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Abstract

We consider two types of matroids defined on the edge set of a graph G: count
matroids Mk,ℓ(G), in which independence is defined by a sparsity count involving
the parameters k and ℓ, and the C1

2 -cofactor matroid C(G), in which independence is
defined by linear independence in the cofactor matrix of G. We show, for each pair
(k, ℓ), that if G is sufficiently highly connected, then G − e has maximum rank for
all e ∈ E(G), and the matroid Mk,ℓ(G) is connected. These results unify and extend
several previous results, including theorems of Nash-Williams and Tutte (k = ℓ = 1),
and Lovász and Yemini (k = 2, ℓ = 3). We also prove that if G is highly connected,
then the vertical connectivity of C(G) is also high.

We use these results to generalize Whitney’s celebrated result on the graphic
matroid of G (which corresponds to M1,1(G)) to all count matroids and to the C1

2 -
cofactor matroid: if G is highly connected, depending on k and ℓ, then the count
matroid Mk,ℓ(G) uniquely determines G; and similarly, if G is 14-connected, then
its C1

2 -cofactor matroid C(G) uniquely determines G. We also derive similar results
for the t-fold union of the C1

2 -cofactor matroid, and use them to prove that every
24-connected graph has a spanning tree T for which G−E(T ) is 3-connected, which
verifies a case of a conjecture of Kriesell.

1 Introduction

Let G be a graph and M(G) a matroid on the edge set of G. Given that G has sufficiently
high edge or vertex-connectivity, what properties of M(G) can we deduce? There are a
number of classical theorems in this vein. For example, we have
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• Whitney’s theorem1 [22], which says that if G is 3-connected, then it is uniquely
determined by its graphic matroid, in the sense that if H is a graph without isolated
vertices such that the graphic matroids of G and H are isomorphic, then G and H
are isomorphic as well;

• a consequence of a theorem of Nash-Williams and Tutte [16, 19], saying that if G is
2k-edge-connected, then G contains k edge-disjoint spanning trees, or equivalently,
the rank of the k-fold union of the graphic matroid of G is k|V (G)| − k;

• the theorem of Lovász and Yemini [13], stating that if G is 6-connected, then it is
redundantly rigid in R2, which means that for every edge e of G, the rank of the
generic 2-dimensional rigidity matroid of G− e is 2|V (G)| − 3.

In all of these examples, the underlying matroids turn out to be count matroids, also
known as sparsity matroids. These matroids are parameterized by two integers k and ℓ,
with k positive and ℓ ≤ 2k−1, and a set of edges is independent in the (k, ℓ)-count matroid
if the graph induced by them is (k, ℓ)-sparse, that is, every subset X of vertices induces at
most k|X| − ℓ edges in the graph. (See the next section for precise definitions.)

Extensions of the above theorems have been obtained previously for some values of
k and ℓ. For example, an analogue of Whitney’s theorem was given for the (2, 3)-count
matroid (that is, the generic 2-dimensional rigidity matroid) in [10, Theorem 2.4], while
the Lovász-Yemini theorem has been generalized to the (k, 2k − 1)-count matroids and
(2k, 3k)-count matroids for each positive integer k; see [7, Theorem 6.2] and [9, Theorem
3.1], respectively.

We prove generalizations of all of the above theorems, for all count matroids. In partic-
ular, we prove that if a graph is (max{2k, 2ℓ}+1)-connected, then it is uniquely determined
by its (k, ℓ)-count matroid, when k and ℓ are positive and ℓ ≤ 2k− 1 (Corollary 5.3). The
key difficulty is in showing that an analogue of the Lovász-Yemini theorem holds for every
k, ℓ with 2 ≤ k < ℓ ≤ 2k − 1 (Theorem 3.7). As with all previous generalizations of the
Lovász–Yemini-theorem, our method of proof is similar to the original proof of Lovász and
Yemini, albeit significantly more involved.

Another example of matroids on graphs is given by the family of generic d-dimensional
rigidity matroids, denoted by Rd(G). As we noted above, for d = 2 these are the (2, 3)-
count matroids, while for d = 1 they coincide with the (1, 1)-count matroids. For d ≥ 3,
however, generic d-dimensional rigidity matroids are not defined by a sparsity condition,
and their properties are much less understood than that of count matroids. In particular,
finding a combinatorial characterization for the rank functions of generic 3-dimensional
rigidity matroids is a major open question.

Brigitte and Herman Servatius [1, Problem 17] asked whether there is a (smallest)
constant kd such that G is uniquely determined by Rd(G), provided that Rd(G) is kd-
connected. The only known cases of this problem are when d = 1, where Whitney’s
theorem gives an affirmative answer, and when d = 2, which was answered positively in
[10]. We answer the analogous question in the case of the so-called C1

2 -cofactor matroid

1Whitney actually gave a more general result characterizing pairs of graphs with isomorphic graphic
matroids. Nonetheless, by “Whitney’s theorem” we shall refer to this corollary throughout the paper.
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C(G) of a graph G. This matroid bears a strong resemblance to the generic 3-dimensional
rigidity matroid of a graph, leading Whiteley to conjecture that C(G) = R3(G) for every
graph G, see e.g., [21, Page 61]. In a recent paper, Clinch, Jackson and Tanigawa [3] gave
an NP ∩ co-NP characterization for the rank function of C(G). They also showed that
every 12-connected graph is “C-rigid,” an analogue of the Lovász-Yemini theorem for C(G).
We use their characterization to show that if G is 14-connected or if C(G) is (vertically)
33-connected, then G is uniquely determined by C(G) (Theorems 5.6 and 5.8).

In fact, instead of C(G) we work with its t-fold union Ct(G). This approach also lets
us show that every 12t-connected graph contains t edge-disjoint 3-connected spanning
subgraphs (Theorem 5.11). It also follows that if a graph G is 24-connected, then G
contains a spanning tree T for which G − E(T ) is 3-connected, which proves the k = 3
case of a conjecture of Kriesell [15].

The rest of the paper is laid out as follows. In Section 2 we give the definitions and facts
related to count and cofactor matroids that we shall need. In Sections 3 and 4 we consider
the relation between the vertex-connectivity of a graph and the vertical connectivity (and
other structural properties) of its count and cofactor matroids. In particular, we prove
variants of the Lovász-Yemini theorem, as well as related basis packing theorems. Finally,
in Section 5 we apply these results to prove analogues of Whitney’s theorem and the special
case of the conjecture of Kriesell mentioned above.

2 Preliminaries

Unless otherwise noted, we consider graphs without loops and isolated vertices, but possibly
with parallel edges. For a graph G = (V,E) and a vertex v ∈ V , dG(v) denotes the degree
of v in G, while ∂G(v) denotes the set of edges incident to v in G. For a set X ⊆ V of
vertices, we let G[X] denote the subgraph of G induced by X. For a set of edges F ⊆ E,
V (F ) denotes the set of vertices of the graph induced by F .

We assume that the reader is familiar with the basic definitions and results of matroid
theory. We refer the reader to [5, 18] for more details.

2.1 Union and vertical connectivity of matroids

Let Mi = (E, Ii), i ∈ {1, . . . , t} be a collection of matroids on a common ground set E,
where Ii is the family of independent sets in matroid Mi. The union of M1, . . . ,Mt is
the matroid M = (E, I) whose independent sets are defined by

I = {I1 ∪ . . . ∪ It : I1 ∈ I1, . . . , It ∈ It}.

Nash-Williams [17] and Edmonds [4] gave the following characterization of the rank
function r of M. Let ri denote the rank function of Mi for i ∈ {1, . . . , t}. Then for all
E ′ ⊆ E we have

r(E ′) = min
F⊆E′

(
|F |+

t∑
i=1

ri(E
′ − F )

)
. (1)
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Let M = (E, r) be a matroid with rank function r and let k be a positive integer. We say
that a bipartition (E1, E2) of E is a vertical k-separation of M if r(E1), r(E2) ≥ k and

r(E1) + r(E2) ≤ r(E) + k − 1

holds. In this case r(Ei) < r(E) for i = 1, 2. The vertical connectivity of M is defined to
be the smallest integer k for which M has a vertical k-separation. If M has no vertical
separations at all, then we define its vertical connectivity to be r(E). We say that M is
vertically k-connected if its vertical connectivity is at least k.

An element e ∈ E is a bridge in M if r(E − {e}) = r(E) − 1 holds. We say that
a matroid M on ground set E is connected if |E| ≥ 2 and M is loopless and vertically
2-connected. In particular, a connected matroid cannot contain any bridges, since if f ∈ E
is a bridge, then ({f}, E − {f}) forms a vertical 1-separation. The maximal connected
submatroids of a matroid M are pairwise disjoint and the sum of their ranks is equal to
the rank of M. They are called the components of M. We say that a component is trivial
if it has a single element (which is necessarily a bridge), and nontrivial otherwise.

2.2 Count matroids

Let G = (V,E) be a graph and let k and ℓ be two integers with k ≥ 1 and ℓ ≤ 2k− 1. The
(k, ℓ)-count matroid of G is the matroid Mk,ℓ(G) = (E, Ik,ℓ) on the edge set of G in which
the family of independent sets is defined by the sparsity condition

Ik,ℓ = {I ⊆ E : |I ′| ≤ k|V (I ′)| − ℓ for all ∅ ̸= I ′ ⊆ I}.

