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Abstract: This paper introduces a stochastic adaptive dynamics model for the inter-
play of several crucial traits and mechanisms in bacterial evolution, namely dormancy,
horizontal gene transfer (HGT), mutation and competition. In particular, it combines
the recent model of Champagnat, Méléard and Tran (2021) involving HGT with the
model for competition-induced dormancy of Blath and Tóbiás (2020).

Our main result is a convergence theorem which describes the evolution of the differ-
ent traits in the population on a ‘doubly logarithmic scale’ as piece-wise affine functions.
Interestingly, even for a relatively small trait space, the limiting process exhibits a non-
monotone dependence of the success of the dormancy trait on the dormancy initiation
probability. Further, the model establishes a new ‘approximate coexistence regime’ for
multiple traits that has not been observed in previous literature.
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1. Introduction and Biological Motivation

1.1. Motivation and Previous Work. The stochastic individual based modelling and analysis of
the dynamics and evolution of bacterial populations has attracted significant interest in recent years
(see e.g. [Cha06, FM04, BCF+16, BCF+18, LFL17, BB18]). This can on the one hand be motivated
externally by the relevance of bacterial population dynamics in biology, medicine and industry, and
on the other hand internally by the presence of interesting and distinctive features which invite new
modelling approaches and lead to new patterns and results. Two of these distinct features, which have
only rather recently been incorporated in population genetic/dynamic models in a systematic way, are
horizontal gene transfer and dormancy.

The first feature, horizontal gene transfer (HGT), can in an abstract sense be understood as the
ability of individuals to transfer parts of their genome (resp. the corresponding traits) to other living
individuals, for example via exchange of plasmids during bacterial conjugation [LT46]. This is in
contrast to the hereditary ‘vertical transfer’, where genes are copied from parent to daughter cell
during binary fission. Essentially, HGT may thus be interpreted as an evolutionary strategy to increase
the production of (one’s own) favourable traits. HGT comes in several different forms, but for the
assumptions of this paper, we will only consider a mechanism that can be motivated from transfer via
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conjugation. However, it is known that carrying a large quantity of plasmids slows down cell division
and as such reduces the reproduction rate (cf. [Bal13]). Such a trade-off leads to interesting questions
about the optimality of HGT strategies. HGT has received increasing attention from the modelling
side in the last decades, and is now considered as an additional and relatively novel major evolutionary
force in bacterial populations (see e.g. [BP14, KW12, SL77]).

A second common feature in microbial population dynamics is the wide-spread ability of individuals
to enter a reversible state of low/vanishing metabolic activity. Such a dormancy trait comes in many
guises, but the general feature seems to be that it allows individuals to survive (e.g. in the form of an
endospore or cyst) during adverse conditions. It can be triggered by environmental cues (responsive
switching), but may also happen spontaneously (stochastic bet hedging) see [LJ11, LdHWBB21] for
recent overviews. Again, as for HGT, such a trait comes with a significant reproductive trade-off, since
the maintenance of a dormancy trait requires a substantial machinery, and thus consumes resources
which are unavailable for reproduction.

Interestingly, both mechanisms (HGT and dormancy) also play a crucial role in the context of an-
tibiotic resistance, though in very different ways. While the exchange of resistance genes via horizontal
transfer can lead to multi-resistant microbial populations (see e.g. [Ben08]), dormancy in the form of
persister cells can be the cause of chronic infections, since these dormant cells with their vanishing
metabolism seem to be protected from antibiotic treatment ([Lew10]).

However, HGT and dormancy are of course not the only features of bacterial population dynamics,
and interact with classical mechanisms such as reproduction (and hereditary effects), mutation, selec-
tion, and competition. Only recently, the joint effects resulting from these mechanisms seem to have
moved into the focus of mathematical modellers. However, given the complexity of bacterial dynamics
and the underlying mechanisms, and in view of the sheer number of different evolutionary forces in-
volved in such communities, it is clear that mathematical modelling has to start with simple, idealized
scenarios in order to begin to understand basic patterns emerging from such complex interactions.
This process has been initiated in the last decade.

Indeed, the papers of Billiard et al [BCF+16, BCF+18] have investigated the consequences of a simple
directional HGT mechanism in stochastic individual based models with a focus on its interplay with
competition, mutation, and the maintenance of polymorphic variability. In [CMT21], the approach
is transferred and extended into an adaptive dynamics setting with moderately large mutation rates
(as previously considered in [DM11], see also [CKS21]), providing a rather new and sophisticated
mathematical machinery that leads to interesting scaling limits and emergent behaviour on a ‘doubly
logarithmic scale’. It is shown that HGT can have major consequences for the long-term behaviour
of the affected systems, including coexistence, evolutionary suicide and evolutionary cyclic behaviour,
depending on the strength of the transfer rate.

Regarding dormancy (and the resulting seed banks), this feature has now been well established as an
evolutionary force in population genetics, starting with [KKL01], and become a topic of investigation
in coalesence theory (cf. [BGCKWB16, BEGC+15, BGCKWB20]). In ecology, dormancy and seed
banks have been investigated for several decades, starting with Cohen [Coh66], and this lead to a rich
(mostly deterministic) theory, see e.g. [LdHWBB21] for many further references. Traditional seed bank
theory is complemented by quantitative research on phenotypic switches in microbial communities, cf.
e.g. [KL05]. However, the mathematical analysis of dormancy in stochastic individual based models, in
particular in the framework of adaptive dynamics, seems to be still in its infancy. Yet, several building
blocks are already available. The interplay with competition has been investigated in [BT20], where it
is shown that dormancy traits responding to competitive pressure can invade and fixate in a resident
population despite a substantial reproductive trade-off. One step further, the interplay of dormancy
with competition and directional HGT has been investigated in [BT21], where coexistence regimes of
HGT and dormancy traits are being established.
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1.2. Overview of the Present Paper. In the present paper, we are attempting to combine the evo-
lutionary forces of mutation, selection, competition, HGT and dormancy within the adaptive dynamics
framework of [CMT21]. In particular, we aim to obtain an analogue of their key convergence result,
and to investigate the resulting macroscopic behaviour in dependence of the strength of a ‘dormancy
initiation parameter’.

Let us briefly sketch some of the aspects of our model. We will consider a finite set of possible traits
X where each trait reproduces randomly. The trait space is the intersection of a constant multiple
of the integer grid Z2 with the square [0, 4]2. The first coordinate x of the trait (x, y) expresses the
strength of dormancy (increasing with x), and the second coordinate y corresponds to the strength of
HGT (increasing with y), as we will explain below. To incorporate reproductive trade-offs, the birth
rate of an individual of trait (x, y) is strictly decreasing both in x and in y. Further we consider natural
death at a fixed rate 1 for any active individual, which may be thought of as death by age. We also
involve ‘death by competition’ for active individuals. This gives the death rates a dependence on the
current population size. Now, traits (x, y) can become dormant instead of dying by competition with
probability proportional to x. The dormant individuals are not competing for resources and hence do
not contribute towards nor are affected by death by competition. Dormant individuals will also not
take part in reproduction nor horizontal transfer. The dormant individuals will switch back to their
active state at a fixed rate and have only a natural death rate, which usually is less than the one for
active individuals. For horizontal transfer, we will assume that at a population size dependent rate, any
given two active individuals meet. In this event, the individual with the ‘stronger’ HGT trait, ie. with
the higher y-coordinate, transfers its trait to the other individual. Lastly, mutations occur randomly
at birth with a power law with respect to the carrying capacity K. More precisely, the probability of
a mutation at birth is K−α for some α ∈ (0, 1). The mutations will either increase the x-coordinate or
the y-coordinate, to the next possible value. In particular, we assume that it is not possible for both
the ability to become dormant and the ability to perform horizontal transfer to be improved by one
mutation.

We are interested in the dynamics of our model on the logK time-scale as K →∞. Our main result
Theorem 2.2 describes convergence properties as in [CMT21, Theorem 2.1] or [CKS21, Theorem 2.2].
However, in its proof the auxiliary processes that we have to consider are now mostly bi-type (with
one component representing the active individuals of a trait and the other component representing
the dormant ones), which goes beyond their frameworks. Regarding our bi-type setting, some invasion
properties have been studied in [BT20], where the form of HGT is slightly different.

Here, the mutation rate scales like K−α for some power α ∈ (0, 1). Consequently, mutants relevant
for the evolution of the population are not separated from each other in time. This is a major difference
from the classical ‘Champagnat scaling’ discussed in [Cha06], where mutations are less frequent and
cannot influence each other. In the polynomial mutation regime, under suitable assumptions, the
logarithm of the size of any trait (with base K) converges to a piecewise linear function on the logK
time scale as K → ∞, as we will discuss below. In a population genetic framework, such a mutation
regime was studied in [DM11] in a model with clonal interference. In the adaptive dynamics literature,
this scaling of mutations occurred before in [Sma17, BCS19]. From a mathematical point of view, the
main novelty of the paper [CMT21] is the systematic study of logistic birth-and-death processes with
non-constant immigration, as it was also noted in [CKS21].

In our analysis, we will assume that the population is always of the same order as the carrying
capacity, which already poses significant technical challenges, as the length of the present manuscript
indicates. In particular, behaviours such as evolutionary suicide are not included in our analysis. In
Section 3, we will explore the limiting dynamics for a couple of fixed parameters. We are able to recover
some cyclic behaviour already observed in [CMT21]. In addition, the introduction of dormancy seems
to allow for the system to be driven towards a state of coexistence in the following sense: At no point
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in time there are more than two traits with size of order K, but on the logK timescale, there exists
a finite time T1 < ∞ such that for all ε > 0 there exists a time T0 < T1 such that on the time
interval [T0, T1] at least three traits are of order at least K1−ε, which means that at least three traits
are simultaneously macroscopic on a suitable interval. This behaviour has been found previously by
[CKS21] in the case of asymmetric competition without HGT. In the model studied in [DM11], the set
of points where the limiting piecewise linear process changes slopes may also have a finite accumulation
point, see Lemma 1 therein.

The remainder of this paper is organized as follows. In Section 2 below, we present our model and
our main result. Section 3 contains numerical results regarding some fixed choices of parameters for
our model. The proof of our main convergence result, Theorem 2.2 will be carried out in Section 4.

In preparation of proving the convergence properties for our model, we analyse bi-type branching
processes in Appendix A. We will see that similar properties hold for bi-type processes as they have
been shown in [CMT21, Appendix B] for one-type processes. However, the addition of a second
component to the considered processes is sufficient to only allow the ideas of the proof to carry over.
The details of the proofs, in particular Theorem A.10, are more involved and require significant amounts
of preparation.

In Appendix B, we consider several properties of logistic branching processes. Here, we can also
make use of the ideas from [BT20], since we are interested in showing that after some time an initially
resident trait is driven towards a small population size, while an invasive species becomes resident. As
there are many cases of this competition to be distinguished, we also make use of the ideas in [BT21]
in the case of competition between a bi-type process and a single-type process.

2. Presentation of the Model and Main Result

We construct a continuous time Markov jump process as follows: Let K ∈ N be a number, which
controls the population size and is referred to as the carrying capacity. Further we consider the trait
space X := {0, δ, . . . , Lδ}2 = ([0, 4] ∩ δN)2, where δ > 0 is a fixed real number and L := b4

δ c. Here,
the choice of the number 4 is arbitrary, it follows the paper [CMT21]. As already anticipated, the first
coordinate x of the trait (x, y) of an individual expresses the strength of dormancy of the individual,
and the second coordinate y of its trait expresses its strength of HGT. For each trait (x, y) we may
have active or dormant individuals (in fact, if x = 0, then individuals cannot be dormant). We use the
notation NK,a

m,n(t) and NK,d
m,n(t) to refer to the active and dormant population size respectively of trait

(mδ, nδ) at time t ≥ 0.

• Active individuals of trait (x, y) give birth to another individual at rate

b(x, y) = 4− x+ y

2
.

Fixing α ∈ (0, 1), the child carries the trait (x+ δ, y) with probability K−α

2 , and with the same
probability it carries the trait (x, y + δ). Otherwise the offspring has trait (x, y). Also, if a
mutated trait would not belong to X anymore, the offspring does not mutate and carries the
parental trait (x, y). The decreasing birth rate as x and y increase reflects the trade-off between
high reproduction and other survival mechanisms.
• There is competition over resources between active individuals, which we incorporate into the
death rate. Let C > 0 and p ∈ (0, 1

4) be fixed. Active individuals of trait (x, y) ∈ X die at rate

d((x, y), NK,a) = 1 +
C(1− px)NK,a

K
,

where NK,a denotes the entire active population size NK,a =
∑L

m,n=0N
K,a
m,n.
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• Active individuals of trait (x, y) can become dormant at rate

c((x, y), NK,a) =
CpxNK,a

K
.

In particular, we are interested in ’competition induced switching’, where due to competition
from other individuals a part of the population becomes dormant. Individuals with a high value
in the first trait component x are thus able to efficiently avoid death in favour of dormancy.
• Dormant individuals of any trait die at a natural rate κ ≥ 0 and become active again at rate
σ > 0. Usually κ will be a small rate, significantly less than 1, so that dormant individuals are
less likely to die than active individuals. This reflects the immunity of dormant individuals to
external pressures.
• An active individual of trait (x, y) can transfer its trait to a given active individual with trait

(x̃, ỹ) at rate
τ((x, y), (x̃, ỹ), NK,a) =

τ

NK,a
1ly>ỹ.

Note that dormant individuals are neither affected by nor are able to perform transfer. Here,
traits with a large second component y are advantageous.

(0, 0)
(δ, 0) Dormancy

(0, δ)

HGT
(0, Lδ)

Figure 1. A visualization of the trait space X . The strength of dormancy in a trait
increases as the first component increases and the strength of HGT increases with the
second component.

Comparing with Theorem A.3, we are concerned with the total size of each trait (mδ, nδ) ∈ X , which
we will denote by NK

m,n(t) := NK,a
m,n(t) +NK,d

m,n(t), and the corresponding exponents

NK
m,n(t logK) = KβKm,n(t) − 1 ⇐⇒ βKm,n(t) :=

log
(
1 +NK

m,n(t logK)
)

logK
. (2.1)

We are interested in the behaviour of βKm,n as K →∞, that is, we want to understand the evolution of
the population sizes on the logK timescale. Since our death and dormancy rate are dependent on the
population size, there may be two cases: Either there is a single trait (x, y), which has a population
size of order K, in which case we refer to the trait (x, y) as resident ; or the entire population is of
size o(K), in which case we refer to the trait with the largest population size as dominant. For our
purposes, we will only consider the case where there is always one resident trait.

Now, assume that the trait (x, y) = (mδ, nδ) is resident. Then, for large K, we can approximate the
dynamics of (NK,a

m,n(t), NK,d
m,n(t)) as K(za(t), zd(t)), where (za(t), zd(t)) solves the ordinary differential
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equation

ża(t) =

(
3− x+ y

2
− Cza(t)

)
za(t) + σzd(t)

żd(t) = Cpx(za(t))2 − (κ+ σ)zd(t).

(2.2)

Indeed, this approximation follows from [EK86, Theorem 11.2.1]. We want to calculate a stable
equilibrium of this system, which has already been done in [BT20, Section 2.2]. There it is shown that
the only coordinate-wise non-negative asymptotically stable equilibrium of the system (2.2) is given
for 3− x+y

2 > 0 as (z̄am,n, z̄
d
m,n), where

z̄am,n =
(3− x+y

2 )(κ+ σ)

C(κ+ (1− px)σ)
and z̄dm,n =

px(3− x+y
2 )2(κ+ σ)

C(κ+ (1− px)σ)2
. (2.3)

Observe that this also holds true in the case where x = 0, in which case the equilibrium size of the
dormant population is 0, and the active population size is 1

C (3 − x+y
2 ), which corresponds to the

equilibrium of the differential equation

ż(t) =

(
3− x+ y

2
− Cz(t)

)
z(t).

If 3− x+y
2 < 0, then there is no positive equilibrium and the fixed point (0, 0) becomes asymptotically

stable. This can be seen from linearizing the system (2.2), which yields the Jacobian

A(0, 0) =

(
3− x+y

2 σ
0 −(κ+ σ)

)
,

whose determinant is positive and trace is negative. Hence both eigenvalues must be negative, showing
that in this case (0, 0) indeed is a stable equilibrium.

In order to have a well-defined process, we also need to introduce a starting condition. Initially, we
assume the trait (0, 0) to be close to its equilibrium, which is of size

NK,a
0,0 (0) =

⌊
3K

C

⌋
. (2.4)

Since the effective mutation rate in a population of order Kc is Kc−α, we choose all other starting
conditions to be

NK,a
0,n (0) = bK1−nαc and (NK,a

m,n(0), NK,d
m,n(0)) = b(K(1−(m+n)α),K(1−(m+n)α))c (2.5)

if nα < 1 and (m + n)α < 1 respectively and 0 otherwise. Indeed, this choice is consistent with
Lemma A.12, which would suggest that on the logK timescale we otherwise would immediately obtain
a population of our chosen initial size. In addition, this choice shows that

βKm,n(0)
K→∞−−−−→ (1− (m+ n)α) ∨ 0.

Our next goal is to define the invasion fitness – also known as the initial rate of growth –
S((x̃, ỹ), (x, y)) of a single individual of trait (x̃, ỹ) in a population, where the trait (x, y) is resi-
dent, i.e. at its equilibrium size. Hence, we consider the active population given by Kz̄a from (2.3). In
particular we assume x+y

2 < 3. We distinguish two cases:

Case 1: x̃ = 0: In this case, the population size of trait (0, ỹ) follows the dynamics of a usual one-
dimensional birth and death process. Hence, we define the initial growth rate S as the as-
ymptotic difference of birth and death rate, where we need to take into account the horizontal
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transfer as additional births or deaths as follows

S((0, ỹ), (x, y)) := lim
K→∞

b(0, ỹ)− d((0, ỹ),Kz̄a) +
Kz̄a

Kz̄a + 1
τ1ly<ỹ −

Kz̄a

Kz̄a + 1
τ1ly>ỹ

= 3− ỹ

2
−

(3− x+y
2 )(κ+ σ)

κ+ (1− px)σ
+ τ sign(ỹ − y).

Case 2: x̃ > 0: Here we have transfer between the active and dormant populations. Hence the growth
rate corresponds to that of a bi-type branching process. Being consistent with the definition
thereof in Appendix A, we define the components of (A.3) asymptotically in accordance with
Notation A.4. We set

r1 := lim
K→∞

b(x̃, ỹ)− d(Kz̄a) +
Kz̄a

Kz̄a + 1
τ1ly<ỹ −

Kz̄a

Kz̄a + 1
τ1lỹ<y

= 3− x̃+ ỹ

2
−

(3− x+y
2 )(κ+ σ)

κ+ (1− px)σ
+ τ sign(ỹ − y),

r2 := 0− κ− σ = −(κ+ σ),

σ1 := lim
K→∞

Cpx̃(Kz̄a + 1)

K
=
px̃(3− x+y

2 )(κ+ σ)

κ+ (1− px)σ
, σ2 := σ.

Then the invasion fitness is defined by

S((x̃, ỹ), (x, y)) :=
r1 + r2 +

√
(r1 − r2)2 + 4σ1σ2

2
.

This number is the largest eigenvalue of the mean matrix of the corresponding approximating
bi-type branching process, which is given by(

r1 σ1

σ2 r2

)
We refer to Appendix A for details on the derivation of the initial growth rate of bi-type
branching processes.

Note that distinguishing these two cases is necessary: If we were to model the behaviour of individuals
of traits (0, ỹ) as bi-type branching processes without switching into the dormant state, we would have
– using the definition from the second case with σ1 = 0 – that

S((x̃, ỹ), (x, y)) = max {r1, r2} ≥ −(κ+ σ).

In particular, for bi-type processes the invasion fitness is bounded from below by the total rate at
which individuals exit the dormancy component. This lower bound is not reasonable for individuals
which cannot become dormant.

Example 2.1. We are not able to exclude the possibility of long-term coexistence in the sense that
sign(S((x̃, ỹ), (x, y))) = − sign(S((x, y), (x̃, ỹ))). As an example we may choose C = 1, τ = 1.3,
δ = 0.9, κ = 0, σ = 1 and p = 0.23. Then an explicit computation shows

S((2δ, 4δ), (0, 2δ)) ≈ 0.22 and S((0, 2δ), (2δ, 4δ)) ≈ 0.29.

In these cases, an invasion would lead to coexistence, which we will exclude from our main theorem.

Using the above definitions of the invasion fitness, we can state our convergence result, which is very
similar to [CMT21, Theorem 2.1].

Theorem 2.2. Let α ∈ (0, 1), δ ∈ (0, 4), τ ≥ 0, p ∈ (0, 1
4), κ ≥ 0 and σ > 0 such that S((x̃, ỹ), (x, y)) 6=

0 for all (x, y), (x̃, ỹ) ∈ X with (x, y) 6= (x̃, ỹ). Further assume that the transitions are as in the
beginning of this section and that the initial conditions (2.4) and (2.5) are satisfied.
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(i) Then there exists a time T0 > 0 such that the sequences βKm,n(t) from (2.1) converge as K →∞
in probability in L∞([0, T ]) for all T < T0 towards a deterministic piecewise affine continuous
function t 7→ βm,n(t) such that βm,n(0) = (1− (m+n)α)∨ 0, which is characterized as follows.

(ii) We define the sequence sk ≥ 0 and (m∗k, n
∗
k) ∈ {0, . . . , L}2 inductively: Set s0 = 0 and

(m∗1, n
∗
1) = (0, 0). Assume that for k ≥ 1 we have constructed sk−1 < T0 and (m∗k, n

∗
k) and

assume that βm,n(sk−1) 6= 0 for some (mδ, nδ) ∈ X . Then we define

sk := inf
{
t > sk−1 | ∃(m,n) 6= (m∗k, n

∗
k), βm,n(t) = βm∗k,n

∗
k
(t)
}

Using this definition, we can distinguish three cases:
(a) If βm∗k,n∗k(sk) > 0 define

(m∗k+1, n
∗
k+1) = arg max

(m,n) 6=(m∗k,n
∗
k)
βm,n(sk)

if the argmax is unique. Otherwise we stop the induction and set T0 = sk.
(b) If in case (a) we have

S((m∗kδ, n
∗
kδ), (m

∗
k+1δ, n

∗
k+1δ)) < 0 and S((m∗k+1δ, n

∗
k+1δ), (m

∗
kδ, n

∗
kδ)) > 0,

and (m∗k+1 +n∗k+1)δ < 6, then we continue our induction. Otherwise set T0 = sk and stop
the induction.

(c) If there exists some (m,n) ∈ {0, . . . , L}2\{(m∗k, n∗k)} such that βm,n(sk) = 0 and βm,n(sk−
ε) > 0 for all ε > 0 sufficiently small, then we also stop the induction and set T0 = sk.

(iii) The function βm,n is defined for t ∈ [sk−1, sk] as

β0,0(t) =

[
1lβ0,0(sk−1)>0

(
β0,0(sk−1) +

∫ t

sk−1

S((0, 0), (m∗kδ, n
∗
kδ)) ds

)]
∨ 0

and for m 6= 0 or n 6= 0 we have

βm,n(t) =

(
βm,n(sk−1) +

∫ t

t(m,n),k∧t
S((mδ, nδ), (m∗kδ, n

∗
kδ)) ds

)
∨ (βm−1,n(t)− α) ∨ (βm,n−1(t)− α) ∨ 0,

where β−1,n ≡ βm,−1 ≡ 0 and the time t(m,n),k is defined by

t(m,n),k :=

{
inf {t ≥ sk−1 | βm−1,n(t) = α or βm,n−1(t) = α} , if βm,n(sk−1) = 0

sk−1 otherwise.

The proof of this theorem will be discussed in Section 4. In light of the convergence theorems derived
in Appendix A, this result is not very surprising. The defined fitness function determines the rate of
growth of the corresponding branching process in the same way that the largest eigenvalue of the mean
matrix of a single or bi-type branching process does.

Also, note that the fitness functions are constant on each time interval, so we may replace the integral
by multiplying with the length of the integrated interval. We have chosen this representation to allow
for a more direct comparison with [CMT21, Theorem 2.1].

Remark 2.3. We will shortly discuss the conditions, listed in part (ii) in our theorem, which lead to
an end of the induction.

(a) At the time sk at least one new trait, other than the previously resident trait, becomes of order
K in the population. Hence, we want to ensure that the resulting competition between the
different traits only occurs between two traits, so that we can apply our results from Appendix
B. This condition requires at most two traits to be of size of order K simultaneously.
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(b) As we have seen in Example 2.1, there is not necessarily competitive exclusion. The first
requirement in this case ensures that the invading trait becomes resident, while the initially
resident trait declines in size, so there is no coexistence. The second condition (m∗k+1+n∗k+1)δ <
6 is needed for the invading trait to have a positive equilibrium size.

(c) If there is a trait, which is almost, but not fully, extinct at the time at which there is a change
in the resident trait, we are not able to determine against which of the two traits of size K
there is competition. Therefore, we want to ensure each trait with small population size to be
fully extinct at the time when a change in the resident trait occurs.

3. Examples

3.1. Examples for limiting Functions in Theorem 2.2. In this section we will consider specific,
arbitrary choices of parameters for our model to find some range of resulting behaviours for the limiting
functions βm,n established in Theorem 2.2. As we will see, the dynamics are already quite complicated
in the case of very few traits. In particular, a full analysis in the case of 2δ < 4 < 3δ as in [CMT21,
Section 3] is not feasible. The main problem from our simulation appears to be the non-periodicity of
our systems.
For all of the upcoming examples we choose δ = 1.51, τ = 1.3, κ = 0, σ = 1 and α = 0.5. We will

vary the dormancy parameter p which will show us plenty of qualitatively different results.
Example 3.1 (p = 0.21). For now we let p = 0.21. Then we can plot the limiting function and obtain
the following graphics.

Figure 2. (p = 0.21) Top left: The dynamics of β0,0 (blue), β0,1 (orange) and β0,2

(green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and β1,2 (green). Bottom:
The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

In this case we see that a similar behaviour as in [CMT21] is recovered: all traits exhibit (almost)
periodicity. This stems from the fact that the traits with a dormancy component are not sufficiently
fit. While the trait (δ, 0) is fit against the trait (0, 0) and the trait (δ, 2δ) is fit against the trait
(0, δ), especially during the times when the trait (0, 2δ) is resident, all dormancy traits have a negative
fitness and are only kept alive through the incoming migration. Hence, the essential components of
the dynamics can be reduced to the case without dormancy.
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Example 3.2 (p = 0.22). In this case, the resulting dynamics are given in the figure below.

Figure 3. (p = 0.22) Top left: The dynamics of β0,0 (blue), β0,1 (orange) and β0,2

(green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and β1,2 (green). Bottom:
The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

Here, two phases are to be distinguished: At first, we observe a very similar behaviour as in the case
p = 0.21. In fact, for the traits (0, `δ), ` ∈ {0, 1, 2}, the functions are at first identical to the previous
case. However, the trait (δ, δ) is now sufficiently fit that its population size overall increases with each
cycle until at one point it becomes resident. From this point onwards, we see that the functions are
approaching a coexistence limit in the sense that for all k we have sk+1 > sk with limk→∞ sk <∞ and

lim
k→∞

β0,0(sk) = lim
k→∞

β0,2(sk) = lim
k→∞

β1,1(sk) = 1.

