We construct a random mapping
x : V → J as follows. We select x(F1) from distribution π. Assuming that
the nodes in F1 ∪ · · ·∪Fi−1 have been mapped (i ≤ m), we choose the image
of M(Fi) from the conditional distribution θFi

x(L(Fi))
(defined in Section 4.2).

The distribution of this random map will be denoted by ρF .
There are two major problems with this construction:

— First, the disintegration θFi
z is determined only up to a set of σFi-

measure zero, and there is no guarantee that the construction will not pro-
duce an image of L(Fi) that falls in a zero-set of σFi with positive probability.
As a trivial example, an edge decomposition has this problem if η is not ab-
solutely continuous with respect to π × π.

— Second, even if this does not happen, the distribution we construct
may depend on the specific decomposition into trees. This problem actually
occurs even in the case of the star decomposition of bipartite graphs; see
Example 3.1. One of our main results (Theorem 1.2) says that in a sense
these are the only bad examples.

Both problems can be handled by making an appropriate looseness as-
sumption about η and sparseness assumption about G. To describe these
remedies, suppose that a graph G = (V,E) has a sequential tree decomposi-
tion F = (F1, . . . , Fm) such that every tree Fi is loose in M. Set Li = L(Fi)
and Mi =M(Fi). Define the functions sFi by (23) and let

fF(x) =
m∏

i=1

sFi(xLi
). (31)

Let ρ = ρF be the distribution on BV constructed above, and define the
measure

ηF = fF · ρF . (32)

It is clear from this definition that ηF is sigma-finite.
It will be useful to express this definition in a recursive way. The sequence

F ′ = (F1, . . . , Fm−1) is a sequential tree decomposition of the graph G′ =
(V ′, E ′) = F1∪ · · ·∪Fm−1. We use the measurable family ΨFm = (ψFm

z : z ∈
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JLm) defined in (25). With some abuse of notation, sometimes it is useful to
consider Ψm as indexed by vectors z ∈ JV ′

(nodes in V ′ \ Lm considered as
dummies). Then by definition

πLm[ΨFm ] = ηFm, (33)

and it is easy to check that

ηF = ηF ′ [ΨFm]. (34)

We can use (33) and (34) as a recursive definition of ηF . We also define the
“density of G in η” as

tF(G, η) = ηF(J
V ) =

∫

JV

k∏

i=1

sFi(xLi
) dπJ(x). (35)

Let us note that (34) implies that

(ηF)
V ′ ≪ ηF ′ . (36)

To address the first problem described above, let us note the following.
Assume that ηF ′ is already given. Note that the measures ψFm

z are determined
by (33) up to a set of indices z ∈ JLm of πLm-measure 0. If a set Z ⊂ JLm

satisfies πLm(Z) = 0 but (ηF ′)(Z×JV ′\Lm) = (ηF ′)Lm(Z) > 0, then changing
ΨFm for these indices z ∈ Z will change the right hand side of (34), and
we are in trouble. So for the recursive construction to work, we need that
(ηF ′)Lm ≪ πLm .

Definition 5.1 Let us say that the sequential tree decomposition F =
(F1, . . . , Fm) is smooth in M, if (η(F1,...,Fi−1))

Li ≪ πLi for i = 1, . . . , m.

We are going to show that star-decompositions are smooth in many
triangle-free graphs, and all tree decompositions are smooth in graphons.

Our main special case will be star-decompositions. Let G be a graph
with maximum degree at most k. Let Fp = (F1, . . . , Fn) be a sequential star
decomposition of G, determined by an ordering p = (v1, . . . , vn) of the nodes,
where vi is the center of Fi. We set ηp = ηFp

.

5.3 Unbounded graphons

Our first application of the general scheme described above is the case of
Markov spaces M = (J,B, η) with the property that η is absolutely con-
tinuous with respect to π × π. It is convenient to represent such Markov
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spaces by the Radom-Nikodym derivative W = dη/d(π× π), which is a non-
negative, symmetric measurable function W : J × J → R with the property
that

∫
x
W (x, y)dπ = 1 holds for every y ∈ J . In particular we have that

the L1 norm of W is 1. We call measurable functions with this property 1-
regular graphons. Note that every 1-regular graphon W uniquely determines
a Markov space MW = (J,B, ηW ) where

ηW = W · π2 (37)

In the rest of this section we are going to omit the subscript W wherever no
confusion can arise.

The 1-regularity of the graphon implies that the transition probabilities
for this Markov space are given by

Px(A) =

∫

A

W (x, y) dπ(y). (38)

Lemma 5.2 Every tree is loose in η. In other words, the measure η is k-
loose for every natural number k.

Proof. The identity ηF =W F ·πV (F ) is easily checked for trees F = (V,E),
using (38). This implies that ηF ≪ πV , and hence

σF = (ηF )L(F ) ≪ (πV )L(F ) = πL(F ).

Thus F is loose in η, proving the lemma. �

A convenient special property of such Markov spaces comes from the
fact that the function W can be directly used to produce homomorphism
measures for every finite graph G:

Theorem 5.3 Let W be a 1-regular graphon, and let F = (F1, . . . , Fm) be
a sequential tree-decomposition of a graph G = (V,E). Then F is smooth in
η, and

ηF =WG · πV . (39)

In particular, it follows that ηF is independent of the decomposition and
ηG = WG · πV is well-defined.

Proof. We express the measures in the construction of ηF as integrals of
W . First, let F = (V,E) be a tree. It is easy to see that, by the definition
of ηF and by (38), that

ηF =W F · πV . (40)
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This implies that for A ∈ BL,

σF (A) = ηF (A× JM) =

∫

A×JM

W F dπV (41)

and for B ∈ BM and z ∈ JL,

ψF
z (B) =

∫

B

W F (z, y) dπM(y). (42)

Now let F = (F1, . . . , Fm) be a sequential tree-decomposition of a graph
G = (V,E). We are going to prove by induction onm that this decomposition
satisfies (39). This will imply that the decomposition is smooth.

Let F ′ = (F1, . . . , Fm−1) and G
′ = (V ′, E ′) = F1 ∪ · · · ∪ Fm−1. To prove

that G satisfies (39), we use the recurrence (34), along with (39) for G′ and
(42). Let A ∈ BV ′

and B ∈ BMm , then

ηF(A× B) =

∫

A



∫

B

W Fm(zLm
, y) dπMm(y)WG′

(z)


 dπV ′

(z, w)

=

∫

A×B

WG dπV

(here w is the vector of dummy variables in JV ′\Lm). This proves (39).
To prove that F is smooth, it suffices to note that (39) implies that

ηF ′ ≪ πV ′
, and hence (ηF ′)L(Fm) ≪ πL(Fm). This holds for all other prefixes

of F by the same argument. �

A direct application of Theorem 5.3 implies that the formalism of this
paper is a consistent extension of earlier results in bounded graphon theory.

Corollary 5.4 Let W be a 1-regular graphon and let G = (V,E) be a finite
graph. Then

t(G, η) = t(G,W ) = ηG(JV ) =

∫

JV

WG dπV .

Note, however, that this value may be infinite (see Example 5.8).
If W has stronger properties, then we can strengthen the k-looseness

property of graphons to (k, p)-looseness.
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Lemma 5.5 Let k, p be natural numbers. For x ∈ J let f(x) denote
the Lp-norm of the function y 7→ W (x, y). If f ∈ Lk(π), that is,∫
J

(
∫
J

W (x, y)p dπ(y))k/p dπ(x) <∞, then η is (k, p)-loose.

Proof. For x ∈ J let Hx : Jk → R denote the function defined by
Hx(y1, y2, . . . , yk) := W (x, y1)W (x, y2) . . .W (x, yk). It is easy to see that the
Lp-norm of Hx on (Jk, πk) is equal to f(x)k. Thus by the convexity of Lp-
norm we have that the Lp-norm of H :=

∫
J
Hx dπ(x) is at most

∫
x
f(x)k dπ

and so the condition of the lemma implies that the Lp-norm of H is finite.
This implies that η is (k, p)-loose. �

This lemma has two immediate corollaries.

Corollary 5.6 Let W be a 1-regular Lp-graphon for some natural number
p > 1. Then η is (p, p)-loose.

Corollary 5.7 Let W be a 1-regular graphon such that for some c ∈ R we
have that

∫
y
W (x, y)p dπ ≤ c holds for every x. Then W is (k, p)-loose for

every natural number k.

Our next two examples show that 1-regular graphons can be rather wild
objects in terms of spectral properties and subgraph densities.

Example 5.8 LetW : [0, 1]2 → R
2 be the function whose value is defined by

W (x, y) = 2k whenever x, y ∈ Ik = (2−k, 2−(k−1)), and 0 otherwise. We define
π as the Lebesgue measure on [0, 1]. It is clear that for every natural number
k ≥ 1, the indicator function of Ik is an eigenvector of W with eigenvalue
1. Thus the eigenspace of W with eigenvalue 1 is infinite dimensional. This
implies that W is not a compact operator. Direct calculation shows that
if a connected graph G = (V,E) is not a tree, then t(G,W ) = ∞. More
precisely, since G is connected, WG = 0 unless all nodes are mapped into the
same interval Ik. Hence

t(G,W ) =
∞∑

k=1

∫

IV
k

WG(x) dx =
∞∑

k=1

2k(|E(G)|−|V (G)|),

which is equal to 1 if |E(G)| = |V (G)|−1 (i.e., G is a tree) and ∞ otherwise.

Note that in the preceding example the graphon is an L1 function, whereas
any graphon in L2 would at least have finite cycle densities (as the max degree
is 2). Changing the parameters we can obtain a family of examples in Lp

(1 ≤ p < 2) that get arbitrarily close to being Hilbert-Schmidt kernels, yet
still have infinite densities for all non-trees.
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Example 5.9 Let ε ∈ [0, 1). Let (an)n∈N be a sequence of positive reals
such that

∑
n∈N an = 1 and

∑
n∈N a

1−ε
n < ∞. Let (Jn : n = 1, 2, . . . ) be a

measurable partition of J with π(Jn) = an. Define the unbounded kernel W
by

W (x, y) =

{
1/an, if x, y ∈ Jn,

0, otherwise.

It is easy to see that W is 1-regular, and

‖W‖1+ε
1+ε =

∑

n∈mN

a2n/a
1+ε
n =

∑

n∈N

a1−ε
n <∞.

On the other hand, the density of any connected graph G in W can be
obtained as the sum of the densities in each of the diagonal blocks, i.e.,

t(G,W ) =
∑

n∈N

a|V (G)|
n /a|E(G)|

n .

The sum is equal to 1 for trees, and infinite for all other graphs G.

Although the above construction with an infinite number of independent
blocks seems to suggest that the key to infinite densities is non-compactness,
this is not quite the case. Indeed, the next example shows that compactness of
the operator defined byW is by itself not enough to guarantee that subgraph
densities behave any better.

Example 5.10 Let f : I = [−1, 1] → R be a function with the following
properties: f ≥ 0; f(−x) = f(x) for all x ∈ I;

∫
I
f(x) dx = 1; f is convex

and monotone decreasing for x > 0. Define a graphon by

W (x, y) = f(x− y) (x, y ∈ I),

where f is extended periodically modulo 2. Clearly W is symmetric and
1-regular. As a kernel operator, W is positive semidefinite and compact as
L2(µ) → L2(µ). In the special case

f(x) =
1

|x|(2− ln(|x|))2 ,

no operator power of W has finite trace. So t(Cn,W ) = ∞ for all n (see
Appendix 9.4 for details).
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5.4 Triangle-free graphs

In this section we concentrate on sequential star decompositions. We need a
simple combinatorial lemma.

Lemma 5.11 Let F : SV → X, where SV is the set of permutations of
the node set of a triangle-free graph G = (V,E), and X is any set. Assume
that F has the following two invariance properties for every permutation
p = (v1, . . . , vn):

(i) If vkvk+1 /∈ E, then interchanging vk and vk+1 in p does not change
F (p);

(ii) If every node in A = {v1, . . . , va} is connected to every node in B =
{va+1, . . . , va+b}, then interchanging the blocks A and B in p does not change
F (p).