It is known that Mk,ℓ(G) is indeed a matroid [12, 21], whose rank function rk,ℓ is given by

rk,ℓ(E
′) = min{|F |+

∑
Y ∈Y

(k|V (Y )| − ℓ) : F ⊆ E ′, Y is a partition of E ′ − F},

for E ′ ⊆ E; see [5, Sections 13.4, 13.5].
We can give an alternative formula for rk,ℓ using vertex partitions instead of edge

partitions. A cover of G = (V,E) is a collection X = {X1, X2, . . . Xt} of subsets of V of
size at least two for which every edge in E is induced by some Xi. When G is clear from
the context we shall also say that X is a cover of an edge set J ⊆ E to mean that it is a
cover of the subgraph of G induced by J . The cover is said to be k-thin, for some integer
k, if |Xi ∩ Xj| ≤ k for all 1 ≤ i < j ≤ t. For a cover X = {X1, X2, ..., Xt}, we define its
value (with respect to k and ℓ) to be

valk,ℓ(X ) =
t∑

i=1

(k|Xi| − ℓ).

The proof of the following result can be found in the Appendix.
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Theorem 2.1. The rank of a set E ′ ⊆ E of edges in Mk,ℓ(G) is given by

rk,ℓ(E
′) = min{|F |+ valk,ℓ(X )},

where the minimum is taken over all subsets F ⊆ E ′ and all 1-thin covers X of (V,E ′−F ).
Furthermore, if 0 < ℓ ≤ k, then the minimum is attained on a 0-thin cover of (V,E ′ − F ).
If ℓ ≤ 0, then the minimum is attained on X = {V (E ′ − F )}.

It is clear from the definitions that for any graph G = (V,E) on at least two vertices,
the rank of Mk,ℓ(G) is at most k|V | − ℓ. For convenience, we introduce the following
notions. We say that G is

• (k, ℓ)-rigid if rk,ℓ(E) = k|V | − ℓ;
• (k, ℓ)-redundant if G− e is (k, ℓ)-rigid for all e ∈ E;
• (k, ℓ)-sparse if rk,ℓ(E) = |E|, or equivalently, if for any set of vertices X ⊆ V of size
at least two, the number of edges in G[X] is at most k|X| − ℓ;

• (k, ℓ)-tight if it is both (k, ℓ)-rigid and (k, ℓ)-sparse, or equivalently, if it is (k, ℓ)-rigid
and |E| = k|V | − ℓ.

We say that G is an Mk,ℓ-circuit if E is a circuit in Mk,ℓ(G). Similarly, G is said to be
Mk,ℓ-connected if Mk,ℓ(G) is connected. The subgraphs induced by the components of
Mk,ℓ(G) are the Mk,ℓ-components of G.

We record the following facts about the behaviour of count matroids under vertex and
edge additions, which are straightforward to deduce from the definitions.

Lemma 2.2. Let k and ℓ be integers with k ≥ 1 and ℓ ≤ 2k − 1, and let G be a graph.

(a) Let G′ be obtained from G by the addition of a vertex incident to k edges in such
a way that we add no more than 2k − ℓ parallel edges between any two vertices.
If G is (k, ℓ)-sparse ((k, ℓ)-tight, respectively) then G′ is (k, ℓ)-sparse ((k, ℓ)-tight,
respectively).

(b) Let ℓ′ < ℓ be another integer and let G′ be obtained from G by the addition of ℓ− ℓ′

edges (on the same vertex set). If G is (k, ℓ)-tight, then G′ is (k, ℓ′)-tight.

The following lemma collects some observations that can be proved by elementary
counting arguments. The complete graph on n vertices is denoted by Kn.

Lemma 2.3. Let k and ℓ be integers with k ≥ 1 and ℓ ≤ 2k − 1. Then

(a) if G = (V,E) is a simple graph with 2 ≤ |V | ≤ 2k − 1, then |E| ≤ k|V | − ℓ;
(b) if k + 1 ≤ ℓ ≤ 2k − 1, then Kn is (k, ℓ)-redundant for all n ≥ 2k;
(c) if C = (VC , EC) is an Mk,ℓ-circuit, then |VC | = 2 or |VC | > k/(2k − ℓ).

Proof. (a) G is simple, so |E| ≤ |V |(|V | − 1)/2. Moreover, from ℓ ≤ 2k − 1 we have
k|V | − (2k − 1) ≤ k|V | − ℓ. Since for fixed k, |V |(|V | − 1)/2 ≤ k|V | − (2k − 1) is a
quadratic inequality in |V | that holds for |V | = 2 and |V | = 2k − 1, it holds for every
2 ≤ |V | ≤ 2k − 1.

(b) Suppose that n ≥ 2k. Let us first consider K2k−1. It is (k, 2k−1)-sparse by (a), and
it has k(2k − 1)− (2k − 1) edges, so it is (k, 2k − 1)-tight. Adding a new vertex of degree
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k + (2k − 1 − ℓ) ≤ 2k − 2 results in a (k, ℓ)-tight graph on 2k vertices by Lemma 2.2(b),
since this is the same as adding a new vertex of degree k, which results in a (k, 2k−1)-tight
graph, and then adding 2k − 1− ℓ additional edges. Note that it is a proper subgraph of
K2k. By adding n − 2k additional vertices of degree k, we obtain a (k, ℓ)-tight spanning
(proper) subgraph of Kn, c.f. Lemma 2.2(a). By symmetry, this shows that Kn − e is
(k, ℓ)-rigid for any edge e ∈ E(Kn), and consequently Kn is (k, ℓ)-redundant.

(c) If |VC | ≤ 2, then we are done (recall that we do not allow loops in our graphs),
so we may suppose that |VC | ≥ 3. If k/(2k − ℓ) ≤ 2, then, again, we are done, so let us
suppose that k/(2k − ℓ) > 2, which is equivalent to ℓ > 3

2
k. First, observe that a pair of

vertices with 2k − ℓ+ 1 parallel edges between them form an Mk,ℓ-circuit. It follows that
between any pair of vertices in C there are at most 2k − ℓ parallel edges. Thus, it suffices
to show that the graph (2k − ℓ)KVC

, consisting of the vertex set VC and 2k − ℓ parallel
edges between each pair of vertices in VC , is (k, ℓ)-sparse whenever |VC | ≤ k/(2k− ℓ). This
follows from a similar calculation as in part (a), as follows. Let (V0, E0) be a subgraph of
(2k − ℓ)KVC

. We have |E0| ≤ (2k − ℓ)|V0|(|V0| − 1)/2, so it suffices to prove

(2k − ℓ)
|V0|(|V0| − 1)

2
≤ k|V0| − ℓ.

This is a quadratic inequality in |V0|, so it is enough to show that it holds for |V0| = 2 and
|V0| = k/(2k− ℓ). The former is immediate. For the latter, observe that after substitution,
rearranging, and multiplying by two we obtain the inequality

(2ℓ− k)(2k − ℓ) ≤ k2.

Since the mapping
f : x 7→ (2x− k)(2k − x)

is a quadratic function with f(3
2
k) = k2 and f ′(x) < 0 for all x > 5

4
k, f(ℓ) ≤ k2 holds

whenever ℓ ≥ 3
2
k, as desired.

Finally, the following lemma captures an important property of count matroids. Since
we could not find a proof in the literature, we provide one.

Lemma 2.4. Let H be a nontrivial Mk,ℓ-component of a graph G. Then H is an induced
subgraph of G and H is (k, ℓ)-redundant.

Proof. We start by showing that any Mk,ℓ-circuit C = (VC , EC) is (k, ℓ)-rigid. Indeed,
since C is not (k, ℓ)-sparse, there must be a subset of vertices X ⊆ VC of size at least two
such that C[X] has at least k|X| − ℓ+ 1 edges. Deleting any edge of C results in a (k, ℓ)-
sparse graph, so we must have X = VC and |EC | = k|VC | − ℓ+1. Since rk,ℓ(C) = |EC | − 1,
C is (k, ℓ)-rigid, as claimed. Moreover, Mk,ℓ(C) does not contain bridges, so C is, in fact,
(k, ℓ)-redundant.

Next, we show that if a graph G0 with at least two edges isMk,ℓ-connected, then adding
any edge e with end vertices u and v to G0 (possibly parallel to an existing edge of G0)
also results in an Mk,ℓ-connected graph; in other words, e is not a bridge of Mk,ℓ(G0 + e).
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Indeed, let f, f ′ be (not necessarily distinct) edges of G0 incident to u and v, respectively.
Since G0 is Mk,ℓ-connected, we can find an Mk,ℓ-circuit C in G0 that contains f and f ′. In
particular, C spans u and v. Now C is (k, ℓ)-rigid, so we must have rk,ℓ(C) = rk,ℓ(C+e). It
follows that e is contained in an Mk,ℓ-circuit C0 of C + e. Since C0 is also an Mk,ℓ-circuit
of G0 + e, e is not a bridge in Mk,ℓ(G0 + e).

Now if H = (VH , EH) is a nontrivial Mk,ℓ-component of a graph G, then the above
argument shows that G[VH ] is Mk,ℓ-connected. By the maximality of H, we must have
H = G[VH ], so H is an induced subgraph of G. We would like to show that it is also
(k, ℓ)-redundant. Again, it is enough to show that H is (k, ℓ)-rigid, since combined with
Mk,ℓ-connectivity this implies that H is (k, ℓ)-redundant. Moreover, it follows from the
argument used in the first part of the proof that adding edges to H does not increase its
rank. Thus, it suffices to show that there is a (k, ℓ)-rigid supergraph of H on the vertex set
VH , which, in turn, is equivalent to showing that there exists a (k, ℓ)-tight graph on VH .

Now if |VH | = 2, then 2k− ℓ parallel edges between the two vertices form a (k, ℓ)-tight
graph, and we are done. If |VH | ≥ 3, then H contains an Mk,ℓ-circuit C = (VC , EC) with
|VC | ≥ 3. Indeed, H has two edges that have different end vertices, and we can take C
to be an Mk,ℓ-circuit containing such a pair of edges. It follows from Lemma 2.3(c) that
|VC | > k/(2k − ℓ). By the first part of the proof, C is (k, ℓ)-rigid, and thus it contains a
spanning (k, ℓ)-tight subgraph T . Now we can use T and Lemma 2.2(a) to construct, by
vertex additions, a (k, ℓ)-tight graph on VH .

