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ABSTRACT 
Poverty maps are essential tools for governments and NGOs to track 
socioeconomic changes and adequately allocate infrastructure and 
services in places in need. Sensor and online crowd-sourced data 
combined with machine learning methods have provided a recent 
breakthrough in poverty map inference. However, these methods 
do not capture local wealth fuctuations, and are not optimized to 
produce accountable results that guarantee accurate predictions to 
all sub-populations. Here, we propose a pipeline of machine learn-
ing models to infer the mean and standard deviation of wealth across 
multiple geographically clustered populated places, and illustrate 
their performance in Sierra Leone and Uganda. These models lever-
age seven independent and freely available feature sources based on 
satellite images, and metadata collected via online crowd-sourcing 
and social media. Our models show that combined metadata fea-
tures are the best predictors of wealth in rural areas, outperforming 
image-based models, which are the best for predicting the highest 
wealth quintiles. Our results recover the local mean and variation 
of wealth, and correctly capture the positive yet non-monotonous 
correlation between them. We further demonstrate the capabilities 
and limitations of model transfer across countries and the efects 
of data recency and other biases. Our methodology provides open 
tools to build towards more transparent and interpretable models 
to help governments and NGOs to make informed decisions based 
on data availability, urbanization level, and poverty thresholds. 

CCS CONCEPTS 
• Computing methodologies → Neural networks; • Applied com-
puting → Forecasting; • Information systems → Geographic 
information systems; Location based services. 
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1 INTRODUCTION 
The frst Sustainable Development Goal (SDG) set by the United 
Nations is to eradicate poverty by 2030 [47]. Although fewer people 
were living in extreme poverty around the world by 2018, the de-
cline in poverty rates has slowed down ever since. This stagnation 
was partly due to the COVID-19 pandemic, but the ongoing impact 
of political turmoils, wars, and climate catastrophes set further bar-
riers for progress in this direction [9]. Traditional data collection 
techniques fail to follow the efects of such rapidly changing circum-
stances, therefore, new data collection and analysis techniques are 
required. Further, the identifcation of places in need requires rapid, 
fexible and precise inference to inform the adequate allocation of 
resources, which are often misplaced due to coarse-grained and 
outdated statistics provided by census and survey data. 

The fast penetration of mobile phones [4, 5] has enabled the 
collection and use of big data for social good. For instance, mo-
bile phone call detailed records (CDR) and mobile airtime payment 
transactions have been used to infer several socioeconomic indi-
cators [15, 18, 25], which in turn have been applied to map socioe-
conomic efects on the structure and dynamics of the underlying 
social networks [19, 40, 41]. One main limitation of CDRs, however, 
is that mobile phone data is proprietary and access is often granted 
via purchase or partnerships. On the contrary, the emergence of 
Web 2.0 technologies has opened new avenues for collecting and 
sharing online annotations and digital traces [35, 59]. Further, open 
data initiatives have strengthen collaborations between industry, 
academia, and the public sector [44], which have made it easier 
to study social, economic, and environmental issues through the 
estimation of socioeconomic indicators from online data [1, 3, 6, 42]. 

In recent years, satellite imagery has attracted great attention 
as a mean of inferring high-resolution poverty maps. As a frst 
attempt, nightlight intensity of places has been shown to be a good 
estimator of economic activity [26], especially for non-extreme 
poor areas [54]. Moreover, they can even capture household con-
sumption of the extreme poor when combined with daylight satel-
lite images [36]. Other approaches leverage the visual qualities of 
street-level imagery and daylight satellite images to detect objects 
(e.g., vehicles, infrastructure, and terrain) and use them as proxies 
of wealth of neighborhoods [2, 7, 8]. In principle, any geospatial 
dataset can be used to build poverty maps from their spatial cor-
relations with socioeconomic indicators. For instance, advanced 
deep learning methods trained on multiple features (e.g., satellite 
images together with population density maps) provide scalable 
and improved predictions of wealth at high-resolution for low- and 
middle-income countries around the globe [14, 39]. 

While these methods represent a great advance towards scalable, 
time-variant and fne-grained poverty maps, they commonly opti-
mize performance over representativeness, and depend strongly on 
the availability of all data sources. As a result, they might perform 
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poorly in countries with scarce data and fall short in accuracy guar-
antees necessary for policy makers. In addition, most of these meth-
ods use machine learning algorithms with good performance con-
ditional to specifc data engineering and parametrization choices. 
This limits their generalization and transferability potential, espe-
cially in countries in emergency undergoing rapid demographic 
and environmental changes. Although the parametrization of these 
models is well documented, their robustness against data scarcity, 
skewness, and time is usually not evaluated or not transparent. 