We will prove this claim below. Thus, although we have excluded the possibility of coexistence of
any traits in the formulation of our Theorem 2.2 by demanding that the fitness functions need to
have opposite signs, the system converges to an equilibrium. The reason behind this is the fact that
we have demanded opposite signs, but the absolute values of the relative fitnesses of two traits are
not necessarily, and often will not be, the same. This allows traits with dormancy to experience a
large growth while they are not resident and fit against the dominant trait, but only a slow decline in
population size when they are unfit against the dominant trait. In [CMT21] the fitness functions are
antisymmetric functions in the sense that S(x, y) = −S(y, x) for traits x, y and therefore such behaviour
cannot be observed. The traits (2δ, `δ) are again only driven by immigration through mutations.

We will now show inductively that the sequence (sk)k∈N converges by considering the system where
there are only the traits (0, 0), (δ, δ) and (0, 2δ). This reduction is justified by our simulations above,
since all other traits become of order o(K) after time 40. Further we assume the initial condition of
our reduced system to be

β0,0(0) = 1, β1,1(0) = 1, and β0,2(0) = x0 ∈ (0, 1),

that is, we assume that at the starting point of the system, the trait (δ, δ) has just become resident
in the population which is only possible, if the trait (0, 0) has been previously resident. In particular,
the trait (0, 2δ) is unfit against the trait (0, 0) and therefore must be of order o(K). We will now
construct a sequence of intermediate times until a similar configuration with β0,0(t) = β1,1(t) = 1
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and β0,2(t) = x1 > x0 is reached as is displayed in Figure 4. We calculate the individual fitnesses as
determined by the fitness function. We obtain

S((δ, δ), (0, 0)) =
−δ + τ − σ +

√
(τ − δ + σ)2 + 12pδ

2
S((0, 2δ), (0, 0)) = τ − δ

S((0, 0), (δ, δ)) = 3− 3− δ
1− pδ

− τ S((0, 2δ), (δ, δ)) = 3− δ − 3− δ
1− pδ

+ τ

S((δ, δ), (0, 2δ)) =
−τ − σ +

√
(σ − τ)2 + 4pδ(3− δ)

2
S((0, 0), (0, 2δ)) = δ − τ.

x0

x1

Time

β

1

t
(1)
1 t

(1)
1 + t

(1)
2 t

(1)
1 + t

(1)
2 + t

(1)
3

Figure 4. Illustration for the successive construction of the times t(1)
i . Blue represents

β0,0, orange is β1,1 and green is β0,2.

We can therefore explicitly calculate that in this system the trait (0, 2δ) becomes resident after time

t
(1)
1 :=

1− x0

S((0, 2δ), (δ, δ))
= C1(1− x0).

At this time, we have the sizes

β0,0(t
(1)
1 ) = 1 + t

(1)
1 · S((0, 0), (δ, δ)), β1,1(t

(1)
1 ) = 1 and β0,2(t

(1)
1 ) = 1.

In the next step, the traits are competing with (0, 2δ). Therefore the trait (0, 0) becomes resident after
time

t
(1)
2 :=

1− (1 + t
(1)
1 · S((0, 0), (δ, δ)))

S((0, 0), (0, 2δ))
= − S((0, 0), (δ, δ))

S((0, 0), (0, 2δ))
· t(1)

1 = C2(1− x0).

We obtain

β0,0(t
(1)
1 + t

(1)
2 ) = 1, β1,1(t

(1)
1 + t

(1)
2 ) = 1 + t

(1)
2 · S((δ, δ), (0, 2δ)) and β0,2(t

(1)
1 + t

(1)
2 ) = 1.

The third phase of this system consists of competition of the other traits with (0, 0). In this case, the
trait (δ, δ) becomes resident again after time

t
(1)
3 :=

1− (1 + t
(1)
2 · S((δ, δ), (0, 2δ)))

S((δ, δ), (0, 0))
= −S((δ, δ), (0, 2δ))

S((δ, δ), (0, 0))
· t(1)

2 = C3(1− x0).

We can calculate that

β0,0(t
(1)
1 +t

(1)
2 +t

(1)
3 ) = 1, β1,1(t

(1)
1 +t

(1)
2 +t

(1)
3 ) = 1 and β0,2(t

(1)
1 +t

(1)
2 +t

(1)
3 ) = 1+t

(1)
3 ·S((0, 2δ), (0, 0)).

In particular, we recover our starting condition after time t(1)
1 + t

(1)
2 + t

(1)
3 where S((0, 2δ), (0, 0)) < 0

implies

β0,2(t
(1)
1 + t

(1)
2 + t

(1)
3 ) = 1− C(1− x0) =: x1,
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with C ∈ (0, 1). Repeating this process inductively shows that after the n-th such cycle, we obtain the
condition

β0,0

(
n∑
k=1

t
(k)
1 + t

(k)
2 + t

(k)
3

)
= 1, β1,1

(
n∑
k=1

t
(k)
1 + t

(k)
2 + t

(k)
3

)
= 1

and

β0,2

(
n∑
k=1

t
(k)
1 + t

(k)
2 + t

(k)
3

)
= 1− (1− x0)Cn =: xn.

Thus, as n → ∞, the functions converge to 1 at the endpoint of each cycle. It remains to show, that
the time steps are summable. Indeed, we find

n∑
k=1

t
(k)
1 + t

(k)
2 + t

(k)
3 =

n∑
k=1

C1 · (1− xk) + C2 · (1− xk) + C3 · (1− xk)

= (C1 + C2 + C3)

n∑
k=1

(1− x0)Ck,

which converges as n→∞. Therefore, we have proven that our choice of parameters leads to coexis-
tence after finite time.

Example 3.3 (p = 0.23). We obtain the following functions.

Figure 5. (p = 0.23) Top left: The dynamics of β0,0 (blue), β0,1 (orange) and β0,2

(green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and β1,2 (green). Bottom:
The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

Here, there are even more phases to distinguish: At first we have the growth phase of the trait (δ, δ)
until it becomes resident for the first time shortly after time 20. Note that, due to the increased value
of p, the traits (δ, 0) and (δ, 2δ) have an increased fitness as well and are slightly increasing in size.
Now the larger value of p increases the equilibrium population size of trait (δ, δ), which in turn implies
that while (δ, δ) is resident, the traits (0, 0) and (0, 2δ) have a lower fitness. Thus the times for which
the traits (0, 0) and (0, 2δ) are resident will be prolonged slightly. This is sufficient for the trait (δ, 0)
(which only has a positive fitness while the trait (0, 0) is resident) to become resident for the first time
around time 43. Since the advantage from dormancy is not large enough to give the traits (0, `δ) an
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overall negative fitness, we then have alternating times during which the traits (δ, `δ) are growing and
the traits (0, `δ) are cyclically resident followed by a short phase where one or more of the traits (δ, `δ)
become resident and the traits (0, `δ) experience a short but sharp decline in size. We do not know
if the functions become periodic eventually, however from simulations we conjecture that this is not
necessarily the case.

Example 3.4 (p = 0.234). Here, we observe an interesting change in the dynamics. Due to the
increased fitness of the dormant individuals, it takes a shorter amount of time until one of the traits
with dormancy becomes resident. In addition, they are able to stay resident for longer periods. Since
the trait (0, 0) is unfit against both (δ, 0) and (δ, δ), it has an overall lower fitness. Other than in the
case p = 0.23, the trait (δ, 2δ) does not become resident fast enough to prevent (0, 0) from becoming
extinct. Once (0, 0) is extinct, it cannot be resurrected since there are no incoming mutations. Hence
we see a significant change. The dormant traits are not yet strong enough to prevent the trait (0, 2δ)
from becoming resident. After (0, 2δ) is resident, all traits with dormancy become extinct or are only
kept alive due to incoming mutations.

Figure 6. (p = 0.234) Top left: The dynamics of β0,0 (blue), β0,1 (orange) and β0,2

(green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and β1,2 (green). Bottom:
The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

Example 3.5 (p = 0.24). In this case, the dormancy is sufficiently strong such that the overall fitness
of the non-dormant traits is negative when the traits (δ, `δ) become resident. Thus we are getting
again coexistence as in Example 3.2, but now between the three traits (δ, `δ).

3.2. Extending Theorem 2.2. One may ask the question of how the dynamics change as we alter
the remaining parameters. Note that Theorem 2.2 does not cover the case where a trait (x, y) ∈ X
with x+y

2 > 3 becomes dominant. Although we have not treated this case formally, the convergence
claimed in Theorem 2.2 should extend in a natural way: If the trait (x, y) ∈ X becomes dominant but
is unfit on its own, then the entire population size drops to o(K) immediately on the logK timescale.
Therefore, we can define the fitness functions in these cases as before, but omit all factors which are
scaled by K, that is we set the death rate to 1 and the switching rate from active to dormant to 0.



14 JOCHEN BLATH, TOBIAS PAUL AND ANDRÁS TÓBIÁS

Figure 7. (p = 0.24) Top left: The dynamics of β0,0 (blue), β0,1 (orange) and β0,2

(green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and β1,2 (green). Bottom:
The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

Then, we obtain for x̃ > 0 the fitness

S((x̃, ỹ), (x, y)) :=
r1 + r2 +

√
(r1 − r2)2 + 4σ1σ2

2
= max {r1, r2}

where we use the notation r1 := 3 − x̃+ỹ
2 + τ sign(ỹ − y), r2 := −(κ + σ), σ1 := 0 and σ2 := σ. For

x̃ = 0 we set
S((0, ỹ), (x, y)) := r1 = 3− ỹ

2
+ τ sign(ỹ − y).

Also, we need to use this definition of the fitness function when the population size is of the order o(K)
but the dominant trait has not reached a size of order K. With these extensions to the fitness function,
the limiting functions βm,n should satisfy the formula stated in Theorem 2.2 (iii). Note that the fitness
of the traits with dormancy is bounded from below by r2 = −(κ + σ). Hence it may happen that
at a point where there are exactly two dominant traits and normally a change in the dominant trait
would occur both traits have the same negative slope. In these cases it is not obvious how to continue.
Indeed, using the definition of the times sk we would obtain sk+1 = sk and we cannot proceed any
further.

Example 3.6. Let δ = 1.85, τ = 1.3, p = 0.248 , κ = 0, σ = 1 and α = 0.5. In this case we get the
functions displayed in Figure 8.

Interestingly, here we have a finite time horizon T0 and convergence of β2,`(sk) → 1 as k → ∞
for ` = 0, 1, 2 although there are repeatedly short periods of macroscopic extinction where the entire
population size is of order o(K).

Example 3.7. If we set δ = 1.92, τ = 1.3, p = 0.248 , κ = 0, σ = 1 and α = 0.5, that is all
parameters the same as in the previous example but for δ, then a similar but simultaneously new
behaviour emerges.

The new aspect here is the finite time horizon T0 where we have again convergence of β2,`(sk) as
k → ∞ for ` = 0, 1, 2, but now limk→∞ β2,`(sk) < 1. We may say that in this case the system of
individuals is generally unfit, since it is not able to remain of order K at least periodically.
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Figure 8. Functions for Example 3.6. Top left: The dynamics of β0,0 (blue), β0,1

(orange) and β0,2 (green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and
β1,2 (green). Bottom: The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

Figure 9. Functions for Example 3.7. Top left: The dynamics of β0,0 (blue), β0,1

(orange) and β0,2 (green). Top right: The dynamics of β1,0 (blue), β1,1 (orange) and
β1,2 (green). Bottom: The dynamics of β2,0 (blue), β2,1 (orange) and β2,2 (green).

In all of our simulations where an unfit trait becomes dominant, we have observed either one of the
mentioned convergences or two traits with the same negative slope. In particular, we have not been able
to observe evolutionary suicide and conjecture that due to the introduction of dormancy, evolutionary
suicide is not possible. The reason for our conjecture lies in our fundamental modelling assumptions:
only traits which can become dormant can also be unfit. Furthermore, assuming δ, C, α, τ, κ and σ fixed,
due to the continuity of the functions βm,n, we conjecture that the qualitative behaviours observed
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(cyclic, driving towards coexistence, alternating but not periodic patterns) can be categorized into
values of p coming from open intervals I ⊆ (0, 1

4) and as such it would be interesting to explicitly
calculate these threshold values.

3.3. Simulations. Another point of interest is the size of the carrying capacity K. We know from
Theorem 2.2 that as K →∞ the exponents of the stochastic system converge under suitable rescaling
of time towards the functions βm,n. However, in reality the carrying capacity will be finite and thus we
may ask how large K needs to be, such that the limiting functions βm,n give a good description of the
stochastic system, more precisely βKm,n. For this we conducted simulations but came to the conclusion,
that explicitly simulating the Markov process is not feasible for K > 106. The reason is twofold: On
the one side, we need to increase the time horizon for the simulations as K increases (since we are
working on the logK time scale) and on the other side, the time steps between events become smaller
as the population size increases.

Figure 10. Left: Simulations with the parameters as in Example 3.1 and C = 1,
K = 105. Right: Simulations with parameters as in Example 3.2 and C = 1, K = 105.
From top to bottom we are increasing the index m of βKm,n by 1 and in each plot n = 0
is blue, n = 1 is orange and n = 2 is green.

From our simulations with K = 105 in Figure 10 we are able to see, that the stochastic process
resembles very little spontaneous jumps when the population size is large. Note that the images on
the bottom of Figure 10 appear to be filled with jumps visible to the eye, which is due to the fact
that

√
K ≈ 316, so having an exponent of size 1

2 means in terms of the population that around 316
individuals are alive. Therefore, a single event causes a relatively large change in the population.
Otherwise, the curves appear to be smooth, which leads us to a more efficient way of simulating the
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dynamics. We know, that on compact intervals the dynamics of (
NK,a
m,n

K ,
NK,d
m,n

K ) without migration can
be approximated by the solution of the differential equation

ẋam,n(t) = σxdm,n(t)

+ xam,n(t)

3− (m+ n)δ

2
− C

L∑
m′,n′=0

xam′,n′(t) + τ

∑L
m′=0

(∑n−1
n′=0 x

a
m′,n′(t)−

∑L
n′=n+1 x

a
m′,n′(t)

)
∑L

m′,n′=0 x
a
m′,n′(t)


ẋdm,n(t) = pmδ · Cxam,n(t)

L∑
m′,n′=0

xam′,n′(t)− (σ + κ)xdm,n(t).

We also need to take into account the mutations which occur at birth with probability K−α. Since
this probability tends to 0 as K →∞, we do not have a mutation term in the differential equation on
its own. However, as we are more interested in simulating the dynamics for some fixed K, we alter the
derivative of the active component to be

ẋam,n(t)← ẋam,n(t) +
(

4− (m+n−1)δ
2

)
K−α(xm−1,n(t) + xm,n−1(t)),

which leads to a mixed approximation of the stochastic system. Now, choosing K fixed, we have on one
side the usual approximation via an ODE and on the other side we have a non-zero mutation probability
which is in accordance with the model. Determining the solution to these systems is numerically very
efficient compared to a direct simulation and allows us to simulate the behaviour for large K. We
refer to the exponents of the population sizes determined by solving the system as γKm,n However, we
need to choose time steps ∆t for solving the ODE, which leads to complications: The process NK

m,n

is only taking integer values, so in particular, if the rescaled process satisfies NK
m,n

K < 1
K , then the

population should be extinct. Now, if ∆t is too small compared with 1/K, then it may happen that
the immigration during a time step of length ∆t is not sufficiently strong to start the population.
Another numerical issue is the time horizon, on which we need to solve the differential equation. After
rescaling, we need to solve until time T logK, which in our cases would usually have T ∈ [50, 200]
and thus may lead to some numerical instabilities. In particular, systems such as in Example 3.4 are
sensitive to small deviations.

Comparing Figure 11 with the stochastic simulations, the ODE approach gives us a similar behaviour.
Hence, we are confident that the solution to the differential equation will be similar to the stochastic
system if we increase K. Obviously, these plots (stochastic simulation and ODE solution) have very
little in common with the limits which we have discussed in the corresponding examples. However,
when thinking of bacterial populations, K = 105 is still very small.

In Figure 12 withK = 1015, the limiting functions are a much better approximation of the exponents,
although ∆t is still too small in relation toK for us to see any mutations arriving in γK2,n when p = 0.21.
Also, note that the coexistence, which we observed for p = 0.22 in the limit, is in fact a normal cycle of
residency between (0, 0), (δ, δ) and (0, 2δ). Only when lettingK →∞, these cycles become ever shorter
and lead to coexistence. Another interesting effect of finite populations is the prolonged duration it
takes for the trait (δ, δ) to become resident in the population. As K increases, this duration becomes
shorter on the logK time scale. Although we cannot be certain about the reason for this mechanism,
we think that it may be due to the competition phases which vanish on the logK time scale as K →∞
but take up a non-negligible amount of time for fixed K. In particular, the competition against traits
with dormancy takes longer due to the dormancy component and hence the convergence is slower in
K compared with systems with only HGT and no dormancy.
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Figure 11. Left: Solving the ODE with Euler scheme, K = 105 and ∆t =
T log(K)K−1 with parameters as in Example 3.1 and C = 1. Right: Solving the ODE
with Euler scheme, K = 105 and ∆t = T log(K)K−1 with parameters as in Example
3.2 and C = 1. From top to bottom we have the usual arrangement of the Exponents
γKm,n. We have omitted the plots γK2,n due to the lack of incoming mutations.

4. Proof of Theorem 2.2

We will give a short sketch of the proof, which is very similar to [CMT21, Theorem 2.1]. The
idea is to decompose the time scale into two different kinds of phases: First there are long phases
[σKk logK, θKk logK] which then are followed by short intermediate phases [θKk logK,σKk+1 logK]. Dur-
ing the long phases, there is exactly one trait, whose population size is close to its equilibrium and all
other traits are of size o(K). During the short phases, another trait emerges and becomes significant
for competitive events and due to competition the initially resident trait is replaced by the emerging
trait. We will show that

lim
K→∞

σKk+1 = lim
K→∞

θKk = sk

with probability converging to 1 and hence on the logK timescale the intermediate phases vanish.

Since we only want to show this theorem in the case where only fit individuals (with a positive
active equilibrium size) can become resident, we do not need to distinguish these cases, so our proof is
simplified in this aspect compared to [CMT21]. However, during the intermediate phases we need to
observe whether none, one or both of the involved traits can become dormant and in which way the
horizontal transfer is acting, if at all.

Thus the proof will be performed by induction on k. During the long phases, we will make heavy use
of coupling arguments to show the convergence βKm,n → βm,n. This will again be done by induction on
the traits, where we need a nested induction, since the horizontal transfer can be exerted onto all traits
with a lower second component. For these phases, we will make extensive use of Theorem A.3 and
Theorem A.1, so we refer to Appendix A. During the intermediate phases, we need the corresponding
competition results, which can be found in Appendix B.

To make the structure of the induction more obvious, we give the general idea here: The trait space
X can be visualized as the δ-grid on [0, 4]2 and we first show the convergence on a time interval for the
trait (0, 0) as the base case. Then we advance our induction in the direction of dormancy to the trait
(δ, 0), where we make another base case in order to highlight the differences in the bi-type case. This
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Figure 12. Left: Solving the ODE with Euler scheme, K = 1015 and ∆t =
T log(K)10−5 with parameters as in Example 3.1 and C = 1. Right: Solving the
ODE with Euler scheme, K = 1015 and ∆t = T log(K)10−5 with parameters as in
Example 3.2 and C = 1. From top to bottom we have the usual arrangement of the
Exponents γKm,n.

is then followed by the induction step for traits (mδ, 0). In this fashion, we can then assume the result
to hold for all traits (m̃δ, ñδ) with ñ ≤ n and m̃ ∈ {0, . . . , L} for some fixed n ∈ {0, . . . , L− 1}. Then
we can show the result for traits (mδ, (n+ 1)δ) via an induction on m as for the case of (mδ, 0).

Throughout the proof we will use various kinds of branching processes. We denote by BPK(b, d, β)
a one-dimensional branching process with birth rate b, death rate d and initial condition bKβ − 1c.
Also, we denote by BPIK(b, d, a, c, β) a one-dimensional branching process with birth rate b, death
rate d, immigration at rate Kceat and initial condition bKβ − 1c. We refer to [CMT21, Appendix
A,B] for results concerning these processes. With BBPIK(b1, b2, d1, d2, σ1, σ2, a, c, β, γ) we denote a
two-dimensional branching process with birth rates b1, b2, death rates d1, d2, switching rates σ1, σ2,
immigration into the first coordinate at rate Kceat and initial condition b(Kβ − 1,Kγ − 1)c. We refer
to Appendix A.

Further, we denote by LBDIK(b, d, C, γ) a one-dimensional logistic birth and death process with
birth rate b, death rate d+ CN

K , where N denotes the population size, and immigration at a predictable
rate γ(t) at time t ≥ 0. We refer to [CMT21, Appendix C]. Also LBBIK(b1, d1, d2, σ2, p, C, γ1) denotes
the distribution of a two-dimensional logistic birth and death process with birth rates b1, 0, death
rates d1 + (1−p)CN

K , d2, where N denotes the population size of the first component, switching rates
pCN
K , σ2 and immigration into the first component at a predictable rate γ1(t) at time t ≥ 0. We refer

to Appendix B.



20 JOCHEN BLATH, TOBIAS PAUL AND ANDRÁS TÓBIÁS

(0, 0)
(δ, 0) Dormancy

(0, δ)

HGT
(0, Lδ)

I.S.

(δ, 0) Dormancy

(0, δ)

HGT
(0, Lδ)

I.S.

I.S.

Figure 13. The schematic induction: In the left picture, red are base cases, and the
convergence for the remaining green traits are proven via the induction step. This is
Step 1a) in the proof. Then in Step 1b) we make the induction step in the direction of
HGT which is shown in the second image. For this we assume the result to be shown
for all yellow traits. Then we have the base cases in red and subsequently another
induction step again in green.

Proof of Theorem 2.2. We distinguish two cases: Either there is only one phase (that is, all traits are
unfit against the initially resident trait (0, 0)) or there are at least two phases. In either case we now
consider a fixed time T > 0.

4.1. Proof of Theorem 2.2, Case 1.

Case 1: S((x, y), (0, 0)) ≤ 0 for all (x, y) ∈ X : As in [CMT21], we define a time θK1 , during which
trait (0, 0) is resident. Let ε1 > 0 and ρ > 0 and define the time

θK1 := inf

{
t ≥ 0

∣∣∣∣∣NK
0,0(t logK) /∈

[(
3

C
− 3ε1

)
K,

(
3

C
+ 3ε1

)
K

]

or
∑

(m,n)6=(0,0)

NK
m,n(t logK) ≥ ρε1K

}
.

Then we easily calculate that βm,n(t) = (1− (n+m)α) ∨ 0 for t ≤ θK1 ∧ T .

Step 0: Deriving bounds on the rates. Since all of the following couplings in Step 1 will need some
bounds on the rates, we derive them here for our process up to time θK1 . In particular, the arrivals in
the active component of trait (m,n) due to reproduction or transfer at time t ≤ θK1 ∧ T occur at rate

NK,a
m,n(t logK)

((
4− (m+ n)δ

2

)(
1−K−α

)
+ τ

∑L
m′=0,n′<nN

K,a
m′,n′(t logK)∑L

m′,n′=0N
K,a
m′,n′(t logK)

)
,

which satisfies for K large enough and n > 0 the inequality

NK,a
m,n(t logK)

(
4− (m+ n)δ

2
− ε1 + τ

3− 3Cε1

3 + C(3 + ρ)ε1

)
≤NK,a

m,n(t logK)

((
4− (m+ n)δ

2

)(
1−K−α

)
+ τ

∑L
m′=0,n′<nN

K,a
m′,n′(t logK)∑L

m′,n′=0N
K,a
m′,n′(t logK)

)

≤NK,a
m,n(t logK)

(
4− (m+ n)δ

2
+ τ

)
.
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These bounds are true for n = 0 when we remove the terms involving τ . The arrivals due to incoming
mutations occur at rate

(NK,a
m−1,n(t logK) +NK,a

m,n−1(t logK))

(
4− (m+ n− 1)δ

2

)
K−α

2
.

Further, the departures from the active population due to transfer or death occur at rate

NK,a
m,n(t logK)

1 +
C(1− pmδ)

K

L∑
m′,n′=0

NK,a
m′,n′(t logK) + τ

∑L
m′=0,n′>nN

K,a
m′,n′(t logK)∑L

m′,n′=0N
K,a
m′,n′(t logK)

 ,

which can be bounded for ρ small enough by

NK,a
m,n(t logK) (4− 3pmδ − 3C(1− pmδ)ε1)

≤NK,a
m,n(t logK)

1 +
C(1− pmδ)

K

L∑
m′,n′=0

NK,a
m′,n′(t logK) + τ

∑L
m′=0,n′>nN

K,a
m′,n′(t logK)∑L

m′,n′=0N
K,a
m′,n′(t logK)


≤NK,a

m,n(t logK)

(
4− 3pmδ + (3C + ρ)(1− pmδ)ε1 + τ

Cρε1

3− 3ε1

)
.

Similarly, the active to dormant transfer rate is given by

NK,a
m,n(t logK)

Cpmδ

K

L∑
m′,n′=0

NK,a
m′,n′(t logK),

which satisfies the bounds

NK,a
m,n(t logK) (3pmδ − 3Cpmδε1)

≤NK,a
m,n(t logK)

Cpmδ

K

L∑
m′,n′=0

NK,a
m′,n′(t logK)

≤NK,a
m,n(t logK) (3pmδ + Cpmδ(3 + ρ)ε1) .

Step 1: Induction on the traits. We will now show by induction on m and n that the bounds

Kβm,n(t)−(m+n+1)ε1 − 1 ≤ NK
m,n(t logK) ≤ Kβm,n(t)+(m+n+1)ε1 − 1 (4.1)

hold true for t ≤ θK1 ∧ T . In this situation, the condition reads as

K((1−(m+n)α)∨0)−(m+n+1)ε1 − 1 ≤ NK
m,n(t logK) ≤ K((1−(m+n)α)∨0)+(m+n+1)ε1 − 1

Step 1a): Traits (0, y). For m = n = 0 this is obviously satisfied by definition of θK1 .
Base case: n = 0.
Base case: m = 1. For m = 1 and n = 0 we couple the process NK

1,0 with processes Z̃K1,0 and ẐK1,0,
such that component-wise

Z̃K1,0(t logK) ≤ NK
1,0(t logK) ≤ ẐK1,0(t logK),

where Z̃K1,0 is a BBPIK(4− δ
2 − C̄ε1, 0, 4− 3pδ + 2C̄ε1, κ, 3pδ − C̄ε1, σ, 0, 1− α − ε1, 1− α − ε1) and

ẐK1,0 is a BBPIK(4− δ
2 + C̄ε1, 0, 4− 3pδ − 2C̄ε1, κ, 3pδ + C̄ε1, σ, 0, 1− α+ ε1, 1− α+ ε1), where

C̄ := 1 + (1 ∨ τ)(1 + C)(6 + ρ).
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Indeed, this coupling is justified by the bounds on the rates derived in Step 0 of this proof. Hence,
applying Theorem A.3 (i), we see that

lim
K→∞

log
(

1 + Z̃K1,0(t logK)
)

logK

= (1− α− ε1) +

0 ∨
− δ

2 − 2C̄ε1 − (κ+ σ) +
√

(− δ
2 − 2C̄ε1 + κ+ σ)2 + 4(3pδ − C̄ε1)σ

2
· t


≥ 1− α− ε1

and similarly, since S((δ, 0), (0, 0)) < 0, we have for ε1 sufficiently small that

lim
K→∞

log
(

1 + ẐK1,0(t logK)
)

logK

= (1− α+ ε1) +

0 ∨
− δ

2 + 2C̄ε1 − (κ+ σ) +
√

(− δ
2 + 2C̄ε1 + κ+ σ)2 + 4(3pδ + C̄ε1)σ

2
· t


≤ 1− α+ ε1.