2.3 Cofactor matroids

Let G be a simple graph and s a non-negative integer. The Cs−1
s -cofactor matroid of G

is a certain matroid Cs−1
s (G) defined on the edge set of G. Whiteley [21] proved that

Cd−2
d−1(G) = Rd(G) for d = 1, 2. We shall focus on the d = 3 case (that is, the C1

2 -
cofactor matroid) where, recently, Clinch, Jackson, and Tanigawa [3] gave a combinatorial
characterization for the rank function of C1

2(G). As the definition of this matroid is rather
technical and not directly relevant for our purposes, we shall take this characterization as
a definition, and direct the interested reader to [21] for a detailed treatment of cofactor
matroids. Throughout the rest of the paper we shall adopt the simpler notation C(G) for
C1
2(G).
Let G = (V,E) be a graph and let X be a 2-thin cover of G. A hinge of X is a pair of

vertices {x, y} with Xi ∩Xj = {x, y} for two distinct Xi, Xj ∈ X . We use H(X ) to denote
the set of all hinges of X . The degree degX (h) of a hinge h of X is the number of sets in
X which contain h. The family X is called k-shellable if its elements can be ordered as a
sequence (X1, X2, . . . , Xm) so that, for all 2 ≤ i ≤ m, we have |Xi ∩

⋃i−1
j=1Xj| ≤ k.

Theorem 2.5. [3, Theorem 6.1] Let G = (V,E) be a simple graph and let r denote the
rank function of C(G). Then for each E ′ ⊆ E, we have

r(E ′) = min{|F |+
∑
X∈X

(3|X| − 6)−
∑

h∈H(X )

(degX (h)− 1)},

7



where the minimum is taken over all subsets F ⊆ E ′ and all 4-shellable 2-thin covers X of
(V,E ′ − F ) with sets of size at least five.

We shall need the following generalization of Theorem 2.5 to the union of t copies of
C(G), which we denote by Ct(G).

Theorem 2.6. Let G = (V,E) be a simple graph and let rt denote the rank function of
Ct(G). Then for each E ′ ⊆ E, we have

rt(E
′) = min{|F |+ t

∑
X∈X

(3|X| − 6)− t
∑

h∈H(X )

(degX (h)− 1), (2)

where the minimum is taken over all F ⊆ E ′ and all 4-shellable 2-thin covers X of (V,E ′−
F ) with sets of size at least five.

Proof. By using the rank formula (1) of the union of matroids, we obtain

rt(E
′) = min

F⊆E′
{|F |+ t · r1(E ′ − F )}.

Using Theorem 2.5 we can rewrite this as

rt(E
′) = min

F⊆E′
{|F |+ t

(
min{|F ′|+

∑
X∈X

(3|X| − 6)−
∑

h∈H(X )

(degX (h)− 1)
)
,

where the second minimum is taken over all F ′ ⊆ E ′ − F and 4-shellable 2-thin covers X
of (V,E ′ − (F ∪ F ′)). Since t ≥ 1, replacing F by F ∪ F ′ and F ′ by the empty set in a
minimizing triple F, F ′,X does not increase the right hand side. Therefore we can simplify
this formula and deduce that (2) holds.

We can observe that rt(Ct(G)) ≤ 3t|V | − 6t holds for any simple graph G on at least 5
vertices by applying Theorem 2.6 with F = ∅ and X = {V }. Also note that if F,X is a
pair for which equality holds in (2), then the members of F are bridges in Ct(G). Indeed,
for any f ∈ F , by considering G− f, F − f and X , and applying Theorem 2.6, we obtain
rt(G− f) = rt(G)− 1.

We shall repeatedly use the following “vertex addition lemma” for Ct. The statement
follows immediately from the special case when t = 1, which can be found in [21, Lemma
10.1.5].

Lemma 2.7. Let G = (V,E) be a simple graph, v a vertex of G and t a positive integer.
Then rt(E) ≥ rt(E−∂G(v))+min{3t, dG(v)}. In particular, if dG(v) ≤ 3t, then every edge
incident to v is a bridge in Ct(G).

Lemma 2.8. Let n ≥ 6t be an integer. Then rt(Kn) = 3tn− 6t.

8



Proof. Since we know that rt(Kn) ≤ 3tn−6t, it is sufficient to show that rt(Kn) ≥ 3tn−6t
holds. We proceed by induction on n. First, let n = 6t. We shall show that in this case
Kn contains t edge-disjoint subgraphs G1, . . . , Gt with r1(Gi) = 3n− 6 for i = 1, . . . , t.

Let V1, . . . , Vt be a partition of V (Kn) into sets of size 6 and, initially, let Gi be the
complete graph on Vi. For each pair of indices i, j with 1 ≤ i < j ≤ t we add edges toGi and
Gj as follows. Let v1, . . . , v6 and w1, . . . , w6 denote the vertices of Vi and Vj, respectively.
Now we add the edges vkwl, k, l ∈ {1, 2, 3} and the edges vkwl, k, l ∈ {4, 5, 6} to Gi, and
the edges vkwl, k ∈ {1, 2, 3}, l ∈ {4, 5, 6} and the edges vkwl, k ∈ {4, 5, 6}, l ∈ {1, 2, 3} to
Gj.

In this way, we obtain edge-disjoint spanning subgraphs G1, . . . , Gt of Kn. Moreover,
for each i ∈ {1, . . . , t}, Gi can be obtained from a copy of K6 by adding n − 6 vertices of
degree 3. Since r1(K4) = 6 = 3 · 4 − 6 (which can be seen from Theorem 2.5), Lemma
2.7 implies that r1(Gi) = 3n − 6. Since G1, . . . , Gt are edge-disjoint, we have rt(Kn) ≥∑t

i=1 r1(Gi) = 3tn− 6t.
Now let n > 6t. Since Kn can be obtained from Kn−1 by adding a vertex of degree

n− 1 > 3t, the induction hypothesis and Lemma 2.7 imply

rt(Kn) ≥ 3t(n− 1)− 6t+ 3t = 3tn− 6t,

as desired.

3 Count matroids of highly connected graphs

In this section we give sufficient conditions for a graph to be (k, ℓ)-rigid. There are three
distinct subcases depending on the value of ℓ in relation to k, the third of which is signif-
icantly more difficult than the other two. First, when ℓ ≤ 0, then we only need a bound
on the minimum degree to ensure (k, ℓ)-rigidity, and a slightly higher bound also gives
(k, ℓ)-redundancy. In the 0 < ℓ ≤ k case we show that if a graph is 2k-edge-connected,
then it is (k, ℓ)-redundant. As we shall see, this follows quickly from (a slight extension
of) the result of Tutte and Nash-Williams that 2k-edge-connected graphs contain k edge-
disjoint spanning trees, that is, are (k, k)-rigid. Finally, for k < ℓ ≤ 2k − 1 we show that
2ℓ-connected graphs are (k, ℓ)-redundant, an extension of the Lovász–Yemini-theorem. In
all three cases we also give conditions that ensure Mk,ℓ-connectivity.

3.1 The ℓ ≤ 0 and 0 < ℓ ≤ k cases

For the ℓ ≤ 0 case, we shall give an argument using orientations of graphs. We say that an
orientation G⃗ of G is smooth if for each vertex v, the in-degree and out-degree of v differ
by at most 1. It is well-known (see, for example, [5, Theorem 1.3.8]) that every graph has
a smooth orientation, which can be obtained by adding a perfect matching between the
vertices of odd degree, taking an Eulerian orientation of the resulting graph and restricting
this orientation to the original edges of the graph.
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Theorem 3.1. Let k and ℓ be integers such that k ≥ 1 and ℓ ≤ 0 and let G = (V,E) be a
graph. If the degree of each vertex of G is at least 2k− 2ℓ

|V | , then G is (k, ℓ)-rigid. Moreover,

if each degree is at least 2k − 2ℓ−2
|V | , then G is (k, ℓ)-redundant.

Proof. We first show that G has a (k, 0)-tight spanning subgraph G0. Take a smooth

orientation G⃗ of G. Since the degree of each vertex in G is at least 2k, the in-degree of
each vertex in G⃗ is at least k. It follows that we can find a spanning subdigraph G⃗0 in
which the in-degree of each vertex is k. The underlying undirected graph G0 of G⃗0 is
(k, 0)-sparse and has k|V | edges, so it is (k, 0)-tight.

By adding up the degree of each vertex in G we have 2|E| ≥ 2k|V | − 2ℓ, and thus
|E−E(G0)| ≥ −ℓ. Now we can add −ℓ edges from E−E(G0) to G0 to obtain a spanning
(k, ℓ)-tight subgraph of G, which shows that G is (k, ℓ)-rigid (c.f. Lemma 2.2(b)).

Furthermore, if the degree of each vertex in G is at least 2k − 2ℓ−2
|V | , then after deleting

an arbitrary edge e of G, each degree remains at least 2k and G−e still has at least k|V |−ℓ
edges. Hence, the previous argument shows that G− e is (k, ℓ)-rigid for each edge e ∈ E,
and therefore G is (k, ℓ)-redundant in this case.

Next, we consider the case when 0 < ℓ ≤ k. We shall need the following theorem which
we already mentioned in the Introduction. For a proof, see e.g. [5, Corollary 10.5.2].2

Theorem 3.2. [16, 19] Let G = (V,E) be a 2k-edge-connected graph. Then for any subset
of edges E ′ of size at most k, G− E ′ contains k edge-disjoint spanning trees.

Theorem 3.3. Let k and ℓ be integers such that 0 < ℓ ≤ k and let G = (V,E) be a graph.
If G is 2k-edge-connected, then G is (k, ℓ)-redundant.