Here, we bridge this gap by performing a systematic study to 
better understand the capabilities of existing methods and feature 
sources, which to date have mostly been studied in isolation. Further, 
we propose regression models that combine features from seven 
freely available sources to show their overall performance and their 
strength at the intersection between socioeconomic classes and 
types of settlements. We train our models to infer not only the 
mean wealth of places, but also their standard deviation to give a 
more precise view of how wealth is distributed across households 
within each populated place. In line with these objectives, we frame 
our analysis around the following research questions. 

RQ1: What type of model and features are best at predicting 
both the mean and standard deviation of wealth? 

RQ2: Is the goodness-of-ft of models consistent across types 
of settlements and socioeconomic classes? 

RQ3: How broadly is wealth distributed in each place? Is the 
best model able to capture the correlation between the 
mean and standard deviation of wealth? 

RQ4: What is the trade-of between data availability and geo-
graphical model transfer? 

We showcase performance in Sierra Leone (SL) and Uganda 
(UG), two Sub-Saharan African countries characterized by extreme 
poverty [9, 47]. Using the last two household surveys conducted 
by the Demographics and Health Program (DHS) [56], we compute 
the international wealth index (IWI) [64] of localized population 
clusters in these countries. In addition, we extract 173 metadata-
and 784 image-based features for each location, at no cost, from 
four data providers: Google, Meta (Facebook), OpenStreetMap, and 
OpenCelliD. The image features refer to embeddings extracted from 
daylight satellite images while the metadata features include demo-
graphics, mobility, population density, nightlight intensity, mobile 
communication antennas, and ground infrastructure. We found that 
inference performance varies widely across models, feature sources, 
and geography suggesting that wealth and poverty have diferent 
characteristics across diferent countries. For instance, population 
density is the best predictor in SL while nightlight intensity is 
the best in UG. In both cases, however, mobility features are the 
second best predictors. Moreover, the combination of all metadata-
based features outperforms the image-based and individual-source 
features in both countries. Interestingly, geographical model trans-
ferability pays-of when features are partially missing. Finally, while 
no model predicts wealth equally well at the intersection between 
socioeconomic classes (e.g., poor, rich) and types of settlements 
(i.e., urban, rural), we found that, there is a potential in combining 
multiple models to increase performance. 

Our analysis sheds light on how to use sensor and online crowd-
sourced data to reliably infer high-resolution poverty maps. To en-
sure transparency and reproducibility, we make our code and results 
openly available [20], and share an online visualization tool [69] to 

interactively demonstrate that our inferred high-resolution poverty 
maps can be used to identify places in need. 

2 RELATED WORK 
Closest to our work, [14, 39] combine multiple feature sources to 
predict high-resolution poverty maps using wealth as a proxy of 
poverty. In terms of model architecture, we build upon [36, 39] by 
adding more features into the pipeline and combining two regres-
sor models, one based on images and the other based on metadata 
(tabular data). Note that the advantage of having multiple features 
is that the limitations of some sources can be overcome by the 
strengths of others. For example, models can learn correlations 
between features characterizing the same location but coming from 
diferent sources [60]. In terms of analysis, only [14] goes beyond 
the overall performance of the model and assess feature importance, 
and measures the goodness-of-ft of geographical model transfer-
ability and diferent sampling methods. Compared to this work, we 
additionally show under which circumstances geographical model 
transferability pays-of given the available features. Further, we 
compare the performance of multiple models and show their weak-
nesses and strengths at the intersection between socioeconomic 
classes and types of settlements. Importantly, unlike in any other 
work, we infer not only the mean but the standard deviation of the 
distribution of wealth in populated places; in this way we provide 
information about the level of socioeconomic diversity at each loca-
tion. For a profound review on the potential of combining new kinds 
of data with artifcial intelligence (or machine learning algorithms) 
to achieve one or multiple SDGs, see [17, 25, 30–33, 45, 53]. 

3 METHODS 

3.1 Ground-truth data 
We use two types of surveys available through the Demographic 
and Health Surveys Program [56]: the Standard Demographic and 
Health Survey (DHS) and the Malaria Indicator Survey (MIS). Both 
are nationally-representative population-based surveys conducted 
at a household level. In particular, we focus on the housing char-
acteristics questionnaire, which helps estimate the wealth of a 
household by considering the quality and quantity of available fa-
cilities or assets at home. In these surveys, household respondents 
are anonymized and assigned to a geo-located cluster from which 
we can compute mean wealth values and their respective standard 
deviations. For simplicity, we refer to both surveys as DHS surveys. 
Cluster locations. Clusters are typically census enumeration 
areas selected with probabilities proportional to the size within each 
stratum [57], and often contain about 25-30 households. Among 
other attributes, clusters possess a type of settlement (urban/rural) 
and are geo-located with added noise to protect the exact location of 
respondents [55]. The displacement is random and varies according 
to the type of settlement: Up to 2 Km for urban and up to 5 Km 
for rural clusters. A further 1% of places in the latter group are 
displaced by a maximum of 10 Km. Note that most DHS clusters 
are located in rural areas, 66% in SL and 76% in UG, see Table A1. 
International wealth index (IWI). The IWI score is a comparable 
asset-based index of household’s material well-being, or economic 
status, that can be used for all low and middle income countries [64]. 
The IWI score for each household is computed using the answers of 
10 questions taken from the housing characteristics or living stan-
dards questionnaire. Then, asset weights are derived using principal 
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component analysis (PCA) [34] and re-scaled to achieve IWI scores 
between 0 and 100. Households with IWI=0 have no assets and 
possess the lowest quality housing. In contrast, households with 
IWI=100 represent the richest end of the spectrum. The advantage 
of IWI scores over other wealth indices provided by the DHS, is 
that IWI scores are comparable across countries and years. 