Then F is constant.

Note that in (ii), A and B must be independent node sets as G is triangle-
free, so A ∪B induces a complete bipartite graph.

Proof. We use induction on n. For a fixed v ∈ V , the function
Fv(x1, . . . , xn−1) = F (x1, . . . , xn−1, v) satisfies the conditions in the lemma,
so by the induction hypothesis, it is constant. This means that there is a
function f : V → X such that F (x1, . . . , xn) = f(xn).

Let u, v ∈ V be nonadjacent. Considering any permutation
(v1, . . . , vn−2, u, v), we see that

f(v) = F (v1, . . . , vn−2, u, v) = F (v1, . . . , vn−2, v, u) = f(u).

Now let u, v ∈ V be adjacent. If there is a path in the complement G
connecting u and v, then applying the previous observation repeatedly we
get that f(u) = f(v). If there is no such path, then there is a partition
V = A ∪ B so that u ∈ A, v ∈ B, and every edge between A and B is
present. Since G is triangle-free, it follows that G is a complete bipartite
graph. Let A = {u1, . . . , ua = u} and B = {v1, . . . , vb = v}, then

f(v) = F (u1, . . . , ua, v1, . . . , vb) = F (v1, . . . , vb, u1, . . . , ua) = f(u).

So f is constant, and then so is F . �

Let G be a triangle-free graph with maximum degree k, and let M =
(J,B, η). For a sequential star decomposition F = (F1, . . . , Fn) of G, deter-
mined by an ordering p = (v1, . . . , vn) of the nodes, let ηp = ηF denote the
measure on JV defined by (34). In general, ηp will depend on the ordering
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p and also on the measure families ΨFi = (ψFi
z : z ∈ JL(Fi)), which are

determined only up to a set of indices z ∈ JL(Fi) of πL(Fi)-measure zero.
Now we are ready to prove Theorem 1.2.

Theorem 1.2 Let G = (V,E) be a triangle-free graph, and let M = (J,B, η)
be a Markov space such that every complete bipartite subgraph Ka,b of G is
well-measured in M. Then G is well-measured in M.

Proof of Theorem 1.2 We prove the theorem by induction on n. The
condition is clearly inherited by induced subgraphs of G, so we may assume
that every proper induced subgraph of G is well-measured in M.

First we prove that for every ordering p = (v1, . . . , vn) of the nodes of
G, the measure ηp does not depend on the choice of the measure families
ΨFi. We know by induction that G′ = G \ vn is well-measured in M, so ηG

′

does not depend on these choices. Consider the measures
(
ψz : z ∈ JN(vn)

)
.

Two different choices of the measures ψz can differ on a set Z0 ∈ BLn of
maps z with πLn(Z0) = 0. By the definition of well-measurability, we have
(ηF ′)Ln ≪ ηG[Ln], where F ′ = (F1, . . . , Fn−1). Since G is triangle-free, Ln is
an independent set of nodes, so ηG[Ln] = πLn and hence (ηF ′)Ln ≪ πLn. Thus
ηF is uniquely determined by (34).

To prove that for any two orderings p and q of the nodes of G, we have
ηp = ηq, we use Lemma 5.11. For a permutation p ∈ SV , let F (p) = ηp.
Condition (i) is trivial, and condition (ii) is also easy: if the first a+ b nodes
induce a complete bipartite subgraph, then the sequential construction up
to the first a + b nodes results in the same measure by the hypothesis of
the theorem, and the completion of the construction does not depend on the
order of these a + b nodes.

So the sequential construction provides a measure ηG independent of the
ordering. Recall that the measures ηG[S], where S ⊂ V , are also given by
induction. This family of measures is trivially normalized and, as remarked
before, sigma-finite. The decreasing property is easy: we can start the se-
quential construction by any given set S, and the (ηG)S ≪ ηG[S] follows by
repeated application of (36). To prove the Markov property, let V = U ∪ T
such that there is no edge between U \ S and T \ S where S = U ∩ T . Con-
sider an ordering p of V starting with S. Recall (34), describing the recursive
definition of ηG. It follows that the disintegration (µU,V,z : z ∈ JU ) of ηG[V ]

by ηG[U ] has the property that µU,V,z depends only on z|S, and we have a
similar property with U and T interchanged. Hence for every x ∈ JS,

µS,V,x = µS,U,x × µS,T,x,

proving that the measure family (ηG[S] : S ⊆ V ) is Markovian. �
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Remark 5.12 Note that the proof above only uses that the sequential con-
struction of ηKa,b gives the same measure if we start with one bipartition class
or the other. It is not hard to see, along the lines of the proof of Lemma 5.11,
that this is equivalent with Ka,b being well-measured. We will return to the
question of which complete bipartite graphs are well-measured in a Markov
space in Section 6.5.

Remark 5.13 As we have mentioned in the Introduction, if G has girth at
least 5, then the only complete bipartite subgraphs of G are stars, and the
condition means that M is k-loose, where k is the maximum degree of G.
Also note that the condition on G is inherited by all subgraphs of G.

The condition that all degrees are bounded by k could be relaxed: the
construction would work for all graphs that are k-degenerate (i.e., repeatedly
deleting nodes with degree at most k, the whole graph can be eliminated).
For k = 1 (which imposes no condition on the Markov space), we get the
measure ηF for all trees. (Recall, however, that this does not imply that
trees are well-measured: the decreasing property fails.) The extension of the
considerations in Section 4 is left for further study.

An important example of this more general setup would be the follow-
ing. There are Markov spaces η whose k-th power ηk (as introduced along
with the adjacency operator) is induced by a bounded graphon W , but they
themselves are not. For example, the orthogonality space in any dimension
has this property. If η has this property and G′ is a k-subdivision of a graph
G then G′ is 2-degenerate. Working with subdivision decompositions of G′,
we can construct ηG

′
, which will be finite. So we see that ηG exists and

t(G, η) < ∞ holds for such Markov spaces and for a large set of graphs G
with no degree bound.

Remark 5.14 Note that the bi-Markov space analogue of Theorem 1.2 also
holds and the proof is essentially the same mutatis mutandis.

5.5 Bigraphs and bi-Markov spaces

The sequential construction of ηG takes a particularly simple form when G
is bipartite. Let G = (U,W,E) be a bigraph and M = (I, J,A,B, η), a
bi-Markov space k-loose from J . Our considerations apply, in particular, to
k-loose Markov spaces.

To define ηG, we can use an ordering of the nodes that starts with U . Then
the nodes in U will be mapped onto independent random points of I from
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distribution πI . Furthermore, the points of W will be mapped conditionally
independently given the image of U . For this to make sense, it suffices to
require that all nodes in W have degree at most k.

For every finite sequence (x1, . . . , xd) of points d ≥ 1 of I, we have a
measurable family of measures Ψd = (ψx : x ∈ Id) on B defined by the
disintegration

ηSd = πd
I [Ψd]. (43)

We can think of ψx informally as the measure on the common neighbors of
x = (x1, . . . , xd).

For a node w ∈ W , let Fw denote the star formed by the edges incident
with w. We define the product measure and the corresponding measurable
family by

ψ̂x =
∏

w∈W

ψxN(w)
and Ψ̂ = (ψ̂x : x ∈ IU).

Then we define

ηG = πU
I [Ψ̂], (44)

or explicitly,

ηG(A×B) =

∫

A

ψ̂xN(w)
(B) dπU

I (x) (A ∈ AU , B ∈ BW ). (45)

This measure ηG is well-defined, since the measures ψxN(w)
can be changed

on a πI-nullset only. Note that the definition is more general than our con-
struction in Section 5.4, since no assumption is necessary for the degrees of
nodes in U .

Formula (44) makes sense when the disintegration ΨFw in (25) can be

defined. By Proposition 2.1, this happens if σFw ≪ π
N(w)
I , that is, η is k-

loose from J , and all degrees of G in W are bounded by k, for some k ≥ 1. If
this holds, then the density function sw = sw,J = sFw is well-defined in (29),
and

ψxN(w)
(JW ) = sw(xN(w)) = sdeg(w)(xN(w)).

In particular, we obtain the following formula for the density of the bigraph
G in M:

t(G, η) = ηG(IU × JW ) =

∫

IU

∏

w∈W

sdeg(w)(xN(w)) dπ
U
I (x). (46)

37



Formula (44) does not define ηG if G0 is not a bigraph but only a bipartite
graph (so its bipartition classes are not fixed). It may even happen that only
one of these measures is well-defined (for example, if the maximum degree in
U is larger than k).

But assume that both of them are well-defined; is then ηG = (η∗)G
∗
or

at least t(G∗, η∗) = t(G, η)? By Theorem 5.3, this is the case when η is
defined by a graphon, and by the bi-Markov space analogue of Theorem
1.2 (see Remark 5.14), this also holds true if G contains no quadrilaterals.
Further sufficient conditions will be given below. We’ll state such a theorem
(Theorem 6.14) later. On the other hand, Example 3.1 shows that some
condition along these lines is necessary.

One of the difficulties caused by this asymmetry can be partly remedied
as follows.

Lemma 5.15 Let M = (I, J,A,B, η) be a bi-Markov space k-loose from J
and let G = (U,W,E) be a bigraph such that every vertex of W has degree
at most k in G. Then the marginal of ηG on U is absolutely continuous with
respect to πU

I . Furthermore the marginal of ηG on any node ofW is absolutely
continuous with respect to πJ .

Proof. It is clear by (45) that if πU
I (A) = 0, then ηG(A× JW ) = 0, which

implies the first assertion. Similar claim does not follow for a general B ∈ BW

from πW
J (B) = 0 (see Example 3.1); however, if B is a box B =

∏
w∈W Bw

(Bw ∈ B), then by (45) we have

ηG(A×B) =

∫

A

∏

w∈W

ψxN(w)
(Bw) dπ

U
I (x). (47)

The bi-Markov space analogue of Lemma 4.4 and the fact that M is k-loose
from J implies that if πJ(Bw) = 0 for some w ∈ W , then ψxN(w)

(Bw) = 0 for

πI-almost all xN(w), and so ηG(IU × JW\{w} × Bw) = 0. �

6 Approximation by graphons

6.1 Convergence of graphons to Markov spaces

Suppose that a sequence of graphonsWn “tends to” a Markov space (J,B, η)
in some sense. Does this imply that for graphs G satisfying suitable condi-
tions, we have t(G,Wn) → t(G, η)? We prove two results along these lines.
The first was used (implicitly) in [18]; the second will be used later in this
paper.
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Let (J,B, η) be a k-loose Markov space, and let Wn (n = 1, 2, . . . ) be a
sequence of 1-regular graphons on (J,B, π). We say that η is the k-limit of
the sequence (Wn), if

sWn

k (x) → sηk(x)

for πk-almost all x ∈ Jk, and there is a constant C = C(η, k) independent of
x and an integer n0 ≥ 1, such that

sWn

k (x) ≤ Csηk(x)

for every n ≥ n0 and πk-almost all x ∈ Jk.
We say that a (k, p)-loose Markov space (J,B, η) is the (k, p)-limit of the

sequence (W1,W2, . . . ) of graphons, if s
Wn

k → sηk in Lp(πk) (note that there
then exists a constant C > 0 such that ‖sWn

k ‖p ≤ C for every n).
We need an important analytic tool that allows us to bound products

of functions in multivariate Lp spaces, namely a special case of the general,
multivariate version of HÃ¶lder’s inequality, called Finner’s theorem ([11,
Theorem 2.1]). For the sake of self-containedness, we state this special case,
and its main corollary that will be relevant to us.

Theorem 6.1 Let (J,B, π) be a probability space, and p, n and m positive
integers. Let fk : Jn → R (1 ≤ k ≤ m) be measurable functions, where fk
depends only a set Mk of variables. Assume that every variable xi (1 ≤ i ≤
m) is contained in at most p sets Mk. Then

∫

Jn

m∏

k=1

fk dπ
n ≤

m∏

k=1

‖fk‖p. (48)

By a standard telescopic decomposition argument, this yields the follow-
ing convergence result.