Proof. Let e be an edge of G and E ′ ⊆ E − e a set of edges of size k − ℓ. Note that
|E ′ + e| = k − ℓ + 1 ≤ k holds, since ℓ > 0. Now Theorem 3.2 and the fact that G is
2k-edge-connected together imply that G−E ′ − e contains k edge-disjoint spanning trees,
i.e. a (k, k)-tight spanning subgraph G0. It follows that G0 + E ′ is a (k, ℓ)-tight spanning
subgraph of G − e by Lemma 2.2(b). This shows that G − e is (k, ℓ)-rigid for each edge
e ∈ E, and therefore G is (k, ℓ)-redundant.

We note that Theorems 3.1 and 3.3 can also be deduced from the rank formula of
Theorem 2.1 by relatively simple counting arguments. On the other hand, the proofs given
here are algorithmic.

Now we turn to Mk,ℓ-connectivity. We need the following lemma.

Lemma 3.4. [11, Lemma 3.3] Let G be a (k, ℓ)-redundant graph. Then

(a) if ℓ ≤ 0 and G is connected, then G is Mk,ℓ-connected,
(b) if 0 < ℓ ≤ k and G is 2-connected, then G is Mk,ℓ-connected.

Combining Lemma 3.4 with Theorems 3.1 and 3.3 we obtain the following corollaries.

2Frank gives a slightly weaker statement where no edges of G are deleted, but the same proof works
for our statement.
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Corollary 3.5. Let k be a positive integer and ℓ ≤ 0. If G = (V,E) is connected and the
degree of each vertex of G is at least 2k − (2ℓ− 2)/|V |, then G is Mk,ℓ-connected.

Corollary 3.6. Let k be a positive integer and k ≥ ℓ > 0. If G = (V,E) is 2k-edge-
connected and 2-connected, then G is Mk,ℓ-connected.

3.2 The k < ℓ case

The k < ℓ case is more difficult. We shall extend and simplify the previous proofs that
solved the special case (k, ℓ) = (2, 3) [13] and, more generally, the case (k, 2k − 1) [7].

The main result of this section is the following theorem. It shows that sufficiently highly
vertex-connected graphs are (k, ℓ)-redundant.

Theorem 3.7. Let k and ℓ be two positive integers with 2 ≤ k < ℓ ≤ 2k − 1. Then every
2ℓ-connected graph is (k, ℓ)-redundant.

Proof. It is enough to prove for simple graphs, since passing to the underlying simple
graph preserves vertex-connectivity, and the addition of parallel edges preserves (k, ℓ)-
redundancy. For a contradiction, suppose that the statement is false and consider a coun-
terexample G = (V,E) for which |V | is as small as possible, and with respect to this, |E|
is as large as possible. Hence G is 2ℓ-connected and has an edge e for which G− e is not
(k, ℓ)-rigid. Theorem 2.1 implies that there exists a set F0 ⊆ E − e and a 1-thin cover
X = {X1, X2, . . . , Xt} of G− F0 − e for which

k|V | − ℓ > |F0|+ valk,ℓ(X ) (3)

Let us choose e and the pair F0, X for G− e so that |F0|+valk,ℓ(X ) is as small as possible
and with respect to this, |F0| is as large as possible. Let F denote F0 + e. Note that the
maximality of |E| implies that G[Xi] is complete for i = 1, . . . , t.

Claim 3.8. |Xi| ≥ 2k for all 1 ≤ i ≤ t.

Proof. Lemma 2.3(a) implies that if |Xi| ≤ 2k−1 then removing Xi from X and adding the
edge set induced by Xi in G− e to F0 gives rise to a pair F ′

0, X ′, where X ′ is a 1-thin cover
of E − F ′

0 − e and |F ′
0| + valk,ℓ(X ′) ≤ |F0| + valk,ℓ(X ). Since |F ′

0| > |F0|, this contradicts
the choice of F0 and X .

Claim 3.9. Each vertex v ∈ V satisfies exactly one of the following.

(i) v is contained by at least two sets Xi, Xj ∈ X .
(ii) v is contained by exactly one set Xi ∈ X , and v is incident with at least one edge in

F .
(iii) No set in X contains v, and v is incident with at least 2ℓ edges in F .

Proof. Since G is 2ℓ-connected, each vertex has degree at least 2ℓ. Thus if no set in X
contains v then every edge incident with v belongs to F and v satisfies (iii). So we may
assume that at least one set in X contains v. Suppose that (i) does not hold. Then v is
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contained by exactly one set, say X1 ∈ X . It remains to show that v is incident with at
least one edge in F .

Let us assume, for a contradiction, that no edge incident with v is in F . It follows that
X1 covers all the edges incident with v and hence it contains all the neighbors of v in G,
so |X1| ≥ 2ℓ + 1. Let G′ = G − v, X ′

1 = X1 − v and let X ′ = {X ′
1, X2, . . . , Xt}. Now

F ⊆ E(G′), |X ′
1| ≥ 2ℓ, and X ′ is a 1-thin cover of E(G′)− F . Furthermore,

rk,ℓ(G
′ − e) ≤ |F0|+ valk,ℓ(X ′) = |F0|+ valk,ℓ(X )− k < k|V | − ℓ− k = k|V (G′)| − ℓ,

which shows that G′ − e is not (k, ℓ)-rigid. The minimal choice of G then implies that G′

is not 2ℓ-connected. So either G − v has 2ℓ vertices and hence X1 = V and G = K2ℓ+1

hold, or G−v has a set S of vertices with |S| = 2ℓ−1 such that G−v−S is disconnected.
The former case is not possible, since Lemma 2.3(b) shows that K2ℓ+1 is (k, ℓ)-redundant.
Let us focus on the latter case. The 2ℓ-connectivity of G implies that v has at least one
neighbor in G in each connected component of G′ − S. Thus X1 intersects the vertex set
of each connected component of G − S ′. But X1 induces a complete subgraph of G, a
contradiction.

Claim 3.10. For each v ∈ V , we have

dF (v)

2
+

∑
i:Xi∋v

(
k − ℓ

|Xi|
)
≥ k.

Proof. First observe that |Xi| ≥ 2k and ℓ ≤ 2k − 1 imply that ℓ
|Xi| < 1. Thus if v satisfies

Claim 3.9(i), then
∑

i:Xi∋v(k − ℓ/|Xi|) > 2k − 2 ≥ k, and the claim follows.
If v satisfies Claim 3.9(ii) then either dF (v) ≥ 2, or dF (v) = 1. In the former case

we have dF (v)
2

+ (k − ℓ
|Xi|) > k, where Xi ∈ X is the set which contains v. In the latter

case Xi must contain all but one of the neighbors of v. This implies |Xi| ≥ 2ℓ, and hence
dF (v)

2
+ k − ℓ

|Xi| ≥
1
2
+ k − 1

2
= k.

Finally, if v is incident with 2ℓ edges in F then then the first term is at least ℓ, which
completes the proof by noting that ℓ > k.

We can now use Claim 3.10 to obtain

|F |+ valk,ℓ(X ) =
∑
v∈V

(dF (v)
2

+
∑

i:Xi∋v

(
k − ℓ

|Xi|
))

≥ k|V |. (4)

Since |F | = |F0|+ 1 and ℓ ≥ 3, the inequalities (3) and (4) together give

|F |+ valk,ℓ(X ) ≥ k|V | ≥ k|V | − ℓ+ 3 > |F | − 1 + valk,ℓ(X ) + 3,

a contradiction.
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The following construction shows that the bound 2ℓ is best possible. Take the disjoint
union of 2ℓ + 2 copies of K2ℓ−1 on vertex sets V1, . . . , V2ℓ+2; for convenience, let V2ℓ+3

also denote V1. For each index i with 1 ≤ i ≤ 2ℓ + 2, add a matching of size ℓ − 1
between Vi and Vi+1 in such a way that the edges in different matchings are also pairwise
disjoint. This leaves a single vertex vi ∈ Vi that is not incident to a matching edge, for
each i = 1, . . . , 2ℓ+2. Finally, add an edge between vi and vi+ℓ+1 for each i = 1, . . . , ℓ+1.
See Figure 1 for the case when (k, ℓ) = (2, 3). We note that for this case a similar example
was given in [13].

Figure 1: An example of a 5-connected graph that is not (2, 3)-rigid.

The resulting graph G = (V,E) is (2ℓ − 1)-connected. Let X = {V1, . . . , V2ℓ+2} and
F = E−∪2ℓ+2

i=1 E(Vi). Now X is a 0-thin cover of E−F , and a straightforward computation
shows that

|F |+ valk,ℓ(X ) ≤ k|V | − ℓ− 1,

which implies, by Theorem 2.1, that G is not (k, ℓ)-rigid (and hence not (k, ℓ)-redundant).
We can also prove the following strenghtening of Theorem 3.7 using standard methods,

see e.g., [8, Theorem 3.2] or [11, Lemma 3.3].

Theorem 3.11. Let 2 ≤ k < ℓ ≤ 2k − 1 be two positive integers and let G = (V,E) be a
graph. If G is 2ℓ-connected, then G is Mk,ℓ-connected.

Proof. It is enough to prove for simple graphs, since passing to the underlying simple graph
preserves vertex-connectivity, while it follows from Lemma 2.4 that adding parallel edges
preserves the property of being Mk,ℓ-connected.

Suppose, for a contradiction, that G is not Mk,ℓ-connected and let H1, . . . , Hq be the
Mk,ℓ-components of G. Each Hi is nontrivial, since G is (k, ℓ)-redundant by Theorem
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3.7. Let Xi = V (Hi) −
⋃

j ̸=i V (Hj) and let Yi = V (Hi) − Xi, 1 ≤ i ≤ q. We have

|V | =
q∑

i=1

|Xi|+ |
q⋃

i=1

Yi| and
q∑

i=1

|Yi| ≥ 2|
q⋃

i=1

Yi|, which gives |V | ≤
q∑

i=1

|Xi|+ 1
2

q∑
i=1

|Yi|.