Thus, the claim is shown for NK
1,0. For the remainder of the proof, we will use the shorthand notation

S((x̃, ỹ), (x, y))±C∗ε1 to indicate the rate of growth of a bi-type branching process whose birth, death,
switching and transfer rates are modified by some factor of ε1 and otherwise coincide with those of a
bi-type branching process whose growth rate is given by S((x̃, ỹ), (x, y)).

Induction step for m− 1→ m, n = 0: Now assume that it has been shown that

K((1−(m−1)α)∨0)−mε1 − 1 ≤ NK
m−1,0(t logK) ≤ K((1−(m−1)α)∨0)+mε1 − 1. (4.2)

Then, we can couple the process NK
m,0(t logK) with different processes Z̃Km,0 and ẐKm,0 such that

Z̃Km,0(t logK) ≤ NK
m,0(t logK) ≤ ẐKm,0(t logK),

where the distribution of Z̃Km,0 is determined by BBPIK(4 − mδ
2 − C̄ε1, 0, 4 − 3pmδ + 2C̄ε1, κ,

3pmδ − C̄ε1, σ, 0, (1 − (m − 1)α)+ − α − mε1, (1 − mα − mε1)+) and the distribution of ẐKm,0
is BBPIK(4 − mδ

2 + C̄ε1, 0, 4 − 3pmδ − 2C̄ε1, κ, 3pmδ + C̄ε1, σ, 0, (1 − (m − 1)α)+ − α + mε1,
(1−mα+mε1)+).

Then, we see from Theorem A.3 (i) or (iii) applied accordingly that for ε1 > 0 small enough

lim
K→∞

log
(

1 + Z̃Km,0(t logK)
)

logK

=

{
((1− (m− 1)α)+ − α−mε1) ∨ (1−mα−mε1)+ + (S((mδ, 0), (0, 0))− C∗ε1)t), if mα < 1

0, otherwise

≥ βm,0(t)−mε1
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and similarly

lim
K→∞

log
(

1 + ẐKm,0(t logK)
)

logK

=

{
((1− (m− 1)α)+ − α+mε1) ∨ ((1−mα+mε1)+ + (S((mδ, 0), (0, 0)) + C∗ε1)t), if mα < 1

0, otherwise,

≤ βm,0(t) +mε1.

Step 1b): Traits (mδ, nδ). Induction step for n − 1 → n: Assume now that for all m ∈ {0, . . . , L}
and all n′ ≤ n− 1 the bounds

K((1−(m+n′)α)∨0)−(m+n′+1)ε1 − 1 ≤ NK
m,n′(t logK) ≤ K((1−(m+n′)α)∨0)+(m+n′+1)ε1 − 1

hold.

Base case m = 0: For the process NK
0,n we only have incoming migration from NK

0,n−1. Hence, we
can couple

Z̃K0,n(t logK) ≤ NK
0,n(t logK) ≤ ẐK0,n(t logK),

where Z̃K0,n is a BPIK(4− nδ
2 + τ − C̄ε1, 4 + C̄ε1, 0, (1− (n− 1)α)+ − α− nε1, (1− nα− nε1)+) and

ẐK0,n is a BPIK(4 − nδ
2 + τ + C̄ε1, 4 − C̄ε1, 0, (1 − (n − 1)α)+ − α + ε1, (1 − nα + nε1)+), which as

before gives the sought bounds from (4.1) by applying Theorem A.1 (i) or (iii).

Base case m = 1: Here, we have incoming mutations as mentioned in the beginning of the proof
from two different populations, for which we already have suitable bounds. Thus, we can couple the
process NK

1,n as usual with

Z̃K1,n(t logK) ≤ NK
1,n(t logK) ≤ ẐK1,n(t logK),

where the distribution of Z̃K1,n is BBPIK(4 − (n+1)δ
2 + τ − C̄ε1, 0, 4 − 3pδ + 2C̄ε1, κ, 3pδ − C̄ε1, σ, 0,

(1 − nα)+ − α − (n + 1)ε1, (1 − (n + 1)α − (n + 1)ε1)+) and the law of ẐK1,n is determined by
a BBPIK(4 − (n+1)δ

2 + τ + C̄ε1, 0, 4 − 3pδ − 2C̄ε1, κ, 3pδ + C̄ε1, σ, 0, (1 − nα)+ − α + (n + 1)ε1,
(1− (n+ 1)α+ (n+ 1)ε1)+). Applying Theorem A.3 (i) or (iii) as in the case m = 1, n = 0 yields the
claim (4.1).

Induction step m− 1→ m: Assume that we have shown the bounds

K((1−(m′+n)α)∨0)−(m′+n+1)ε1 − 1 ≤ NK
m′,n(t logK) ≤ K((1−(m′+n)α)∨0)+(m′+n+1)ε1 − 1

for all m′ ≤ m− 1. Then, we couple the process NK
m,n as usual with

Z̃Km,n(t logK) ≤ NK
m,n(t logK) ≤ ẐKm,n(t logK),

where the distribution of Z̃Km,n is BBPIK(4 − (m+n)δ
2 + τ − C̄ε1, 0, 4 − 3pmδ + 2C̄ε1, κ,

3pmδ − C̄ε1, σ, 0, (1 − (m + n − 1)α)+ − α − (m + n)ε1, (1 − (m + n)α − (m + n)ε1)+) and
the law of ẐK1,n is BBPIK(4 − (m+n)δ

2 + τ + C̄ε1, 0, 4 − 3pmδ − 2C̄ε1, κ, 3pmδ + C̄ε1, σ, 0,

(1 − (m + n − 1)α)+ − α + (m + n)ε1, (1 − (m + n)α + (m + n)ε1)+). Again, applying Theo-
rem A.3 (i) or (iii) as before gives the claim (4.1).

Step 2: Showing θK1 ≥ T . In Step 1 we have shown that the process log(1+NK
m,n(t logK))
logK converges in

probability in the space L∞([0, θK1 ∧ T ]) towards βn,m(t) = (1 − (n + m)α)+. It now suffices to show
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that θK1 ≥ T , which can be done in the same manner as in [CMT21]. As we have computed above, for
all t ≤ θK1 ∧ T we have with high probability∑

(m,n)6=(0,0)

NK
m,n(t logK) ≤ Kmax(m,n)6=(0,0) βm,n(t)+

α
2 = K1−α2 .

In particular at time t = θK1 ∧ T , we have
∑

(m,n)6=(0,0)N
K
m,n(t logK) < ρε1K with high probability.

Hence, for K large enough, we see that up to time θK1 ∧ 2T we can couple

ZK0,0,1(t logK) ≤ NK
0,0(t logK) ≤ ZK0,0,2(t logK),

where ZK0,0,1 is a LBDIK(4(1− ε), 1 + Cε,C, 0) and ZK0,0,2 is a LBDIK(4, 1, C, 0). Applying [CMT21,
Lemma C.1 (i)] to both processes shows that at time t = θK1 ∧ T the process NK

0,0(t logK) is still close
to its equilibrium size with high probability. Thus θK1 > T with probability converging to 1 as K →∞
and the proof is completed in this case.

4.2. Proof of Theorem 2.2, Case 2.

Case 2: In the second case, we consider S((x, y), (0, 0)) > 0 for some (x, y) ∈ X .

4.2.1. Phase 1. Note that the bounds on the arrival, departure and migration rates derived in Step 0 of
Case 1 remain true. Unfortunately, we are not able to give a closed form for the limiting function β as
in [CMT21, Section 4.2.2] without a significant number of cases to be distinguished. However, in this
case there exists some time s1 ≤ T0, at which for the first time for some m∗2, n∗2 ∈ {0, . . . , L} we have
βm∗2,n∗2(s1) = β0,0(s1) = 1. Due to our assumptions in the Theorem, m∗2, n∗2 are unique. Now, we split
the time interval [0, s1] into subintervals, on which all βm,n are affine functions. That is, there exists a
finite number of times 0 = t0 < t1 < . . . < t` ≤ s1 such that on the interval [ti−1, ti] all functions βm,n
are of the form

βm,n(t) = βm,n(ti−1) + am,n(t− ti−1), t ∈ [ti−1, ti],

for some constants am,n which may depend on the time interval. This representation as an affine linear
function can be seen from Theorem 2.2 (iii). We will now show by induction, first on n and then on
m, that βKm,n → βm,n as K →∞ on the interval [0, t1∧ θK1 ∧T ]. Showing the convergence on the other
intervals [ti−1, ti ∧ θK1 ∧ T ] can be done in the same way.

Step 1: The induction on the traits. Recalling the time t(m,n),1 from Theorem 2.2 (iii), we want to
show that for all t ∈ [0, t1 ∧ θK1 ∧ T ] the bounds

βm,n(t)− C∗ε1 ≤
log
(
1 +NK

m,n(t logK)
)

logK
≤ βm,n(t) + C∗ε1 (4.3)

hold with probability converging to 1 as K →∞ for some constant C∗, which may depend on m and
n. In particular, the notation C∗ does not necessarily refer to any particular constant, but more to a
suitable constant, which is sufficiently large. For m = n = 0, the bounds hold trivially by definition of
θK1 .
In the following, we use the notation

(βm,n(t) + C∗ε1)× :=

{
βm,n(t) + C∗ε1, if βm,n(t) > 0

0, otherwise.

Step 1a): Traits (0, y). Base case: n = 0.
Base case: m = 1. We can couple as in Case 1 the process NK

1,0 with processes Z̃K1,0 and ẐK1,0, such
that component-wise

Z̃K1,0(t logK) ≤ NK
1,0(t logK) ≤ ẐK1,0(t logK),
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where the distribution of Z̃K1,0 is determined by BBPIK(4 − δ
2 − C̄ε1, 0, 4 − 3pδ + 2C̄ε1, κ,

3pδ − C̄ε1, σ, 0, β0,0(0) − α − C∗ε1, β1,0(0) − C∗ε1) and ẐK1,0 is a BBPIK(4 − δ
2 + C̄ε1, 0,

4− 3pδ − 2C̄ε1, κ, 3pδ + C̄ε1, σ, 0, β0,0(0)− α+ C∗ε1, β1,0(0) + C∗ε1), where again

C̄ := 1 + (1 ∨ τ)(1 + C)(6 + ρ).

Obviously, we obtain the same convergence as before, but the inequalities derived may not apply
anymore. By Theorem A.3 (i), we have the convergence

lim
K→∞

log
(

1 + Z̃K1,0(t logK)
)

logK
= (β0,0(0)− α− C∗ε1) ∨ (β1,0(0)− C∗ε1 + S((δ, 0), (0, 0))t)

= (β1,0(0) + S((δ, 0), (0, 0))t) ∨ (β0,0(t)− α)− C∗ε1

and

lim
K→∞

log
(

1 + ẐK1,0(t logK)
)

logK
= (β0,0(0)− α+ C∗ε1) ∨ (β1,0(0) + C∗ε1 + S((δ, 0), (0, 0))t)

= (β1,0(0) + S((δ, 0), (0, 0))t) ∨ (β0,0(t)− α) + C∗ε1,

by using β1,0(0) = β0,0(0)− α.

Induction step for m− 1→ m, n = 0: Now, assume that (4.3) has been shown for all m′ ≤ m− 1
and n = 0. Our goal is to show that (4.3) also holds for m and n = 0. For this purpose, we couple
with Z̃Km,0 and ẐKm,0 such that

Z̃Km,0(t logK) ≤ NK
m,0(t logK) ≤ ẐKm,0(t logK),

where the distribution of Z̃Km,0 is determined by BBPIK(4 − mδ
2 − C̄ε1, 0, 4 − 3pmδ + 2C̄ε1, κ,

3pmδ − C̄ε1, σ, am−1,0, βm−1,0(0) − α − C∗ε1, (βm,0(0) − C∗ε1)+) and the law of ẐKm,0 is BBPIK
(4− mδ

2 + C̄ε1, 0, 4− 3pmδ− 2C̄ε1, κ, 3pmδ+ C̄ε1, σ, am−1,0, βm−1,0(0)−α+C∗ε1, (βm,0(0) +C∗ε1)×).

We distinguish the cases where βm,0(0) − C∗ε1 is strictly positive (to apply Theorem A.3 (i)) or
(βm,0(0)− C∗ε1)+ = 0 to apply Theorem A.3 (ii) or (iii), depending on am−1,0 being strictly positive
or non-positive, which yields the convergence

lim
K→∞

log
(

1 + Z̃Km,0(t logK)
)

logK

=



(βm−1,0(0)− α− C∗ε1 + am−1,0t)

∨(βm,0(0)− C∗ε1 + S((mδ, 0), (0, 0))t) ∨ 0, if βm,0(0)− C∗ε1 > 0

(S((mδ, 0), (0, 0)) ∨ am−1,0)
(
t− |βm−1,0(0)−α−C∗ε1|

am−1,0

)
∨0, if βm,0(0)− C∗ε1 ≤ 0 < am−1,0

0, if βm,0(0)− C∗ε1, am−1,0 ≤ 0.

Note that in the second case it holds |βm−1,0(0)−α−C∗ε1|
am−1,0

= t(m,0),1 + C∗ε1. Even though the functions
βm,n do not have a change in slope by our choice of t1, this limit of the coupled process may. Also, if
the maximum in the second case is attained by am−1,0, then the second case reads as

am−1,0t+ βm−1,0(0)− α− C∗ε1
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by using that βm−1,0(0) − α − C∗ε1 ≤ 0. In particular, using βm−1,0(t) = βm−1,0(0) + am−1,0t, we
obtain in each case

lim
K→∞

log
(

1 + Z̃Km,0(t logK)
)

logK

≥
[
(βm,0(0) + S((mδ, 0), (0, 0))(t− (t ∧ t(m,0),1))) ∨ (βm−1,0(t)− α) ∨ 0

]
− C∗ε1.

A similar application of Theorem A.3 for ẐKm,0 entails

lim
K→∞

log
(

1 + ẐKm,0(t logK)
)

logK

≤
[
(βm,0(0) + S((mδ, 0), (0, 0))(t− (t ∧ t(m,0),1))) ∨ (βm−1,0(t)− α) ∨ 0

]
+ C∗ε1,

which finishes the induction for n = 0.

Step 1b): Traits (mδ, nδ). Induction step: n − 1 → n. We assume the bounds in (4.3) have been
shown for all m′ ∈ {0, . . . , L} and n′ ≤ n− 1.

Base case: m = 0. Here, the immigration is only coming from NK
0,n−1 and hence we can couple

with processes Z̃K0,n and ẐK0,n such that

Z̃K0,n(t logK) ≤ NK
0,n(t logK) ≤ ẐK0,n(t logK),

where Z̃K0,n is a BPIK(4− nδ
2 + τ − C̄ε1, 4 + 2C̄ε1, a0,n−1, β0,n−1(0)−α−C∗ε1, (β0,n(0)−C∗ε1)+) and

the law of ẐK0,n is BPIK(4− nδ
2 + τ + C̄ε1, 4− 2C̄ε1, a0,n−1, β0,n−1(0)− α+ C∗ε1, (β0,n(0) + C∗ε1)×).

Now applying Theorem A.1 shows (4.3) in this case.

Base case: m = 1. This case can be treated as the induction step below.

Induction step: m−1→ m. Now, we assume that for all m′ ≤ m−1 we have shown the inequality
(4.3). Then, it also holds for m since we can again distinguish the immigration from outside to be
dominated either from NK

m−1,n or from NK
m,n−1 and then we can couple as usual (in the case that the

immigration is dominated by NK
m−1,n) with processes Z̃Km,n and ẐKm,n such that

Z̃Km,n(t logK) ≤ NK
m,n(t logK) ≤ ẐKm,n(t logK),

where Z̃Km,n is given by a BBPIK(4 − (m+n)δ
2 + τ − C̄ε1, 0, 4 − 3pmδ + 2C̄ε1, κ, 3pmδ − C̄ε1,

σ, am−1,n, βm−1,n(0) − α − C∗ε1, (βm,n(0) − C∗ε1)+) and the law of ẐKm,n is determined by BBPIK

(4 − (m+n)δ
2 + τ + C̄ε1, 0, 4 − 3pmδ − 2C̄ε1, κ, 3pmδ + C̄ε1, σ, am−1,n, βm−1,n(0) − α + C∗ε1,

(βm,n(0) +C∗ε1)×). As before, applying Theorem A.3 in each case shows the claimed inequality (4.3)
with probability converging to 1 as K →∞. This finishes the induction for the first phase.

Performing the induction in n and m as above also for the remaining intervals [ti−1, ti ∧ θK1 ∧ T ]
shows the bounds (4.3) on the entire interval [0, s1 ∧ θK1 ∧ T ] with probability converging to 1 due to
the Markov property. The only changes that need to be made are in the starting conditions of the
coupled processes, where we replace βm,n(0) by βm,n(ti−1).

Step 2: Deriving a lower bound for θK1 . Next, we will show that (s1 − η) ∧ T < θK1 for any η > 0 with
high probability. Assume for now T > s1− η. By definition of s1, all functions βm,n are bounded away
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from 1 on the interval [0, s1 − η] except for β0,0. Hence for all t ≤ θK1 ∧ (s1 − η) we have∑
(m,n)6=(0,0)

NK
m,n(t logK) ≤ Kmax(m,n)6=(0,0) βm,n(t)+ε̃ ≤ K1−ε̃

for ε̃ > 0 sufficiently small with probability converging to 1. Hence, to show s1 − η < θK1 , we also
need to exclude the possibility of NK

0,0 exiting a neighbourhood of its equilibrium size. Indeed, we can
couple the process NK

0,0 with processes

ZK0,0,1(t logK) ≤ NK
0,0(t logK) ≤ ZK0,0,2(t logK),

where ZK0,0,1 is a LBDIK(4(1 − ε), 1 + Cε,C, 0) and ZK0,0,2 is a LBDIK(4, 1, C, 0) and ε > 0. As in
case 1, applying [CMT21, Lemma C.1 (i)] to both processes shows that at time t = θK1 ∧ (s1 − η) the
process NK

0,0(t logK) is close to its equilibrium size with high probability. Thus, recalling T > s1 − η,
θK1 > (s1 − η) ∧ T with probability converging to 1 as K →∞. In particular, for T < s1 − η it holds
θK1 > (s1 − η) ∧ T with high probability.

Therefore, we can conclude by letting ε1 ↓ 0 that the convergence βKm,n → βm,n in probability as
K →∞ on the interval [0, (s1 − η) ∧ T ] holds true.

4.2.2. Intermediate Phase 1. In this intermediate phase, we will show that the resident trait (0, 0)
experiences competition with an invasive trait (m∗2δ, n

∗
2δ), which we will show to be of order K at the

end of the first phase [0, θK1 logK]. Hence our goal is twofold: Firstly we want to show that θK1 → s1 as
K →∞ in probability. Secondly, we want to show that at some time σK2 logK = θK1 logK + T (ε1, ρ)
the competition leads to the invasive trait becoming resident and its size being close to its equilibrium
size. At the same time NK

0,0 becomes smaller than ρε1K.

Step 1: Convergence of θK1 → s1. We know from the end of the previous section where we proved
βKm,n → βm,n on the interval [0, (s1 − η) ∧ T ] that s1 − η < θK1 with high probability. Thus, to show
θK1 → s1, it suffices to show θK1 < s1 + η for any η > 0 with probability converging to 1 as K →∞.

Towards a contradiction, assume that θK1 ≥ s1 +η. Then, the couplings on the interval [t`−1, t`∧θK1 ]
with t` = s1 can be extended until time t∗` = s1 + η since the couplings are valid as long as the time t
satisfies t ≤ θK1 . In particular, for the coupling of NK

m∗2,n
∗
2
we obtain the lower bound

lim
K→∞

log
(

1 +NK
m∗2,n

∗
2
(t logK)

)
logK

≥
[
(βm∗2,n∗2(t`−1) + S((m∗2δ, n

∗
2δ), (0, 0))((t− t`−1)− ((t− t`−1) ∧ t(m∗2,n∗2),1)))

∨ (βm∗2−1,n∗2
(t`−1) + am∗2−1,n∗2

(t− t`−1)− α)

∨ (βm∗2,n∗2−1(t`−1) + am∗2,n∗2−1(t− t`−1)− α) ∨ 0
]
− C∗ε1.

We know however that at time s1 the last expression converges to 1 as ε1 ↓ 0 and by definition of s1 the
lower bound is strictly increasing on some interval [s1 − η, s1]. Since the lower bound is the maximum
of different affine functions, it remains strictly increasing on the interval [s1, s1 + η]. In particular, for
ε1 small enough, at time s1 + η the lower bound becomes larger than 1, which is a contradiction since

lim
K→∞

log
(

1 +NK
m∗2,n

∗
2
(t logK)

)
logK

≤ 1

for all t ≥ 0. Hence with probability converging to 1 we have θK1 < s1 + η. We conclude θK1 → s1 in
probability.
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Step 2: Emergence of a new population. For our second goal, we need to show that NK
0,0 does not exit a

neighbourhood of its equilibrium, so that at time θK1 the population of trait (m∗2δ, n
∗
2δ) emerges. This

part of the proof is identical to [CMT21, Section 4.2.3], but is repeated here for the reader’s convenience.
Unfortunately, we cannot use the coupling from the previous phase anymore since θK1 → s1 and
therefore βm,n(θK1 ) are not bounded away from 1. However, we do know that for K sufficiently large,
the emigration from trait (0, 0), which occurs at rate 4K−α, can be bounded by Cρε1. Then, on the
time interval [0, θK1 ∧ T ], we can couple

ZK0,0,1(t logK) ≤ NK
0,0(t logK) ≤ ZK0,0,2(t logK),

where ZK0,0,1 is a LBDIK(4 − Cρε1, 1 + τρε1
3/C−3ε1

+ Cρε1, C, 0) and ZK0,0,2 is a LBDIK(4, 1, C, 0). We
easily identify the equilibria

z̄0,0,1 =
3

C
− ε1

(
2ρ+

τρ

3− 3Cε1

)
and z̄0,0,2 =

3

C
.

Now, we choose ρ sufficiently small such that z̄0,0,1 is contained in the chosen domain around the
equilibrium of NK

0,0, that is z̄0,0,1 ∈ [ 3
C − 3ε1,

3
C + 3ε1], which holds as soon as

2ρ+
τρ

3− 3Cε1
< 3.

Applying [CMT21, Lemma C.1.] to ZK0,0,1 and ZK0,0,2 shows that

lim
K→∞

P

(
∀t ∈ [0, s1 + η] :

ZK0,0,1(t logK)

K
≥ 3

C
− 3ε1

)
= 1

and similarly

lim
K→∞

P

(
∀t ∈ [0, s1 + η] :

ZK0,0,2(t logK)

K
≤ 3

C
+ 3ε1

)
= 1.

Note that the coupling above is only true until time θK1 < s1 + η, but the bounds for the processes
ZK0,0,∗ with ∗ ∈ {1, 2} are still true for any later times. In particular, we obtain for the time θK1 that

lim
K→∞

P

(
ZK0,0,1(θK1 logK)

logK
≥ 3

C
− 3ε1

)
= 1 = lim

K→∞
P

(
ZK0,0,2(θK1 logK)

logK
≤ 3

C
+ 3ε1

)
.

Since at time θK1 the coupling still holds, we see

lim
K→∞

P

(
NK

0,0(θK1 logK)

logK
∈
[

3

C
− 3ε1,

3

C
+ 3ε1

])
= 1.

Hence, by definition of θK1 we must have∑
(m,n) 6=(0,0)

NK
m,n(θK1 logK) ≥ ρε1K

with probability converging to 1 as K → ∞. Since we have assumed that at any given time at most
two of the limiting exponents βm,n may be 1 and we already know from above that βm∗2,n∗2(s1) = 1, it
must hold for some ε̃ > 0 that

max
(m,n)/∈{(0,0),(m∗2,n

∗
2)}
βm,n(s1) ≤ 1− ε̃.

Since we have shown the convergences βKm,n → βm,n on [0, s1 − η], by the continuity of the exponents
(see Lemma A.15) and the convergence θK1 → s1 we conclude∑

(m,n)/∈{(0,0),(m∗2,n
∗
2)}

NK
m,n(θK1 logK) ≤ K1− ε̃2
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with high probability for ε̃ > 0 sufficiently small. Hence, it must hold NK
m∗2,n

∗
2
(θK1 logK) ≥ ρε1K/2

with probability converging to 1. It is important to note that by definition of θK1 , this is equivalent to
demanding

NK
m∗2,n

∗
2
(θK1 logK) ∈

[
ρε1K

2
, ρε1K

]
which enables us to apply the Propositions from Appendix B in combination with Remark B.16.

Step 3: Competition. Now that we have established the emergence of the invasive trait (m∗2δ, n
∗
2δ), we

need to distinguish the two cases m∗2 = 0 and m∗2 > 0.

Case(a): m∗2 = 0. In this case we can proceed as in [CMT21], as the invading trait is a one-
dimensional process which necessarily performs horizontal transfer. Firstly, we note again due to
continuity of the exponent that ∑

(m,n)/∈{(0,0),(m∗2,n
∗
2)}

NK
m,n(t logK) ≤ K1− ε̃4

for all t ∈ [θK1 , θ
K
1 + s] for s > 0 sufficiently small with probability converging to 1. Being consistent

with the notation in [CMT21, Section C.2.2], we define for any time t the functions

bK1 (t) = 4(1−K−α), bK2 (t) =

(
4− (m∗2 + n∗2)δ

2

)
(1−K−α),

dK1 (t) = dK2 (t) = 1 +

(
C

K
+

τ∑L
m=0,n>0N

K,a
m,n(t)

) ∑
(m,n)/∈{(0,0),(m∗2,n

∗
2)}

NK,a
m,n(t),

τK(t) = τ ·
NK,a

0,0 (t) +NK,a
m∗2,n

∗
2
(t)∑L

m,n=0N
K,a
m,n(t)

, γK1 (t) = 0, γK2 (t) ≤ 4K−αNK,a
0,0 (t).

Note that for the immigration rate γK2 we would need to consider the incoming immigration from the
neighbouring traits. However, if (0, 0) is not one of them, those traits are of size of order strictly less
than K, so the upper bound for γK2 (t) is justified. The above functions except for γK2 converge on the
interval [θK1 logK, (θK1 + s) logK] to b1 = 4, b2 = 4 − (m∗2+n∗2)δ

2 , d1 = d2 = 1, τ and 0 respectively in

order of appearance. For γK2 (t) we obtain the convergence γK2 (t)
K → 0 as K →∞.

Now, we can apply the Markov property at time θK1 and subsequently Lemma C.3 from [CMT21],
which gives us the existence of a finite time T (ρ, ε1) such that with probability converging to 1 we have

NK
0,0(θK1 logK + T (ρ, ε1)) ≤ ρε1K

and
NK,a
m∗2,n

∗
2
(θK1 logK + T (ρ, ε1))

K
∈
[
z̄am∗2,n∗2 − ε2, z̄

a
m∗2,n

∗
2

+ ε2

]
,

where z̄am∗2,n∗2 denotes the active equilibrium population size (which in this case coincides with the total

equilibrium population size) of the rescaled process
NK
m∗2,n

∗
2

K .

Hence, we can define the end of the first intermediate phase as

σK2 logK = θK1 logK + T (ρ, ε1).