Corollary 6.2 Let (J,B, π) be a probability space, and p, n and m positive
integers. Let fk, fk,ℓ : J

Mk → R (1 ≤ k ≤ m, ℓ ∈ N) be measurable functions,
where fk and fk,ℓ depend only on a set Mk of variables. Assume that every
variable xi (1 ≤ i ≤ m) is contained in at most p sets Mk. Also assume that
fk ∈ Lp(J,B, π) and

lim
ℓ→∞

‖fk,ℓ − fk‖p = 0

holds for all 1 ≤ k ≤ m and ℓ ∈ N. Then

lim
ℓ→∞

∫

Jn

m∏

k=1

fk,ℓ dπ
n =

∫

Jn

m∏

k=1

fk dπ
n. (49)
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Theorem 6.3 Let (J,B, η) be a k-loose Markov space, let Wn (n = 1, 2, . . . )
be a sequence of 1-regular graphons on (J,B) such that η is the k-limit of
(Wn). Let G = (U,W,E) be a bigraph in which deg(w) ≤ k for all w ∈ W ,
and assume that t(G, η) <∞. Then

t(G, η) = lim
n→∞

t(G,Wn).

The right hand side is invariant under interchanging the bipartition
classes ofG. Thus if, in addition to the conditions of Theorem 6.3, deg(u) ≤ k
holds for all u ∈ U , then t(G, η) = t(G∗, η).

Proof. We have

t(G, η) =

∫

JU

∏

w∈W

sηdeg(w)(xN(w)) dπ
U(x).

and

t(G,Wn) =

∫

JU

∏

w∈W

sWn

deg(w)(xN(w)) dπ
U(x).

Here
∏

w∈W

sWn

deg(w)(xN(w)) →
∏

w∈W

sηdeg(w)(xN(w))

almost everywhere, and
∏

w∈W

sWn

deg(w)(xN(w)) ≤ C |W |
∏

w∈W

sηdeg(w)(xN(w)).

Since the function on the right is integrable by the condition that t(G, η) <
∞, the theorem follows by Lebesgue’s Dominated Convergence Theorem. �

We state an analogous theorem under the stronger assumption of (k, p)-
looseness. Recall that a Markov space (J,B, η) is (k, p)-loose (k, p ∈ N),
if it is k-loose and ‖sηk‖p is finite. Quite surprisingly it will turn out that
(k, p)-looseness of Markov spaces is a symmetric notion: a Markov space
(J,B, η) is (k, p)-loose if and only if it is (p, k)-loose. (For bi-Markov spaces
this symmetry property no longer holds, however.)

Theorem 6.4 Let (J,B, η) be a (k, p)-loose Markov space, let Wn (n =
1, 2, . . . ) be a sequence of 1-regular graphons on (J,B) such that η is the (k, p)-
limit of (Wn). Let G = (U,W,E) be a bigraph, and assume that deg(u) ≤ p
for u ∈ U and deg(w) ≤ k for w ∈ W . Then

t(G, η) = lim
n→∞

t(G,Wn) <∞.
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Proof. Let W = {v1, . . . , vm}. Then

t(G, η) =

∫

JU

∏

v∈W

sηdeg(v)(xN(v)) dπ
U(x)

and

t(G,Wn) =

∫

JU

∏

v∈W

sWn

deg(v)(xN(v)) dπ
U(x).

Each variable xu (u ∈ U) occurs in at most p factors, and so Corollary 6.2
implies the theorem. �

6.2 Projection onto stepfunctions

A natural approximation of a Markov space (J,B, η) is the following. Let
P = {P1, . . . , Pn} be a finite, measurable, non-degenerate partition. For a
function f ∈ L1(π), we define

fP =
1

π(Pi)

∫

Pi

f dπ (x ∈ Pi).

We generalize this to every k-variable function h : Jk → R by

hP = hPk .

In particular, for a graphon W we have

WP(x, y) =
1

π(Pi)π(Pj)

∫

Pi×Pj

W (x, y) dπ(x) dπ(y) (x ∈ Pi, y ∈ Pj).

The linear operator EP : f 7→ fP (called a “stepping operator” in [19]) is a
bounded linear operator L1(J,A, π) → L∞(J,B, π). If we consider it as an
operator L2(J,A, π) → L2(J,B, π), then it is self-adjoint and idempotent.

One property of the stepping operator that will be important for us is
that it is contractive with respect to most “everyday” norms [19, Proposition
14.13], in particular, with respect to all Lp-norms (p ∈ [1,∞]):

‖fP‖p ≤ ‖f‖p (50)

for all f ∈ Lp(J,B, π).
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We can extend this construction to Markov spaces, where its image is a
bounded graphon W =WηP , defined by

WηP (x, y) =
η(Pi × Pj)

π(Pi)π(Pj)
(x ∈ Pi, y ∈ Pj).

The edge measure associated with this graphon is

ηP =
k∑

i,j=1

η(Pi × Pj)

π(Pi)π(Pj)
((1Pi

π)× (1Pj
π)).

Note that the marginals of ηP are π, and so WηP is 1-regular.
In terms of the adjacency operator A of the Markov space, the operator

AP associated with ηP can be expressed as the operator product AP =
EPAEP .

We will also need the stepping operator for bi-Markov spaces. Let
(I, J,A,B, η) be a bi-Markov space, and let P = {P1, . . . , Pk} and Q =
{Q1, . . . , Qm} be finite, measurable, nondegenerate partitions of (I,A, π) and
(J,B, πJ), respectively. We define the following measures on A× B:

(EPη)(S × T ) =
k∑

i=1

π(S ∩ Pi)

π(Pi)
η(Pi × T ),

and

(ηEQ)(S × T ) =

l∑

j=1

πJ (T ∩Qj)

πJ(Qj)
η(S ×Qj).

We can also partition both sigma-algebras, to obtain

(EPηEQ)(S × T ) =

k∑

i=1

l∑

j=1

π(S ∩ Pi)

π(Pi)

πJ(T ∩Qj)

πJ(Qj)
η(Pi ×Qj).

For a bi-Markov space, we also have a (non-self-adjoint) operator A, and
then the measures EPη, ηEQ and EPηEQ are associated with the (non-self-
adjoint) operators EPA, AEQ and EPAEQ, respectively. Clearly all three of
these measures have the same marginals πI and πJ as η.

Lemma 6.5 For every bi-Markov space (I, J,A,B, η) and finite, measurable,
nondegenerate partitions P and Q of I and J , respectively, the measures
EPη, ηEQ and EPηEQ are absolutely continuous with respect to πI ×πJ , with
a bounded density function.
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Proof. Checking this for EPη, let S ∈ A and T ∈ B. Then

(EPη)(S × T ) ≤
k∑

i=1

πI(S)

πI(Pi)
η(I × T ) =

( k∑

i=1

1

πI(Pi)

)
πI(S)πJ(T ),

which implies that EPη is absolutely continuous with respect to πI ×πJ , and
its density function is bounded by

∑
i 1/πI(Pi). The argument for ηEQ is

symmetric, and the result for EPηEQ follows from the previous two, the fact
that EPηEQ = (EPη)EQ and the fact that the marginals of EPη are also πI
and πJ . �

6.3 Stepfunction approximation

Let W be a bounded graphon and let (Pi)
∞
i=1 be an exhausting partition

sequence (see Subsection 2.6). The Martingale Convergence Theorem implies
that WPi

→ W almost everywhere on J2, and hence (WPi
)G → WG almost

everywhere on JV for every graph G. It is easy to check that the sequence
WG

Pi
is uniformly integrable, and hence WG

Pi
→WG in L1, which implies that

the corresponding measures also converge. In particular,

t(G,WPi
) → t(G,W ) (51)

How far does this fact extend beyond graphons? Under what conditions
onG and η does limi→∞ t(G, ηPi

) exist for every exhausting partition sequence
(Pi)

∞
i=1? Is the limit value independent of the sequence of partitions?
Recall that we say that ηG is partition approximable if ηGPi

→ ηG on boxes
for every exhausting partition sequence. Our goal in the next sections is to
establish that ηG is partition approximable for reasonably large classes of
graphs G and Markov spaces η. To motivate this goal, let us state a simple
consequence about the normalized density t∗ (see Equation (17)).

Proposition 6.6 Let (J,B, η) be a Markov space. Then there is a sequence
of simple graphs (Hi)

∞
i=1 such that

lim
i→∞

t∗(G,Hi) = t(G, η)

for every graph G such that ηG is partition approximable.

Proof. Let (Pi)
∞
i=1 be an exhausting partition sequence. For every i ≥ 1,

there is an appropriate number ci > 0 such that ciηPi
is a graphon (with val-

ues in [0, 1]), and so by dense graph limit theory, there is a sequence of graphs
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Hi,1, Hi,2, . . . such that t(G,Hi,j) → t(G, ciηPi
) = c

|E|
i t(G, ηPi

) for any G. In
particular, t(K2, Hi,j) → cit(K2, ηPi

), and hence t∗(G,Hi,j) → t(G, ηPi
). Fur-

thermore, t(G, ηPi
) → t(G, η) (i→ ∞) if ηG is partition approximable. Since

there are countably many graphs G to be considered, a standard diagonal-
ization argument completes the proof. Note that two diagonalizations should
happen: one to get rid of the partitions Pi and one to make a single sequence
for every G. �

6.4 Weakly norming graphs

A graph G is called weakly norming if

‖W‖G := t(G, |W |)1/|E(G)|

is a norm on symmetric bounded measurable functions W : I2 → R. This
property was introduced by Hatami [14]. It is easy to see that all weakly
norming graphs are bipartite; main examples are even cycles, hypercubes
and complete bipartite graphs.

Since the operator W 7→ WP is contractive with respect to a large class
of norms, including all norms defined by graphs (see e.g. Proposition 14.13
in [19]), weakly norming graphs satisfy the inequality

t(G,WP) ≤ t(G,W ) (52)

for every graphon W and every finite, measurable, non-degenerate partition
P. This property is closely related to the well-known Sidorenko-Simonovits
conjecture, which says that t∗(G,H) ≥ 1 for every bipartite graph G and
every graph H . This is equivalent to saying that t∗(G,W ) ≥ 1 for every
bipartite graph G and every graphon W . For the trivial partition P0 = {J}
we have t(G,WP0) = t(K2,W )|E(G)|, and hence every graph G satisfying (52)
satisfies the Sidorenko conjecture.

Property (52) of a graph G, required for every graphon W and every
finite, measurable, non-degenerate partition P, was introduced in [15], and
called the step Sidorenko property. It was proved in [9] that this property is
equivalent to being weakly norming.

For us, however, the inequality (52) is relevant only for 1-regular
graphons. Then it holds for more graphs besides weakly norming ones, for
example, for all trees. Therefore we name it the weak step Sidorenko property.
It is easy to see that only bipartite graphs can have this property. As far as
we can see, it might even hold for all bipartite graphs. If the graph G has
the weak step Sidorenko property, then the convergence in (51) is monotone.
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Remark 6.7 These considerations motivate the following version of density,
which we call partition-density:

tpart(G, η) = sup
P
t(G, ηP), (53)

where (J,B, η) is a Markov space, and P ranges over all finite, measurable,
non-degenerate partitions of J . Partition density may be different from den-
sity even for ordinary graphs in place of η. For example, if H is bipartite and
G is not, and H has at least one edge, then for the trivial (indiscrete) parti-
tion P, we have (ηH)P = c(π × π), and so t(G,H) = 0 but tpart(G, ηH) > 0.

On the other hand, the monotonicity from (52) and the Martingale Con-
vergence Theorem applied to (WG)Pi

along any exhaustive partition sequence
(Pi)

∞
i=1 implies that tpart(G,W ) = t(G,W ) for every weakly norming graph G

and every graphon W . It could be interesting to explore further properties
of the partition-density.

Remark 6.8 The weakly norming property, the step Sidorenko property and
its weak version can be defined, mutatis mutandis, for bi-Markov spaces, and
the above considerations remain valid. In particular, even cycles, complete
bigraphs and hypercubes remain weakly norming, and hence have the step
Sidorenko property.