It follows from Lemma 2.3(a) that |V (Hi)| ≥ 2k for 1 ≤ i ≤ q. The 2ℓ-connectivity
of G implies that |Yi| ≥ 2ℓ or Xi = ∅ must hold for each Yi; thus in both cases we have
|Yi| ≥ 2k for every 1 ≤ i ≤ q.

Since G is (k, ℓ)-rigid, it has a spanning (k, ℓ)-tight subgraph (V,B). Let Bi = B ∩

E(Hi), for i = 1, . . . , q. Thus
q⋃

i=1

Bi = B. Note that Bi is a base of Hi for 1 ≤ i ≤ q. By

using the above inequalities and Lemma 2.4, we obtain

k|V | − ℓ = |
q⋃

i=1

Bi| =
q∑

i=1

|Bi| =
q∑

i=1

(k|V (Hi)| − ℓ) = k

q∑
i=1

|Xi|+ k

q∑
i=1

|Yi| − qℓ

= k
( q∑

i=1

|Xi|+
1

2

q∑
i=1

|Yi|
)
+
k

2

q∑
i=1

|Yi| − qℓ ≥ k|V |+ k

2

q∑
i=1

|Yi| − qℓ

≥ k|V |+ k · q · 2k
2

− qℓ > k|V |,

where the last inequality follows from 2 ≤ k < ℓ ≤ 2k − 1. This contradiction completes
the proof.

We close this section by highlighting the following “basis packing” reformulation of
Theorem 3.7. The (k, ℓ) = (2, 3) case of this result can be found in [9, Theorem 3.1].

Theorem 3.12. Let k, ℓ and t be positive integers with 2 ≤ k < ℓ ≤ 2k − 1 and let G
be a graph. If G is (2ℓ · t)-connected, then it contains t edge-disjoint (k, ℓ)-rigid spanning
subgraphs.

Proof. By Theorem 3.7, G is (kt, ℓt)-rigid. The key observation is that Mkt,ℓt(G) is pre-
cisely the t-fold union of Mk,ℓ. This follows from Theorem 2.1 and (1); since the proof
is simple and analogous to that of Theorem 2.6, we omit it. It follows that G contains t
edge-disjoint (k, ℓ)-tight (and thus (k, ℓ)-rigid) spanning subgraphs.

4 Cofactor matroids of highly connected graphs

In this section we consider properties of Ct(G), the t-fold union of the generic three-
dimensional cofactor matroid of G. In particular, we show that if G = (V,E) is 12t-
connected, then rt(E) = 3t|V | − 6t (i.e., G is “Ct-rigid”). We also show that if G is
sufficiently highly connected, then Ct(G) has high vertical connectivity, and conversely,
if Ct(G) is sufficiently highly vertically connected, then G has high vertex-connectivity.
Throughout this section we only consider simple graphs.

We say that a bipartition {E1, E2} of E is essential (with respect to t) if

max{rt(E1), rt(E2)} < 3t|V | − 6t.
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The following lemma is our main technical result in this section. The proof uses ideas from
[10, Lemma 5.2.] and [3, Theorem 7.2].

Lemma 4.1. Let t be a positive integer and let G = (V,E) be a 12t-connected graph. Then
for every essential partition {E1, E2} of E we have

rt(E1) + rt(E2) ≥ 3t|V |.

Proof. Let us suppose, for a contradiction, that the lemma does not hold and let G = (V,E)
be a counterexample for which |V | is as small as possible and, with respect to this, |E| is
as large as possible. Let {E1, E2} be an essential partition of E for which

rt(E1) + rt(E2) < 3t|V |.

By Theorem 2.6, there exist sets Fi ⊆ Ei and 4-shellable 2-thin covers Xi of Ei − Fi,
consisting of sets of size at least five, with hinge sets Hi, for i = 1, 2, such that

rt(Ei) = |Fi|+
∑
X∈Xi

(3t|X| − 6t)− t
∑
h∈Hi

(degXi
(h)− 1).

Let X = X1 ∪ X2 and F = F1 ∪ F2.
It follows from the maximality of |E| that G[X] is complete for every set X ∈ X . This

also implies that Fi = Ei −
⋃

X∈Xi
KX , for i = 1, 2, where KX denotes the complete graph

on vertex set X.

Claim 4.2. Each vertex v ∈ V satisfies exactly one of the following.
(i) v is contained by at least two sets X, Y ∈ X ,
(ii) v is contained by exactly one set X ∈ X , and v is incident with at least one edge

in F ,
(iii) no set in X contains v, and v is incident with at least 12t edges in F .

Proof. Since G is 12t-connected, we have d(v) ≥ 12t. Suppose that no set in X contains v.
Then every edge incident with v belongs to F and (iii) holds. If v is contained by some set
in X then either (i) holds or v is contained by exactly one set, say X0 ∈ X . It remains to
show that in the latter case dF (v) ≥ 1, where dF (v) is the number of edges in F incident
with v.

For a contradiction suppose that dF (v) = 0. By symmetry we may assume that X0 ∈
X1. This also implies that there is no edge in E2 incident with v. Since X1 covers E1 and
no edge in F1 is incident with v, we have |X0| ≥ 12t+ 1 as X0 must contain v and all (at
least 12t) neighbors of v in G.

Let us consider the case when G is a complete graph. In this caseX0 = V must hold and
hence rt(E1) = 3t|V | − 6t follows by Lemma 2.8, which contradicts the fact that {E1, E2}
is essential. Hence we may assume that G is not complete. This implies |V | ≥ 12t+ 2.

We next show that {E1 − ∂G(v), E2} is an essential partition of the edge set E − ∂G(v)
of G − v. If this is not the case, then one of two possibilities must hold. The first one is
that

rt(E1 − ∂G(v)) = 3t|V (G− v)| − 6t = 3t|V | − 6t− 3t.
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In this case we can use Lemma 2.7 to deduce that rt(E1) = 3t|V | − 6t, a contradiction.
The second possibility is that

rt(E2 − ∂G(v)) = rt(E2) = 3t|V (G− v)| − 6t.

Since X0 induces a complete graph on at least 12t + 1 vertices in E1, Lemma 2.8 implies
rt(E1) ≥ 3t(12t+ 1)− 6t. It follows that

rt(E1) + rt(E2) ≥ 36t2 − 3t+ 3t|V | − 9t > 3t|V |,

a contradiction. This proves that the partition is indeed essential in G− v.
We can now complete the proof of the claim. Since X ′ = X − {X0} ∪ {X0 − v} covers

E − ∂G(v) − F , and no hinge of X1 or X2 contains v (as v is contained by X0 only), we
have

rt(E1 − ∂G(v)) + rt(E2)

≤ |F |+
∑
X∈X ′

(3t|X| − 6t)− t
(∑
h∈H1

(degX1
(h)− 1) +

∑
h∈H2

(degX2
(h)− 1)

)
≤ |F |+

∑
X∈X

(3t|X| − 6t)− 3t− t
(∑
h∈H1

(degX1
(h)− 1) +

∑
h∈H2

(degX2
(h)− 1)

)
= rt(E1) + rt(E2)− 3t < 3t|V (G− v)|.

By the minimality of |V | this implies that G− v is not 12t-connected. Since |V | ≥ 12t+2,
this implies that G − v has a set of vertices U of cardinality at most 12t − 1 for which
G − v − U is disconnected. The graph G − U must be connected by the 12t-connectivity
of G, which implies that each connected component of G − v − U contains at least one
vertex which is a neighbor of v in G. But the neighbors of v in G are all contained in X,
and G[X] is complete, so there is an edge between each pair of connected components of
G− v − U , a contradiction.

If a vertex v ∈ V satisfies (i) (resp. (ii), (iii)) of Claim 4.2, then we shall say that v is
of type (i) (resp. (ii), (iii)). Let Hv

i denote those hinges in Hi which contain v, for i = 1, 2.

Claim 4.3. Each vertex v ∈ V satisfies

dF (v)

2t
+

∑
X∈X :v∈X

(3− 6

|X|
)−

∑
h∈Hv

1

degX1
(h)− 1

2
−

∑
h∈Hv

2

degX2
(h)− 1

2
≥ 3.

Proof. We have three cases depending on the type of v. Suppose that v is of type (i). In this
case at least two members of X contain v. Since X1 and X2 are 4-shellable, there is an order-
ing (X1

1 , . . . , X
1
q1
) of X1 and an ordering (X2

1 , . . . , X
2
q2
) of X2 for which |X1

i1
∩
⋃i1−1

j=1 X
1
j | ≤ 4

and |X2
i2
∩
⋃i2−1

j=1 X
2
j | ≤ 4 hold for 2 ≤ i1 ≤ q1 and 2 ≤ i2 ≤ q2. Let (Y 1

1 , . . . , Y
1
p1
) and

(Y 2
1 , . . . , Y

2
p2
) be the inherited ordering of those sets in X1 and X2, respectively, that contain
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v. We may have pi = 0 for some i ∈ {1, 2}, but p1 + p2 ≥ 2 follows from the fact that v is
of type (i).

We assign a non-negative integer cij to each set Y i
j , i = 1, 2, 1 ≤ j ≤ pi. If Y

i
1 exists then

we put ci1 = 0, i = 1, 2, and we define cij = |Y i
j ∩

⋃j−1
j′=1 Y

i
j′| − 1, for i = 1, 2 and 2 ≤ j ≤ pi.