In particular, we have σK2 → s1 in probability as K →∞. At time σK2 logK we can use the continuity
of the exponent and are left with the following bounds on our populations

NK
0,0(σK2 logK) ∈ [K1−ε1 , ρε1K],

NK
m∗2,n

∗
2
(θK1 logK + T (ρ, ε1))

K
∈
[
z̄am∗2,n∗2 − ε2, z̄

a
m∗2,n

∗
2

+ ε2

]
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and for all (m,n) /∈ {(0, 0), (m∗2, n
∗
2)} we have, again using the continuity argument from Lemma A.15,

log
(
1 +NK

m,n(σK2 logK)
)

logK
∈ [βm,n(s1)− ε2, βm,n(s1) + ε2].

Note that populations for which βm,n(s1) = 0 are actually extinct at time σK2 . This is due to our
assumption that in this case we must have βm,n(t) = 0 on an interval [s1 − ε, s1], which due to
our starting condition implies negative fitness and weak immigration and hence by Lemma A.16
extinction of the population. Then, applying Lemma A.13 shows for K sufficiently large that there is
no immediate resurrection of the population after time s1.

Case(b): m∗2 > 0. Now, the individuals of the invading trait are able to become dormant. Hence,
we have competition between a resident one-dimensional process and an invading two-dimensional
process. Note that we may or may not have horizontal transfer exhibited from the invading trait. As
in Case(a) we define a number of functions and apply the corresponding result on competition. The
functions to be defined are

aK1 (t) = 4(1−K−α), bK1 (t) =

(
4− (m∗2 + n∗2)δ

2

)
(1−K−α),

dK1 (t) = 1 +

(
C

K
+

τ∑L
m=0,n>0N

K,a
m,n(t)

) ∑
(m,n)/∈{(0,0),(m∗2,n

∗
2)}

NK,a
m,n(t), dK2 (t) ≡ κ,

γK1 (t) = 0, γK2 (t) ≤ 4K−αNK,a
0,0 (t).

If there is no horizontal transfer (that is n∗2 = 0), we set τK(t) ≡ 0. Otherwise we set

τK(t) = τ ·
NK,a

0,0 (t) +NK,a
m∗2,n

∗
2
(t)∑L

m,n=0N
K,a
m,n(t)

.

Since we have non-negative horizontal transfer exerted from the invading trait onto (0, 0) and we
have dormancy for the invading but not for the initially resident trait, we can apply Proposition B.23
together with Remark B.16 due to the same convergence arguments made in Case(a). Hence, there
exists some finite time T (ρ, ε1) such that with probability larger than 1− oε1(1) we have

NK
0,0(σK2 logK) ∈ [K1−ε1 , ρε1K]

NK,a
m∗2,n

∗
2
(θK1 logK + T (ρ, ε1))

K
∈
[
z̄am∗2,n∗2 − ε2, z̄

a
m∗2,n

∗
2

+ ε2

]
,

and
NK,d
m∗2,n

∗
2
(θK1 logK + T (ρ, ε1))

K
∈
[
z̄dm∗2,n∗2 − ε2, z̄

d
m∗2,n

∗
2

+ ε2

]
as K → ∞, where z̄dm∗2,n∗2 is the equilibrium size of the dormant component of the rescaled process.
Then, at time

σK2 logK = θK1 logK + T (ρ, ε1)

we have the same bounds as in Case(a) with the only difference in the equilibrium size of the process
NK
m∗2,n

∗
2
.

4.2.3. Phase k. We will now consider a time interval [σKk logK, θKk logK], where σKk → sk−1 and
θKk → sk in probability. Thus, we consider k ≥ 2 and assume that we have already completed step
k−1. In particular, we assume that we have defined a stopping time σKk with the convergence property
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mentioned above such that for the resident population of trait (m∗kδ, n
∗
kδ) the bounds

NK,a
m∗k,n

∗
k
(σKk logK)

K
∈
[
z̄am∗k,n

∗
k
− εk, z̄am∗k,n∗k + εk

]
and

NK,d
m∗k,n

∗
k
(σKk logK)

K
∈
[
z̄dm∗k,n

∗
k
− εk, z̄dm∗k,n∗k + εk

]
hold. Furthermore, we assume that for the previously resident trait we have

K1−εk ≤ NK
m∗k−1,n

∗
k−1

(σKk logK) ≤ ρεkK.

For all remaining traits (mδ, nδ) /∈
{

(m∗k−1δ, n
∗
k−1δ), (m

∗
kδ, n

∗
kδ)
}
, we assume NK

m,n(σKk logK) = 0 if
βm,n(sk−1) = 0 and otherwise we assume

log
(
1 +NK

m,n(σKk logK)
)

logK
∈ [βm,n(sk−1)− εk, βm,n(sk−1) + εk].

As in the base case, we introduce the time θKk , which is the time until the active part of the resident
trait leaves a neighbourhood of its equilibrium or a new trait emerges, that is

θKk := inf

{
t ≥ σKk

∣∣∣∣∣ NK,a
m∗k,n

∗
k
(t logK) /∈

[(
z̄am∗k,n

∗
k
− 3εk

)
K,
(
z̄am∗k,n

∗
k

+ 3εk

)
K

]

or
∑

(m,n) 6=(m∗k,n
∗
k)

NK
m,n(t logK) ≥ ρεkK

}
.

Step 0: Deriving bounds on the rates. Similarly to Step 0 in Case 1 of the proof, we can derive similar
bounds on the birth, death and migration rates on the time interval [σKk , θ

K
k ]. The bounds for the

birth and arrival due to horizontal transfer rates are

4− (m+ n)δ

2
+ τ1ln>n∗k ± C∗εk,

and for the death and emigration due to horizontal transfer we obtain the bounds

1 + z̄am∗k,n
∗
k
(1− pmδ) + τ1ln∗k>n ± C∗εk.

The immigration rates stay the same as in the base case, since they do not depend on the resident
trait population size. The active to dormant switching rate then satisfy the bounds

pmδz̄am∗k,n
∗
k
± C∗εk.

Step 1: Induction on the traits. As in the base case, we want to use the bounds given above to couple
our processes accordingly and show by induction on the traits the upper and lower bounds on βKm,n.
For this, we may again decompose the time interval [sk−1, sk] into sections on which all βm,n are affine.
On the first such subinterval which is of the form t ∈ [sk−1, t1 ∧ θKk ∧ T ], we can write

βm,n = βm,n(sk−1) + am,n(t− sk−1).

for some constants am,n ∈ R. We will not fully carry out the induction, but give a broad idea, since
it is very similar to the base case. If (m∗k, n

∗
k) = (0, 0), we are in the same situation as in the base

case, so we can use the Markov property at time σKk logK and obtain the same results where in the
couplings we need to replace βm,n(0) with βm,n(sk−1).
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In the case where (m∗k, n
∗
k) 6= (0, 0) and β0,0(sk−1) > 0, there is no incoming immigration into the

trait (0, 0) and hence we can use the coupling

Z̃K0,0(t logK) ≤ NK
0,0(t logK) ≤ ẐK0,0(t logK),

where Z̃K0,0 is a BPK(4 − C∗εk, 1 + z̄am∗k,n
∗
k

+ τ1ln∗k>0 + C∗εk, β0,0(sk−1) − C∗εk) and ẐK0,0 is given as
BPK(4+C∗εk, 1+z̄am∗k,n

∗
k
+τ1ln∗k>0−C∗εk, β0,0(sk−1)+C∗εk). For our coupled processes, the convergence

theorem [CMT21, Lemma A.1] implies the bounds

β0,0(sk−1) + S((0, 0), (m∗kδ, n
∗
kδ))(t− sk−1)− C∗εk

≤
log
(
1 +NK

0,0(t logK)
)

logK

≤ β0,0(sk−1) + S((0, 0), (m∗kδ, n
∗
kδ))(t− sk−1) + C∗εk.

If β0,0(sk−1) = 0, then due to the lack of immigration and our observation that populations with
βm,n(sk−1) = 0 are actually extinct we have NK

0,0(t logK) = 0 for all t ≥ σKk .

As mentioned, we abbreviate the induction and assume that the bounds

βm,n(t)− C∗εk ≤
log
(
1 +NK

m,n(t logK)
)

logK
≤ βm,n(t) + C∗εk (4.4)

have been shown up to the neighbouring traits of (mδ, nδ) for all t ∈ [sk−1, t1∧θKk ∧T ]. Then, we need
to distinguish the cases where m = 0 and m > 0 as well as n ≥ n∗k and n < n∗k. The first distinction
corresponds to the question of the ability to become dormant, whereas the second one dictates the way
that horizontal transfer influences the dynamics. Furthermore, we need to distinguish whether NK

m−1,n

or NK
m,n−1 is larger (in terms of orders of powers of K) to determine which population is responsible for

the immigration rate. Also, we need to separate the cases where βm,n(sk−1) = 0 or strictly larger than
0. In the first case, we need to couple with processes whose initial population size is also 0. Without
loss of generality we assume NK

m,n−1 to be of larger order than NK
m−1,n - the other case can be done by

switching the corresponding indices. Then, we can couple

Z̃Km,n(t logK) ≤ NK
m,n(t logK) ≤ ẐKm,n(t logK)

where Z̃Km,n and ẐKm,n are BPIK(4 − (m+n)δ
2 + τ1ln>n∗k ∓ C∗εk, 1 + z̄am∗k,n

∗
k

+ τ1ln<n∗k ± 2C∗εk, am,n−1,

βm,n−1(sk−1) − α ∓ C∗εk, (βm,n(sk−1) ∓ C∗εk)×) in the case where m = 0 and otherwise they are
determined by BBPIK(4 − (m+n)δ

2 + τ1ln>n∗k ∓ C∗εk, 0, 1 + (1 − pmδ)z̄am∗k,n
∗
k

+ τ1ln<n∗k ± 2C∗εk, κ,

pmδ ∓ C∗εk, σ, am,n−1, βm,n−1(sk−1)− α∓ C∗εk, (βm,n(sk−1)∓ C∗εk)×).

Applying Theorem A.1 or A.3 accordingly shows the bounds (4.4) by definition of our fitness function.
Continuing this process for all time intervals on which all βm,n are affine shows the bounds (4.4) on
the entire interval [sk−1, sk ∧ θKk ∧ T ] with probability converging to 1.

Step 2: Deriving a lower bound for θKk . As in Step 2 of the base case, we want to show that (sk−η)∧T <

θKk with probability converging to 1. Again due to our assumption, we know that all functions βm,n
except for βm∗k,n∗k are bounded away from 1 on the interval [sk−1 +η, sk−η]. Therefore, it again suffices
for showing s1−η < θKk that NK,a

m∗k,n
∗
k
does not exit a neighbourhood of its equilibrium until time sk−η.

For this purpose, we can couple with processes

ZKm∗k,n
∗
k,1

(t logK) ≤ NK
m∗k,n

∗
k
(t logK) ≤ ZKm∗k,n∗k,2(t logK)

up to time θKk . Again we need to distinguish between the possibility of becoming dormant or not.
If m∗k = 0, we can choose Zm∗k,n∗k,1 as a LBDIK((4 − (m∗k+n∗k)δ

2 )(1 − ε), 1 + Cε,C,K−αNm∗k,n
∗
k−1) and
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Zm∗k,n
∗
k,1

as a LBDIK((4 − (m∗k+n∗k)δ
2 ), 1, C,K−αNm∗k,n

∗
k−1). If, on the other hand, we have m∗k > 0,

we need to distinguish where the immigration is coming from and can choose the process Zm∗k,n∗k,1
to be determined by a LBBIK((4 − (m∗k+n∗k)δ

2 )(1 − ε), 1 + Cε, κ, σ, p, C,K−αNm∗k,n
∗
k−1) if we assume

the immigration to be dominated by Nm∗k,n
∗
k−1. Then we can choose Zm∗k,n∗k,2 as a LBBIK((4 −

(m∗k+n∗k)δ
2 ), 1, κ, σ, p, C,K−αNm∗k,n

∗
k−1). Now, applying [CMT21, Lemma C.1] to the first case and

Corollary B.8 in the case of bi-type processes, we see that at time sk − η the process NK
m∗k,n

∗
k
has

not exited a neighbourhood of its equilibrium size with probability converging to 1. In particular, we
must have sk − η < θKk with high probability.

4.2.4. Intermediate Phase k. The structure of this intermediate phase remains the same as in Section
4.2.2.

Step 1: Convergence of θKk → sk. This part of the proof can be taken from Step 1 in Intermediate
Phase 1 with minor changes in the times and the resident trait and is not repeated here.

Step 2: Emergence of a new population. This part is also very similar. However, we may need to
couple with logistic bi-type branching processes instead of single type. Since this is a straightforward
adaptation similar to Step 2 of Phase k, we do not carry it out here. We do obtain however that

NK
m∗k+1,n

∗
k+1

(θKk logK) ∈
[
ρεkK

2
, ρεkK

]
and ∑

(m,n)/∈{(m∗k,n
∗
k),(m∗k+1,n

∗
k+1)}

NK
m,n(θKk logK) ≤ K1− ε̃2 .

Step 3: Competition. By assumption of the theorem, there is competition between the resident and
the emerging trait. Distinguishing the cases, we can proceed as in Intermediate Phase 1 and define
the corresponding birth, death, migration, switching and horizontal transfer rates which then allow
us to apply one of the Propositions from B.15, B.17, B.23, B.25, B.26 and B.28 in conjunction with
Remark B.16 or [CMT21, Lemma C.3], which in each case give us a finite time T (ρ, εk) such that with
probability larger than 1− oεk(1) we have, as K →∞, the bounds

NK
m∗k,n

∗
k
(θKk logK + T (ρ, εk)) ∈ [K1−εk , ρεkK],

NK,a
m∗k+1,n

∗
k+1

(θKk logK + T (ρ, εk))

K
∈
[
z̄am∗k+1,n

∗
k+1
− εk, z̄am∗k+1,n

∗
k+1

+ εk

]
,

and
NK,d
m∗k+1,n

∗
k+1

(θKk logK + T (ρ, εk))

K
∈
[
z̄dm∗k+1,n

∗
k+1
− εk, z̄dm∗k+1,n

∗
k+1

+ εk

]
.

Thus, we can define the time σKk+1 logK := θKk logK +T (ρ, εk), at which time the stated properties in
the beginning of Step k are satisfied with high probability. That is, for (m,n) /∈ {(0, 0), (m∗2, n

∗
2)} we

have again using the continuity argument from Lemma A.15

log
(
1 +NK

m,n(σKk+1 logK)
)

logK
∈ [βm,n(sk)− εk+1, βm,n(sk) + εk+1],

if βm,n(sk) > 0 and NK
m,n(σKk+1 logK) = 0 otherwise. To see the latter part, the argument from the

end of Case(a) in Step 3 of Section 4.2.2 still applies. Thus, we have proven Theorem 2.2. �
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Appendix A. Results on Bi-Type Branching Processes with Immigration

In this section, we derive a general convergence result for special bi-type branching processes. More
specifically, we want to generalize the following theorem from [CMT21].

We denote the law of a one-dimensional branching process (ZK)t≥0 with birth rate b ≥ 0, death rate
d ≥ 0 and time dependent immigration at rate Kceat at time t ≥ 0 with a, c ∈ R by BPIK(b, d, a, c, β),
where ZK0 = bKβ − 1c.

Theorem A.1. Let ZK be a BPIK(b, d, a, c, β) with c ≤ β and assume either β > 0 or c 6= 0. Then

the process
log(1+ZKt logK)

logK converges when K tends to infinity in probability in L∞([0, T ]) for all T > 0

to the continuous, deterministic function β̄ given by

(i) if β > 0, β̄ : t 7→ (β + rt) ∨ (c+ at) ∨ 0;
(ii) if β = 0, c < 0 and a > 0, β̄ : t 7→ ((r ∨ a)(t− |c|a )) ∨ 0;
(iii) if β = 0, c < 0 and a ≤ 0, β̄ : t 7→ 0;

where r = b− d.

Proof. This is Theorem B.5 from [CMT21]. �

In the spirit of the above theorem, we consider the process ZKt = (XK
t , Y

K
t ) with initial population

(XK
0 , Y

K
0 ) = (bKβ − 1c, bKγ − 1c) and transition rates

(n,m) 7→



(n+ 1,m), at rate b1n+Kceat

(n,m+ 1), at rate b2m
(n− 1,m+ 1), at rate σ1n

(n+ 1,m− 1), at rate σ2m

(n− 1,m), at rate d1n

(n,m− 1), at rate d2m

.

We refer to the rates b1, b2 ≥ 0 as birth rates of XK
t and Y K

t respectively, d1, d2 ≥ 0 as their respective
death rates and σ1, σ2 > 0 are the switching rates. The additional Kceat represents the immigration
into the population from the outside, where a, c ∈ R.

Notation A.2. We denote the distribution of a bi-type branching process as introduced above by
BBPIK(b1, b2, d1, d2, σ1, σ2, a, c, β, γ). If the initial condition satisfies β = γ, we use the shorthand
notation BBPIK(b1, b2, d1, d2, σ1, σ2, a, c, β).

We are now interested in finding some convergence results for the total population size XK
t + Y K

t

similar to those from Appendix B in [CMT21]. We will show the following theorem.

Theorem A.3. Let ZKt = (XK
t , Y

K
t ) be a BBPIK(b1, b2, d1, d2, σ1, σ2, a, c, β, γ) as introduced in No-

tation A.2. Further assume that c ≤ β ∨ γ and β ∨ γ > 0 or c 6= 0 and let λ as in (A.3). Then for all
T ≥ 0 the process

s 7→
log
(

1 +XK
s logK + Y K

s logK

)
logK

converges in probability in L∞([0, T ]) as K → ∞ towards a deterministic function β̄ : [0, T ] → R,
which we describe in each case:

(i) If β ∨ γ > 0, then β̄(t) = ((β ∨ γ) + λt) ∨ (c+ at) ∨ 0.
(ii) If β ∨ γ = 0 and c < 0 and a > 0, then β̄(t) = (λ ∨ a)(t− |c|a ) ∨ 0.
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(iii) If β ∨ γ = 0 and c < 0 and a ≤ 0, then β̄(t) = 0.

The proof of the theorem will rely partly on Markov’s, Chebyshev’s and Doob’s inequalities, so we
first need to derive some bounds for the expected value and variance of our process.

A.1. Bounds on the Expectation and Variance. Our first step is to find the semimartingale
decomposition of XK

t and Y K
t . In order to do so, we introduce some notation.

Notation A.4. In the following we write r1 := b1 − d1 − σ1 and r2 := b2 − d2 − σ2.

Lemma A.5. Consider the process ZKt = (XK
t , Y

K
t ) as introduced above. Then there exist càdlàg

martingales MK
t , N

K
t starting at 0, such that(
XK
t

Y K
t

)
=

(
XK

0

Y K
0

)
+

(
MK
t

NK
t

)
+

∫ t

0

(
r1X

K
s + σ2Y

K
s +Kceas

r2Y
K
s + σ1X

K
s

)
ds.

Proof. This decomposition follows from Dynkin’s formula. �

Our next goal is to identify the rate of growth of our population, which is directly linked to deter-
mining the expected value of the population size. In order to do so, we calculate the expected value
for our process up to some constants.

Lemma A.6. The expected value (xKt , y
K
t ) of (XK

t , Y
K
t ) solves the ordinary differential equation(

ẋKt
ẏKt

)
=

(
r1 σ2

σ1 r2

)(
xKt
yKt

)
+

(
Kceat

0

)
and

(
xK0
yK0

)
=

(
Kβ − 1
Kγ − 1

)
. (A.1)

Proof. This is a direct consequence of Lemma A.5, where we can apply the expected value on both
sides. Interchanging the expected value and integral on the right hand side by Fubini shows that
(xKt , y

K
t ) is absolutely continuous. Differentiating both sides gives the differential equation (A.1). �

Note that this differential equation can be solved easily: The matrix(
r1 σ2

σ1 r2

)
= SDS−1 (A.2)

can be diagonalised, because its eigenvalues λ and λ̃ can be written as

λ =
r1 + r2 + ∆

2
and λ̃ =

r1 + r2 −∆

2
, (A.3)

where ∆ =
√

(r1 − r2)2 + 4σ1σ2 6= 0 and hence λ > λ̃. In particular we are now able to give a
characterization of the expected values for XK

t and Y K
t .

Lemma A.7. The expected values (xKt , y
K
t ) of (XK

t , Y
K
t ) satisfy for t > 0 the asymptotic relation

xKt , y
K
t =


Θ(Kceat), if a > λ

Θ((xK0 + yK0 +Kc)eλt), if λ > a

Θ((xK0 + yK0 + (1 + t)Kc)eλt), if λ = a,

where we use the notation fK = Θ(gK) for two families of functions fK , gK : [0,∞)→ R if there exists
some finite constant C > 0 such that for all t ≥ 0 we have

lim
K→∞

fK(t)

gK(t)
= C.

In fact, there exists a constant C̃ > 0 sufficiently large such that for all K ≥ 0 and all t ≥ 0 we have

xKt , y
K
t ≤ C̃

(
[(xK0 + yK0 + (1 + t)Kc)eλt] ∨ [Kceat]

)
.
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Proof. The solution to the differential equation (A.1) is known to be(
xKt
yKt

)
= SeDtS−1

(
xK0
yK0

)
+

∫ t

0
SeD(t−s)S−1

(
Kceas

0

)
ds.

An explicit computation shows the claim. �

In the following we will also need some bounds on the variation of XK
t and Y K

t . In order to derive
them, we need some more preparation. In particular, we need to compute the quadratic variation.
The purpose here is twofold: We need these variation terms once for finding an upper bound of the
variance of XK and Y K . Secondly, we will later, in the proof of our convergence result, make use of
Doob’s inequality and hence need to calculate the expected value of some quadratic variation.

Lemma A.8. The quadratic variation of the martingales MK , NK and MK + NK as well as the
quadratic covariation [MK , NK ] of MK and NK are given by

[MK ]t =

∫ t

0
(b1 + d1 + σ1)XK

s + σ2Y
K
s +Kceas ds,

[NK ]t =

∫ t

0
(b2 + d2 + σ2)Y K

s + σ1X
K
s ds,

[MK +NK ]t = 3

∫ t

0
(b1 + d1)XK

s + (b2 + d2)Y K
s +Kceas ds,

[MK , NK ]t =

∫ t

0
(r1 + 2d1)XK

s + (r2 + 2d2)Y K
s +Kceas ds.

Proof. We only carry out the calculations for MK . In an analogous fashion we can calculate the
quadratic variation of NK and ofMK+NK . For the covariation [MK , NK ] we can use the polarization
identity

[MK , NK ]t =
1

2

(
[MK +NK ]t − [MK ]t − [NK ]t

)
.

Applying Itô’s formula to (XK
t )2 and Dynkin’s formula with f(x, y) = x2 shows that

M̂K
t = (XK

t )2 − (XK
0 )2 −

∫ t

0
(2XK

s + 1)(b1X
K
s + σ2Y

K
s +Kceas) + (σ1 + d1)(−2XK

s + 1)XK
s ds,

M̃K
t = (XK

t )2 − (XK
0 )2 −

∫ t

0
2XK

s ((b1 − d1 − σ1)XK
s + σ2Y

K
s +Kceas) ds− [MK ]t,

for some martingales M̂K and M̃K starting at 0. By the uniqueness of the Doob-Meyer decomposition
of (XK

t )2 − (XK
0 )2 we see that M̂K

t = M̃K
t and hence

[MK ]t =

∫ t

0
(b1 + d1 + σ1)XK

s + σ2Y
K
s +Kceas ds.

�

Now, we can make use of the quadratic variations to derive our bounds for the variance.

Lemma A.9. There exists a constant C∗ ≥ 0 independent of K such that

V(XK
t ),V(Y K

t ) ≤ C∗(1 + t2)
(

(e2λt + eλt)(xK0 + yK0 +Kc) +Kceat
)

for all t ≥ 0

Proof. We denote uKt := V(XK
t ), vKt := V(Y K

t ) and wKt := cov(XK
t , Y

K
t ). Applying Itô’s formula and

Lemma A.8 to (XK
t −xKt )2 and (Y K

t −yKt )2 as well as using Integration by Parts for (XK
t −xKt )(Y K

t −yKt )
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gives the differential equationu̇Ktv̇Kt
ẇKt

 =

2r1 0 2σ2

0 2r2 2σ1

σ1 σ2 r1 + r2

uKtvKt
wKt

+

 (b1 + d1 + σ1)xKt + σ2y
K
t +Kceat

(b2 + d2 + σ2)yKt + σ1x
K
t

(r1 + 2d1)xKt + (r2 + 2d2)yKt +Kceat

 (A.4)

with initial condition (uK0 , v
K
0 , w

K
0 ) = (0, 0, 0). Now we can proceed as in Lemma A.7. The eigenvalues

of the coefficient matrix are 2λ̃ < r1 + r2 < 2λ, so it is diagonalisable with matrices S, S−1 such that2r1 0 2σ2

0 2r2 2σ1

σ1 σ2 r1 + r2

 = SDS−1,

where D = diag(2λ̃, r1 + r2, 2λ). The solution to the differential equation (A.4) is given byuKtvKt
wKt

 =

∫ t

0
SeD(t−s)S−1

 (b1 + d1 + σ1)xKs + σ2y
K
s +Kceas

(b2 + d2 + σ2)yKs + σ1x
K
s

(r1 + 2d1)xKs + (r2 + 2d2)yKs +Kceas

 ds.

≤ C∗
∫ t

0
e2λ(t−s)

xKs + yKs +Kceas

yKs + xKs
xKs + yKs +Kceas

 ds,

where C∗ ≥ 0 is a suitable constant independent of K and the inequality holds for each component.
By Lemma A.7 we can further estimate the expected values xKs , yKs with the constant C∗ changing
from line to line by

uKt , v
K
t , w

K
t ≤ C∗e2λt

∫ t

0
e−λs(xK0 + yK0 + (1 + s)Kc) +Kce(a−2λ)s ds

≤ C∗e2λt(1 + t+ t2)
[
e−λt(xK0 + yK0 +Kc) +Kce(a−2λ)t + (xK0 + yK0 +Kc)

]
≤ C∗(1 + t2)

[
(e2λt + eλt)(xK0 + yK0 +Kc) +Kceat

]
,

which we have claimed. �

A.2. A Special Case of Theorem A.3. With these preparations we are well situated to show a first
convergence result for general bi-type branching processes, which is easily seen to be a special case of
Theorem A.3 (i).

Theorem A.10. Let ZKt = (XK
t , Y

K
t ) be a bi-type branching process whose distribution is given by

BBPIK(b1, b2, d1, d2, σ1, σ2, a, c, β, γ) with β ∨ γ > 0. Assume that c ≤ β ∨ γ and that T > 0 is such
that

inf
t∈[0,T ]

((β ∨ γ) + λt) ∨ (c+ at) > 0, (A.5)

where we recall λ from (A.3). Then the following convergence in probability holds in L∞([0, T ]):s 7→ log
(

1 +XK
s logK + Y K

s logK

)
logK

 K→∞−−−−→ {s 7→ ((β ∨ γ) + λs) ∨ (c+ as)} .

Remark A.11. Note that due to the strictly positive switching rates, the same convergence also holds
for the processes s 7→ log

(
1 +XK

s logK

)
logK

 and

s 7→ log
(

1 + Y K
s logK

)
logK


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on the interval (0, T ] if β 6= γ and on [0, T ] if β = γ. Intuitively, if these processes were of different sizes,
the switching would immediately fill the difference. For a formal proof, a straightforward adaptation
of the proof of Theorem A.10 is possible.