6.5 Partition approximation of (k, p)-loose spaces

While our main goal is to prove results about Markov spaces, we study (k, p)-
looseness in bi-Markov spaces first. We address the issues of approximability
by step functions. It turns out that for (k, p)-loose Markov spaces and bi-
Markov spaces, ηG is partition approximable for a large class of (bipartite
and bi-) graphs.

We start with discussing the total measure of ηG. For a (k, p)-loose
Markov space, we can define the quantity

‖η‖k,p := ‖sηk‖1/kp . (54)

For a bi-Markov space (k, p)-loose from (say) I, we define similarly

‖η‖I,k,p := ‖sηI,k‖1/kp . (55)

If p ≥ 2 and η is not (k, p)-loose, then we define ‖η‖k,p to be infinite. If
k = 1, then sη1 = dσ1/dπ = 1, so ‖η‖k,p = 1 by (54). When p = 1, it may
happen that η is not k-loose and thus sηk is not defined. However, the L1

norm of a Radon–Nikodym derivative being the same as the total measure,

45



we can extend the above definition to also encompass the non-k-loose cases
and define ‖η‖k,1 := σk(J

k)1/k = 1 for any η.
Note that

‖η‖k,p = ‖sηk‖1/kp = t(Kk,p, η)
1/(kp) (56)

by (46). We will show that for Markov spaces ‖η‖k,p = ‖η‖p,k, or in other
words, t(Kk,p, η) = t(Kp,k, η).

As cited above, Hatami [14] proved that

‖W‖k,p = t(Kk,p,W )1/(kp) (57)

is a norm on (not necessarily symmetric) bounded measurable functions
W : I × J → R. Clearly t(Kk,p,W ) = t(Kp,k,W

∗) holds for every bounded
measurable function W , and so

‖W‖k,p = ‖W ∗‖p,k. (58)

In particular, ‖W‖k,p = ‖W‖p,k if I = J and W is symmetric. It is easy to
check that if (J,B, ηW ) is a Markov space defined by a 1-regular graphon W ,
then

‖ηW‖k,p = ‖W‖k,p.
Formally the same equation holds for a bi-Markov space defined by a 1-
regular bigraphon.

Consider a bi-Markov space (I, J,A,B, η). Let P andQ be finite, measur-
able, non-degenerate partitions of I and J , respectively. By Lemma 6.5, the
measures EPη and η∗EP are represented by bounded measurable functions
W1, W2, where trivially W ∗

1 = W2. Hence (58) implies that

‖EPη‖k,p = ‖W1‖k,p = ‖W2‖p,k = ‖η∗EP‖p,k. (59)

Similarly we have ‖ηEQ‖k,p = ‖EQη
∗‖p,k. For an exhausting partition se-

quence, in the limit, we have more:

Lemma 6.9 Let (I, J,A,B, η) be a bi-Markov space, and let (Pi)
∞
i=1 and

(Qj)
∞
j=1 be exhausting partition sequences of I and J , respectively. Then

lim
i→∞

‖ηEQi
‖k,p = lim

i→∞
‖EPi

ηEQi
‖k,p = lim

i→∞
‖EPi

η‖k,p = ‖η‖k,p.

Proof. We start with the first equality. Since Kk,p is weakly norming, it
follows by the step Sidorenko property (52) that both limits exist, and also
that ‖ηEQi

‖k,p ≥ ‖EPi
ηEQi

‖k,p. Hence we obtain that

lim
i→∞

‖ηEQi
‖k,p ≥ lim

i→∞
‖EPi

ηEQi
‖k,p.
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Let j ∈ N be an arbitrary fixed number. Since W = ηEQj
is a

bounded measurable function, the uniformly bounded measurable functions
EPi

ηEQj
= EPi

W converge to W in L1 as i→ ∞, and thus by (57) we get

lim
i→∞

‖EPi
ηEQj

‖k,p = ‖ηEQj
‖k,p.

Again by the step Sidorenko property (52) we have that for i > j,

‖EPi
ηEQi

‖k,p ≥ ‖EPi
ηEQi

EQj
‖k,p = ‖EPi

ηEQj
‖k,p

and so by taking limit on both sides,

lim
i→∞

‖EPi
ηEQi

‖k,p ≥ ‖ηEQj
‖k,p.

This holds for every j, which proves the first equality. The second follows by
interchanging the coordinates.

Finally, we prove that

lim
j→∞

‖ηEQj
‖k,p = ‖η‖k,p.

If p = 1 then the statement is trivial since all terms are 1. Assume that
p > 1. We have two cases. If η is k-loose from I, then sηI,k is in L1(Jk, πk

J),
and so

s
ηEQj

I,k = E(sηI,k|Qk
j ).

By Lemma 9.6, we have that (Qk
j )

∞
i=1 is an exhausting partition sequence for

πk
J and so the (potentially infinite) Lp-norm of E(sηI,k|Qk

j ) converges to the
Lp-norm of sηI,k as j → ∞.

Assume now that η is not k-loose from I. We have that σI,k is not
absolutely continuous with respect to πk

J and so there is a measurable set
U ⊂ Jk such that πk

J (U) = 0 but c = σI,k(U) > 0. By Lemma 9.6, for every
ǫ > 0 and large enough j, there is a set U ′ that is the union of Qk

j partition
sets such that πk

J(U
′) ≤ ǫ and σI,k(U

′) > c− ǫ. For such a j,
∫

U ′

s
ηEQj

I,k dπk
J =

∫

U ′

sηI,k dπ
k
J = σI,k(U

′).

Hölder’s inequality implies that

∫

U ′

(
s
ηEQj

I,k

)p

dπk
J ≥

(∫
U ′

s
ηEQj

I,k dπk
J

)p

πk
J(U

′)p−1
≥ ǫ1−p(c− ǫ)p.

Applying this for every ǫ > 0 we obtain that ‖sηEQj

I,k ‖p → ∞ as j → ∞. �

From the previous lemma we obtain the next theorem.
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Theorem 6.10 Let (J,B, η) be a Markov space and p, k ∈ N. Then

‖η‖p,k = ‖η‖k,p = tpart(Kk,p, η)
1/(pk).

Proof. Let (Pi)
∞
i=1 be an arbitrary exhausting partition sequence. To see

the first equality, observe that by Lemma 6.9 and (59),

‖η‖p,k = lim
i→∞

‖ηEPi
‖p,k = lim

i→∞
‖EPi

η‖k,p = ‖η‖k,p.

For the second equality, by (57),

lim
i→∞

t(Kk,p, ηPi
)1/(pk) = lim

i→∞
‖ηPi

‖k,p = ‖η‖k,p.

However, since Kk,p has the step Sidorenko property (52), this yields

‖η‖k,p = lim
i→∞

t(Kk,p, ηPi
)1/(pk) = sup

i∈N
t(Kk,p, ηPi

)1/(pk).

Since any partition can appear in an exhausting sequence, we obtain the
desired equality. �

Lemma 6.11 Let (J,B, µ) be a probability space, and p ≥ 1. Let (Pi)
∞
i=1

be an exhausting partition system. Assume that a sequence of Lp functions
(fi)

∞
i=1 and another Lp function f on (J,B, µ) satisfy

1. limi→∞ ‖E(fi|Pj)− E(f |Pj)‖1 = 0 for every j

2. limi→∞ ‖fi‖p = ‖f‖p.

Then limi→∞ ‖fi − f‖p = 0.

Proof. Let ǫ > 0. Then there is δ > 0 such that ‖1Uf‖p ≤ ǫ holds for
every measurable set U with µ(U) ≤ δ. We can choose j0 with the property
that ‖f − E(f |Pj)‖p ≤ ǫ holds for every j ≥ j0. Then

‖1UE(f |Pj)‖p ≤ ‖1Uf‖p + ‖1U(f − E(f |Pj))‖p ≤ 2ǫ (60)

hold for every j ≥ j0 and measurable set U with µ(U) ≤ δ. For sufficiently
big i0 we can also guarantee that |‖fi‖p−‖f‖p| ≤ ǫ holds for every i ≥ i0. For
an arbitrary i ≥ i0 we can choose j ≥ j0 such that both |fi−E(fi|Pj)| ≤ ǫ/2
and |E(fi|Pj)−E(f |Pj)| ≤ ǫ/2 holds on a set V of measure at least 1− δ. It
follows that |fi − E(f |Pj)| ≤ ǫ holds on V . This implies that

‖1V fi − 1V E(f |Pj)‖p ≤ ǫ. (61)
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Let U be the complement of V . Using (60) we have that

‖1VE(f |Pj)‖p ≥ ‖E(f |Pj)‖p − ‖1UE(f |Pj)‖p ≥ ‖f‖p − 3ǫ

and thus by (61)

‖1V fi‖p ≥ ‖f‖p − 4ǫ.

Using the above inequalities we obtain

‖1Ufi‖pp = ‖fi‖pp − ‖1V fi‖pp ≤ (‖f‖p + ǫ)p − (‖f‖p − 4ǫ)p =: g(ǫ). (62)

From (61), (62) and fi = 1Ufi + 1V fi we get that

‖fi − 1V E(f |Pj)‖p ≤ g(ǫ)1/p + ǫ

By (60), we have

‖E(f |Pj)− 1VE(f |Pj)‖p = ‖1UE(f |Pj)‖p ≤ 2ǫ

and thus

‖fi − E(f |Pj)‖p ≤ 3ǫ+ g(ǫ)1/p.

This implies

‖fi − f‖p ≤ 4ǫ+ g(ǫ)1/p.

Since limǫ→0 g(ǫ) = 0 the proof is complete. �

Lemma 6.12 Consider a bi-Markov space (I, J,A,B, η). Let (Pi)
∞
i=1 and

(Qj)
∞
j=1 be exhausting partition sequences of I and J , respectively. Set ηi =

EPi
ηEQi

. Then sηik → sηk in Lp as i→ ∞.

Proof. We have

lim
i→∞

‖sηik ‖p = lim
i→∞

‖ηi‖kp,k = ‖η‖kk,p = ‖sηk‖p,

where the second equality is from Lemma 6.9 and the remaining equalities
are just definitions. Now according to Lemma 6.11 it suffices to prove that
for every j ∈ N we have

lim
i→∞

E(sηik |Qk
j ) = E(sηk|Qk

j )
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in L1. To see this observe that

E(sηik |Qk
j ) = s

Wi,j

k and E(sηk|Qk
j ) = s

Wj

k ,

where

Wi,j := EPi
ηEQi

EQj
and Wj := ηEQj

.

If i ≥ j then EQi
EQj

= EQj
and so Wi,j = EPi

Wj . Since for fixed j we have
that Wi,j is a uniformly bounded sequence of measurable functions with L1

limit Wj the integral form of s
Wi,j

k and s
Wj

k shows the required convergence.
More precisely, by abusing the notation, let us identify Wi,j and Wj with
their representations by measurable functions. Then we have

s
Wi,j

k (z1, z2, . . . , zk) = ExSi,j(x, z1, z2, . . . , zk)

and

s
Wj

k (z1, z2, . . . , zk) = ExSj(x, z1, z2, . . . , zk),

where

Si,j(x, z1, x2, . . . , zk) := Wi,j(x, z1)Wi,j(x, z2) · · ·Wi,j(x, zk)

and

Sj(x, z1, x2, . . . , zk) :=Wj(x, z1)Wj(x, z2) · · ·Wj(x, zk).

Then

‖sWi,j

k − s
Wj

k ‖1 = ‖Ex(Si,j − Sj)‖1 ≤ ‖Ex(|Si,j − Sj |)‖1
= ‖Si,j − Sj‖1 ≤ k‖Wi,j −Wj‖1‖Wj‖k−1

∞ ,

where the last inequality follows by changing the terms in the product one by
one using the usual telescopic argument and the fact that ‖Wi,j‖∞ ≤ ‖Wj‖∞.
The fact that Wi,j converges to Wj in L1 completes the proof. �

Now we are ready to state and prove our main theorem in this section.