Since the covers are 4-shellable and 2-thin, we have cij ≤ 3 and ci2 ≤ 1, whenever it is
defined. Furthermore, we have

pi∑
j=1

cij =
∑
h∈Hv

i

(degXi
(h)− 1)

for i = 1, 2. We can now deduce that

dF (v)

2t
+

∑
X∈X :v∈X

(
3− 6

|X|
)
−

∑
h∈Hv

1

degX1
(h)− 1

2
−

∑
h∈Hv

2

degX2
(h)− 1

2

≥ 0 +

p1∑
j=1

(
3− 6

|Y 1
j |

−
c1j
2

)
+

p2∑
j=1

(
3− 6

|Y 2
j |

−
c2j
2

)
. (5)

Observe that there is at least one member of X that contains v for which the correspond-
ing c-value is 0 (since either Y 1

1 or Y 2
1 must exist) and at least one other for which the

corresponding c-value is at most 1 (since p1+ p2 ≥ 2). For these two sets, call them X and
Y , the sum of the corresponding terms in (5) is at least

(3− 6

|X|
) + (3− 6

|Y |
− 1

2
) ≥ 3− 6

5
+ 3− 6

5
− 1

2
=

31

10
> 3.

For any other set Z, the corresponding c-value is at most three, and hence the corresponding
term in (5) is at least

3− 6

|Z|
− 3

2
≥ 3− 6

5
− 3

2
=

3

10
> 0.

These inequalities imply the claim in the case when v is of type (i).
Next suppose that v is of type (ii). ThenHv

1 = Hv
2 = ∅ and we have exactly one member

of X ∈ X that contains v. As the degree of v is at least 12t by the 12t-connectivity of G,
we also have dF (v) + |X| ≥ 12t+1, where dF (v) ≥ 1 and |X| ≥ 5 must hold. If |X| ≥ 12t,

then we have dF (v)
2t

+ (3− 6
|X|) ≥

1
2t
+ (3− 6

12t
) ≥ 3, as required. If 5 ≤ |X| ≤ 12t then we

have
dF (v)

2t
+ (3− 6

|X|
) ≥ 12t+ 1− |X|

2t
+ (3− 6

|X|
) ≥ 3,

where the second inequality follows from the fact that this is a quadratic inequality in |X|
that is satisfied at the two extremes |X| = 5 and |X| = 12t of the domain, as can be
verified by a simple computation.

Finally, if v is of type (iii), then we have dF (v)
2t

≥ 12t
2t

= 6 > 3, as claimed.
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By using Claim 4.3 we can now deduce that

rt(E1) + rt(E2) = |F |+
∑
X∈X1

(3t|X| − 6t)− t
∑
h∈H1

(degX1
(h)− 1)

+
∑
X∈X2

(3t|X| − 6t)− t
∑
h∈H2

(degX2
(h)− 1)

= t
∑
v∈V

(dF (v)
2t

+
∑

X∈X :v∈X

(
3− 6

|X|
)
−

∑
h∈Hv

1

degX1
(h)− 1

2
−

∑
h∈Hv

2

degX2
(h)− 1

2

)
≥ 3t|V |,

a contradiction. This completes the proof of the lemma.

We have the following corollary, which extends [3, Theorem 7.2].

Corollary 4.4. If G = (V,E) is 12t-connected for some positive integer t then rt(E) =
3t|V | − 6t.

Proof. Suppose that rt(E) < 3t|V | − 6t. Then {E,∅} is an essential partition and hence
Lemma 4.1 implies rt(E) = rt(E) + rt(∅) ≥ 3t|V |, a contradiction.

We can now deduce a strengthening of Lemma 4.1.

Lemma 4.5. Let t be a positive integer and let G = (V,E) be a k-connected graph with
k ≥ 12t. Then for every essential partition {E1, E2} of E we have

rt(E1) + rt(E2) ≥ 3t|V |+ k − 12t.

Proof. We prove the lemma by induction on k. By Lemma 4.1 the statement holds for
k = 12t, so we may assume that k ≥ 12t+ 1. Let {E1, E2} be an essential partition of E.
Since rt(E) = 3t|V |−6t by Corollary 4.4, we have E1, E2 ̸= ∅. Hence there exists a vertex
v ∈ V (E1) ∩ V (E2).

Suppose first that {E1 − ∂G(v), E2 − ∂G(v)} is not an essential partition of G − v.
This means that either rt(E1 − ∂G(v)) or rt(E2 − ∂G(v)) is equal to 3t|V (G− v)| − 6t; by
symmetry, we may assume that it is the former. It follows that dE1(v) < 3t, for otherwise
Lemma 2.7 would imply that rt(E1) ≥ rt(E1 − ∂G(v)) + 3t = 3t|V | − 6t, contradicting
our assumption that {E1, E2} is essential. Observe that rt(∂G(v)) = dG(v) by Lemma 2.7.
Using Lemma 2.7 again we obtain

rt(E1)+ rt(E2) ≥ rt(E1−∂G(v))+dE1(v)+dE2(v) ≥ 3t|V (G−v)|−6t+k = 3t|V |−9t+k,

which is stronger than the bound we set out to prove.
Now let us consider the case when {E1 − ∂G(v), E2 − ∂G(v)} is essential. Then by the

induction hypothesis we have

rt(E1 − ∂G(v)) + rt(E2 − ∂G(v)) ≥ 3t|V (G− v)|+ k − 1− 12t.
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Note that dG(v) ≥ k ≥ 3t + 1, and that by the choice of v, dE1(v) and dE2(v) are both
non-zero. These observations together with Lemma 2.7 imply that

rt(E1) + rt(E2) ≥ rt(E1 − ∂G(v)) + rt(E2 − ∂G(v)) + 3t+ 1 ≥ 3t|V |+ k − 12t,

as desired.

We are ready to prove the main results of this section.

Theorem 4.6. Let G = (V,E) be a k-connected graph with k ≥ 12t. Then Ct(G) is
vertically (k − 6t+ 1)-connected.

Proof. Suppose that {E1, E2} is a vertical c-separation of Ct(G) for some c ≤ k− 6t. Then

max{rt(E1), rt(E2)} < rt(E) = 3t|V | − 6t,

where the equality follows from Corollary 4.4. Hence this partition of E is essential.
Therefore, Lemma 4.5 yields rt(E1) + rt(E2) ≥ 3t|V | + k − 12t ≥ 3t|V | − 6t + c which
contradicts the definition of a c-separation.

Applying Theorem 4.6 with t = 1 and k = 12 gives that whenever G is 12-connected,
C(G) is vertically 7-connected, and in particular it is connected. Thus we obtain an ana-
logue of Theorem 3.11 for the C1

2 -cofactor matroid.
In one of our applications we shall also need the following result, which says that if

Ct(G) is sufficiently highly vertically connected, then rt(G) = 3t|V | − 6t. Note that for
count matroids, a similar result follows immediately from Lemma 2.4. However, the direct
analogue of Lemma 2.4 for C(G) is not true3. Consequently, we have to work harder in
this case.

Theorem 4.7. Let G = (V,E) be a graph without isolated vertices. Suppose that Ct(G) is
vertically (6t+ 2)-connected. Then rt(E) = 3t|V | − 6t.

Proof. By Theorem 2.6, there exists an edge set F ⊆ E and a 4-shellable 2-thin cover X
of E − F with hinge set H(X ) such that

rt(E) = |F |+
∑
X∈X

(3t|X| − 6t)− t
∑

h∈H(X )

(degX (h)− 1).

As noted before, the members of F are bridges in Ct(G). Since Ct(G) is connected and
thus bridgeless, we must have F = ∅. It follows that if |X | = 1, then X = {V } and thus
rt(E) = 3t|V | − 6t, as required.

3To see this consider the so-called double banana graph B, obtained from two disjoint copies of K5 by
a 2-sum operation. It is easy to see that C(B) is connected, but it is not even C-rigid. Let B′ be obtained
from B by adding a new edge e that connects two vertices of degree four. Then B is induced by the edge
set of a connected component of C(B + e), but it is not an induced subgraph of B′.
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Let us assume, for a contradiction, that |X | ≥ 2. Consider the last set Xq of a 4-
shellable ordering of the sets in X . Since |Xq ∩

⋃
(X − {Xq}| ≤ 4, at most

(
4
2

)
= 6 hinges

are incident with Xq. Therefore

t
∑

h∈H(X−{Xq})

(degX−{Xq}(h)− 1) ≥ t
∑

h∈H(X )

(degX (h)− 1)− 6t.

Thus we obtain, by considering X −Xq and using Theorem 2.6, that

rt(E − E(Xq)) ≤
∑

X∈X−{Xq}

(3t|X| − 6t)− t
∑

h∈H(X−{Xq})

(degX−{Xq}(h)− 1)

≤
∑
X∈X

(3t|X| − 6t)− t
∑

h∈H(X )

(degX (h)− 1) + 6t− (3t|Xq| − 6t)

≤ rt(E) + 6t− (3t|Xq| − 6t).

(6)

On the other hand, rt(E(Xq)) ≤ 3t|Xq|−6t. Hence rt(E−E(Xq))+rt(E(Xq)) ≤ rt(E)+6t.
It follows that if min(rt(E − E(Xq)), rt(E(Xq))) ≥ 6t + 1 then {E − E(Xq), E(Xq)} is a
(6t+1)-separation of Ct(G), contradicting the fact that Ct(G) is vertically (6t+2)-connected.
So in the rest of the proof we may assume that at least one of rt(E−E(Xq)) and rt(E(Xq))
is at most 6t.

Since |X | ≥ 2, there is a set Y ∈ X − Xq. We have |Y | ≥ 5 and |Xq ∩ Y | ≤ 2.
Thus |Xq| ≤ |V | − 3. Also, from Lemma 2.7 and the fact that Ct(G) is bridgeless we have
dG(v) ≥ 3t + 1 for each vertex v ∈ V . This implies, using Lemma 2.7 again, that for any
set S ⊆ V −Xq with |S| = 3 the edge set ∂G(S) ⊆ E −E(Xq) contains 9t− 1 edges which
form an independent set in Ct(G). Hence rt(E − E(Xq)) ≥ 9t− 1 ≥ 6t+ 1. Therefore we
must have rt(E(Xq)) ≤ 6t.