Proof. For the proof we make extensive use of ideas from [CMT21, Theorem B.1]. We define β̄t :=
((β ∨ γ) + λt) ∨ (c+ at).

Step 1: Semimartingale Arguments. For η > 0 to be determined, we define the set

ΩK
1 :=

{
sup

t∈[0,T logK]

∣∣∣e−λt(XK
t + Y K

t − (xKt + yKt ))
∣∣∣ ≤ Kη

}
.

Our first goal is to identify a set of parameters η such that P(ΩK
1 ) → 1 as K → ∞. For this, in

[CMT21, Lemma B.3] it is shown, that the process of which the absolute value is taken in ΩK
1 is a

martingale. Here however, due to the switching between XK
t and Y K

t we do not have a martingale.
Instead we use Integration by Parts as well as Lemmata A.5 and A.6 to get the decomposition

e−λt(XK
t + Y K

t − (xKt + yKt ))

=

∫ t

0
−λe−λs(XK

s + Y K
s − (xKs + yKs )) ds+

∫ t

0
e−λs d(XK

s + Y K
s )−

∫ t

0
e−λs d(xKs + yKs )

=

∫ t

0
e−λs d(MK

s +NK
s ) +

∫ t

0
e−λs((r1 + σ1 − λ)(XK

s − xKs ) + (r2 + σ2 − λ)(Y K
s − yKs )) ds.

We denote the martingale
∫ t

0 e
−λs d(MK

s +NK
s ) by M̃K

t . Hence, by Doob’s inequality we have

P

(
sup

t≤T logK

∣∣∣e−λt(XK
t + Y K

t − (xKt + yKt ))
∣∣∣ ≥ Kη

)

≤P

(
sup

t≤T logK

∣∣∣M̃K
t

∣∣∣+

∫ t

0
|r1 + σ1 − λ|e−λs

∣∣XK
s − xKs

∣∣+ |r2 + σ2 − λ|e−λs
∣∣Y K
s − yKs

∣∣ ds ≥ Kη

)

≤C∗K−2ηE

[(∣∣∣M̃K
T logK

∣∣∣+

∫ T logK

0
e−λs

∣∣XK
s − xKs

∣∣+ e−λs
∣∣Y K
s − yKs

∣∣ ds

)2
]
,

where C∗ > 0 is a suitable constant, which may change in the following from line to line. Now,
successively using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), Hölder’s Inequality and Fubini’s Theorem, we see that

P

(
sup

t≤T logK

∣∣∣e−λt(XK
t + Y K

t − (xKt + yKt ))
∣∣∣ ≥ Kη

)

≤C∗K−2ηE

[(∣∣∣M̃K
T logK

∣∣∣+

∫ T logK

0
e−λs

∣∣XK
s − xKs

∣∣+ e−λs
∣∣Y K
s − yKs

∣∣ ds

)2
]

≤C∗K−2η

(
E[M̃2

T logK ] + E

[(∫ T logK

0
e−λs

∣∣XK
s − xKs

∣∣ ds

)2

+

(∫ T logK

0
e−λs

∣∣Y K
s − yKs

∣∣ ds

)2
])

≤C∗K−2ηE[(M̃K
T logK)2]

+ C∗K
−2ηT logKE

[∫ T logK

0
e−2λs

∣∣XK
s − xKs

∣∣2 ds+

∫ T logK

0
e−2λs

∣∣Y K
s − yKs

∣∣2 ds

]
≤C∗K−2η

(
E[(M̃K

T logK)2] + T logK

∫ T logK

0
e−2λs(V(XK

s ) + V(Y K
s )) ds

)
. (A.6)
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We will now estimate the expectation and the integral separately. Firstly, using the definition of
M̃K , we easily see using Itô’s Isometry and Lemma A.8 that

E[(M̃K
T logK)2] = E

[(∫ T logK

0
e−λs d(MK

s +NK
s )

)2
]

= E
[∫ T logK

0
e−2λs d[MK +NK ]s

]
= 3

∫ T logK

0
e−2λs((b1 + d1)xKs + (b2 + d2)yKs +Kceas) ds.

Furthermore, using the calculation of the expected values xKs and yKs up to constants from Lemma
A.7, we can estimate

E[(M̃K
T logK)2] ≤ C∗(1 + T 2) log2(K) · (Kβ +Kγ +Kc +Kβ−λT +Kγ−λT +Kc−λT +Kc+(a−2λ)T )

again for some suitable constant C∗ > 0, which may change from line to line and can without loss of
generality be chosen sufficiently large such that (A.6) holds as well. Since we assume c ≤ β ∨ γ, we
obtain the estimate

E[(M̃K
T logK)2] ≤ C∗(1 + T 2) log2(K) ·K(β∨γ)∨((β∨γ)−λT )∨(c+(a−2λ)T ). (A.7)

We now turn to the integral. Using Lemma A.9 and A.7 again, as well as c ≤ β ∨ γ, we see that∫ T logK

0
e−2λs(V(XK

s ) + V(Y K
s )) ds

≤C∗K(β∨γ)∨((β∨γ)−λT )∨(c+(a−2λ)T )(1 + T 3) log3(K) (A.8)

for some constant C∗ ≥ 0 sufficiently large. Hence, plugging the estimates (A.7) and (A.8) into (A.6),
we see that

1− P(ΩK
1 ) ≤ P

(
sup

t≤T logK

∣∣∣e−λt(XK
t + Y K

t − (xKt + yKt ))
∣∣∣ ≥ Kη

)
≤ C∗K−2ηK(β∨γ)∨((β∨γ)−λT )∨(c+(a−2λ)T )(1 + T 3) log3(K).

From now on, we will consider η such that
(β ∨ γ) ∨ ((β ∨ γ)− λT ) ∨ (c+ (a− 2λ)T )

2
< η < β ∨ γ. (A.9)

This condition ensures as shown above that limK→∞ P(ΩK
1 ) = 1. On the set ΩK

1 , we can obtain

sup
t≤T

∣∣∣∣∣∣
log
(

1 +XK
t logK + Y K

t logK

)
logK

− β̄t

∣∣∣∣∣∣
= sup
t≤T

1

logK

∣∣∣∣∣log

(
1 +XK

t logK + Y K
t logK

1 + xKt logK + yKt logK

)
+ log

(
1 + xKt logK + yKt logK

K β̄t

)∣∣∣∣∣
≤ sup
t≤T

1

logK
·

K−λt
∣∣∣XK

t logK + Y K
t logK − (xKt logK + yKt logK)

∣∣∣
K−λt(xKt logK + yKt logK) ∧K−λt(XK

t logK + Y K
t logK)

+
C∗

logK

≤ 1

logK
sup
t≤T

Kη+λt

xKt logK + yKt logK −Kη+λt
+

C∗
logK

(A.10)

≤ C∗
logK

(
Kη−(β∨γ) + 1

)
K→∞−−−−→ 0, (A.11)

where again C∗ is a sufficiently large constant, which may change from line to line. Note that the
denominator in (A.10) is well defined for K large enough since η < β ∨ γ. Also, the first inequality



40 JOCHEN BLATH, TOBIAS PAUL AND ANDRÁS TÓBIÁS

holds due to our choice of β̄t, which gives in combination with Lemma A.7 that

K−β̄t(1 + xKt logK + yKt logK) ≤ C∗(K−β̄t + 1) ≤ 2C∗

for K large enough since by assumption β̄t > 0 for all t ∈ [0, T ]. Thus, we are in the same situation
as in Step 1 of the proof of Theorem B.1 in [CMT21] with β ∨ γ instead of β and λ instead of r. For
completeness we distinguish the same cases:

Case 1(a): λ ≥ 0 and a ≤ 2λ: In this case the condition (A.9) reduces to β∨γ
2 < η < β ∨ γ, so

choosing η = 3(β∨γ)
4 shows the claim from (A.9) and (A.11).

Case 1(b): λ < 0 and a ≤ λ: Here the assumption (A.5) becomes inft∈[0,T ](β ∨ γ) + λt > 0, which
gives T < β∨γ

|λ| . Now condition (A.9) becomes

((β ∨ γ)− λT ) ∨ (c+ (a− 2λ)T )

2
=

(β ∨ γ)− λT
2

< η < β ∨ γ.

By the condition on T , such η exists and we can again conclude.
Case 1(c): λ ≥ 0 and a > 2λ: In this case the restriction (A.9) can be satisfied as long as T is such

that c+ (a− 2λ)T < 2(β ∨ γ), that is T < T ∗ := 2(β∨γ)
a−2λ . Hence we obtain the convergence on

all intervals [0, T ] such that T < T ∗. In Step 3 we will consider T > T ∗ which still may satisfy
(A.5).

Case 1(d): λ < 0, a > λ and c+ a(β∨γ)
|λ| ≤ 0: Here we easily see that (β ∨ γ) + λt ≥ c + at for all

t ≤ β∨γ
|λ| . Thus assumption (A.5) is satisfied if and only if T < β∨γ

|λ| . For these times T the
condition (A.9) can be satisfied for suitable η since

((β ∨ γ)− λT ) < (β ∨ γ − λβ ∨ γ
|λ|

) = 2(β ∨ γ)

and

(c+ (a− 2λ)T ) < c+ (a− 2λ)
β ∨ γ
|λ|

= 2(β ∨ γ) + c+ a
β ∨ γ
|λ|

≤ 2(β ∨ γ).

Case 1(e): λ < 0, a > λ and c+ a(β∨γ)
|λ| ≥ 0: For these parameters, the condition (A.9) can be sat-

isfied as long as T < T ∗ = β∨γ
|λ| ∧

2(β∨γ)−c
a−2λ . Note that

β ∨ γ
|λ|

>
2(β ∨ γ)− c
a− 2λ

⇐⇒ (a− 2λ)(β ∨ γ) > cλ− 2(β ∨ γ)λ

⇐⇒ a(β ∨ γ) > cλ,

which is true since a > λ and (β ∨ γ) > c. Hence T ∗ = 2(β∨γ)−c
a−2λ as in Case 1(c). As before we

get the convergence for all T < T ∗ and we will show in Step 3 how to obtain convergence for
T ≥ T ∗ which satisfy (A.5).

Step 2: Strong Immigration. Here, we will consider only the case β ∨ γ = c and a > λ. Similarly to
Step 1, for η > 0 to be determined later, we consider the set

ΩK
2 :=

{
sup

t∈[0,T logK]

∣∣e−at(XK
t + Y K

t − (xKt + yKt ))
∣∣ ≤ Kη

}
.

We experience the same difficulties as in Step 1: We are not able to use a supermartingale inequality,
since the switching between XK and Y K complicates our process. However, proceeding in the same
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manner as in Step 1, we get the inequality

P

(
sup

t≤T logK

∣∣e−at(XK
t + Y K

t − (xKt + yKt ))
∣∣ ≥ Kη

)

≤C∗K−2η

(
E[(M̂K

T logK)2] + T logK

∫ T logK

0
e−2as(V(XK

s ) + V(Y K
s )) ds

)
,

where M̂K
t :=

∫ t
0 e
−as d(MK

s +NK
s ) is a martingale. Applying our estimates and the Itô Isometry from

above gives with another calculation similar to the corresponding part in step 1 that

1− P(ΩK
2 ) ≤ P

(
sup

t≤T logK

∣∣e−at(XK
t + Y K

t − (xKt + yKt ))
∣∣ ≥ Kη

)
≤ C∗K−2ηKβ∨γ∨((β∨γ)+(2(λ−a)∨(λ−2a))T )∨(c−aT )(1 + T 3) log3(K)

= C∗K
−2ηKβ∨γ∨((β∨γ)−aT )(1 + T 3) log3(K),

where we used a > λ and c = β ∨ γ in the last equality. Indeed the exponent 2(λ − a)T is always
negative and can therefore be omitted. On the other hand λ − 2a < −a and thus (λ − 2a)T may be
replaced by −aT , which is accounted for in the last equality. Therefore, we now consider η such that

(β ∨ γ) ∨ ((β ∨ γ)− aT )

2
< η < β ∨ γ, (A.12)

which ensures that P(ΩK
2 ) → 1 as K → ∞. Again a calculation similar to step 1 shows that for this

choice of η we have

sup
t≤T

∣∣∣∣∣∣
log
(

1 +XK
t logK + Y K

t logK

)
logK

− β̄t

∣∣∣∣∣∣
≤ sup
t≤T

1

logK
·

K−at
∣∣∣XK

t logK + Y K
t logK − (xKt logK + yKt logK)

∣∣∣
K−at(xKt logK + yKt logK) ∧K−λt(XK

t logK + Y K
t logK)

+
C∗

logK

≤ 1

logK
sup
t≤T

Kη+λt

xKt logK + yKt logK −Kη+at
+

C∗
logK

≤ C∗
logK

(
Kη−(β∨γ) + 1

)
K→∞−−−−→ 0.

This computation allows us to show our convergence result for two more possible cases.

Case 2(a): c = β ∨ γ, a > λ and a ≥ 0.: As in Case 1(a) we may choose η = 3(β∨γ)
4 and have shown

convergence for this case.
Case 2(b): c = β ∨ γ, a > λ and a < 0.: Here, condition (A.5) on the final time T is satisfied if and

only if T < β∨γ
|a| . Hence

(β ∨ γ)− aT
2

<
(β ∨ γ)− aβ∨γ|a|

2
= β ∨ γ

and thus we can find η such that (A.12) is satisfied.

Step 3: Completion of Step 1. It remains to extend the following two cases to T > T ∗ = 2(β∨γ)−c
a−2λ :

• λ ≥ 0, a > 2λ and c < β ∨ γ,
• λ < 0, a > λ, c < β ∨ γ and c+ a(β∨γ)

|λ| ≥ 0.
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This can be done exactly as in [CMT21] in Step 3 of the proof of Theorem B.1. In order to do so, we
note that at time t∗ := (β∨γ)−c

a−λ the lines (β ∨ γ) + λt and c+ at intersect. Furthermore, we see that in
both of the above cases t∗ < T ∗ since in the first case we may assume without loss of generality that
a > λ (otherwise t∗ is negative) and therefore

2(β ∨ γ)− c
a− 2λ

>
(β ∨ γ)− c
a− λ

⇐⇒ 2(β ∨ γ)(a− λ)− ac+ λc > (β ∨ γ)(a− 2λ)− ac+ 2λc

⇐⇒ (β ∨ γ)a > λc,

which is true. In the second case we can perform a similar computation. Therefore we may apply Case
1(c) or Case 1(e) to our process in each case up to a time T1 ∈ (t∗, T ∗). Note that at this time the
limiting function satisfies β̄T1 = c+ aT1. Hence for all ε > 0 on a set ΩK

3 with P(ΩK
3 )→ 1 as K →∞

we have
Kc+aT1−ε ≤ XK

T1 logK + Y K
T1 logK ≤ Kc+aT1+ε.

We now couple the process ZKT1 logK+t = (XK
T1 logK+t, Y

K
T1 logK+t) in the following manner: Let ẐKt =

(X̂K
t , Ŷ

K
t ) be a BBPIK(b1, b2, d1, d2, σ1, σ2, a, c+aT1−ε, c+aT1−ε, c+aT1−ε) and let Z̄Kt = (X̄K

t , Ȳ
K
t )

be a BBPIK(b1, b2, d1, d2, σ1, σ2, a, c+ aT1 + ε, c+ aT1 + ε, c+ aT1 + ε) such that

X̂K
t + Ŷ K

t ≤ XK
T1 logK+t + Y K

T1 logK+t ≤ X̄K
t + Ȳ K

t .

Indeed, the starting conditions of the bounding processes are justified by Remark A.11. Then, we can
apply the convergence from Step 2 to ẐKt and Z̄Kt to show that

log
(

1 + X̂K
t logK + Ŷ K

t logK

)
logK

K→∞−−−−→ c+ aT1 − ε+ ((λ ∨ a)t) = c− ε+ a(T1 + t)

and
log
(

1 + X̄K
t logK + Ȳ K

t logK

)
logK

K→∞−−−−→ c+ aT1 + ε+ ((λ ∨ a)t) = c+ ε+ a(T1 + t)

where t ∈ [0, T − T1]. Note that for the second case, a < 0 and therefore the condition (A.5) is
satisfied only for T < c

|a| . In particular, for ε small enough, we even have T < c−ε
|a| and therefore

T −T1 <
c+aT1−ε
|a| , so we can indeed apply case 2(b). Using the Markov property at time T1 and letting

ε→ 0 finishes the proof. �

As in [CMT21], we want to extend Theorem A.10 to further cases without needing the assumption
c ≤ β ∨ γ or the positivity condition (A.5). To obtain the convergence result for c > β ∨ γ, we will
use the next lemma. This, combined with using the Markov property and our previous Theorem A.10,
already extends the convergence to all processes such that c ∈ R, β ∨ γ > 0 and the terminal time T
satisfies condition (A.5)

inf
t∈[0,T ]

((β ∨ γ) + λt) ∨ (c+ at) > 0.

Lemma A.12. Let 0 ≤ β ∨ γ < c. Then for all 0 < ε < c
4(|λ|∨|a|) and all ā > |λ| ∨ |a|, the convergence

lim
K→∞

P(XK
ε logK + Y K

ε logK ∈ [Kc−āε,Kc+āε]) = 1

holds true.

Proof. Let ε > 0. Then we see from Lemma A.7 that for K sufficiently large

C−1
∗ Kc−(|λ|∨|a|)ε ≤ E(XK

ε logK + Y K
ε logK) ≤ C∗ log(K)Kc+(|λ|∨|a|)ε

and from Lemma A.9

V(XK
ε logK + Y K

ε logK) ≤ 2(V(XK
ε logK) + V(Y K

ε logK)) ≤ C∗ log2(K)Kc+(2|λ|∨|a|)ε
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for a suitable constant C∗ > 0. Hence, using Markov’s inequality for K large enough, we see that

P(XK
ε logK + Y K

ε logK ≤ Kc+āε) = 1− P(XK
ε logK + Y K

ε logK > Kc+āε)

≥ 1−
E(XK

ε logK + Y K
ε logK)

Kc+āε

K→∞−−−−→ 1.

For the lower bound we can use Chebyshev’s inequality to obtain

P(XK
ε logK + Y K

ε logK ≤ Kc−āε)

≤P(XK
ε logK + Y K

ε logK − (xKε logK + yKε logK) ≤ Kc−āε − C−1
∗ Kc−(|λ|∨|a|)ε)

≤P(
∣∣XK

ε logK + Y K
ε logK − (xKε logK + yKε logK)

∣∣ ≥ C ′∗Kc−(|λ|∨|a|)ε)

≤C ′∗
V(XK

ε logK + Y K
ε logK)

K2c−2(|λ|∨|a|)ε

≤C ′∗ log2(K)K−c+4(|λ|∨|a|)ε K→∞−−−−→ 0

for some suitable changing constant C ′∗ > 0. �

A.3. Proof of Theorem A.3. Henceforth, thanks to the previous Lemma, we are able to only consider
the case c ≤ β∨γ for the remainder of this section. In order to extend the convergence result Theorem
A.10 to times T that do not satisfy the condition (A.5), we need another series of Lemmata.

Lemma A.13. Let β ∨ γ = 0 (that is, initially there are no individuals) and c < 0. Then, for all
T > 0 with c+ aT < 0 we have

lim
K→∞

P(XK
t + Y K

t = 0 for all t ≤ T logK) = 1.

Proof. This proof is identical to the one of [CMT21, Lemma B.7]. �

Lemma A.14. Let β ∨ γ = 0 and c = −ε for some ε > 0 and let a > 0. Then for all η > (1 ∨ 2λ
a )ε,

the convergence
lim
K→∞

P(K
ε
2 − 1 ≤ XK

2ε
a

logK
+ Y K

2ε
a

logK
≤ Kη − 1) = 1

holds.

Proof. We consider the one-dimensional branching process X̃K
t with birth rate b1, death rate d1 + σ1,

immigration at rate Kceat and starting condition XK
0 = Kβ − 1 = 0. Then, from the proof of Lemma

B.8 from [CMT21], we have the convergence

lim
K→∞

P(K
ε
2 − 1 ≤ X̃K

2ε
a

logK
) = 1.

Using a suitable coupling, we also have that X̃K
t ≤ XK

t + Y K
t for all t ≥ 0. Hence, it holds

lim
K→∞

P(K
ε
2 − 1 ≤ XK

2ε
a

logK
+ Y K

2ε
a

logK
) = 1.

For the upper bound, we know from Lemma A.7 with x0 = y0 = 0, that

E(XK
2ε
a

logK
+ Y K

2ε
a

logK
) ≤


C∗K

ε, if a > λ

C∗K
ε logK, if a = λ

C∗K
2λ
a
ε, if a < λ.

With our choice of η > (1 ∨ 2λ
a )ε and Markov’s inequality, we have

lim
K→∞

P(X 2ε
a

logK + Y 2ε
a

logK ≥ K
η) ≤ lim

K→∞
K−ηE(X 2ε

a
logK + Y 2ε

a
logK) = 0.

Thus the lemma is proven. �
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Lemma A.15. There exists a constant c̄ = c̄(b1, b2, d1, d2, σ1, σ2, a), such that for all ε > 0 we have
the convergence

lim
K→∞

P(K(β∨γ)−c̄ε − 1 ≤ XK
t + Y K

t ≤ K(β∨γ)+c̄ε for all t ∈ [0, ε logK]) = 1.

Proof. This result is very similar to [CMT21, Lemma B.9] and can be proven analogously. �

Lemma A.16. Suppose λ < 0, where λ is taken from (A.3).

(i) In addition, let c < 0 and c+ aβ∨γ|λ| < 0. Then, for all sufficiently small η > 0 it holds

lim
K→∞

P
(
∀t ∈

[(
β ∨ γ
|λ|

+ η

)
logK,

(
β ∨ γ
|λ|

+ 2η

)
logK

]
: XK

t + Y K
t = 0

)
= 1.

(ii) If in addition (independent of (i)) a < 0 and c + aβ∨γ|λ| > 0, then for all η > 0 and all T > η,
we have

lim
K→∞

P
(
∀t ∈

[(
c

|a|
+ η

)
logK,

(
c

|a|
+ T

)
logK

]
: XK

t + Y K
t = 0

)
= 1.

Proof. This result is the bi-type analogue of [CMT21, Lemma B.10]. We start by proving part (i). Let
η be small enough such that c + a(β∨γ|λ| + 2η) < 0. Define T1 := β∨γ

|λ| + η and T2 := T1 + η. Then the
probability of a migrant arriving during the interval [0, T2 logK] converges to 0 as K →∞. This can
be seen from the probability of immigration being bounded by Kc∨(c+aT2)T2 logK, which converges to
0 as K →∞ (cf. Lemma A.13). Hence, it suffices to show that, assuming no immigration occurs, the
extinction time Text := inf{t ≥ 0 | XK

t + Y K
t = 0} is asymptotically almost surely less than T1 logK,

that is, our population itself is extinct before time T1 logK, and since no migrant arrives during the
time interval [Text, T2 logK], which would potentially resurrect the population, the claim follows.
Denote the event that a migrant arrives in the population during the time interval [0, T1 logK] by

Γ. Then, on the complement, the process ZKt = (XK
t , Y

K
t ) behaves as a bi-type branching process

Z̃Kt = (X̃K
t , Ỹ

K
t ) with birth rates b1, b2, death rates d1, d2, switching rates σ1, σ2, starting condition

Z̃K0 = ZK0 and no immigration. Hence, we obtain using Markov’s inequality

P(Text > T1 logK,Γc) = P(X̃K
T1 logK + Ỹ K

T1 logK ≥ 1)

≤ E(X̃K
T1 logK + Ỹ K

T1 logK)

≤ C∗eλT1 logKKβ∨γ

= C∗K
(β∨γ)+λT1 , (A.13)

where we can find the bound on the expected value for some constant C∗ > 0 from the homogeneous
solution to (A.1). Therefore, by our choice of T1, we obtain

P(Text > T1 logK) ≤ P(Γ) + C∗K
(β∨γ)+λT1 K→∞−−−−→ 0.

For part (ii) we may assume without loss of generality, that c ≤ β ∨ γ < η|λ|
4 . To justify this, we

apply Theorem A.10 until time T ≥ β∨γ
|λ| which satisfies r := ((β ∨ γ) + λT ) ∨ (c + aT ) < η|λ|

4 . This
allows us to consider the process ZK ∼ BBPIK(b1, b2, d1, d2, σ1, σ2, a, c+aT, r, r) instead by using the
Markov property at time T , which satisfies our assumption. Indeed, by definition of T and r, we have
c+ aT = r.
Under the assumption c ≤ β ∨ γ < η|λ|

4 , the condition c+ aβ∨γ|λ| > 0 implies a > λ. Now, let η > 0 and
T > η be arbitrary. As in case (i), we can prove that as K →∞ there is almost surely no immigrant
arriving in the population on the time interval [( c

|λ| +
η
2 ) logK, ( c

|λ| + T ) logK]. Denote the event of a
migrant arriving during this time by Γ. From now on, we only consider the event Γc. Then we only
need to show that on Γc, the process becomes extinct before time ( c

|λ|+η) logK. Note that the number
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of total families initially present in the population and those families started due to an immigration
event up to time ( c

|a| + η
2 ) logK is given by Kβ∨γ (representing the families initially present) plus a

Poisson random variable whose parameter is bounded from above by∫ c
|a|+

η
2 logK

0
Kceas ds ≤ Kc

|a|
,

which represents the number of families coming from immigration. In particular, the total number of
families is less than Kηλ/3 with probability converging to 1. The size of such a family at time t is
bounded from above by the size of a bi-type branching process Z̃ = (X̃, Ỹ ) with birth rates b1, b2, death
rates d1, d2, switching rates σ1, σ2, no immigration and starting population Z̃0 = (1, 1). As in part (i),
we see that the probability of such a process surviving for a time longer than η

2 logK is dominated by

P(X̃ η
2

logK + Ỹ η
2

logK ≥ 1) ≤ E(X̃ η
2

logK + Ỹ η
2

logK) ≤ C∗eλ
η
2

logK = C∗K
λη
2 ,

where we get the bound on the expectation from solving the homogeneous equation of (A.1) with initial
condition (X̃0, Ỹ0) = (1, 1). Therefore, the probability of having one family alive at time ( c

|a| +η) logK

is given by the probability of at least one family alive at time ( c
|a| +

η
2 ) logK surviving for longer than

η
2 logK, which is dominated by

(1− C∗K
λη
2 )K

ηλ
3 K→∞−−−−→ 0.

Therefore, the overall probability of having an individual alive at time ( c
|a| + η) logK is dominated by

P(Γ) + (1− C∗K
λη
2 )K

ηλ
3 K→∞−−−−→ 0.

Since the process is extinct at time ( c
|a| + η) logK with probability converging to 1 and also with high

probability there is no migrant arriving in the population after this time, the lemma is proven. �

To end this section, we can now prove the general convergence from Theorem A.3 which we were
looking for.

Proof of Theorem A.3. This proof is taken from [CMT21, Theorem B.5] and adapted to our case.

(iii) This is a direct consequence of Lemma A.13.
(ii) Let ε > 0. We can apply Lemma A.13 up to time T1 = |c|

a − ε. This shows

lim
K→∞

log
(

1 +XK
t logK + Y K

t logK

)
logK

= 0 for all t ∈ [0, T1] almost surely.