Theorem 6.13 Let (J,B, η) be a (k, p)-loose Markov space, and let G =
(U,W,E) be a bigraph such that deg(w) ≤ k for all w ∈ W and deg(u) ≤ p
for all u ∈ U . Then t(G, η) <∞, and for every exhausting partition sequence
(Pi)

∞
i=1, we have

t(G, η) = lim
n→∞

t(G, ηPn
).
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Proof. The proof is a consequence of Lemma 6.12 and Theorem 6.4. Let
(Pi)

∞
i=1 be an exhausting partition sequence of J . Let Wi := EPi

ηEPi
. Then

by Lemma 6.12 we have that sWi

k converges to sηk in Lp as i→ ∞. Thus η is
the (k, p)-limit of the sequence of the 1-regular graphons {Wi}∞i=1. Theorem
6.4 completes the proof. �

Note that a bi-Markov space version of Theorem 6.4 gives a bi-Markov
space generalization of Theorem 6.13 is a similar way.

Theorem 6.14 Let M = (I, J,A,B, η) be a bi-Markov space (k, p)-loose
from J . Let (Pi)

∞
i=1 and {Qj}∞j=1 be exhausting partition sequences of I and

J , respectively. Let G = (U,W,E) be a bigraph such that deg(w) ≤ a for all
w ∈ W and deg(u) ≤ b for all u ∈ U . Then t(G, η) <∞, and

t(G, η) = lim
i,j→∞

t(G,EPi
ηEQj

).

6.6 Partition approximation of homomorphism mea-

sures

In this section we investigate an alternative approach to homomorphism mea-
sures using finite partitions P = {P1, P2, . . . , Pk} of the ground space, ap-
proximating η by the projections ηP as in the previous section. As before, the
measure ηP is defined by a graphon, and hence the measures ηGP are defined
(see Section 5.3). It is natural to define homomorphism measures ηG as limits
of homomorphism measures ηGPi

for an exhausting partition sequence (Pi)
∞
i=1.

This requires an appropriate convergence notion for such measures. There
are several notions of convergence we can use: strong (pointwise) conver-
gence; convergence in total variation norm; weak convergence (after putting
a compact topology on J) etc. We choose a more technical but more conve-
nient path, requiring convergence on sets in PV

i , where PV
i is the partition

of JV whose elements are boxes of the form
∏

v∈V Pv where Pv ∈ Pi.
The measure ηG, defined in (45), can be expressed as follows: Let A =∏

u∈U Au and B =
∏

w∈W Bw, where Au, Bw ∈ B. Then

ηG(A×B) =

∫

A

∏

w∈W

ψxN(w)
(Bw) dπ

U(x). (63)

A simple but important remark is that changing an Au or a Bw on a set of
π-measure zero, the value ηG(A× B) is not changed. This is trivial for the
Au, and follows by Lemma 4.4 for Bw.
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Theorem 6.15 Let (J,B, η) be a (k, p)-loose Markov space, and let G =
(U,W,E) be a bigraph such that deg(w) ≤ k for all w ∈ W and deg(u) ≤ p
for all u ∈ U . Then ηG is partition approximable.

Proof. Let (Pi)
∞
i=1 be an exhausting partition sequence. We want to prove

that ηGPi
(C) → ηG(C) for every Borel box C =

∏
v∈V Bv as i→ ∞. First we

prove the assertion in a special case.

Claim 1 Suppose that Bv ∈ Pj for some j and all v ∈ V . Then ηGPi
(C) →

ηG(C).

We may restrict our attention to i ≥ j. We may assume that the partition
sequence (Pi)

∞
i=1 is generating, not only exhausting; by Lemma 9.5, this can

be achieved by changing each partition class on a set of measure zero.
We want to mimic the proof of Theorem 6.13, which is a related asser-

tion for the total measure ηG(JV ). To this end, we express homomorphism
measures in terms of homomorphism densities of certain bi-Markov spaces.

For a Markov space η and B ∈ B with π(B) > 0, we introduce a bi-
Markov space X(η, B) which is basically the restriction of η to J ×B. Since
η(J × B) = π(B), we have to multiply the restriction of η with π(B)−1

to obtain a proper bi-Markov space (J,B, η|J×B/π(B)), where η|J×B(A) :=
η((J × B) ∩ A). It is clear from the definition that if η is k-loose then

π(B)s
X(η,B)
k ≤ sηk almost surely on Jk. It follows that if η is (k, p)-loose then

so is X(η, B) for any subset B ∈ B with positive measure.
Let (J,B, η) be a (k, p)-loose Markov space, and let G = (U,W,E) be a

bigraph such that deg(w) ≤ k for all w ∈ W and deg(u) ≤ p for all u ∈ U .
Let A =

∏
u∈U Bu and B =

∏
w∈W Bw. Then

ηG(C) = ηG(A×B) =

∫

A

∏

w∈W

ψxN(w)
(Bw) dπ

U(x)

=

∫

A

∏

w∈W

π(Bw)s
X(η,Bw)
deg(w) (xN(w)) dπ

U .

For w ∈ W , let Pi,w denote the restriction of Pi to Bw. Define

Xi,w := X(ηPi
, Bw) = EPi

X(η, Bw)EPi,w,

then

ηGPi
(C) =

∫

A

∏

w∈W

π(Bw)s
Xi,w

deg(w)(xN(w)) dπ
U(x).
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Lemma 6.12 shows that

lim
i→∞

s
Xi,w

deg(w)(xN(w)) = s
X(η,Bw)
deg(w) (xN(w)),

where convergence is in Lp. This completes the proof of Claim 1 by Corollary
6.2.

Note that this Claim implies immediately that the same conclusion holds
if Bv ∈ P̂i for all v, since such a box is a finite union of boxes in PU∪W

i .

Claim 2 For every ε > 0 there is a δ > 0 and an i0 ∈ N such that

ηG(X × JV \v) < ε and ηGPi
(X × JV \v) < ε (64)

for every v ∈ V , every X ∈ B with π(X) < δ, and every i ≥ i0.

The first inequality (which is independent of i) is just a restatement of the
absolute continuity of the marginal (ηG)v with respect to π (Lemma 5.15). To
prove the second, choose δ such that ηG(X×JV \v) < ε/2 for π(X) < 2δ. Let
Y ∈ B be a set with π(Y ) ≤ δ maximizing ηGPi

(Y × JV \v). We may assume
that every partition class of Pi has π-measure at most δ. Since the marginal
(ηGPi

)v is proportional to π on every partition class of Pi, the maximizing Y
will consist of the union of at least one partition class and at most one subset
of a partition class. So there is a set Z ∈ P̂i such that Y ⊆ Z and π(Z) ≤ 2δ.
Then

(ηGPi
)v(X) ≤ (ηGPi

)v(Y ) ≤ (ηGPi
)v(Z) = ηGPi

(Z × JV \v).

Here the box Z × JV \v is the product of sets in the set algebra P̂i, and so by
Claim 1,

ηGPi
(Z × JV \v) ≤ ηG(Z × JV \v) +

ε

2
≤ ε.

if i is large enough. Choosing i0 so that if i ≥ i0, then this holds for all v,
completes the proof of Claim 2.

To complete the proof, let C =
∏

v∈V Bv be any box with Bv ∈ B.
Lemma 9.5 implies that there are sets Bv ∈ P̂i for a sufficiently large i such
that π(Bv△Bv) ≤ δ for all v ∈ V , where δ is chosen as in Claim 2. Let
C =

∏
v∈V Bv. By Claim 1,

∣∣ηGPi
(C)− ηG(C)

∣∣ ≤ ε
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if i is large enough. Furthermore,

C△C ⊆
⋃

v∈V

(Bv△Bv)× JV \v,

and so by Claim 2,
∣∣ηGPi

(C)− ηGPi
(C)

∣∣ ≤
∑

v∈V

ηGPi

(
(Bv△Bv)× JV \v)

)
≤ |V |ε,

and similarly
∣∣ηG(C)− ηG(C)

∣∣ ≤
∑

v∈V

ηG
(
(Bv△Bv)× JV \v)

)
≤ |V |ε.

Summing up,
∣∣ηGPi

(C)− ηG(C)
∣∣

≤
∣∣ηGPi

(C)− ηGPi
(C)

∣∣+
∣∣ηGPi

(C)− ηG(C)
∣∣+

∣∣ηG(C)− ηG(C)
∣∣

≤ (2|V |+ 1)ε.

This proves the Theorem. �

Corollary 6.16 Let (J,B, η) be a (k, p)-loose Markov space. Let G =
(U,W,E) be a bigraph such that deg(w) ≤ k for all w ∈ W and deg(u) ≤ p
for all u ∈ U . Then ηG = ηG

∗
.

Proof. Choose an generating partition sequence (Pi)
∞
i=1. Then ηPi

is a
graphon, and so ηG

∗

Pi
= ηGPi

. By Theorem 6.15, we have

ηG(C) = lim
i→∞

ηGPi
(C) = lim

i→∞
ηG

∗

Pi
(C) = ηG

∗

(C)

for every box C ∈ PV
j . Since the sigma-algebra generated by such sets

contains all Borel sets, it follows that ηG = ηG
∗
. �

Corollary 6.17 If M is an (a, b)-loose Markov space, then Ka,b is well-
measured in M .

Proof. Let p be any ordering of V (Ka,b). Let {u1, . . . , ua} and {v1, . . . , vb}
be the color classes of Ka,b, and let q = (u1, . . . , ua, v1, . . . , vb) and r =
(v1, . . . , vb, u1, . . . , ua). Similarly as in the proof of Lemma 5.11, we may
assume that ηp does not change if we reorder the first a + b − 1 elements,
and it does not change if we flip consecutive non-adjacent nodes, so it follows
that ηp = ηq or ηp = ηr (depending on the color class of the last node in p).
But by Corollary 6.16, ηKa,b = ηKb,a and so ηq = ηr. Thus ηp is independent
of p. �

Combining Corollary 6.17 with Theorem 1.2, we obtain the following:
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Corollary 6.18 Let (J,B, η) be a (k, p)-loose Markov space. Let G =
(U,W,E) be a bigraph such that deg(w) ≤ k for all w ∈ W and deg(u) ≤ p
for all u ∈ U . Then G is well-measured in M.

This corollary implies Theorem 1.4.

6.7 Products of graphs

In this section we investigate an interesting construction of a sparse graph
sequence, where the limit object is easily guessed, but it is more difficult to
tell in what sense do these graphs converge to this limit.

For two edge-weighted graphsH1 and H2, we define their productH1×H2

as the edge-weighted graph on V (H1)× V (H2), where the edge-weight w in
the product is defined by

w((x1, x2), (y1, y2)) = w1(x1, y1)w2(x2, y2).

If every edge weight in Hi is 1/(2|E(Hi)|), then this is just the categorical
product of the two graphs, with the edges weighted analogously.

Let Hn = (Vn, En), n = 1, 2, . . . be simple graphs, and let pn = |V (Hn)|,
qn = |E(Hn)|. Define

Ĥn = H1 × · · · ×Hn.

We can also define the product of infinitely many graphs. Indeed, let J =
V1 × V2 × · · · , with the Borel σ-algebra B. There is a natural graph on
J , in which (u1, u2, . . . ) is connected to (v1, v2, . . . ) if and only if each ui is
connected to vi in Hi for every i ∈ N. We need to define a measure on this
edge set. A Markov step from a point (v1, v2, . . . ) ∈ J is obtained by making
a step of the random walk on Hi from vi, independently for different indices
i. The measure of a cylinder set C = A1 × · · · ×An ×En+1 × · · · (Ai ⊂ V 2

i )
is

η(C) =

{∏n
j=1

|Aj |

|Ej|
, if Aj ⊆ Ej for all 1 ≤ j ≤ n,

0 otherwise.

We denote this Markov space by H∞ = (J,B, η). Let A∞ denote the adja-
cency operator of H∞.

In this section we study the question whether Ĥn → H∞ in any reasonable
sense.