If 3t+ 1 ≤ rt(E(Xq)) ≤ 6t, then we have, by using the upper bound on rt(E −E(Xq))
deduced earlier, that

rt(E − E(Xq)) + rt(E(Xq)) ≤ rt(E) + 6t− (3t|Xq| − 6t) + 6t ≤ rt(E) + 3t,

which implies that {E −E(Xq), E(Xq)} is a (3t+ 1)-separation in Ct(G), a contradiction.
If rt(E(Xq)) ≤ 3t, then we have

rt(E − E(Xq)) + rt(E(Xq)) ≤ rt(E) + 6t− (3t|Xq| − 6t) + 3t ≤ rt(E).

Note that E(Xq) ̸= ∅, since by (6) we have rt(E − E(Xq)) < rt(E). In particular,
rt(E(Xq)) ≥ 1. It follows that {E − E(Xq), E(Xq)} is a 1-separation in Ct(G), a contra-
diction. This final contradiction completes the proof of the theorem.

5 Applications

In this section we use the results of the previous sections to obtain analogues of Whitney’s
theorem for (k, ℓ)-count matroids and for the C1

2 -cofactor matroid. Our proofs follow the

20



basic strategy of the proof of Whitney’s theorem due to Edmonds, see [18, Lemma 5.3.2].
We also pose a strengthening of a conjecture of Kriesell, and prove a special case of both
of these conjectures.

5.1 Recovering graphs from count matroids

Let G = (V,E) and H = (V ′, E ′) be graphs and let ψ : E → E ′ be a function. We say
that ψ is induced by a graph isomorphism if there is a graph isomorphism φ : V → V ′

such that for every edge uv ∈ E, the endvertices of ψ(uv) in H are φ(u) and φ(v). The
following lemma is well-known.

Lemma 5.1. Let G = (V,E), H = (V ′, E ′) be graphs without isolated vertices and let
ψ : E → E ′ be a bijection that “sends stars to stars”, that is, for every v ∈ V there is a
vertex v′ ∈ V ′ such that ψ(∂G(v)) = ∂H(v

′). Then ψ is induced by a graph isomorphism.

For a matroid M = (E, r), we say that a subset F ⊆ E is a k-hyperplane, for some
integer k ≥ 0, if r(F ) = r(E) − k and F is closed, i.e., r(F + e) = r(F ) + 1 for every
e ∈ E − F .

Theorem 5.2. Let k, ℓ be integers with k ≥ 1 and ℓ ≤ 2k − 1, and let ck,ℓ ≥ 2 be
an integer such that every ck,ℓ-connected graph is Mk,ℓ-connected. Let G = (V,E) and
H = (V ′, E ′) be graphs and ψ : E → E ′ an isomorphism between Mk,ℓ(G) and Mk,ℓ(H).
If G is (ck,ℓ+1)-connected and H is without isolated vertices, then ψ is induced by a graph
isomorphism.

Proof. By Lemma 2.4 we have r(E) = k|V | − ℓ, and similarly, r(E ′) = k|V ′| − ℓ. Hence
|V | = |V ′|. Fix v ∈ V and consider F = E − ∂G(v). Since F is the edge set of an induced
subgraph of G, F is closed in Mk,ℓ(G). Moreover, since G−v is ck,ℓ-connected, Mk,ℓ(G−v)
is connected, so by Lemma 2.4 we have r(F ) = k(|V | − 1) − ℓ = r(E) − k. This shows
that F is a connected k-hyperplane in Mk,ℓ(G), and consequently ψ(F ) is a connected
k-hyperplane in Mk,ℓ(H). By Lemma 2.4 again this means that

k|V (ψ(F ))| − ℓ = r(ψ(F )) = r(E ′)− k = r(E)− k = k(|V | − 1)− ℓ,

so ψ(F ) is the edge set of an induced subgraph of H on |V ′| − 1 vertices, and hence it
is the complement of a vertex star. This shows that ψ maps complements of vertex stars
to complements of vertex stars. Since ψ is a bijection, it also follows that it maps vertex
stars to vertex stars. Now Lemma 5.1 implies that ψ is induced by a graph isomorphism,
as desired.

In the case of the graphic matroid we can choose c1,1 = 2, and Theorem 5.2 reduces
to Whitney’s theorem. Similarly, by putting c2,3 = 6, we can reproduce [10, Theorem
2.4]. Combining Theorem 5.2 with Corollaries 3.5, 3.6 and 3.11, we obtain the following
generalization.
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Corollary 5.3. Let k, ℓ be integers with k ≥ 1 and ℓ ≤ 2k − 1. Let G = (V,E) be a graph
and suppose that one of the following holds:

(a) ℓ ≤ 0 and G is (c+ 1)-connected, where c = ⌈2k − (2ℓ− 2)/|V |⌉;
(b) k ≥ ℓ > 0 and G is (2k + 1)-connected;
(c) 2 ≤ k < ℓ and G is (2ℓ+ 1)-connected.

Let H = (V ′, E ′) be a graph without isolated vertices. If a function ψ : E → E ′ is an
isomorphism between Mk,ℓ(G) and Mk,ℓ(H), then it is induced by a graph isomorphism.

We note that in the ℓ ≤ 0 case of Corollary 5.3, it would be enough to suppose that
G is 2-connected and the degree of each vertex is at least 2k + 1− (2ℓ− 2)/|V |, provided
that G is simple. The proof, which we omit, is analogous to that of Theorem 5.2.

For the bicircular matroid M1,0(G), Corollary 5.3 implies that if G is 4-connected, then
M1,0(G) uniquely determines G. Note that 2-connectivity does not suffice: for example, a
cycle and a path with the same number of edges are non-isomorphic graphs with isomorphic
bicircular matroids. In fact, a result of Wagner [20] implies that 3-connectivity suffices.
We give an alternative proof that is similar to our proof of Theorem 5.2. We shall rely on
the following result.

Lemma 5.4. [14, Proposition 2.4] Let G = (V,E) be a connected graph. Then M1,0(G)
is connected if and only if G is not a cycle and does not contain vertices of degree one.

Theorem 5.5. Let G = (V,E) and H = (V ′, E ′) be graphs and ψ : E → E ′ an isomor-
phism between M1,0(G) and M1,0(H). If G is 3-connected with at least five vertices and
H is without isolated vertices, then ψ is induced by a graph isomorphism.

Proof. As in the proof of Theorem 5.2, we must have |V | = |V ′|, and to each vertex
v ∈ V such that M1,0(G − v) is connected we can associate a vertex v′ ∈ V ′ such that
ψ(∂G(v)) = ∂H(v

′). If M1,0(G − v) is connected for every v ∈ V , then we are done by
Lemma 5.1. Thus we may assume that there is a vertex v ∈ V for which M1,0(G − v)
is not connected. By Lemma 5.4 and the assumption that G is 3-connected, G − v must
be a cycle. Therefore G is isomorphic to the wheel graph Wn for n = |V | ≥ 5. It follows
from Lemma 5.4 that M1,0(G − u) is connected for every vertex u ∈ (V − v). As before,
this implies that ψ sends ∂G(u) to some vertex star ∂H(φ(u)) for all u ∈ (V − v). The
function φ : (V − v) → V ′ defined in this way is injective, so there is a unique vertex
v′ ∈ (V ′ − im(φ)) and we have ψ(∂G(v)) = ∂H(v

′). Now Lemma 5.1 implies, again, that ψ
is induced by a graph isomorphism.

In the k < ℓ case the bound given by Corollary 5.3(c) is almost tight, in the sense
that there exist (2ℓ−1)-connected graphs that are not uniquely determined by their count
matroids. Indeed, let G be a (2ℓ−1)-connected graph that is not Mk,ℓ-connected (we gave
a construction for such a graph in Section 3), and let (E1, E2) be a vertical 1-separation
of G. Consider the graph H obtained as the disjoint union of G[E1] and G[E2]. Then
Mk,ℓ(G) and Mk,ℓ(H) are isomorphic under the natural edge bijection between G and H,
but the graphs are nonisomorphic. Similar examples can be constructed for the cases when
ℓ ≤ k; we omit the details.
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5.2 Recovering graphs from cofactor matroids

We can also prove an analogue of Whitney’s theorem for the t-fold union of the C1
2 -cofactor

matroid. Again, we stress that the analogue of Lemma 2.4 does not hold for this matroid:
in particular, the connectivity of C(G) does not imply the “C-rigidity” of G. To overcome
this difficulty, we shall use our results on (unions of) cofactor matroids with high vertical
connectivity.

Theorem 5.6. Let t be a positive integer and let G = (V,E), H = (V ′, E ′) be graphs and
ψ : E → E ′ an isomorphism between Ct(G) and Ct(H). If G is (12t+ 2)-connected and H
is without isolated vertices, then ψ is induced by a graph isomorphism.

Proof. Fix v ∈ V and consider F = E − ∂G(v). Let H0 denote the subgraph of H induced
by ψ(F ); note that Ct(G − v) and Ct(H0) are isomorphic. Since G is (12t + 2)-connected
and G − v is (12t + 1)-connected, Ct(G) is vertically (6t + 3)-connected and Ct(G − v)
is vertically (6t + 2)-connected by Theorem 4.6, which imply rt(E) = 3t|V | − 6t and
rt(F ) = 3t(|V | − 1)− 6t = rt(E)− 3t by Theorem 4.7. It follows that

3t|V (H0)| − 6t = rt(ψ(F )) = rt(F ) = rt(E)− 3t = rt(E
′)− 3t = 3t|V ′| − 6t− 3t,

where the first and last equalities follow from Theorem 4.7, applied to Ct(H0) and to Ct(H),
respectively. Thus, we have |V (H0)| = |V ′|− 1. Also, since F is the edge set of an induced
subgraph of G, it is closed in Ct(G), and thus ψ(F ) is closed in Ct(H). It follows that H0

is an induced subgraph of H, since rt(ψ(F )) = 3t|V (H0)| − 6t implies that adding edges
induced by V (H0) to ψ(F ) cannot increase the rank of the latter.