Applying the Markov property at time T1 logK, we can apply Lemma A.14 and Lemma A.15
to see that

log
(

1 +XK
(T1+δε) logK + Y K

(T1+δε) logK

)
logK

∈ (cε, c̄ε)

and

lim sup
K→∞

sup
t∈[T1,T1+δε]

log
(

1 +XK
t logK + Y K

t logK

)
logK

≤ c′ε,

where δ, c > 0 and c̄ < c′ < ∞. Now, applying Theorem A.10 to a coupling from time
(T1 + δε) logK with a lower bounding process BBPIK(b1, b2, d1, d2, σ1, σ2, a, cε, cε, cε) and
an upper bounding process BBPIK(b1, b2, d1, d2, σ1, σ2, a, c̄ε, c̄ε, c̄ε) shows that for times t ∈
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[T1 + δε, T ] it holds

cε+ (λ ∨ a)(t− t1 − δε) ≤ lim inf
K→∞

log
(

1 +XK
t logK + Y K

t logK

)
logK

≤ lim sup
K→∞

log
(

1 +XK
t logK + Y K

t logK

)
logK

≤ c̄ε+ (λ ∨ a)(t− t1 − δε).
Now letting ε→ 0 proves the claim.

(i) Note that this part follows immediately from Theorem A.10 in the case where λ ≥ 0 or if λ < 0,
a ≥ 0 and c+ aβ∨γ|λ| > 0. The remaining cases are as follows.

Case(a): λ < 0 and a < 0.: Assume for now that c+aβ∨γ|λ| < 0. Then, we can apply Theorem

A.10 on the interval [0, β∨γ|λ| − ε] for ε > 0. Using Lemma A.16 (i), we also see that the

process converges on the interval [β∨γ|λ| +ε, β∨γ|λ| +2ε]. Using Lemma A.15 together with the
coupling argument from (ii) and letting ε→ 0 shows the convergence of the process on the
interval [0, T1] for T1 >

β∨γ
|λ| sufficiently small against β̄. Using the Markov property at time

T1 we can apply Lemma A.13 to obtain convergence on the entire interval [0, T ] towards β̄.

If c + aβ∨γ|λ| > 0, we obtain convergence on the interval [0, c
|a| − ε] from Theorem

A.10 and use Lemma A.16 (ii) instead. The remainder of the argument is still valid.
In the case where c + aβ∨γ|λ| = 0, we can use a coupling argument where Z̃K =

(X̃K , Ỹ K) is a BBPIK(b1, b2, d1, d2, σ1, σ2, a, c − ε, β, γ) and ẐK = (X̂K , Ŷ K) is a
BBPIK(b1, b2, d1, d2, σ1, σ2, a, c+ ε, β, γ) such that

X̃K
t + Ỹ K

t ≤ XK
t + Y K

t ≤ X̂K
t + Ŷ K

t ,

and let ε→ 0.
Case(b): λ < 0, a = 0 and c < 0.: This case can be argued as in the first paragraph of the

proof of Case (a).
Case(c): λ < 0, a > 0, c < 0 and β∨γ

|λ| <
|c|
a .: In this case, the population becomes extinct at

first and is then revived due to immigration. Hence, we apply Theorem A.10 up to time
β∨γ
|λ| − ε and Lemma A.16 (i) on the interval [β∨γ|λ| + ε, β∨γ|λ| + 2ε] for ε > 0. As in Case
(a), using Lemma A.15 and letting ε → 0 gives again convergence on the interval [0, T1]

for T1 >
β∨γ
|λ| sufficiently small. Then, using the Markov property allows the application

of Lemma A.13 until time T2 = |c|
a . Again, we can use the Markov property and Lemma

A.15 to apply Lemma A.14 on a sufficiently small interval [T2, T3]. Then, using the Markov
property again and using another coupling argument as in Case (a), letting T3 → T2, we
can apply Theorem A.10 to obtain convergence towards β̄ on the entire interval [0, T ].

Case(d): λ < 0, a > 0, c < 0 and β∨γ
|λ| = |c|

a .: Here, we can couple as before with a lower
bound process BBPIK(b1, b2, d1, d2, σ1, σ2, a, c − ε, β, γ), for which we can apply Case
(c), and the upper bound process BBPIK(b1, b2, d1, d2, σ1, σ2, a, c+ ε, β+ ε, γ + ε), which
satisfies c+ ε+ a (β∨γ)+ε

|λ| > 0 and thus has already been treated as one of the trivial cases
above. Letting ε→ 0 yields the claim.

Case(e): λ < 0, c = a = 0.: Here, we use a similar coupling argument as in Case (d).
The lower bound process has distribution BBPIK(b1, b2, d1, d2, σ1, σ2, 0,−ε, β, γ), which
satisfies the assumption of Case (b), and the upper bound process has distribution
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BBPIK(b1, b2, d1, d2, σ1, σ2, 0, ε, β ∨ ε, γ ∨ ε), which satisfies ε + 0 · β∨γ∨ε|λ| > 0, so this
case is treated as the second trivial case above. The claim follows by letting ε→ 0.

�

Appendix B. Results on Logistic Processes

In this section, we consider the bi-type logistic birth and death process ZKt = (XK
t , Y

K
t ) where the

transitions are given through

(n,m) 7→



(n+ 1,m) at rate nbK1 (ω, t) + γK1 (ω, t)

(n− 1,m) at rate n(dK1 (ω, t) + (1−p)C
K n)

(n,m− 1) at rate mdK2 (ω, t)

(n− 1,m+ 1) at rate pC
K n2

(n+ 1,m− 1) at rate mσ2

with predictable, non-negative functions bK1 , dK1 , dK2 , γK1 : Ω × [0,∞) → R and constants C, σ2 > 0,
p ∈ (0, 1).

Lemma B.1. Suppose that there are constants b1, d1, d2 ≥ 0 such that

sup
0≤t≤s logK

∥∥bK1 (t)− b1
∥∥+

∥∥dK1 (t)− d1

∥∥+
∥∥dK2 (t)− d2

∥∥+
∥∥∥γK1 (t)

K

∥∥∥ K→∞−−−−→ 0 (B.1)

in probability for some s > 0. If we have ZK0
K → (ε1, ε2) as K → ∞ for fixed ε1, ε2 > 0, then the

process ZKt
K converges uniformly on compact intervals in probability towards the solution (x(t), y(t)) of

the ordinary differential equation

ẋ(t) = (b1 − d1)x(t)− Cx2(t) + σ2y(t)

ẏ(t) = −(d2 + σ2)y(t) + pCx2(t)
(B.2)

with initial condition (x(0), y(0)) = (ε1, ε2) as K →∞.

Proof. This is similar to [EK86, Theorem 11.2.1]. �

Notation B.2. We denote processes ZK as introduced above by LBBIK(bK1 , d
K
1 , d

K
2 , σ2, p, C, γ

K
1 ). In

the case where the functions bK1 , d
K
1 and dK2 are all constant and γK1 ≡ 0, we may refer to the process

as a LBBIK(b1, d1, d2, σ2, p, C).

We are interested in calculating a coordinatewise positive equilibrium of the system (B.2). Assume
that the equilibrium (x̄, ȳ) is positive, such that we can divide both sides of (B.2) by x to obtain

ȳ

x̄
= −b1 − d1 − Cx̄

σ2
=

pCx̄

d2 + σ2

Hence, we see that

x̄ =
(b1 − d1)(d2 + σ2)

C(d2 + (1− p)σ2)
and ȳ =

p(b1 − d1)2(d2 + σ2)

C(d2 + (1− p)σ2)2
. (B.3)

Thus, the assumption b1 > d1 is sufficient for obtaining a coordinatewise positive equilibrium. As is
shown in [BT20, Section 2.2], this equilibrium is the only stable equilibrium and in fact the system
converges towards this equilibrium for any initial condition (ε1, ε2) ∈ (0,∞)2. This can be seen from
Lemma 4.6 in [BT20].
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B.1. Problem of Exit and Entry of a Domain. We will now concern ourselves with estimating
the length of time until a logistic bi-type branching process exits a neighbourhood of its equilibrium
population size; and with the existence of a time such that the process enters for the first time a
neighbourhood of its equilibrium. The important results in this section are Lemma B.5 for the entry
into a domain around the equilibrium and Corollary B.8 for the exit of such a domain. Our first step
is to generalize Lemma B.1.

Lemma B.3. Let T > 0 and b1, b2, d1, d2 ≥ 0, σ2 > 0. Further let C > 0, p ∈ (0, 1) and let C̃ be a
compact subset of (0,∞)2. Denote the solution of the differential equation

ϕ̇1 = (b1 − d1 − Cϕ1)ϕ1 + σ2ϕ2

ϕ̇2 = (b2 − d2 − σ2)ϕ2 + Cp(ϕ1)2 (B.4)

with initial condition (z1, z2) ∈ C̃ by ϕz1,z2. Then for any T > 0,

r := inf
z∈C̃

inf
t∈[0,T ]

‖ϕz1,z2(t)‖ > 0 and R := sup
z∈C̃

sup
t∈[0,T ]

‖ϕz1,z2(t)‖ <∞.

Denote the distribution of the Markov process with transition rates

( nK ,
m
K ) 7→



(n+1
K , mK ) at rate nb1

( nK ,
m+1
K ) at rate mb2

(n−1
K , mK ) at rate n(d1 + (1−p)C

K n)

( nK ,
m−1
K ) at rate md2

(n−1
K , m+1

K ) at rate pC
K n2

(n+1
K , m−1

K ) at rate mσ2

by PKz . Then for any 0 < δ < r, we have

lim
K→∞

sup
z∈C̃

PKz

(
sup
t∈[0,T ]

‖wt − ϕz1,z2(t)‖ ≥ δ

)
= 0,

where wt is the canonical process on D([0,∞),R2), the space of càdlàg paths from [0,∞) to R2.

Remark B.4. Note that this result holds also for processes where b2 > 0. The rescaled process ZK

mentioned in the beginning of this section is a special case with b2 = 0.

Proof. We use the techniques from [Cha06, Theorem 3]. Let T > 0. To show the boundedness
properties, we first show that ϕ2 is strictly larger than 0 for any positive initial condition. Indeed, we
easily see that

ϕ̇2 ≥ (b2 − d2 − σ2)ϕ2

which we can integrate directly to obtain

ϕ2(t) ≥ ϕ2(0) exp

(∫ t

0
(b2 − d2 − σ2)) ds

)
= ϕ2(0) exp ((b2 − d2 − σ2)t) ,

which is positive for all times t as soon as ϕ2(0) > 0. In particular, the solution (ϕz1,z2)1 is bounded
from below by the solution ϕ̃ of the differential equation

˙̃ϕ = (b1 − d1 − Cϕ̃)ϕ̃.

The function ϕ̃ is bounded from above by some constant R̃ for any positive initial condition, since
˙̃ϕ < 0 as soon as ϕ̃ > (b1 − d1)/C. Hence, by integrating the differential equation, we obtain for any
positive initial condition ϕ̃(0) > 0 the inequality

ϕ̃(t) = ϕ̃(0) exp

(∫ t

0
(b1 − d1 − Cϕ̃(s)) ds

)
≥ ϕ̃(0) exp

(
(b1 − d1 − CR̃)t

)
> 0.
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Thus far we have shown (ϕz1,z2)1(t), (ϕz1,z2)2(t) > 0 for any time t ≥ 0 and any initial condition
(z1, z2) ∈ C̃. In particular, due to the continuity of (z1, z2) 7→ ϕz1,z2 we have

inf
z∈C̃

inf
t∈[0,T ]

‖ϕz1,z2(t)‖ > 0.

For the upper bound, adding the two equations in (B.4) yields

ϕ̇1 + ϕ̇2 = (b1 − d1)ϕ1 + (b2 − d2)ϕ2 − C(1− p)(ϕ1)2 ≤ 2 max(b1 − d1, b2 − d2)(ϕ1 + ϕ2),

where we used ϕ1, ϕ2 ≥ 0 for any initial condition (z1, z2) ∈ C̃. Thus, Gronwall’s inequality implies

sup
z∈C̃

sup
t∈[0,T ]

‖ϕz1,z2(t)‖1 = sup
z∈C̃

sup
t∈[0,T ]

(ϕz1,z2)1(t) + (ϕz1,z2)2(t)

≤ sup
z∈C̃

(z1 + z2) exp

(∫ T

0
2 max(b1 − d1, b2 − d2) dt

)
<∞.

By equivalence of norms on R2, for any given norm, these bounds on the infimum and supremum can
be chosen to hold.

Now, we can define a family of Markov processes with transitions

( i
K ,

j
K )→



( i+1
K , jK ), at rate Kp1( i

K ,
j
K )

( i
K ,

j+1
K ) at rate Kp2( i

K ,
j
K )

( i−1
K , jK ) at rate Kq1( i

K ,
j
K )

( i
K ,

j−1
K ) at rate Kq2( i

K ,
j
K )

( i−1
K , j+1

K ) at rate Kr1( i
K ,

j
K )

( i+1
K , j−1

K ) at rate Kr2( i
K ,

j
K ),

where p1, p2, q1, q2, r1, r2 : R2 → R are positive, bounded and Lipschitz functions. We denote the law
of such a process by QK

z , when the initial condition is given by z ∈ 1
KN2

0. This choice of transition
rates corresponds (using the notation from [DE97] in equation (10.1)) to the choice of ε = 1

K and the
measure νx being given by

ν( i
K
, j
K

)({(1, 0)}) = p1( i
K ), ν( i

K
, j
K

)({(0, 1)}) = p2( jK ), ν( i
K
, j
K

)({(−1, 0)}) = q1( i
K ),

ν( i
K
, j
K

)({(0,−1)}) = q2( jK ), ν( i
K
, j
K

)({(−1, 1)}) = r1( i
K ), ν( i

K
, j
K

)({(1,−1)}) = r2( jK ).

The extension of νx,y for any vector (x, y) ∈ R2 is straightforward by replacing either i
K by x or j

K by
y respectively. In addition, we choose the functions b1 = p1 − q1 − r1 + r2, b2 = p2 − q2 − r2 + r1 and
a ≡ 0.

Since the functions involved are all bounded and continuous, Condition 10.2.2 from [DE97] is satis-
fied. In order to apply Theorem 10.2.6 of [DE97], we do not need any additional conditions. However,
we only obtain the upper bound of the Laplace principle as can be seen from the remark preced-
ing the Theorem. The good rate function IT appearing in the Laplace principle writes for functions
ϕ : [0, T ]→ R2 as

IT (ϕ) =

{∫ T
0 L(ϕ(t), ϕ̇(t)) dt if ϕ is absolutely continuous
∞ otherwise,

where for y, z ∈ R2 we define the function L(y, z) = supα∈R2 (〈α, z〉 −H(y, α)) with

H(y, α) =

∫
R2

(exp(〈α, x〉)− 1) νy(dx).

Hence, calculating the gradient of the function in the supremum with respect to α shows that L(y, z) =
0 if and only if z1 = p1(y) − q1(y) − r1(y) + r2(y) and z2 = p2(y) − q2(y) − r2(y) + r1(y). Therefore,
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our rate function IT satisfies

IT (ϕ) = 0 ⇐⇒
(
ϕ̇1

ϕ̇2

)
=

(
p1(ϕ)− q1(ϕ)− r1(ϕ) + r2(ϕ)
p2(ϕ)− q2(ϕ)− r2(ϕ) + r1(ϕ)

)
. (B.5)

Since the upper bound of the Laplace principle is by [DE97, Corollary 1.2.5] equivalent to the upper
bound in the large deviation principle, we obtain

lim sup
K→∞

1

K
log

(
sup
z∈C̃

QK
z (F )

)
≤ − inf

ψ∈F,ψ(0)∈C̃
IT (ψ)

for any compact set C̃ ⊆ R2 and any closed set F ⊆ D([0, T ],R2), that is the set of cádlág functions
on [0, T ] into R2.

We define the cut-off function χ as the orthogonal projection from R2 onto [r−δ,R+δ]2 with respect
to the Euclidean norm. Then, we can define our functions

p1(z) = b1χ1(z), p2(z) = b2χ2(z), q1(z) = d1χ1(z) + C(1− p)χ2
1(z),

q2(z) = d2χ2(z), r1(z) = pCχ2
1(z), r2(z) = σ2χ2(z).

Now, the laws PKz and QK
z coincide as long as w1

t and w2
t are still inside the interval [r − δ,R + δ].

Thus, we have

lim sup
K→∞

1

K
log sup

z∈C̃
PKz

(
sup
t∈[0,T ]

‖wt − ϕz1,z2(t)‖ ≥ δ

)

= lim sup
K→∞

1

K
log sup

z∈C̃
QK
z

(
sup
t∈[0,T ]

‖wt − ϕz1,z2(t)‖ ≥ δ

)
≤ − inf

ψ∈F
IT (ψ),

where
F :=

{
ψ ∈ D([0, T ],R2) | ψ(0) ∈ C̃ and ∃t ∈ [0, T ] :

∥∥ψ(t)− ϕψ(0)

∥∥ ≥ δ} .
Note that due to the continuity of ϕz the set F is closed with respect to the supremum norm, which
allows us to use the large deviation principle. Furthermore, it is easy to see that absolutely continuous
functions ψ ∈ F cannot satisfy (B.5), as otherwise the distance between ϕ and ψ cannot become large.
Since IT is a good rate function, the infimum is attained for some function ψ ∈ F and thus by (B.5)
is non-zero. �

This lemma has put us in a good position to show that the considered logistic bi-type branching
process converges in finite time into a neighbourhood of its equilibrium.

Lemma B.5. Let ZK be a LBBIK(bK1 , d
K
1 , d

K
2 , σ2, p, C, γ

K
1 ) and assume that the convergence (B.1)

holds with b1 > d1. Then, for all ε1, ε2, ε
′
1, ε
′
2 > 0 there exists a finite time T (ε1, ε2, ε

′
1, ε
′
2) such that

for all initial starting conditions (2x̄, 2ȳ) ≥ ZK0
K =

(XK
0 ,Y

K
0 )

K ≥ (ε1, ε2), we have

lim
K→∞

P

(∥∥∥∥∥Z
K
T (ε1,ε2,ε′1,ε

′
2)

K
− (x̄, ȳ)

∥∥∥∥∥ ≤ ε′1 + ε′2

)
= 1,

where (x̄, ȳ) is given in (B.3).

Proof. For the proof of this claim, we use for K large enough the following coordinatewise coupling

Z̃K ≤ ZK ≤ ẐK ,

where Z̃K is a LBBIK(b1−ε, d1+ε, d2+ε, σ2, p, C) and the distribution of ẐK is given by LBBIK(b1+

ε, (d1 − ε)+, (d2 − ε)+, σ2, p, C), and the initial conditions are Z̃K0 = ZK0 = ẐK0 with ε > 0. We need
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to justify the coupling, specifically why we can increase the birth rate and at this cost neglect the
immigration from outside in the upper bounding process. For this purpose, we need to show that ZK

is bounded component-wise from below in probability by Kε for some ε > 0. Indeed, this can already
be seen from the lower bounding process: Firstly there exists δ > 0 and a time T > 0 such that the
corresponding solutions ϕ̃ and ϕ̂ to the differential equation for the processes Z̃K and ẐK satisfy∥∥ϕ̃(T )− (x, y)ϕ̃

∥∥ < δ and
∥∥ϕ̂(T )− (x, y)ϕ̂

∥∥ < δ,

where (x, y)ϕ denotes the unique coordinatewise positive stable equilibrium of the differential equation
corresponding to ϕ. Note that we can use the same times, as we have convergence towards the equilibria
as T →∞ from any starting condition and hence we can choose T sufficiently large so that both systems
are close to their equilibrium. For this, we again refer the reader to [BT20, Lemma 4.6]. Now, Lemma
B.3 implies that with C̃ := [ε1, 2x̄]× [ε2, 2ȳ] and Z̃K0 = z ∈ C̃, we have for any δ > 0 small enough

sup
z∈C̃

P

(
sup
t∈[0,T ]

∥∥∥∥∥ Z̃KtK − ϕ̃(t)

∥∥∥∥∥ ≥ δ
)

K→∞−−−−→ 0.

Note, that
inf
z∈C̃

inf
t∈[0,T ]

‖ϕ̃(t)‖ > 0 and inf
z∈C̃

inf
t∈[0,T ]

‖ϕ̃1(t)‖ > 0,

where the second inequality is due to the positive switching between components which can be seen
from the proof of Lemma B.3. In particular, for ε > 0 small enough it holds inft∈[0,T ]

∣∣∣ (Z̃Kt )1
K

∣∣∣ > ε with
probability converging to 1 as K →∞. Thus for K large enough, we have

inf
t∈[0,T ]

ε

2
· (Z̃Kt )1 > sup

t∈[0,T ]
γK1 (ω, t)

with probability converging to 1. Hence, we may dismiss the immigration component in the coupling
and replace it by an increase in the birth rate as done above. Now, choosing ε small enough, we can
achieve for any given δ > 0 that∥∥(x, y)ϕ̃ − (x, y)ϕ̂

∥∥ < δ,
∥∥(x, y)ϕ̃ − (x̄, ȳ)

∥∥ < δ and
∥∥(x, y)ϕ̂ − (x̄, ȳ)

∥∥ < δ,

which can be seen from computing the equilibria similarly to (2.3). Hence, by Lemma B.3 we have
with high probability, that∥∥∥∥∥ ẐKT − Z̃KTK

∥∥∥∥∥ ≤
∥∥∥∥∥ ẐKTK − ϕ̂(T )

∥∥∥∥∥+ ‖ϕ̂(T )− ϕ̃(T )‖+

∥∥∥∥∥ Z̃KTK − ϕ̃(T )

∥∥∥∥∥
≤ ‖ϕ̂(T )− ϕ̃(T )‖+ δ ≤ 4δ.

Because of Lemma B.3 for any starting condition the inequality∥∥∥∥∥ ẐKTK − (x̄, ȳ)

∥∥∥∥∥ ≤
∥∥∥∥∥ ẐKTK − ϕ̂(T )

∥∥∥∥∥+
∥∥ϕ̂(T )− (x, y)ϕ̂

∥∥+
∥∥(x, y)ϕ̂ − (x̄, ȳ)

∥∥ ≤ 3δ

is satisfied with probability converging to 1 as K →∞, and thus we obtain from the component-wise
coupling that∥∥∥∥ZKTK − (x̄, ȳ)

∥∥∥∥ ≤
∥∥∥∥∥ZKT − ẐKTK

∥∥∥∥∥+

∥∥∥∥∥ ẐKTK − (x̄, ȳ)

∥∥∥∥∥ ≤
∥∥∥∥∥ ẐKT − Z̃KTK

∥∥∥∥∥+ 3δ ≤ 7δ

with high probability. Letting δ > 0 small enough yields the claim. �

Thus far, we have been considering the behaviour of our process when it is initially not close to
its equilibrium size. We now turn to the question, how long it takes for a logistic process to exit a
neighbourhood of its equilibrium. For this we first consider a process with constant rates.
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Lemma B.6. In the situation of Lemma B.3 let b1 > d1. Then, the unique asymptotically stable
equilibrium of the system

ϕ̇1 = (b1 − d1 − Cϕ1)ϕ1 + σ2ϕ2

ϕ̇2 = (−d2 − σ2)ϕ2 + Cp(ϕ1)2

is given by (ϕ̄1, ϕ̄2) = (x̄, ȳ) in (B.3). Let η1, η2 > 0 and set

TK := inf
{
t ≥ 0 | w1

t /∈ [x̄− η1, x̄+ η1] or w2
t /∈ [ȳ − η2, ȳ + η2]

}
,

where wt = (w1
t , w

2
t ) is the canonical process on D([0,∞),R2). Then there exists a constant V > 0

such that for all compact subsets C̃ of [x̄− η1
2 , x̄+ η1

2 ]× [ȳ − η2
2 , ȳ + η2

2 ] we have

lim
K→∞

sup
z∈C̃

PKz (TK < eKV ) = 0.

Proof. As in the proof of Lemma B.3 and similarly to [Cha06] we define the cut-off function χ as the
orthogonal projection onto C1 := [x̄− η1, x̄+ η1]× [ȳ− η2, ȳ+ η2]. Also, we can similarly construct the
functions p1, q1, q2, r1, r2, by which we obtain a family of laws QK

z which coincide with PKz on the time
interval [0, TK ]. Furthermore, we obtain in a similar manner the good rate function IT (ϕ), where now

IT (ϕ) = 0 ⇐⇒
(
ϕ̇1

ϕ̇2

)
=

(
p1(ϕ)− q1(ϕ)− r1(ϕ) + r2(ϕ)
−q2(ϕ)− r2(ϕ) + r1(ϕ)

)
. (B.6)

Now, [FW98, p.157] and Theorem 4.4.2 therein imply, that there exists a constant V̄ ≥ 0, such that
for any δ > 0 it holds

lim
K→∞

inf
z∈C̃

QK
z (eK(V̄−δ) < TK < eK(V̄+δ)) = 1.

Hence, proving that V̄ > 0 shows our claim. For this purpose, we note that V̄ is defined in [FW98,
Theorem 4.4.1] by

V̄ := inf
(x,y)∈∂C1

V ((x̄, ȳ), (x, y)) = min
(x,y)∈∂C1

V ((x̄, ȳ), (x, y)),

where
V ((x1, x2), (y1, y2)) := inf

t>0, ϕ(0)=(x1,x2), ϕ(t)=(y1,y2)
It(ϕ),

that is V ((x1, x2), (y1, y2)) is the infimum of our rate function over all possible paths connecting (x1, x2)
and (y1, y2). Since the function (x, y) 7→ V ((x̄, ȳ), (x, y)) is continuous and the set ∂C1 is compact, we
can indeed replace the infimum by a minimum. In particular, there exists some (x0, y0) ∈ ∂C1 where
the infimum is attained. Theorem 5.4.3 from [FW98] shows that there exists an absolutely continuous
function ϕ, which attains the infimum for V ((x̄, ȳ), (x0, y0)) over the rate function in the sense that
for some T > 0 the function ϕ : [0, T ] → R2 satisfies the conditions ϕ(0) = (x̄, ȳ), ϕ(T ) = (x0, y0)
and V ((x̄, ȳ), (x0, y0)) = IT (ϕ) or that for some T > −∞ the function ϕ : (−∞, T ] → R2 satisfies
limt→−∞ ϕ(t) = (x̄, ȳ), ϕ(T ) = (x0, y0) and V ((x̄, ȳ), (x0, y0)) =

∫ T
−∞ L(ϕ(t), ϕ̇(t)) dt.

As long as ϕ satisfies the differential equation in (B.6) with initial condition ϕ(0) = (x̄, ȳ), we have
ϕ(t) = (x̄, ȳ) 6= (x0, y0). Thus, for the case where ϕ is defined on [0, T ], we have IT (ϕ) 6= 0, as the
differential equation in (B.6) must be violated at some time in order to leave the equilibrium state.
For the second case, we already know that any solution to (B.6) started close to (x̄, ȳ) stays close,
since the equilibrium is asymptotically stable. Hence, choosing 0 < ε < η1 ∧ η2 small enough and
T1 := sup{t ≤ T | ‖ϕ(t)− (x̄, ȳ)‖ < ε

2}, for all t ≥ T1 we have ‖ϕ(t)− (x̄, ȳ)‖ < ε. Therefore in this
case connecting (x̄, ȳ) to (x0, y0) requires violating (B.6). Hence we have V̄ > 0. �

Using our usual coupling arguments to make the leap from fixed rates to some non-fixed rates, we
can formulate and prove a very similar result for logistic processes with non-constant rates.
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Lemma B.7. Let ZK be a LBBIK(bK1 , d
K
1 , d

K
2 , σ2, p, C, γ

K
1 ) and assume that the convergence (B.1)

holds with b1 > d1. Let η1, η2 > 0, ZK0 ∈ [x̄− η1
2 , x̄+ η1

2 ]× [ȳ − η2
2 , ȳ + η2

2 ] and set

TK := inf

{
t ≥ 0

∣∣∣ (ZKt )1

K
/∈ [x̄− η1, x̄+ η1] or

(ZKt )2

K
/∈ [ȳ − η2, ȳ + η2]

}
.