Let λ
(n)
1 = 1, λ

(n)
2 , . . . be the eigenvalues of the transition matrix of the

random walk on Hn, with corresponding eigenvectors w
(n)
1 , w

(n)
2 , . . . . For
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every choice of indices 1 ≤ ij ≤ pj, the transition matrix of the graph Ĥn

has an eigenfunction

fi1...in(u1, u2, . . . , un) =

n∏

j=1

w
(j)
ij ,uj

(65)

with eigenvalue

λi1...in =
n∏

j=1

λ
(j)
ij
. (66)

These eigenvalues remain eigenvalues in H∞, and so do the corresponding
eigenfunctions, if we consider them as defined on V (H∞) but depending
only on the first n coordinates. We can also think of this as extending the
formulas (65) and (66) to infinite products, but choosing the eigenvalue 1
with eigenfunction identically 1 for all j > n. Let us call these eigenvalues
finitary.

We may or may not obtain further nonzero eigenvalues as infinite products
with infinitely many nontrivial eigenvalues. This will not happen if and only
if the transition matrices of the graphs H have a common eigenvalue gap in
the sense that for some c > 0,

µn = max
j≥2

|λ(n)j | ≤ 1− c (67)

for every n.
Trivially, the multiplicity of a nonzero finitary eigenvalue may be infinite,

and these eigenvalues may have accumulation points other than 0. It is easy
to see that the eigenvalues have no nonzero accumulation point if and only
if

µn → 0 (n→ ∞). (68)

The Markov space H∞ has a natural partition Pn defined by the first n
coordinates. More exactly, Pn has partition classes Uz (z ∈ V1 × · · · × Vn),
consisting of all extensions of z. Then (H∞)Pn

is the graphon associated with

the graph Ĥn, with edge weights 1/(q1 · · · qn). Let G be a graph with a nodes
and b edges, then

t(G, (H∞)Pn
) = t∗(G, Ĥn) =

n∏

j=1

t∗(G,Hj) =
n∏

j=1

hom(G,Hj)p
2b−a
j

(2qj)b
.
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Let us define

t×(G,H∞) =

∞∏

j=1

t∗(G,Hj), (69)

provided the product is convergent. With this definition,

t∗(G, (H∞)Pn
) = t∗(G, Ĥn) → t×(G,H∞)

When does the product in (69) converge? Is the value t×(G,H∞) as
defined above also the limit of t∗(G, (H∞)Qn

) for every exhausting partition
sequence (Qi)

∞
i=1? Is t×(G,H∞) = t(G,H∞)? For the first question we give

a reasonably general sufficient condition. The other two remain open.
Let (Hn) be a sequence of (very dense) simple graphs such that pn ≥ n.

Let Hn denote the complement of Hn, including all loops at the nodes. Let
dn denote the maximum degree of Hn and assume that dn = O(1). Let
rn = p2n−2qn be the number of oriented edges of H , then rn ≤ dnpn = O(pn).

Let G be a simple graph with a nodes and b edges. For Y ⊆ E(G), let
GY = (V (G), Y ). Then by inclusion-exclusion,

hom(G,Hn) =
∑

Y⊆E(G)

(−1)|Y | hom(GY , Hn).

Here hom(G∅, Hn) = pan and hom(GY , Hn) = rnp
a−2
n if |Y | = 1. If |Y | ≥ 2,

then selecting one node from each connected component of GY , we get a− c
points, where c ≥ 2. We can map these points pa−c

n ways, but the remaining
points in at most dcn ways, so we get then

hom(GY , Hn) ≤ dcnp
a−c
n = O(pa−2

n ).

Hence

hom(G,Hn) = pan − brnp
a−2
n +O(pa−2

n ),

and so

t(G,Hn) = 1− brn
p2n

+O(p−2
n ).

Clearly t(K2, Hn) = 1− rn/p
2
n, and so

t(K2, Hn)
b = 1− brn

p2n
+O

(r2n
p4n

)
= 1− brn

p2n
+O(p−2

n ).
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Thus

t∗(G,Hn) =
1− brn/p

2
n +O(p−2

n )

1− brn/p2n +O(p−2
n )

= 1 +O(p−2
n ).

Using that dn = O(1) and pn ≥ n, it follows that the product in (69) is
convergent.

It is interesting to consider two special examples.

Example 6.19 (Powers of a graph) As remarked before, our methods
above work for compact operators only. Here is an example where exten-
sion of the results to operators that are “almost” compact would be very
useful.

Let H = (V,E) be a d-regular graph with n nodes, and consider its direct
powers H×k, k = 1, 2, . . . . Let η be the uniform distribution on the edges
of H , then the marginal of η is the uniform distribution π on V , and the
stationary distribution on V (H×k) is πk.

Going to the limit k → ∞, we get a limit object on J = V N, with sigma-
algebra generated by sets A1×A2×· · · where all but a finite number of factors
are V , and stationary measure defined by πω(A1×A2×· · · ) = π(A1)π(A2) · · · .
The edge measure ηω is defined similarly. The edge measure is supported on
the set E × E × . . . , so it is quite singular with respect to πω × πω.

For a point (v1, v2, . . . ) ∈ V ω of the Markov space (V ω, ηω), a Markov
step is generated by choosing a random neighbor ui of vi independently for
all i, and moving to (u1, u2, . . . ).

The operator A associated with the Markov space ηω is, unfortunately,
not compact. Let λ1 = 1, λ2, . . . , λn be the eigenvalues of H (normalized
by d), with corresponding eigenvectors w1, . . . , wn. Then for every finite
sequence of positive integers k1 < · · · < kr, and every choice of indices
2 ≤ i1, . . . , ir ≤ n, A has an eigenfunction

fi(u1, u2, . . . ) =

r∏

j=1

wij ,ukj
(70)

with eigenvalue

r∏

j=1

λij . (71)

The multiplicity of each of these eigenvalues is infinite, since there are a
countably infinite number of sequences (ki) with the same length. So A is
not compact. On the other hand, the nonzero eigenvalues of A are products
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of a finite number of normalized eigenvalues of H , so they form a discrete set
with only one accumulation point at 0, so A does have some resemblance of
compact operators.

Can we define the density of a bipartite graph G in ηω, and show that
this is nonzero? If, in addition, we can prove that t∗(G,H×k) → t(G, ηω),
then Sidorenko’s conjecture would follow.

Example 6.20 (Products of complete graphs) Let Hn = Kn be the
complete n-graph (without loops). For the product to be nontrivial, we
consider K2 ×K3 × · · · . For every graph G with p nodes and q edges,

| hom(G,Kn)| = χG(n),

where χG denotes the chromatic polynomial of G. It follows that for n ≥ 2,

t(K2, Ĥn) =
i∏

j=2

j(j − 1)

j2
=

1

i
,

showing that (Ĥ1, Ĥ2, . . . ) is a sparse graph sequence. It is well known that
χG is a polynomial of degree p, and it has the form xp+a1x

p−1+a2x
p−2+ . . .

with a1 = −q. Hence

t∗(G,Hn) =
χG(n)n

q−p

(i− 1)q
=
iq − qiq−1 + a2i

q−2 + · · ·
iq − qiq−1 +

(
q
2

)
q2 + · · · = 1 +O

( 1

n2

)
,

and so the product
∏∞

j=2 t
∗(G,Hj) is convergent.

The Markov space H∞ is (k, p)-loose for every k, p ≥ 1. Indeed, let
x = (x2, x3, . . . ) be a random point of H∞, and let y1 = (y12, y13, . . . ), . . . ,
yk = (yk2, yk3, . . . ) be k random steps from x. Then for n > k, the joint
distribution of y1n, . . . , ykn is uniform over all k-tuples of points of Kn; for
n ≤ k it is not uniform, but trivially it has a density function Fkn. Then
sk = Fk2Fk3 · · ·Fk,k (not depending on the coordinates n > k) is the density
function of (y1, . . . , yk). Trivially s

p
k is a bounded function, and so sk ∈ Lp.

It follows that for every bipartite graph G we have
limi→∞ t∗(G, (H∞)Qi

) = t(G,H∞) for every exhausting partition sequence
(Qi)

∞
i=1 by Theorem 6.13.

7 Cycle densities and the spectrum

It is well known that the homomorphism number of the k-cycle Ck in a graph
G is the sum of the k-th powers of the eigenvalues of the adjacency matrix
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of G. This can be generalized to graphons and even to bounded symmetric
measurable functions W : Ω2 → R where (Ω, µ) is a standard probability
space. In this case t(Ck,W ) is equal to

∑∞
i=1 λ

k
i where the numbers λi are

the eigenvalues of W as an integral kernel operator. In this section we push
this further to operators on L2 spaces whose k-th Schatten norm is finite
for some k. In particular the main result of this section (see Theorem 7.5)
implies the following theorem.

Theorem 7.1 Let k be an integer and assume that the k-th Schatten norm
of the adjacency operator A of a Markov space M = (J,B, η) is finite. Then
ηCk is partition approximable, and t(Ck, η) is equal to the sum of the k-th
powers of the eigenvalues of A.

Let ‖.‖•p denote p-th Schatten norm. Also, given a compact self-adjoint
operator A on an infinite dimensional Hilbert space H and an integer k ≥ 1,
let λ+k (A) be the k-th largest (counting multiplicities) positive eigenvalue of
A, with the convention λ+k (A) = 0 if there are less than k such eigenvalues.
Similarly let λ−k (A) be the k-th smallest (counting multiplicities) negative
eigenvalue of A, with the convention λ+k (A) = 0 if there are less than k such
eigenvalues. Note that we then have

(
‖A‖•p

)p
=

∞∑

k=1

|λ+k (A)|p +
∞∑

k=1

|λ−k (A)|p.

Lemma 7.2 Let U be a d dimensional subspace in an infinite dimensional
Hilbert space H and let A be a compact self-adjoint operator such that
‖A‖•p < ∞ for some p ≥ 1. Let λ′1 ≥ λ′2 ≥ . . . ≥ λ′d be the eigenvalues of
PUAPU |U . Then λ+k (PUAPU) = max{λ′k, 0}, λ−k (PUAPU) = min{λ′d+1−k, 0}
and λ+k (A) ≥ λ′k ≥ λ−d+1−k(A) for all 1 ≤ k ≤ d.

Proof. The identities follow from the fact that the operator PUAPU is
reduced by the subspace U , and is the zero operator on U⊥. Concerning the
inequalities, by the Courant–Fischer–Weyl theorem (or minmax principle,
see [10, Excercise 6.34]), we have the following:

λ+k (A) = sup
dim(W )=k

min
v∈W,
‖v‖=1

〈Av, v〉,

λ−d+1−k(A) = inf
dim(W )=d+1−k

max
v∈W,
‖v‖=1

〈Av, v〉,

λ′k = sup
dim(W )=k,

W⊂U

min
v∈W,
‖v‖=1

〈(PUAPU |U)v, v〉,

λ′k = inf
dim(W )=d+1−k,

W⊂U

max
v∈W,
‖v‖=1

〈(PUAPU |U)v, v〉.
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Now note that then

λ′k = sup
dim(W )=k,

W⊂U

min
v∈W,
‖v‖=1

〈(PUAPU |U)v, v〉 = sup
dim(W )=k,

W⊂U

min
v∈W,
‖v‖=1

〈APUv, PUv〉

= sup
dim(W )=k,

W⊂U

min
v∈W,
‖v‖=1

〈Av, v〉 ≤ sup
dim(W )=k

min
v∈W,
‖v‖=1

〈Av, v〉 = λ+k (A),

with the other inequality following by symmetry. �

This immediately leads to the following result.

Corollary 7.3 Let U be a d dimensional subspace in a Hilbert space and
let A be a self-adjoint operator such that ‖A‖•p < ∞ for some p ≥ 1. Then
‖PUAPU‖•p ≤ ‖A‖•p.

The above can be used to express the ℓ-th Schatten norm of an operator
as the limit of that of its finite dimensional approximants.