To summarize, ψ(F ) is the edge set of an induced subgraph of H on |V ′| − 1 vertices,
which implies that it is the complement of a vertex star. This shows that ψ maps comple-
ments of vertex stars to complements of vertex stars. Since ψ is a bijection, it also follows
that it maps vertex stars to vertex stars. Now Lemma 5.1 implies that ψ is induced by a
graph isomorphism, as desired.

Again, the bound given by Theorem 5.6 is not far from being tight, at least for t = 1:
there are examples of 11-connected graphs that are not determined by their C1

2 -cofactor
matroids. As in the case of count matroids, we can take an 11-connected graph G for
which C(G) is not connected. An example of such a graph was constructed by Lovász and
Yemini [13]. Now consider a 1-separation (E1, E2) of C(G) and observe that the disjoint
union of G[E1] and G[E2] has the same cofactor matroid as G, but is not isomorphic to G.

In order to deduce a Whitney-type result in terms of the vertical connectivity of Ct(G),
rather than the connectivity of G, we need the converse of Theorem 4.6. Since the proof of
the corresponding result for count matroids (the converse of Theorem 5.2) is very similar,
we prove the two statements simultaneously.

Theorem 5.7. Let c ≥ 5 be an integer and let G = (V,E) be a graph on at least c + 2
vertices, without isolated vertices. Let M = (E, r) be either Mk,ℓ(G), for some integers
k ≥ 1 and ℓ ≤ 2k − 1, or Ct(G), for some integer t ≥ 1. In the latter case put k = 3t and
ℓ = 6t. If M is vertically (k(c− 1)− ℓ+ 2)-connected, then G is c-connected.
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Proof. We have r(E) = k|V |−ℓ by Lemma 2.4 or Theorem 4.7. For a contradiction suppose
that there is a set S ⊂ V with |S| ≤ k − 1 for which G − S is disconnected. By adding
vertices to S we may suppose that |S| = c− 1. Let C be the vertex set of some connected
component of G−S. We define a partition {E1, E2} of E by letting E1 = E(G[C])∪∂G(C)
and E2 = E(G[V − C]).

Since E1 ⊆ G[C ∪ S] and |C ∪ S|, |V − C| ≥ c ≥ 3, we have r(E1) ≤ k|C ∪ S| − ℓ and
r(E2) ≤ k|V − C| − ℓ. Hence

r(E1) + r(E2) ≤ k|V | − ℓ+ k|S| − ℓ = r(E) + k|S| − ℓ. (7)

Let w = min{r(E1), r(E2)}. First suppose that w ≥ k|S| − ℓ + 1. Then {E1, E2} is a
(k|S| − ℓ+ 1)-separation by (7). Since k|S| − ℓ+ 1 = k(c− 1)− ℓ+ 1, this contradicts the
assumption on the vertical connectivity of M.

Thus we may suppose that there is an integer z with 1 ≤ z ≤ |S| for which

k(|S| − z + 1)− ℓ ≥ w ≥ k(|S| − z)− ℓ+ 1

holds. By definition, we have w = r(E1) or w = r(E2). In the latter case we obtain

r(E1) + r(E2) ≤ k|C ∪ S| − ℓ+ k(|S| − z + 1)− ℓ

= k|V | − ℓ+ k(|S| − z + 1)− ℓ− k|V − C − S| ≤ r(E) + k(|S| − z)− ℓ,

using that |V −C − S| ≥ 1. Therefore {E1, E2} is a vertical (k(c− z)− ℓ+ 1)-separation,
contradicting our assumption on the vertical connectivity ofM. In the former case a similar
count (using r(E2) ≤ k|V − C| − ℓ and |C| ≥ 1) leads to the same contradiction.

In the proof of Theorem 5.7 the assumption c ≥ 5 is required for the cofactor matroid
result only (it is used in the first line of the proof, where we apply Theorem 4.7). For the
count matroid part the bound c ≥ 3 would suffice.

Combining the t = 1 cases of Theorem 5.6 and Theorem 5.7 yields the following answer
to the cofactor version of the question of Brigitte and Herman Servatius that we mentioned
in Section 1.

Theorem 5.8. Let G = (V,E), H = (V ′, E ′) be graphs without isolated vertices and let
ψ : E → E ′ be an isomorphism between C(G) and C(H). If C(G) is vertically 35-connected,
then ψ is induced by a graph isomorphism.

By combining Theorems 5.2 and 5.7, we can deduce analogous results for the count
matroid Mk,ℓ(G), for all k ≥ 1 and ℓ ≤ 2k − 1. A result of this type was obtained earlier
in [10] in the case when (k, ℓ) = (2, 3).

5.3 Removable spanning trees

The following conjecture is due to Matthias Kriesell (see [15, Problem 444]).
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Conjecture 5.9. For every positive integer k there exists a (smallest) integer f(k) such
that every f(k)-connected graph G contains a spanning tree T for which G − E(T ) is
k-connected.

It follows from Theorem 3.2 that f(1) = 4. The bound f(2) ≤ 12 was obtained in [9],
which was subsequently improved to f(2) ≤ 8 in [2]. To the best of our knowledge, the
conjecture is still open for k ≥ 3. In fact, in both the k = 1 and k = 2 cases a much
stronger statement is true, which we put forward as a conjecture for general k.

Conjecture 5.10. For every positive integer k there exists a (smallest) integer f ∗(k) such
that for every positive integer t, every (t · f ∗(k))-connected graph contains t edge-disjoint
k-connected spanning subgraphs.

With this notation, we have f ∗(1) = 2, while [9, Theorem 1.1] asserts that f ∗(2) ≤ 6.
By using our results on cofactor matroids we now settle the k = 3 case of Conjecture 5.10,
and thus of Conjecture 5.9. The proof is analogous to the proof of the k = 2 case in [9].

Theorem 5.11. Every 12t-connected graph contains t edge-disjoint 3-connected spanning
subgraphs. In other words, f ∗(3) ≤ 12. It follows that f(3) ≤ 24.

Proof. LetG = (V,E) be a 12t-connected graph. Corollary 4.4 implies that rt(E) = 3t|V |−
6t. This means that G contains t edge-disjoint subgraphs H1, . . . , Ht with r1(E(Hi)) =
3|V | − 6 for i = 1, . . . , t. Since r1(E(Hi)) ≤ 3|V (Hi)| − 6 also holds, we must have V =
V (Hi), that is, H1, . . . , Ht are spanning subgraphs. Finally, it is known that r1(E(Hi)) =
3|V (Hi)| − 6 implies that Hi is 3-connected (it follows from [21, Lemma 10.2.4], or it can
also be verified using Theorem 2.5).

Extrapolating from the above bounds on f ∗(k) for k ≤ 3, perhaps f ∗(k) ≤ k(k + 1)
holds. A natural strategy to prove Conjecture 5.10 is to prove a “basis packing result”
similar to Theorem 4.4 for some matroid M(Kn) on the edge set of the complete graph Kn

in which spanning sets are k-connected. The family of abstract k-rigidity matroids has this
property. However, for k ≥ 4 there is no known example of an abstract k-rigidity matroid
where a good characterization of the rank function is available. In this context we wish to
highlight [3, Conjecture 8.1], which, if true, would give such an example. It is conceivable
that a proof of this conjecture, combined with the methods of [3] and this paper, would
lead to a proof of Conjecture 5.10.
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the ÚNKP-21-5 New National Excellence Program of the Ministry for Innovation and
Technology.

Appendix

Lemma A. Let k, ℓ be integers with k ≥ 1 and ℓ ≤ 2k− 1. Let G = (V,E) be a graph and
suppose that

m = min{
∑
Y ∈Y

(k|V (Y )| − ℓ) : Y is a partition of E}.

Then

(a) there exists a 1-thin cover X of G for which valk,ℓ(X ) = m holds. Furthermore,
(b) if 0 < ℓ ≤ k, then there exists a 0-thin cover X of G with valk,ℓ(X ) = m, and
(c) if ℓ ≤ 0, then we have m = k|V (E)| − ℓ, that is, X = {V (E)} is a minimizing cover.

Proof. Let Y be a partition of E and suppose that there are members Yi, Yj ∈ Y with
|V (Yi) ∩ V (Yj)| ≥ 2. Then we have

k|V (Yi)| − ℓ+ k|V (Yj)| − ℓ = k|V (Yi) ∪ V (Yj)| − ℓ+ k|V (Yi) ∩ V (Yj)| − ℓ =

k|V (Yi ∪ Yj)| − ℓ+ k|V (Yi) ∩ V (Yj)| − ℓ > k|V (Yi ∪ Yj)| − ℓ,

where the last inequality follows from ℓ < 2k. Thus for Y ′ = Y − Yi − Yj + (Yi ∪ Yj) we
have ∑

Y ′∈Y ′

(k|V (Y ′)| − ℓ <
∑
Y ∈Y

(k|V (Y )| − ℓ).

It follows that if Y is a minimizing partition, then |V (Yi) ∩ V (Yj)| ≤ 1 holds for every
pair of members Yi, Yj ∈ Y , and thus X = {V (Y ) : Y ∈ Y} is a 1-thin cover of G with
m = valk,ℓ(X ).

Parts (b) and (c) can be deduced similarly by observing that in the ℓ ≤ k case, we have

k|V (Yi ∪ Yj)| − ℓ+ k|V (Yi) ∩ V (Yj)| − ℓ ≥ k|V (Yi ∪ Yj)| − ℓ

for Yi, Yj ∈ Y whenever |V (Yi) ∩ V (Yj)| ≥ 1, and in the ℓ ≤ 0 case the same inequality
holds for all pairs Yi, Yj ∈ Y .
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