Then there exists a constant V > 0 such that

lim
K→∞

P(TK < eKV ) = 0.

Proof. As in the proof of Lemma B.5, we couple our process with

Z̃K ≤ ZK ≤ ẐK ,

where Z̃K is given as a LBBIK(b1− ε, d1 + ε, d2 + ε, σ2, p, C) and the law of Ẑ is LBBIK(b1 + ε, (d1−
ε)+, (d2 − ε)+, σ2, p, C), where the initial conditions are Z̃K0 = ZK0 = ẐK0 and ε > 0. Choosing ε small
enough and applying Lemma B.6 to Z̃K and ẐK yields the claim. �

A very simple consequence is now the result that our process remains at least a time of order logK
in a neighbourhood of its equilibrium.

Corollary B.8. Under the assumptions of Lemma B.7 it holds

lim
K→∞

P
(
∀t ∈ [0, T logK],

(ZKt )1

K
∈ [x̄− η1, x̄+ η1] and

(ZKt )2

K
∈ [ȳ − η2, ȳ + η2]

)
= 1.

for any T > 0.

B.2. Competition Between two Bi-Type Processes with Transfer. Now, we consider a four-
dimensional logistic branching process, which we will interpret as competition between two bi-type
logistic branching processes each with active (‘a’) individuals and dormant (‘d’) individuals. Our main
results in this section will be Propositions B.15 and B.17, where we show under suitable assumptions
that the initially resident process declines below a small threshold, while the invading process reaches
a neighbourhood of its equilibrium. The transfer rates of this process (XK

a , X
K
d , Y

K
a , Y K

d ) are

(i, j, k, `)→



(i+ 1, j, k, `) at rate iaK1 (ω, t) + γK1 (ω, t)

(i, j, k + 1, `) at rate kbK1 (ω, t) + γK2 (ω, t)

(i− 1, j, k, `) at rate i(dK1 (ω, t) + (1−p)C
K (i+ k))

(i, j, k − 1, `) at rate k(dK1 (ω, t) + (1−q)C
K (i+ k))

(i, j − 1, k, `) at rate jdK2 (ω, t)

(i, j, k, `− 1) at rate `dK2 (ω, t)

(i− 1, j + 1, k, `) at rate ipCK (i+ k)

(i, j, k − 1, `+ 1) at rate k qCK (i+ k)

(i+ 1, j − 1, k, `) at rate jσ2

(i, j, k + 1, `− 1) at rate `σ2

(i− 1, j, k + 1, `) at rate τK(ω, t) ik
i+k ,

with predictable, non-negative functions aK1 , bK1 , dK1 , dK2 , τK , γK1 , γK2 : Ω × [0,∞) → R and constants
C, σ2 > 0, p, q ∈ (0, 1). For now, we assume that the transition rates are constant with aK1 ≡ a1,
bK1 ≡ b1, dK1 ≡ d1, dK2 ≡ d2, τK ≡ τ and γK1 = γK2 = 0 and that a1, b1 > d1. Then the process
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1
K (XK

a , X
K
d , Y

K
a , Y K

d ) converges towards the unique solution of the differential equation

ẋa = xa(a1 − d1 − C(xa + ya)) + xdσ2 − τ
xaya
xa + ya

ẋd = pCxa(xa + ya)− (d2 + σ2)xd

ẏa = ya(b1 − d1 − C(xa + ya)) + ydσ2 + τ
xaya
xa + ya

ẏd = qCya(xa + ya)− (d2 + σ2)yd.

(B.7)

We are now interested in finding a suitable criterion for invasion of the process (Y K
a , Y K

d ) into the

initially resident population (XK
a , X

K
d ). More specifically, we assume that initially the size of (X

K
a
K ,

XK
d
K )

is close to its equilibrium (x̄a, x̄d) with

x̄a =
(a1 − d1)(d2 + σ2)

C(d2 + (1− p)σ2)
and x̄d =

p(a1 − d1)2(d2 + σ2)

C(d2 + (1− p)σ2)2
(B.8)

and the total size of the invasive species is Y K
a + Y K

d = bεKc. Note that for such small population
sizes we may approximate the transfer rate between XK

a and Y K
a by

XK
a Y

K
a

XK
a + Y K

a

≈ XK
a Y

K
a

XK
a

= Y K
a .

Further, we assume that the mean matrix

J =

(
b1 + τ − d1 − Cx̄a qCx̄a

σ2 −d2 − σ2

)
(B.9)

of the approximating process (Ŷa, Ŷd) of (Y K
a , Y K

d ) given by the transitions

(n,m) 7→



(n+ 1,m) at rate n(b1 + τ)

(n− 1,m) at rate n(d1 + (1− q)Cx̄a)
(n,m− 1) at rate md2

(n− 1,m+ 1) at rate nqCx̄a
(n+ 1,m− 1) at rate mσ2

has a positive eigenvalue λ, which means that the invasion fitness is positive and the process is su-
percritical. For one eigenvalue to be positive, the determinant must be negative, which in our case is
equivalent to the inequality

−(b1 + τ − d1 − Cx̄a) <
σ2qCx̄a
d2 + σ2

. (B.10)

In addition, we will assume that in a population, where (Y K
a , Y K

d ) is resident and (XK
a , X

K
d ) is invasive,

the approximating process (X̂a, X̂d) given by the transitions

(n,m) 7→



(n+ 1,m) at rate na1

(n− 1,m) at rate n(d1 + τ + (1− p)Cȳa)
(n,m− 1) at rate md2

(n− 1,m+ 1) at rate npCȳa
(n+ 1,m− 1) at rate mσ2

is sub-critical. This is the case if and only if both eigenvalues of the mean-matrix

J̃ =

(
a1 − τ − d1 − Cȳa pCȳa

σ2 −d2 − σ2

)
(B.11)
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are strictly negative. In particular, we must have a positive determinant, which is equivalent to

−(a1 − τ − d1 − Cȳa) >
σ2pCȳa
d2 + σ2

. (B.12)

Our first result is concerned with finding the equilibria of the dynamical system (B.7).

Lemma B.9. Consider the system (B.7) and assume the matrix J has a positive eigenvalue and the
matrix J̃ only has negative eigenvalues. Then the systems only non-negative equilibria are (0, 0, 0, 0),
(x̄a, x̄d, 0, 0) and (0, 0, ȳa, ȳd), the latter of which is asymptotically stable, where

ȳa =
(b1 − d1)(d2 + σ2)

C(d2 + (1− q)σ2)
and ȳd =

q(b1 − d1)2(d2 + σ2)

C(d2 + (1− q)σ2)2

and (x̄a, x̄d) are as in (B.8).

Proof. It is easy to verify that the claimed vectors are indeed equilibria of the system. Also a quick
calculation for all cases shows that any non-negative equilibrium with a zero component must coincide
with one of the vectors above. Hence, it remains to show that there is no coordinatewise strictly positive
equilibrium in this system. Towards a contradiction, let (xa, xd, ya, yd) be such an equilibrium. Then,
rearranging the second line in (B.7) yields

xd =
pCxa(xa + ya)

d2 + σ2
.

Hence, the first line in (B.7) gives

0 = xa(a1 − d1 − C(xa + ya)) +
pCxa(xa + ya)σ2

d2 + σ2
− τ xaya

xa + ya
.

Since we assumed xa > 0, we may divide by xa to give

0 = a1 − d1 − C(xa + ya) +
pC(xa + ya)σ2

d2 + σ2
− τ ya

xa + ya

⇐⇒ xa + ya = x̄a − τ
ya(d2 + σ2)

C(xa + ya)(d2 + (1− p)σ2)
. (B.13)

Similarly, we obtain

yd =
qCya(xa + ya)

d2 + σ2
and 0 = ya(b1 − d1 − C(xa + ya)) + σ2yd + τ

xaya
xa + ya

as well as

xa + ya = ȳa + τ
xa(d2 + σ2)

C(xa + ya)(d2 + (1− q)σ2)
. (B.14)

Furthermore, this shows

yd
ya

= −
b1 − d1 − C(xa + ya) + τ xa

xa+ya

σ2
=
qC(xa + ya)

d2 + σ2

and substituting the expression (B.13) for xa + ya shows that

−b1 − d1 − Cx̄a
σ2

− τ
(
ya(d2 + σ2) + xa(d2 + (1− p)σ2)

σ2(xa + ya)(d2 + (1− p)σ2)

)
=

qCx̄a
d2 + σ2

− τ qya
(xa + ya)(d2 + (1− p)σ2)

,

which can be rearranged to read

− (b1 + τ − d1 − Cx̄a)− τ
(
ya(d2 + σ2) + xa(d2 + (1− p)σ2)

(xa + ya)(d2 + (1− p)σ2)
− 1

)
=
σ2qCx̄a
d2 + σ2

− τ σ2qya
(xa + ya)(d2 + (1− p)σ2)

.
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If τ = 0, this violates condition (B.10), and thus there is no such equilibrium. Assuming τ > 0 and
(B.10) the previous equality implies the inequality

ya(d2 + σ2) + xa(d2 + (1− p)σ2)

(xa + ya)(d2 + (1− p)σ2)
− 1 <

σ2qya
(xa + ya)(d2 + (1− p)σ2)

⇐⇒ σ2pya < σ2qya.

Hence, in the case p ≥ q such a coordinatewise positive equilibrium cannot exist.
Now, consider the case q > p. We find in a similar manner

xd
xa

= −
a1 − d1 − C(xa + ya)− τ ya

xa+ya

σ2
=
pC(xa + ya)

d2 + σ2

and, substituting xa + ya with the right hand side of (B.14), we obtain

−(a1 − d1 − Cȳa) + τ

(
xa(d2 + σ2) + ya(d2 + (1− q)σ2)

(xa + ya)(d2 + (1− q)σ2)

)
=
σ2pCȳa
d2 + σ2

+ τ
σ2pxa

(xa + ya)(d2 + (1− q)σ2)
.

In particular, condition (B.12) implies that
xa(d2 + σ2) + ya(d2 + (1− q)σ2)

(xa + ya)(d2 + (1− q)σ2)
− 1 <

σ2pxa
(xa + ya)(d2 + (1− q)σ2)

⇐⇒ σ2qxa < σ2pxa.

This contradicts the assumption q > p. Hence, there cannot be a coordinatewise positive equilibrium.

Now we turn towards the stability claim. For this we consider the Jacobian at (0, 0, ȳa, ȳd), which is
given by

A =


a1 − d1 − Cȳa − τ σ2 0 0

pCȳa −d2 − σ2 0 0
−Cȳa + τ 0 b1 − d1 − 2Cȳa σ2

qCȳa 0 2qCȳa −d2 − σ2

 .

It remains to show that all eigenvalues have negative real part. Notice that we recover the matrix J̃T in
the upper left corner. Since the matrix A is a block matrix, the eigenvalues of J̃T are also eigenvalues
of A. In particular, it suffices to show that

B =

(
b1 − d1 − 2Cȳa σ2

2qCȳa −d2 − σ2

)
has only negative eigenvalues. By the same argument as for the matrix J in (B.10) it suffices to
show that the determinant is positive. Using the definition of ȳa we compute the determinant to be
det(B) = (d2 + σ2)(b1 − d1) (cf. [BT20, Section 2.2]), which is strictly positive by the assumption
b1 > d1. Hence all eigenvalues of A are negative and thus (0, 0, ȳa, ȳd) is an asymptotically stable
equilibrium. �

The next goal is to find a sufficient criterion for the convergence of our dynamical system towards
the equilibrium of the process (Y K

a , Y K
d ). For this purpose, we need a suitable initial condition for the

system (B.7). Indeed, the following lemmata give a first step towards this direction.

Lemma B.10. Consider the system (B.7) and assume that the matrix J from (B.9) has a posi-
tive eigenvalue and the matrix J̃ from (B.11) only has negative eigenvalues. If the initial condition
(xa, xd, ya, yd) = (xa(0), xd(0), ya(0), yd(0)) satisfies

qC(xa + ya)

d2 + σ2
>
yd
ya

>
d1 − b1 + C(xa + ya)− τ xa

xa+ya

σ2
, (B.15)
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then
lim
t→∞

(xa(t), xd(t), ya(t), yd(t)) = (0, 0, ȳa, ȳd).

Proof. The proof of this claim can be easily adapted from [BT20, Lemma 4.7]. �

Now, we are interested in finding a suitable condition such that the inequality (B.15) is satisfied.
For this purpose, observe that the approximating process (Ŷa, Ŷd) is supercritical and hence by the
Kesten-Stigum Theorem [GB03, Theorem 2.1] we have(

Ŷa,t

Ŷa,t + Ŷd,t
,

Ŷd,t

Ŷa,t + Ŷd,t

)
t→∞−−−→ (πa, πd),

where (πa, πd) is the unique left eigenvector of the matrix J from (B.9) for the principal eigenvalue λ
with πa + πd = 1.

Lemma B.11. Suppose that the initial condition (xa, xd, ya, yd) of the dynamical system (B.7) satisfies
xa ∈ [x̄a−A

√
ε, x̄a +A

√
ε], xd ∈ [x̄d−A

√
ε, x̄d +A

√
ε] for some constant A > 0 and ya + yd ∈ (0,

√
ε)

with yd
ya

= πd
πa
. Then for ε sufficiently small, (xa, xd, ya, yd) satisfies (B.15).

Proof. The proof follows the proof of [BT20, Lemma 4.8]. Since (πa, πd) is an eigenvector for J , we
easily see that

b1 + τ − d1 − Cx̄a + σ2
πd
πa

= λ = qCx̄a
πa
πd
− (d2 + σ2).

Since λ > 0, we obtain for ε > 0 small enough from the first of the two equalities that
πd
πa

=
λ− b1 − τ + d1 + Cx̄a

σ2

>
−b1 + d1 + C(x̄a + 2(A+ 1)

√
ε)− τ x̄a−A

√
ε

x̄a+(A+1)
√
ε

σ2

>
d1 − b1 + C(xa + ya)− τ xa

xa+ya

σ2

and similarly from the second equality we see
πd
πa

=
qCx̄a

λ+ d2 + σ2
<
qC(x̄a − 2(A+ 1)

√
ε)

d2 + σ2
<
qC(xa + ya)

d2 + σ2
.

�

The next series of lemmata shows that this initial condition is satisfied with high probability as
K →∞ and ε→ 0. In order to show this, we need a couple of preparatory results on the hitting times
of a certain population size.

Lemma B.12. Assume that the matrix J from (B.9) has a positive eigenvalue. Let K 7→ (mK
1 ,m

K
2 )

be a function from (0,∞) to [0,∞) such that (mK
1 ,m

K
2 ) ∈ 1

KN2
0 and lim

K→∞
(mK

1 ,m
K
2 ) = (x̄a, x̄d). Define

the stopping times

RKε := inf

{
t ≥ 0

∣∣∣∣∣
∣∣∣∣∣XK

a,t

K
− x̄a

∣∣∣∣∣ > ε or

∣∣∣∣∣XK
d,t

K
− x̄d

∣∣∣∣∣ > ε

}
and

TKx := inf
{
t > 0 | Y K

a,t + Y K
d,t = bxKc

}
.

Then for any ξ ∈ [1
2 , 1] there exist some positive constants A, ε0 > 0 such that for all 0 < ε ≤ ε0

and any starting condition 1
K (XK

a,0, X
K
d,0, Y

K
a,0, Y

K
d,0) = (mK

1 ,m
K
2 ,

nK1
K ,

nK2
K ) with nK1 and nK2 such that
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0 < nK1 + nK2 < Kεξ, the convergence

lim
K→∞

P(RK2Aεξ ≤ T
K
εξ ∧ T

K
0 ) = 0

holds.

Proof. The proof of [BT20, Lemma 4.2] can be modified to encompass our situation in a straightforward
manner. �

Our next goal is to show that for any given initial population size Y K
a,0 + Y K

d,0 = bεKc of (Y K
a , Y K

d ),
we have the limit

lim
K→∞

P(TKεξ < TK0 ) = 1.

Lemma B.13. Under the assumptions of Lemma B.12, for the initial population size given by XK
0 :=

(XK
a,0, X

K
d,0, Y

K
a,0, Y

K
d,0), it holds that

lim
K→∞

P

(
TKεξ < TK0 ∧RK2Aεξ

∣∣∣∣∣ XK
0 = K(mK

1 ,m
K
2 , ε

K
1 , ε

K
2 )

)
= 1,

where εK1 → ε1 and εK2 → ε2 such that ε1 + ε2 = ε with ε, ε1, ε2 > 0.

Proof. The proof follows the ideas of [BT20, Proposition 4.1] and [CCL+21, Proposition 3.1]. We
will consider the process on the event that the invading population is extinct or reaches a sufficient
population size before the resident population exits a neighbourhood of its equilibrium, that is

Eε :=
{
TK0 ∧ TKεξ < RK2Aεξ

}
,

whose probability converges to 1 for ε > 0 small enough as K →∞ by Lemma B.12. Thus, it suffices
to show TK

εξ
< TK0 with probability converging to 1 on the event Eε. On this event, we can couple the

process (Y K
a , Y K

d ) up to the time tε := TK0 ∧ TKεξ ∧R
K
2Aεξ

such that

Y ε,−
v ≤ Ŷv
Y ε,−
v ≤ Y K

v

where v ∈ {a, d} by defining the transition rates as follows: For the process (Y ε,−
a , Y ε,−

d ) we choose the
transition rates

(n,m) 7→



(n+ 1,m) at rate n
(
b1 + τ x̄a−2Aεξ

x̄a+(2A+1)εξ

)
(n− 1,m) at rate n(d1 + (1− q)C(x̄a + 2Aεξ + εξ) + qC(4Aεξ + εξ))

(n,m− 1) at rate md2

(n− 1,m+ 1) at rate nqC(x̄a − 2Aεξ)

(n+ 1,m− 1) at rate mσ2.

Intuitively, the coupling is correct due to switching from active to dormant being more favourable over
death, but not being better than not experiencing any competition at all. The precise reasoning for this
coupling is identical to the one in the proof of [BT20, Proposition 4.1]. Also, we obtain the inequality
qa ≤ qε,−a < 1 for the extinction probabilities of each individual family started at an active individual
in a similar manner. When starting the populations from one dormant individual, we obtain the
extinction probabilities qd ≤ qε,−d < 1. Note that qε,−� is indeed strictly less than 1 for � ∈ {a, d}, since
the process (Y ε,−

a , Y ε,−
d ) is supercritical for ε > 0 sufficiently small. Since the extinction probabilities

are continuous in the transition rates – see [CCL+21, Lemma A.3] – we obtain

0 ≤ lim inf
ε↓0

∣∣qε,− − q∣∣ ≤ lim sup
ε↓0

∣∣qε,− − q∣∣ = 0.
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Next, we define the corresponding hitting time for the coupled process. More specifically, for x ≥ 0,
let

T ε,−x := inf{t ≥ 0 | Y ε,−
a,t + Y ε,−

d,t = bKxc}.
Then, due to the coupling on Eε, we see that

P(T ε,−
εξ
≤ T ε,−0 , Eε) ≤ P(TKεξ ≤ T

K
0 , Eε).

Note that since P(Eε)→ 1 as K →∞, for any ε > 0 sufficiently small, we have for δ small enough

lim inf
K→∞

P(T ε,−
εξ
≤ T ε,−0 , Eε) ≥ lim inf

K→∞
P(T ε,−

εξ
≤ T ε,−0 )− δ ≥ lim inf

K→∞
P(T ε,−0 =∞)− δ

≥ lim inf
K→∞

(
1−

(
qε,−

)K(εK1 +εK2 )
)
− δ

≥ lim inf
K→∞

(
1−

(
qε,−

)K(ε−δ)
)
− δ

= 1− δ δ→0−−−→ 1,

where qε,− := qε,−a ∨ qε,−d . Also due to P(Eε)→ 1 as K →∞, it therefore follows that

lim
K→∞

P(TKεξ ≤ T
K
0 , Eε) = lim

K→∞
P(TKεξ ≤ T

K
0 ) = 1.

�

Finally, we are able to show that with high probability as ε ↓ 0, the assumptions of Lemma B.11 are
satisfied.

Lemma B.14. Assume that the matrix J from (B.9) has a positive eigenvalue and that the initial
condition of the process satisfies 1

K (XK
a,0, X

K
d,0, Y

K
a,0, Y

K
d,0) = (mK

1 ,m
K
2 , ε1, ε2) with ε1 + ε2 ≤ ε for some

ε, ε1, ε2 > 0 and mK
1 ,m

K
2 as in Lemma B.12. Then for any δ > 0 with πa ± δ ∈ (0, 1), it holds that

lim inf
K→∞

P

(
∃t ∈ [TKε , T

K√
ε] : πa − δ <

Y K
a,t

Y K
a,t + Y K

d,t

< πa + δ

)
≥ 1− oε(1),

where oε(1)→ 0 as ε→ 0. In fact, the bounds on the frequency process Y Ka
Y Ka +Y Kd

will be satisfied by the

time TKε + log log(1/ε) with probability converging to 1 as K →∞.

Proof. This proof again is a simple adaptation of the proofs from [BT20, Proposition 4.4.] or [CCL+21,
Proposition 3.2]. �

Now, we can show our general result on the competition with non-negative transfer. We do not
assume the transition rates to be constant anymore, but instead assume that there are constants
a1, b1, d1, d2 > 0, τ ≥ 0 with a1, b1 > d1 such that for some s > 0

sup
0≤t≤s logK

∣∣aK1 (t)− a1

∣∣+
∣∣bK1 (t)− b1

∣∣+
∣∣dK1 (t)− d1

∣∣
+
∣∣dK2 (t)− d2

∣∣+
∣∣τK(t)− τ

∣∣+
∣∣∣γK1 (t)

K

∣∣∣+
∣∣∣γK2 (t)

K

∣∣∣ K→∞−−−−→ 0 (B.16)

in probability. If τ = 0, then we assume τK ≡ 0 for all K.

Proposition B.15. Assume that the conditions (B.10), (B.12) and (B.16) are true. Consider the
process (XK

a , X
K
d , Y

K
a , Y K

d ) with initial condition 1
K (XK

a,0, X
K
d,0) ∈ [x̄a− ε, x̄a + ε]× [x̄d− ε, x̄d + ε] and

1
K (Y K

a,0 + Y K
d,0) = mε for some ε > 0 and m > 0 sufficiently small. Then, for any ε′ > 0 there exists a

finite time T = T (m, ε, ε′) such that

lim
K→∞

P

(
XK
a,T +XK

d,T ≤ ε′K,
Y K
a,T

K
∈ [ȳa − ε′, ȳa + ε′],

Y K
d,T

K
∈ [ȳd − ε′, ȳd + ε′]

)
≥ 1− oε(1).
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Remark B.16. The choice on the initial condition for (Y K
a , Y K

d ) can be generalized to hold for an
entire interval of initial conditions. With the proposition as stated, for ε, ε′,m > 0 sufficiently small,
it holds

Y K
a,T + Y K

d,T ≥ K(ȳa + ȳd − 2ε′) > 2mεK

at time T = T (m, ε, ε′) with high probability as ε → 0 and K → ∞. Thus, with high probability
we have TK2mε < T (m, ε, ε′). Hence, with high probability, for all initial conditions from an interval
Y K
a,0 + Y K

d,0 ∈ [Kmε2 ,Kmε], the time TK2mε is bounded, even as K →∞. In particular, we can adapt the
proof of Proposition B.15 such that the claim holds for all initial conditions Y K

a,0 + Y K
d,0 ∈ [Kmε2 ,Kmε],

where the only change is in the application of Lemma B.14, which now yields that with high probability
the good initial condition is satisfied after a time shorter than TK2mε + log log(1/(2mε)). This time
however is finite with high probability by the arguments made above.

Proof. The proof is based on a suitable coupling of the process in combination with the above lemmata.
Let δ > 0. We want to couple in such a way that coordinatewise both bi-type branching processes are
bounded. That is, we want to find a coupling such that

(Xδ,1
a , Xδ,1

d , Y δ,1
a , Y δ,1

d ) ≤ (XK
a , X

K
d , Y

K
a , Y K

d ) ≤ (Xδ,2
a , Xδ,2

d , Y δ,2
a , Y δ,2

d )

coordinatewise. As in Lemma B.5, this coupling can be achieved by subtracting and adding δ to the
birth and death rates for K large enough, which we can do by the convergence criterion above. For
now, we do not alter the horizontal transfer rate τK . Note that indeed we are allowed to neglect the
immigration rate for to the same reason as in Lemma B.5. For δ > 0 small enough, the correspond-
ing equilibria (x̄δ,∗a , x̄δ,∗d ) and (ȳδ,∗a , ȳδ,∗d ) with ∗ ∈ {1, 2} are closer than ε∧ε′

2 to (x̄a, x̄d) and (ȳa, ȳd)

respectively. If τ > 0, then we further couple the processes (Xδ,∗
a , Xδ,∗

d , Y δ,∗
a , Y δ,∗

d ) with ∗ ∈ {1, 2}
with processes (Xδ,∗,�

a , Xδ,∗,�
d , Y δ,∗,�

a , Y δ,∗,�
d ) where � ∈ {+,−}. In the case � = − we set the horizontal

transfer rate to be τ − δ and for � = + it is set to be τ + δ. This definition yields the inequalities
as displayed in Table 1. Now arguments analogous to Lemma B.3 show that for any initial condition

Xδ,1,−
a ≥ Xδ,1

a ≥ Xδ,1,+
a Xδ,2,−

a ≥ Xδ,2
a ≥ Xδ,2,+

a

Xδ,1,−
d ≥ Xδ,1

d ≥ Xδ,1,+
d Xδ,2,−

d ≥ Xδ,2
d ≥ Xδ,2,+

d

Y δ,1,−
a ≤ Y δ,1

a ≤ Y δ,1,+
a Y δ,2,−

a ≤ Y δ,2
a ≤ Y δ,2,+

a

Y δ,1,−
d ≤ Y δ,1

d ≤ Y δ,1,+
d Y δ,2,−

d ≤ Y δ,2
d ≤ Y δ,2,+

d

Table 1. An overview of the almost sure inequalities that we obtain by coupling.

from a compact set, the processes (Xδ,∗,�
a , Xδ,∗,�

d , Y δ,∗,�
a , Y δ,∗,�

d ) converge in probability to the solutions
of the respective differential equations with K →∞. Furthermore, Lemma B.14 implies that with high
probability in mε the criterion for a good initial condition (B.15) is satisfied for each of the coupled
processes after a time shorter than log log(1/(mε)). Indeed, when applying the lemma, notice that
we can substitute TKε by 0 due to our choice of the starting condition. Hence, by Lemma B.10 the
solutions of the differential equations converge towards the equilibria (0, 0, ȳδ,∗,�a , ȳδ,∗,�d ). In particular,
there exists a finite time such that for all initial conditions from a compact set as in the proposition,
the process is in a neighbourhood of (0, 0, ȳδ,∗,�a , ȳδ,∗,�d ) with high probability in mε. Thus, the claim
follows. �

With a similar proof we also obtain the same result for negative transfer. In this situation we assume
the process (Y K

a , Y K
d ) to be initially resident and the process (XK

a , X
K
d ) to be invading.
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Proposition B.17. Assume that the reverse inequalities of (B.10) and (B.12) are true that is

−(b1 + τ − d1 − Cx̄a) >
σ2qCx̄a
d2 + σ2

and − (a1 − τ − d1 − Cȳa) >
σ2pCȳa
d2 + σ2

, (B.17)

which indicates the approximating process (Ŷa, Ŷd) to be subcritical and the approximating process
(X̂a, X̂d) to be supercritical. Further assume (B.16). Consider the process (XK

a , X
K
d , Y

K
a , Y K

d ) with
initial condition 1

K (Y K
a,0, Y

K
d,0) ∈ [ȳa − ε, ȳa + ε] × [ȳd − ε, ȳd + ε] and 1

K (XK
a,0 + XK

d,0) = mε for some
ε > 0 and m > 0 sufficiently small. Then for any ε′ > 0, there exists a finite time T = T (m, ε, ε′) such
that

lim
K→∞

P

(
Y K
a,T + Y K

d,T ≤ ε′K,
XK
a,T

K
∈ [x̄a − ε′, x̄a + ε′],

XK
d,T

K
∈ [x̄d − ε′, x̄d + ε′]

)
≥ 1− oε(1).