Proposition 7.4 Assume A is a bounded, self-adjoint operator on a Hilbert-
space H with ‖A‖•ℓ <∞. Assume that {Hj}∞j=1 is a sequence of finite dimen-
sional subspaces of H such that Hj ⊆ Hj+1 holds for every j and

⋃∞
j=1Hj is

dense in H. Then
∞∑

k=1

λ+k (A)
ℓ = lim

j→∞

∞∑

k=1

λ+k (PHj
APHj

)ℓ,

∞∑

k=1

λ−k (A)
ℓ = lim

j→∞

∞∑

k=1

λ−k (PHj
APHj

)ℓ,

and also ‖A‖•ℓ = limj→∞ ‖Aj‖•ℓ <∞.

Proof. For j ∈ N, let Aj := PHj
APHj

. By Lemma 7.2, we have 0 ≤
λ+k (Aj) ≤ λ+k (A) and 0 ≥ λ−k (Aj) ≥ λ−k (A) for every k ≥ 1. If we can show
that for every k ≥ 1, limj→∞ λ+k (Aj) = λ+k (A) and limj→∞ λ−k (Aj) = λ−k (A)
hold, then we are done by the monotone convergence theorem.

Fix ε > 0 and k ≥ 1, and let W ⊂ H be a k dimensional subspace such
that

min
v∈W,
‖v‖=1

〈Av, v〉 ≥ λ+k (A)− ε.

Since
⋃∞

j=1Hi is dense in H, we have that limj→∞ PHj
= I strongly, and so

lim
j→∞

min
v∈W,
‖v‖=1

〈Ajv, v〉 = min
v∈W,
‖v‖=1

〈Av, v〉 ≥ λ+k (A)− ε,
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implying that lim infj λ
+
k (Aj) ≥ λ+k (A) − ε. As λ+k (Aj) ≤ λ+k (A) for all j,

and ε > 0 was arbitrary, we obtain limj→∞ λ+k (Aj) = λ+k (A) as desired. By
symmetry the same holds for the negative eigenvalues, and we are done. �

For the next theorem we need some preparation. Let A be a bounded,
self adjoint operator on L2(Ω, ν), where (Ω, ν) is a standard probability
space. Assume that P is a finite, measurable, non-degenerate partition of
Ω. Then we have that EPAEP is an integral kernel operator representable
by a bounded measurable step-function of the form W : Ω2 → R. In
this context it makes sense to talk about subgraph densities of the form
t(H,EPAEP) := t(H,W ).

Theorem 7.5 Assume that A is a bounded, self-adjoint operator on L2(Ω, ν)
where (Ω, ν) is a standard probability space. Assume that ‖A‖•ℓ <∞ for some
ℓ ∈ N. Let (Pi)

∞
i=1 be an exhausting partition sequence of Ω. Then

lim
j→∞

t(Cℓ,EPj
AEPj

) =
∞∑

k=1

λ+k (A)
ℓ +

∞∑

k=1

λ−k (A)
ℓ

Proof. For j ∈ N, let Hj denote the finite dimensional space of Pj-
measurable functions. It is clear that the sequence {Hj}∞j=1 satisfies the
conditions of Proposition 7.4. Note that the operator EPj

is equal to PHj
.

Since Aj = EPj
AEPj

is representable by a step function we have that

t(Cℓ, Aj) =

∞∑

k=1

λ+k (Aj)
ℓ +

∞∑

k=1

λ−k (Aj)
ℓ.

Then Proposition 7.4 completes the proof. �

Theorem 7.1 follows from these results: Theorem 7.5 implies that for
every exhausting partition sequence (Pi) we have t(Ck, ηPi

) → t(Ck, η) <∞.
This in particular implies (2, 2)-looseness, so Theorem 6.15 implies that ηCk

is partition approximable.

8 Open problems

Problem 1 Find general conditions under which the measure ηF produced
by a tree decomposition F of a graphG (not necessarily a star decomposition)
is independent of the decomposition.

Problem 2 Is every k-loose Markov space the k-limit of graphons?
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Problem 3 ((k, p)-profile) Let L(η) ⊆ N
2 denote the set of pairs (k, p) for

which η is (k, p)-loose. Theorem 6.13 expresses subgraph densities in η under
appropriate conditions on its “(k, p)-profile” L(η). Some properties of the
set L(η) have been established above: it is symmetric in the two coordinates
and it is monotone in the sense that if (k, p) ∈ L(η) and k′ ≤ k, p′ ≤ p,
then (k′, p′) ∈ L(η). It would be interesting to establish further properties.
For example, for the d-dimensional orthogonality Markov space ηd, we have
(k, p) ∈ L(ηd) if and only if k + p ≤ d (see Lemma 3 in [18]). How “wild”
can the boundary of the set L(η) be in general?

Problem 4 Is every 1-regular Lp-graphon (p + 1, p)-loose? Perhaps (k, p)-
loose for every k? (This is false without the assumption that the graphon is
1-regular, as shown by a construction similar to Example 5.9. We are grateful
to the anonymous referee for this remark.)

Problem 5 Does t(G, η) = tpart(G, η) hold for every bipartite graph G and
every Markov space η? Could this be true at least for all graphons?

Problem 6 (Measure family and partition approximation) Let
(J,B, η) be a Markov space, let G be a graph, and let (Pi)

∞
i=1 be an ex-

hausting partition sequence. Assume that there is a normalized Markovian
measure family on the induced subgraphs of G. Does this imply that
ηGPn

→ ηG on boxes? This is true if G = K2, but even this very special case
is not absolutely trivial.

Problem 7 Theorems 1.2 and 6.15 suggest that a theorem along the fol-
lowing lines should hold: Let (J,B, η) be a k-loose Markov space, let G be
a graph with girth at least 5 and degrees at most k, and let (Pi)

∞
i=1 be an

exhausting partition sequence. Then ηGPn
→ ηG on boxes.

Problem 8 Are the definitions of subgraph densities based on approxima-
tions and based on various sequential tree decompositions equivalent, under
reasonably general conditions?

Problem 9 (Measures for graphings) For a graphing H and a con-
nected graph G, a measure on homomorphisms G → H can be defined in a
natural way: We label a node u of G to get a rooted graph Gu. For each
x ∈ J , let ψG,x be the counting measure on homomorphisms mapping u onto
x (this is a finite set of bounded size for a fixed G). Then ΨG = (ψG,x : x ∈ J)
is a measurable family, and we can define ηG = π[ΨG]. It can be shown (using
the Mass Transport Principle for graphings) that this measure is independent
of the choice of the root. Is there a common generalization with our results?
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Problem 10 (Compactness, and cycles versus other graphs)
Assume that t(C2k, η) = ∞ for even cycles C2k. Is t(G, η) = ∞ for every
connected bipartite graph G that is not a tree? If this implication is true,
then in particular whenever t(G, η) is finite for at least one connected bipar-
tite graph G besides trees, the operator Aη is of some Schatten-class, and
hence compact. A weaker question is therefore whether this compactness is
a necessary condition in any well-defined sense for the finiteness of at least
one density.

Problem 11 (Regularity and variance) In [7], a weak regularity parti-
tion of a graphon was constructed as a finite, measurable, non-degenerate
partition P into a given number of classes for which ‖WP‖22 is (nearly) maxi-
mized. Do partitions P for which ‖ηP‖22 is maximized have special properties
and uses?

Problem 12 (Regularity and spectral approximation) It seems that
the regularity lemma can be defined inside certain sparsity classes. Assume
that we just consider measures such that t(C2k, η) < c for some fixed con-
stant. Then there are at most c/ε2k eigenvalues greater than ε > 0. The
corresponding spectral approximation of the operator Aη (represented by
some bounded measurable function) may serve as a regularization of η.

Problem 13 (Quotient topology vs t) In [17] we introduced a distance
of s-graphons using quotients. How does it relate to subgraph densities? Is
there some continuity in any direction, generalizing the Counting Lemma
and/or the Inverse Counting Lemma for bounded graphons?

Problem 14 (Edge coloring model approach) It was observed and
used in dense graph limit theory that spectral sums can be used to rewrite
t(G,W ) as the value of a certain edge coloring model. As an example, see the
proof that forcible finite rank graphons are step functions in [22]. Nothing
prevents us from pushing this further to more general compact operators Aη.

Problem 15 (Limit object) Assume that for a graph sequence {Gi}∞i=1,
the numerical sequence t∗(F,Gi) is convergent for every graph F satisfying
appropriate sparsity constraints. Is there a limit object in the form of an
s-graphon?

Problem 16 (Existence of limit) Can it happen that limi→∞ t(G, ηPi
) is

finite for certain exhausting partition sequences and infinite for other ones?
Could it oscillate for a given partition sequence?
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9 Appendices

9.1 Absolute continuity and Radon-Nikodym deriva-
tives

We collect some measure theory facts that are probably known, but difficult
to quote.

Lemma 9.1 Let (J,B) be a standard Borel space, and µ, ν two measures
on B such that ν ≪ µ and µ is sigma-finite. Then the Radon-Nikodym
derivative dν/dµ : J → [0,∞] exists, and it is uniquely determined µ-almost
everywhere.

Proof. To prove the existence, we can split J into a countable number of
Borel sets with finite µ-measure, and apply the lemma to each of these. In
other words, we may assume that µ(J) is finite.

We claim that there is a set U ∈ B such that ν|U sigma-finite and
ν(X) = ∞ for every X ⊆ J \ U with µ(X) > 0. Let c = sup{µ(X) : X ∈
B, ν|X sigma-finite}. Let Yn ∈ B be chosen so that ν|Yn

is sigma-finite and
µ(Yn) > c− 1/n. Then U =

⋃
n Yn has the properties as desired. Clearly ν|U

is sigma-finite, and µ(U) ≥ c. By the maximality of c, we have µ(U) = c,
and every set X ⊆ J \ U with ν(X) <∞ must have µ(X) = 0.

The standard Radon-Nikodym theorem, applied to µ|U and ν|U , gives f |U .
Defining f as constant ∞ on X \M , we obtain a measurable f : J → [0,∞]
such that ν = f · µ.

Uniqueness of f follows by standard arguments. �

Lemma 9.2 Let (I,A) and (J,B) be Borel spaces. Let Φ = (µx : x ∈ I) be
a measurable family of measures on (J,B) and α1, α2 ∈ M(A). If α1 ≪ α2

then α1[Φ] ≪ α2[Φ].

Proof. Suppose that α2[Φ](R) = 0 for some R ∈ A× B. Let R(x) = {y ∈
J : (x, y) ∈ R}. Then

α2[Φ](R) =

∫

I

µx(R(x)) dα2(x) = 0

implies that α2{x ∈ I : µx(R(x)) > 0} = 0. But then α1{x ∈ I : µx(R(x)) >
0} = 0, implying by the same computation that α1[Φ](R) = 0. �
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Lemma 9.3 Let σ be a probability distribution on BV . Suppose that σ ≪∏
v∈V σ

{v}. Then σ ≪ σS × σV \S for every S ⊆ V .

Proof. Let ξ =
∏

v∈V σ
{v} and f = dσ/dξ. For any S ⊆ V , the function

fS(y) =

∫

JV \S

f(y, z) dξV \S(z) (y ∈ JS).

satisfies σS = fS · ξS. Let U = {y : fS(y) = 0} and Z = {z : fV \S(z) = 0}.
Suppose that

(
σS × σV \S

)
(X) = 0. Then

(
σS × σV \S

)
(X) =

∫

X

fS(y)fV \S(z) dξ(y, z)

implies that X ⊆ (U × JV \S) ∪ (JS × Z) ξ-almost everywhere. Hence

σ(X) ≤
∫

U×JV \S

f(x) dξ(x) +

∫

JS×Z

f(x) dξ(x)

=

∫

U

fS(x) dξS(x) +

∫

Z

fV \S(x) dξV \S(x) = 0.