The proof follows a very similar structure of the previous proposition. We give an outline of the
necessary results.

Lemma B.18. Consider the system (B.7) and assume (B.17). If the initial condition (xa, xd, ya, yd)
satsfies

pC(xa + ya)

d2 + σ2
>
xd
xa

>
d1 − a1 + C(xa + ya) + τ ya

xa+ya

σ2
, (B.18)

then
lim
t→∞

(xa(t), xd(t), ya(t), yd(t)) = (x̄a, x̄d, 0, 0).

Proof. The proof of this lemma is identical with the proof of Lemma B.10 where we reversed the roles of
(xa, xd) and (ya, yd). The validity holds due to the fact that we never explicitly use the term involving
τ . �

Proceeding in the same manner, we define (πa, πd) to be the unique normed left eigenvector of the
matrix

J =

(
a1 − τ − d1 − Cȳa pCȳa

σ2 −d2 − σ2

)
(B.19)

corresponding to the principal eigenvalue λ > 0, which exists due to our assumption (B.17).

Lemma B.19. Suppose that the initial condition (xa, xd, ya, yd) of the dynamical system (B.7) satisfies
ya ∈ [ȳa − A

√
ε, ȳa + A

√
ε], yd ∈ [ȳd − A

√
ε, ȳd + A

√
ε] for some constant A > 0 large enough and

xa + xd ∈ (0,
√
ε) with xd

xa
= πd

πa
. Then, for ε sufficiently small, (xa, xd, ya, yd) satisfies (B.18).

Proof. The proof in the case of positive transfer from Lemma B.11 is easily adapted to this case. �

Next in our series of Lemmata, we had shown bounds on some exit times in Lemma B.12 in order
to show that the assumptions from Lemma B.19 are satisfied with high probability. Here, there will
be a major difference in the proof, as at one point we made use of the positive transfer.

Lemma B.20. Let K 7→ (mK
1 ,m

K
2 ) be a function from (0,∞) to [0,∞)2 such that (mK

1 ,m
K
2 ) ∈ 1

KN2
0

and limK→∞(mK
1 ,m

K
2 ) = (ȳa, ȳd). Define the stopping times

RKε := inf

{
t ≥ 0

∣∣∣ ∣∣∣∣∣Y K
a,t

K
− ȳa

∣∣∣∣∣ > ε or

∣∣∣∣∣Y K
d,t

K
− ȳd

∣∣∣∣∣ > ε

}
and

TKx := inf
{
t > 0 | XK

a,t +XK
d,t = bxKc

}
.
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Then, for any ξ ∈ [1
2 , 1] and starting condition 1

K (XK
a,0, X

K
d,0, Y

K
a,0, Y

K
d,0) = (

nK1
K ,

nK2
K ,mK

1 ,m
K
2 ) with nK1

and nK2 such that 0 < nK1 + nK2 < Kεξ, there exist some positive constants A, ε0 > 0 such that for all
0 < ε ≤ ε0

lim
K→∞

P(RK2Aεξ ≤ T
K
εξ ∧ T

K
0 ) = 0.

Proof. This proof can be adapted from the proof of [BT21, Lemma C.2]. �

From this lemma, we can show that with probability converging to 1, the invasive trait reaches a
critical population size.

Lemma B.21. Under the assumptions of Lemma B.20, denoting XK
0 := (XK

a,0, X
K
d,0, Y

K
a,0, Y

K
d,0), it holds

lim
K→∞

P

(
TKεξ < TK0 ∧RK2Aεξ

∣∣∣∣∣ XK
0 = K(εK1 , ε

K
2 ,m

K
1 ,m

K
2 )

)
= 1,

where ξ ∈ [1
2 , 1] and εK1 → ε1, εK2 → ε2 are such that ε1 + ε2 = ε with ε, ε1, ε2 > 0.

Proof. The proof now is almost identical with the one of Lemma B.13. The only difference arises in
the coupling, where we now couple such that

Xε,−
v ≤ X̂v and Xε,−

v ≤ XK
v

where v ∈ {a, d} by defining the transition rates as follows: For the process (Xε,−
a , Xε,−

d ), we choose
the transition rates

(n,m) 7→



(n+ 1,m) at rate na1

(n− 1,m) at rate n
(
d1 + τ x̄a+2Aεξ

x̄a−(2A+1)εξ
+ (1− q)C(x̄a + 2Aεξ + εξ)

+qC(4Aεξ + εξ)
)

(n,m− 1) at rate md2

(n− 1,m+ 1) at rate nqC(x̄a − 2Aεξ)

(n+ 1,m− 1) at rate mσ2,

.

It is only important to note that for ε > 0 sufficiently small, the process (Xε,−
a , Xε,−

d ) is again
supercritical and thus the claim follows as in Lemma B.13 �

Finally, we need to show that with high probability the assumptions of Lemma B.19 are satisfied,
which is the analogous version of Lemma B.14.

Lemma B.22. Assume (B.17) and assume that 1
K (XK

a,0, X
K
d,0, Y

K
a,0, Y

K
d,0) = (ε1, ε2,m

K
1 ,m

K
2 ) is the

initial condition with ε1 + ε2 ≤ ε for some ε, ε1, ε2 > 0 and mK
1 ,m

K
2 as in Lemma B.20. Then for any

δ > 0 with πa ± δ ∈ (0, 1), it holds

lim inf
K→∞

P

(
∃t ∈ [TKε , T

K√
ε] : πa − δ <

XK
a,t

XK
a,t +XK

d,t

< πa + δ

)
≥ 1− oε(1).

In fact, the bound on the frequency process XK
a

XK
a +XK

d

will be satisfied by the time TKε + log log(1/ε) with
probability larger than 1− oε(1) as K →∞.

Proof. The proof is largely analogous to the one of [BT20, Proposition 4.4], but there are subtle
differences which we discuss here. We assume

XK
a,TKε

XK
a,TKε

+XK
d,TKε

≤ πa − δ.
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Then, we introduce the event
Ẽε :=

{
TK√ε < TK0 ∧RK2A√ε

}
,

whose probability again converges to 1 as K →∞ by the previous lemma. Also, we define the stopping
time

TKε,ε/M := inf
{
t ≥ TKε | XK

a,t +XK
d,t ≤ εK

M

}
.

On the event Ẽε, we can bound our process from below on the time interval [TKε , T
K√
ε
] by a pure death

process ZK , with initial condition ZK
TKε

= εK and death rate (d1 + τ
√
ε(ȳa+(2A+1)ε)
ȳa−2Aε ) ∨ d2. We are

interested in (ε − ε
M )K individuals dying from the process ZK . This takes longer than log log(1/ε)

with probability converging to 1 for M > 1. Therefore, we have

lim
K→∞

P(TKε,ε/M < TKε + log log(1/ε) | TKε + log log(1/ε) < TK√ε, Ẽε) = 0.

Furthermore, the population size of XK
a + XK

d can be bounded from above by a Yule process with
birth rate a1. Hence, [CCL+21, Lemma A.2] implies

lim
K→∞

P(TK√ε < TKε + log log
(

1
ε

)
|Ẽε) ≤ M̃

√
ε(log

(
1
ε

)
)a1 .

Since the probability of Ẽε converges to 1, we obtain

lim
K→∞

P(TKε,ε/M < TKε + log log(1/ε)) ≤ oε(1) and lim
K→∞

P(TK√ε < TKε + log log
(

1
ε

)
) ≤ oε(1).

(B.20)

The next step in this proof is the semimartingale decomposition, for which we will satisfy ourselves
with the abstract representation

XK
a,t

XK
a,t +XK

d,t

=
XK
a,TKε

XK
a,TKε

+XK
d,TKε

+MK(t) + V K(t) for t ≥ TKε ,

where MK is a martingale and V K a process of finite variation. The remainder of the proof can be
adapted from [BT20, Proposition 4.4], with the slight exception of now only obtaining

lim
K→∞

P
(

sup
TKε ≤s≤TKε +log log(1/ε)

∣∣MK(t)
∣∣ ≥ ε)

≤ lim
K→∞

P
(

sup
TKε ≤s≤(TKε +log log(1/ε))∧Tε,ε/M

∣∣MK(t)
∣∣ ≥ ε)+ P

(
Tε,ε/M < TKε + log log

(
1
ε

))
≤ lim

K→∞

1

ε2
E[〈MK〉(TKε +log log(1/ε))∧Tε,ε/M ] + oε(1) = oε(1),

due to our weaker bound (B.20) and thus afterwards only having

πa −
δ

2
≥

XK
a,t

XK
a,t +XK

d,t

≥ θ

2

(
log log(1/ε) ∧ (tεa − TKε )

)
− ε

with probability 1− oε(1) as K →∞ for the corresponding time tεa, which does not change the claim,
since we are considering only high probabilities for small ε. �

We can now discuss the proof of Proposition B.17, where the transition rates are not assumed to be
constant.

Proof of Proposition B.17. We can copy the proof of Proposition B.15 until the point, where we have
found the couplings (Xδ,∗,�

a , Xδ,∗,�
d , Y δ,∗,�

a , Y δ,∗,�
d ). Now, the only difference is that we need to use our

Lemmata applying to this case. The general argument is not changed. That is, from Lemma B.22 we see
that with high probability in mε the convergence condition from Lemma B.19 is satisfied and therefore
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Lemma B.18 implies convergence to the equilibrium (x̄δ,∗,�a , x̄δ,∗,�d , 0, 0). In particular, there exists a
finite time such that for all initial conditions from a compact set we have entered a neighbourhood of
this equilibrium, which as before implies the claim. �

B.3. Competition Between Bi-Type and Single-Type Processes with Transfer. We consider
a three-dimensional branching process very similar to the one from the previous section. The transfer
rates of this process (XK

a , X
K
d , Y

K) are

(i, j, k)→



(i+ 1, j, k) at rate iaK1 (ω, t) + γK1 (ω, t)

(i, j, k + 1) at rate kbK1 (ω, t) + γK2 (ω, t)

(i− 1, j, k) at rate i(dK1 (ω, t) + (1−p)C
K (i+ k))

(i, j, k − 1) at rate k(dK1 (ω, t) + C
K (i+ k))

(i, j − 1, k) at rate jdK2 (ω, t)

(i− 1, j + 1, k) at rate ipCK (i+ k)

(i+ 1, j − 1, k) at rate jσ2

(i− 1, j, k + 1) at rate τK(ω, t) ik
i+k

with predictable, non-negative functions aK1 , bK1 , dK1 , dK2 , τK , γK1 , γK2 : Ω × [0,∞) → R and constants
C, σ2 > 0, p ∈ (0, 1). As before, we assume for some s > 0 the convergence

sup
0≤t≤s logK

∣∣aK1 (t)− a1

∣∣+
∣∣bK1 (t)− b1

∣∣+
∣∣dK1 (t)− d1

∣∣
+
∣∣dK2 (t)− d2

∣∣+
∣∣τK(t)− τ

∣∣+
∣∣∣γK1 (t)

K

∣∣∣+
∣∣∣γK2 (t)

K

∣∣∣ K→∞−−−−→ 0 (B.21)

in probability, where a1, b1, d1, d2 > 0, τ ≥ 0 and a1, b1 > d1. If τ = 0 we again assume τK ≡ 0.
Then, we can approximate the process Y K in a population close to the equilibrium size of the process
(XK

a , X
K
d ) which as in the previous section is given by K(x̄a, x̄d) by the process Ŷ , which has the

transitions

n 7→

{
n+ 1, at rate nb1 + τ

n− 1, at rate n(d1 + Cx̄a).

We want the growth rate to be strictly positive, so that we have invasion of this trait. In the case of
one dimensional branching processes, this is equivalent to

b1 + τ − d1 − Cx̄a > 0, (B.22)

which also coincides with (B.10) in the case q = 0. The approximation of the process (XK
a , X

K
d ) in a

population, where Y K is close to its equilibrium size Kȳ with

ȳ =
b1 − d1

C
,

can be done as before. That is, we approximate using the process (X̂a, X̂d) with transitions

(n,m) 7→



(n+ 1,m) at rate na1

(n− 1,m) at rate n(d1 + τ + (1− p)Cȳ)

(n,m− 1) at rate md2

(n− 1,m+ 1) at rate npCȳ
(n+ 1,m− 1) at rate mσ2.
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In order to guarantee a successful invasion, we want this process to be subcritical, which as before
coincides with the criterion (B.12), that is

−(a1 − τ − d1 − Cȳ) >
σ2pCȳ

d2 + σ2
. (B.23)

We are now in a position to formulate our competition results for this case. Note, that a generalized
form, in the sense that the invading process is initially of size contained in the interval [mεK2 ,mεK],
can be proven as indicated in Remark B.16.

Proposition B.23. Assume that conditions (B.21), (B.22) and (B.23) are true. Consider the process
(XK

a , X
K
d , Y

K) with initial condition 1
K (XK

a,0, X
K
d,0) ∈ [x̄a−ε, x̄a+ε]× [x̄d−ε, x̄d+ε] and Y K

K = mε for
some ε > 0 and m > 0 sufficiently small. Then for any ε′ > 0, there exists a finite time T = T (m, ε, ε′)
such that

lim
K→∞

P
(
XK
a,T +XK

d,T ≤ ε′K,
Y K
T

K
∈ [ȳ − ε′, ȳ + ε′]

)
= 1.

For the proof of this proposition, we use arguments from [BT21, Section 5]. The structure of the
proof is as usual: First, we assume the population to satisfy a suitable initial condition and then
approximate the dynamics of the system by a differential equation, whose solutions will converge to
the corresponding fixed points.

Assume that the initial condition of the process 1
K (XK

a , X
K
d , Y

K) is contained in the set

A3
ε := [x̄a − 2Aεξ, x̄a + 2Aεξ]× [x̄d − 2Aεξ, x̄d + 2Aεξ]× [ε,

√
ε]

for fixed ε > 0. We want to show that the solution of the dynamical system

ẋa = xa(a1 − d1 − C(xa + y)) + xdσ2 − τ
xay

xa + y

ẋd = pCxa(xa + y)− (d2 + σ2)xd

ẏ = y(b1 − d1 − C(xa + y)) + τ
xay

xa + y

(B.24)

converges towards the equilibrium (0, 0, ȳ) for any starting condition from A3
ε.

Lemma B.24. Consider the dynamical system (B.24). If the initial condition (xa(0), xd(0), y) is
contained in the set A3

ε and the inequalities (B.22) and (B.23) are satisfied, then

lim
t→∞

(xa(t), xd(t), y(t)) = (0, 0, ȳ).

Proof. This proof is taken from [BT21, Proposition 5.4] and adapted to our case. Firstly, we notice
that y(t) is strictly increasing as long as

C(xa + y)− τ xa
xa + y

< b1 − d1.

By our choice of the starting conditions, we see that

C(xa + y)− τ xa
xa + y

≤ C(x̄a + (2A+ 1)
√
ε)− τ x̄a − 2A

√
ε

x̄a + (2A+ 1)
√
ε
≤ Cx̄a − τ + C∗

√
ε < b1 − d1,

where we used (B.22) and C∗ is a sufficiently large constant. Hence, initially y(t) is strictly increasing
and will do so until

C(xa + y)− τ xa
xa + y

= b1 − d1. (B.25)
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We now consider the resident population dynamics (xa, xd) in the case where this equality is true and
then we perform a perturbation argument. Assuming the equality, we easily compute

C(xa + y) + τ
y

xa + y
= C(xa + y)− τ xa

xa + y
+ τ = b1 − d1 + τ

and similarly

pCxa(xa + y) = pxa

(
C(xa + ya)− τ

xa
xa + y

+ τ
xa

xa + y

)
≤ pxa(b1 − d1 + τ).

Hence, we can dominate the dynamics of (xa, xd) under the assumption (B.25) by the solutions to the
system

ẋa = xa(a1 − b1 − τ) + σ2xd

ẋd = pxa(b1 − d1 + τ)− (d2 + σ2)xd.
(B.26)

This system has the unique equilibrium (0, 0) if the coefficient matrix of the corresponding linear
system

A =

(
a1 − b1 − τ σ2

p(b1 − d1 + τ) −(d2 + σ2)

)
has non-zero determinant. Indeed, the determinant is 0 if and only if

a1 = b1 + τ − pσ2(Cȳ + τ)

d2 + σ2
.

However, this choice of a1 would imply

x̄a =
(a1 − d1)(d2 + σ2)

C(d2 + (1− p)σ2)
=

(b1 + τ − d1)(d2 + σ2)− pσ2(b1 − d1 + τ)

C(d2 + (1− p)σ2)
=
b1 + τ − d1

C
,

so
b1 + τ − d1 − Cx̄a = 0,

which contradicts (B.22) and hence the only equilibrium is (0, 0).

Next, we will show that the system converges towards the equilibrium (0, 0). For this, we need to
show that both eigenvalues of the matrix A are negative. Note that for the existence of a positive
eigenvalue we need a positive trace and hence a1 − b1 − τ > 0. Then, we obtain

a1 − τ − d1 − Cȳ = a1 − τ − b1 > 0,

which contradicts the condition (B.23) since now

0 > −(a1 − τ − d1 − Cȳ) >
σ2pCȳ

d2 + σ2
≥ 0.

Hence, there cannot be a positive eigenvalue. Moreover, due to the determinant of A being non-zero,
both eigenvalues must be strictly negative. Since the dynamics of the solutions are determined by the
eigenvalues, the solution will converge for any positive starting condition to (0, 0).

Now we turn again to the general dynamical system (B.24). We distinguish two cases:

Case 1: Monotonicity. In this case we assume that y(t) eventually will be a monotone function.
By boundedness of y(t) this implies that limt→∞ ẏ(t) = 0 and since y(t) is bounded away from 0, we
must have

C(xa(t) + y(t))− τ xa(t)

xa(t) + y(t)

t→∞−−−→ b1 − d1.
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In particular, for any δ > 0 we can find a time t1(δ) > 0 such that for all starting conditions in A3
ε we

have
b1 − d1 − δ < C(xa(t) + y(t))− τ xa

xy + a
< b1 − d1 + δ

for all t > t1. Then, we can consider the system (B.26) altered in the corresponding places by ±δ to
account for the bounds above. We still obtain convergence to (0, 0) for both systems and therefore we
must have

lim
t→∞

(xa(t), xd(t)) = (0, 0).

As C(xa(t) + y(t))− τ xa(t)
xa(t)+y(t) → b1 − d1 we have y(t)→ ȳ.

Case 2: Non-monotone convergence. It is possible that t 7→ y(t) is not monotone on any
interval (s,∞) for s ≥ 0. In this case, due to the boundedness of s there must be a countable number
of local extrema of y, for if there were only finitely many, then y would become monotone eventually.
At any local minimum or maximum, since y is bounded away from 0, we must have

C(xa + y)− τ xa
xa + y

= b1 − d1.

Using our observations from Case 1, we see that at any maximum and at any minimum the population
of (xa, xd) is decreasing and converges to (0, 0) even monotonically. Since this holds independently of
the size of y(t), we obtain that

lim
t→∞

(xa(t), xd(t)) = (0, 0).

As before, we derive limt→∞ y(t) = ȳ.

�

Proof of Proposition B.23. As usual, we couple the process (XK
a , X

K
d , Y

K) with two processes from
above and below by

(Xδ,−
a , Xδ,−

d , Y δ,−) ≤ (XK
a , X

K
d , Y

K) ≤ (Xδ,+
a , Xδ,+

d , Y δ,+)

by accordingly increasing or decreasing the birth, death and switching rates by some term involving
δ > 0. We further couple with processes (Xδ,∗,�

a , Xδ,∗,�
d , Y δ,∗,�) as in Proposition B.15 by increasing or

decreasing the transfer rate τK by δ. For ε > 0 sufficiently small, the initial condition from Lemma
B.24 is satisfied and thus after a finite time, the solutions to the differential equations converge towards
their equilibria as time tends to infinity. By arguments similar to Lemma B.3, the processes converge
to the solutions of the corresponding differential equations. In particular, as in Proposition B.15 we
see that for δ > 0 sufficiently small, the processes are inside a neighbourhood of the equilibrium after
a finite time with probability converging to 1. �

A similar result holds for the inverse invasion.

Proposition B.25. Assume that (B.21) and the inverse inequalities of (B.22) and (B.23) are true,
that is

b1 + τ − d1 − Cx̄a < 0 and − (a1 − τ − d1 − Cȳ) <
σ2pCȳ

d2 + σ2
. (B.27)

Consider the process (XK
a , X

K
d , Y

K) with initial condition 1
K (XK

a,0 +XK
d,0) = mε and Y K

K ∈ [ȳ−ε, ȳ+ε]

for some ε > 0 and m > 0 sufficiently small. Then for any ε′ > 0, there exists a finite time T =
T (m, ε, ε′) such that

lim
K→∞

P

(
Y K
T ≤ ε′K,

XK
a,T

K
∈ [x̄a − ε′, x̄a + ε′],

XK
d,T

K
∈ [x̄d − ε′, x̄d + ε′]

)
≥ 1− oε(1).
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Proof of Proposition B.25. Here, we are looking at the invasion of a population with dormancy which
does not benefit from horizontal transfer. This is the same situation as in Proposition B.17, where the
difference is only in the dormancy of the initially resident trait. However, since we have never used
this aspect in the proof of Proposition B.17, the chain of arguments remains valid, where of course in
the couplings we need to account for the lack of dormancy in the initially resident trait. �

In addition, we also need the same results, but with inverted horizontal transfer. That is, we now
consider the process (XK

a , X
K
d , Y

K) which has the same transitions as in the beginning of the section
except for the transition (i, j, k) → (i − 1, j, k + 1) to be replaced with the transition (i, j, k) →
(i+1, j, k−1). Then we can still approximate the processes (XK

a , X
K
d ) and Y K as before, but we need

to switch the addition of τ in the rates from the birth to the death rate and vice versa. In particular,
we want the inequalities

b1 − τ − d1 − Cx̄a > 0 and − (a1 + τ − d1 − Cȳ) >
σ2pCȳ

d2 + σ2
(B.28)

to hold. Then we obtain the same results as above.

Proposition B.26. Assume that (B.21) and (B.28) are true. Consider the process (XK
a , X

K
d , Y

K)

with initial condition 1
K (XK

a,0, X
K
d,0) ∈ [x̄a − ε, x̄a + ε]× [x̄d − ε, x̄d + ε] and Y K

K = mε for some ε > 0

and m > 0 sufficiently small. Then for any ε′ > 0, there exists a finite time T = T (m, ε, ε′) such that

lim
K→∞

P
(
XK
a,T +XK

d,T ≤ ε′K,
Y K
T

K
∈ [ȳ − ε′, ȳ + ε′]

)
= 1.

The idea for proving Proposition B.26 is very similar to the one of Proposition B.23. The only
difficulty arises in the preceding lemma, where we have used explicitly that the invading population
is benefiting from horizontal transfer. As before, assume that the initial condition of the process
1
K (XK

a , X
K
d , Y

K) is contained in the set

A3
ε := [x̄a − 2Aεξ, x̄a + 2Aεξ]× [x̄d − 2Aεξ, x̄d + 2Aεξ]× [ε,

√
ε]

for fixed ε > 0. We want to show that the solution to the dynamical system

ẋa = xa(a1 − d1 − C(xa + y)) + xdσ2 + τ
xay

xa + y

ẋd = pCxa(xa + y)− (d2 + σ2)xd

ẏ = y(b1 − d1 − C(xa + y))− τ xay

xa + y

(B.29)

converges towards the equilibrium (0, 0, ȳ) for any starting condition from A3
ε.

Lemma B.27. Consider the dynamical system (B.29). If the initial condition (xa(0), xd(0), y) is
contained in the set A3

ε and the inequalities (B.28) are satisfied, then

lim
t→∞

(xa(t), xd(t), y(t)) = (0, 0, ȳ).

Proof. The concept of the proof stays the same. Initially the function y(t) is increasing until eventually

C(xa + y) + τ
xa

xa + y
= b1 − d1.

We again consider the system for (xa, xd) under this condition and need to show that this implies
(xa(t), xd(t))→ 0 as t→∞. As before, we calculate

C(xa + y)− τ y

xa + y
= C(xa + y) + τ

xa
xa + y

− τ = b1 − d1 − τ

and
pCxa(xa + y) = pxa

(
C(xa + ya) + τ

xa
xa + y

− τ xa
xa + y

)
≤ pxa(b1 − d1).
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Thus, we consider
ẋa = xa(a1 − b1 + τ) + σ2xd

ẋd = pxa(b1 − d1)− (d2 + σ2)xd.
(B.30)

Again, we compute the determinant of the coefficient matrix

A =

(
a1 − b1 + τ σ2

p(b1 − d1) −(d2 + σ2)

)
to be 0 if and only if

a1 = b1 − τ −
pσ2Cȳ

d2 + σ2
.

From (B.28) we know that

a1 < −
pσ2Cȳ

d2 + σ2
− τ + d1 + Cȳ = − pσ2Cȳ

d2 + σ2
− τ + b1,

so (0, 0) is again the only equilibrium and the eigenvalues of A are negative, so for any positive initial
condition the solution of the system (B.29) converges to (0, 0). The remainder of the proof can be
taken from the proof of Lemma B.24. �

Now, we can prove Proposition B.26.

Proof of Proposition B.26. The proof is identical with the one of Proposition B.23, except for the need
of using Lemma A.7 in this section instead of Lemma B.24. �

Proposition B.28. Assume that (B.21) and the inverse inequalities of (B.28) are true, that is

b1 − τ − d1 − Cx̄a < 0 and − (a1 + τ − d1 − Cȳ) <
σ2pCȳ

d2 + σ2
. (B.31)

Consider the process (XK
a , X

K
d , Y

K) described above before Proposition B.26 with initial condition
1
K (XK

a,0 +XK
d,0) = mε and Y K

K ∈ [ȳ − ε, ȳ + ε] for some ε > 0 and m > 0 sufficiently small. Then for
any ε′ > 0, there exists a finite time T = T (m, ε, ε′) such that

lim
K→∞

P

(
Y K
T ≤ ε′K,

XK
a,T

K
∈ [x̄a − ε′, x̄a + ε′],

XK
d,T

K
∈ [x̄d − ε′, x̄d + ε′]

)
≥ 1− oε(1).

Proof of Proposition B.28. In this case, we are looking at the invasion of a population with dormancy
which benefits from horizontal transfer. This is the same situation as in Proposition B.15, where the
difference is only in the dormancy of the initially resident trait. As above, we have never used this
aspect in the proof and hence the chain of arguments is still valid, where again the couplings with the
initially resident population need to be slightly adapted. �
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