�

9.2 Markovian property and Markov random fields

We show that Markovian measure families and Markov random fields on a
graph G = (V,E) are related. This latter can be defined as a probability
distribution µ on BV such that the marginal family (µS : S ⊆ V ) satisfies
the Markovian property for sets U,W ⊆ V such that U ∪ W = V . More
precisely, let RS,T = (ρS,T,z : z ∈ JS) be a measurable family of measures on
BT\S such that µS[RS,T ] = µT . Then we require that whenever U ∪W = V ,
S = U ∩W , and there is no edge between U \ S and W \ S, then

ρS,V,x = ρS,U,x × ρS,W,x (72)

for µS-almost all x ∈ JS.

Proposition 9.4 If a family M = (µS : S ⊆ V ) of sigma-finite measures is
Markovian with respect to a graph G, and µ = µV is a probability distribution,
then µ is a Markov random field on G.
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Proof. Recall that νS,T,x is the disintegration of µT with respect to µS,
and ρS,T,x is the disintegration of µT with respect to µS. Our first step is to
express πJ in terms of ν. Let S ⊆ T ⊆ V . We claim that for all B ∈ BT\S

and µS-almost all x ∈ JS,

ρS,T,x(B) =

∫

B

νT,V,xy(J
V \T )

νS,V,x(JV \S)
dνS,T,x(y). (73)

First note that by (7), we have

µS
({
x : νS,V,x(J

V \S) = 0
})

=

∫

{x: νS,V,x(JV \S)=0}
νS,V,x(J

V \S) dµS(x) = 0,

hence the right hand side is well-defined for µS-almost all x ∈ JS. To prove
(73), we integrate both sides on A ∈ BS with respect to µS. The left hand
side turns into

∫

A

ρS,T,x(B) dµS(x) = µT (A× B),

whereas, using (7), the right hand side becomes

∫

A

∫

B

νT,V,xy(J
V \T )

νS,V,x(JV \S)
dνS,T,x(y) dµ

S(x)

=

∫

A

∫

B

νT,V,xy(J
V \T ) dνS,T,x(y) dµS(x)

=

∫

A×B

νT,V,xy(J
V \T ) dµT (xy) =

∫

A×B

1 dµT (xy) = µT (A× B).

This proves (73). Hence for B ∈ BU\S and C ∈ BW\S,

ρS,V,x(B×C) =

∫

B×C

1

νS,V,x(JV \S)
dνS,V,x(y) =

1

νS,V,x(JV \S)
νS,V,x(B×C).

Using Lemma 2.4,

ρS,U,x(B) =

∫

B

νU,V,xy(J
V \U)

νS,V,x(JV \S)
dνS,U,x(y) =

∫

B

νS,W,x(J
V \U)

νS,V,x(JV \S)
dνS,U,x(y)

=
νS,W,x(J

W\S)

νS,V,x(JV \S)
νS,U,x(B).
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Using a similar expression for ρx,W (C), we get

(ρS,U,x × ρS,W,x)(B × C) =
νS,W,x(J

W\S)νS,U,x(J
U\S)

νS,V,x(JV \S)2
νS,U,x(B)νS,W,x(C)

=
1

νS,V,x(JV \S)
νS,V,x(B × C) = ρS,V,x(B × C).

This proves Proposition 9.4. �

9.3 Partition sequences

We prove the following basic facts about exhausting partition sequences.

Lemma 9.5 Let (J,B, π) be a standard Borel probability space, and let
(Pi)

∞
i=1 be a partition sequence, with R =

⋃∞
i=1Pi. Then the following are

equivalent:

(i) R is exhausting with respect to π, i.e., for every X ∈ B there is a set
Y ∈ R such that π(X△Y ) = 0.

(ii) For every X ∈ B and every ε > 0 there is a set Y ∈ R̂ such that
π(X△Y ) < ε.

(iii) There is a generating partition sequence (Qi)
∞
i=1 and a Borel set U

with π(U) = 0 such that Pi|J\U = Qi|J\U for all i.

(iv)
⋃∞

i=1 L
1(J,P i, π) is dense in L1(J,B, π).

Proof. (i)⇒(ii): Let S be the family of sets X ∈ B for which for every

ε > 0 there is a set Y ∈ R̂ such that π(X△Y ) < ε. Then S is closed under
complementation (trivially), and under finite union and finite intersection
(almost trivially). It follows that it is closed under countable union. Indeed,
let ε > 0, X = X1∪X2∪· · · , where Xi ∈ S, and X ′

i = Xi \ (X1∪· · ·∪Xi−1).
Since the X ′

i are disjoint, we have
∑∞

i=N+1 π(X
′
i) < ε/2 for an appropriate

N . Since X ′
i ∈ S, there are Yi ∈ R̂ such that π(X ′

i△Yi) < ε/(2N). Let

Y =
⋃N

i=1 Yi ∈ R̂, then

π(X△Y ) ≤
N∑

i=1

π(X ′
i△Yi) +

∞∑

i=N+1

π(X ′
i) < ε.

So S is a sigma-algebra. Trivially R ⊆ S, so R ⊆ S. By (i), for every S ∈ B
there is a set Z ∈ R such that π(Z△S) = 0, and then Z ∈ S implies that

there is a set Y ∈ R̂ for which π(Z△Y ) < ε. Then π(Y△X) < ε.
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(ii)⇒(i): Let X ∈ B, and for k ≥ 1, let Yk ∈ R̂ be a set such that
π(X△Yk) < 2−k. Consider the sets

Zn =
∞⋂

k=n

Yk, and Z =
∞⋃

n=1

Zn.

Trivially Z ∈ R. Furthermore,

π(Zn \X) ≤ lim inf
k
π(Yk \X) ≤ lim inf

k
π(Yk△X) = 0,

and

π(X \ Zn) ≤
∞∑

k=n

π(X \ Yk) ≤
∞∑

k=n

π(X△Yk) < 21−n.

Using this, a similar computation gives that π(X△Z) = 0.

(i)⇒(iii): Let B1, B2, . . . be a countable generating set of B. For each i,
there is a set Ci ∈ R such that π(Bi△Ci) = 0. Let U =

⋃∞
i=1Bi△Ci, then

π(U) = 0. Let (Q′
i)

∞
i=1 be a generating partition sequence of Borel subsets of

U , and let Qi = Pi|J\U ∪Q′
i. Then (Qi)

∞
i=1 is a generating partition sequence

in (J,B) such that Pi|J\U = Qi|J\U for all i.

(iii)⇒(i): Let (Qi)
∞
i=1 be a generating sequence of partitions and U , a

Borel set with π(U) = 0 such that Pi|J\U = Qi|J\U for all i. Then Pi|J\U
is a generating partition sequence for the Borel sets in J \ U , and hence for
every C ∈ A there is a D ∈ R|J\U for which C \ U = D. Then D = D1 \ U
for some D1 ∈ R, and π(C△D1) ≤ π(U) = 0.

{(i),(ii),(iii)}⇒(iv): By (iii), we may assume that R is generating. It
suffices to prove that every function 1S (S ∈ B) can be approximated arbi-
trarily well by finite linear combinations of functions 1A (A ∈ Pi), since the
functions 1S are dense in L1(J,B, π), and 1A ∈ L1(J,Pi, π). This follows by
(ii).

(iv)⇒(ii): For every S ∈ B and ε > 0 there are sets A1, . . . , Ak ∈ R and
nonzero real numbers α1, . . . , αk such that

∥∥
1S − α11A1 − · · · − αk1Ak

∥∥
1
< ε.

Let i be the least integer for which A1, . . . , Ak ∈ P̂i. By splitting an Aj into
partition classes in Pi (and adjusting the coefficients as necessary), we may
assume that every Aj ∈ Pi. Then the Aj are disjoint. Replacing αj by 1 if
π(Aj ∩ S) ≥ π(Aj)/2, and by 0 otherwise, we decrease the left hand side.
Deleting zero terms, we may assume that every αj = 1, and then Y =

⋃
j Aj

satisfies π(S△Y ) < ε. �
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Lemma 9.6 Let (J,B, π) be a Borel probability space and assume that µ is
a measure on Jk for some k ∈ N such that its marginal distribution in each
coordinate is π. Let (Pi)

∞
i=1 be an exhausting partition sequence with respect

to π. Then the partition sequence (Pk
i )

∞
i=1 is exhausting to both πk and µ.

Proof. Replacing “exhausting” by “generating”, the assertion is easy. For
exhausting partition sequences, it follows by Lemma 9.5(iii). �

9.4 Unbounded graphons and non-acyclic graphs

We give the details of the arguments for Example 5.10. Recall that f : I =
[−1, 1] → R has the following properties: f ≥ 0; f(−x) = f(x) for all x ∈ I;∫
I
f(x) dx = 1; f is convex and monotone decreasing for x > 0. This function

defines a graphon by

W (x, y) = f(x− y) (x,∈ I),

where f is extended periodically modulo 2. Clearly W is symmetric and
1-regular. The stationary measure µ of the graphon is µ = λ/2. We claim
that as a kernel operator, it is positive semidefinite and compact as L2(µ) →
L2(µ).

The eigenfunctions ofW are sin(kπx) and cos(kπx), and hence the eigen-
values can be obtained as the Fourier coefficients of f(x). By the symmetry
of f , eigenvalues associated with the eigenfunction sin(kπx) are zero. The
other eigenvalues can be expressed for even k ≥ 0 as

λk =

1∫

−1

f(x) cos(kπx) dx = 2

1∫

0

f(x) cos(kπx) dx

=
2

k

k∫

0

f
(y
k

)
cos(πy) dy =

2

k

k/2−1∑

j=0

2∫

0

f
(y + 2j

k

)
cos(πy) dy. (74)

To see that this is nonnegative, notice that cos(πy) = − cos(π(1 − y)) =
− cos(π(1 + y)) = cos(π(2− y)), and so we can write (74) as

λk =
2

k

k/2−1∑

j=0

1/2∫

0

[
f
(2j + y

k

)
− f

(2j + 1− y

k

)
− f

(2j + 1 + y

k

)

+ f
(2j + 2− y

k

)]
cos(πy) dy. (75)
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Here each integrand is nonnegative by the convexity of f . For odd k, we get
an extra term

2

k

k∫

k−1

f
(y
k

)
cos(πy) dy ≥ 2

k

k∫

k−1

f
(y
k

)
dy

k∫

k−1

cos(πy) dy = 0,

where we used Chebyshev’s sum inequality on the monotone decreasing func-
tions f(y/k) and cos(πy). This proves that W is positive semidefinite.

By the Riemann–Lebesgue Lemma, λk → 0. This implies that W defines
a compact operator L2(µ) → L2(µ).

As a useful special case, we consider the function defined by

f(x) =
1

x(2− ln(x))2
=

(
1

2− ln(x)

)′

for x > 0, and f(x) = f(−x) for x < 0. (For x = 0 we can define f(x) = 0.)
We have

1∫

−1

f(x) dx = 2

[
1

2− ln(x)

]1

0

= 1.

The conditions that f is monotone decreasing and convex for x > 0 are easy
to check. To determine the order of magnitude of λk, note that the first term
in (75) is

ak =
1

k

1/2∫

0

(
f
(y
k

)
− f

(1− y

k

)
− f

(1 + y

k

)
+ f

(2− y

k

))
cos(πy) dy

≥ 1

k

1/4∫

0

(
f
(y
k

)
− f

(1− y

k

)
− f

(1 + y

k

)
+ f

(2− y

k

))
cos(πy) dy

Using the inequality f(3x) ≤ f(x)/2 and f(5x) ≤ f(x)/4 valid for x < 1/(4k)
if k is large enough, we can estimate the expression in the large parenthesis
as

f
(y
k

)
− f

(1− y

k

)
− f

(1 + y

k

)
+ f

(2− y

k

)

≥
(
1− 1

2
− 1

4

)
f
(y
k

)
>

1

4
f
(y
k

)
.
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Hence

λk ≥ ak ≥
1

4k

1/4∫

0

f
(y
k

)
cos

π

4
dy =

1

4
√
2

1/(4k)∫

0

f(x) dx =
1

4
√
2(2 + ln(4k))

.

It follows that no operator power of W has finite trace, so t(Cn,W ) = ∞ for
all n. Since f is bounded away from 0, it follows that t(G,W ) = ∞ for every
graph G containing a cycle.
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