3.2 Populated Places 
In order to obtain a high-resolution poverty map of a given country, 
we collect all its populated places and use them as target locations 
to infer their IWI scores with a selected model. Populated places 
are all cities, towns, neighborhoods, villages, hamlets and isolated 
dwellings that exist in OpenStreetMap (OSM) [51, 52], an online 
crowd-sourced platform that provides annotations or metadata of 
the entire world. As in the ground-truth data, most populated places 
are located in rural areas, 96% in SL and 99% in UG, see Table A1. 

3.3 Features 
For each location, given by the centroid of each cluster and popu-
lated place, we extract 957 features from 7 data sources described 
below (see Table A2 and [20] for technical details). The default 
bounding-box width or radius used to query all features within 
a location is 1 mile (≈ 1.6 Km). In some cases, we also query fea-
tures within 2.0, 5.0, and 10.0 Km to capture the original location of 
clusters, see Section 3.1. All features were extracted in June 2022. 
Type of settlement. Rural areas often host the poorest population 
of a country, and despite being characterized by their relative abun-
dance of natural resources, they lack good quality of services and 
infrastructure [67]. Thereby, we distinguish each cluster according 
to the urban and rural divide by using a fag provided by the DHS. 
In the case of populated places, we follow OSM’s standards [51] 
and defne urban places as cities, towns, and neighborhoods, and 
rural places as villages, hamlets, and isolated dwellings. 
Daylight satellite images. We download the daylight satellite 
image of each place using the Google Maps Static API [29]. These 
images are recorded in RGB bands with the resolution of 640x640 
pixels corresponding to ≈ 2.5 m per pixel. We normalize all pixels, 
and remove the logo and copyright label to prevent erroneous 
generalizations.1 The result image covers an area of ≈ 1.6x1.6 Km2. 
Population. High-resolution population density maps are obtained 
through the “Data for Good” platform by Meta [21]. In a nutshell, 
using state-of-the-art computer vision techniques, these maps esti-
mate the number of people living within 30 m grid tiles in nearly 
every country around the world [66]. Using these maps, we build 9 
population-based features, see Table A2. The “gravitational” features 
are motivated by the literature on population dynamics [37], and 
the selected � exponents are typical values found in real-world 
datasets [10]. We use the “closest tile” information and “total pop-
ulation” within diferent radii for each location to overcome the 
diferent resolutions between our locations and the population tiles. 
Mobility. Movements between tiles are also obtained through 
Meta’s “Data for Good” platform [43]. These maps aggregate move-
ment counts per day in three 8-hour windows to provide quick 
and localized responses after any natural disaster, and health crisis. 
The data provides the number of people moving between tiles at a 

1We crop the image by 620x620 pixels starting from the top-left corner. 

given day and time-window as well as a baseline refecting the aver-
age movement between the same tiles, weekday, and time-window 
before the crisis. The resolution of these tiles is roughly 600x600 
m2 at the equator and they do not necessarily map the population 
tiles. We use the baselines from the COVID-19 maps, and generate 
mobility networks where every tile is a node, and every movement 
is an edge in the graph. In SL (UG) we found 544 (2.5K) nodes, 
2.9K (10.8K) edges, and 238K (1.2M) movements. First, we assign 
to each location the closest tile, and then derive 27 mobility-based 
features (see Table A2). Note that while all these features align 
with previous fndings on the relationship between the wealth in 
Sub-Saharan African countries and mobility patterns (frequency, 
distances, modalities, and purpose) [12], the “movements between 
tiles” dataset has not been used earlier to predict poverty maps. 
Demographics. Using the Marketing API by Meta [24], we extract 
the number of monthly active users (MAU) on Facebook. Precisely, 
for each location we make 37 independent queries to obtain the 
number of MAU that match certain demographics or characteristics 
and whose home location lies within a radius of 1.6 Km. Motivated 
by previous work [22, 23, 27], the idea is to use these 37 demographic-
based features as proxies of wealth, see Table A2. For instance, one 
hypothesis may claim that the more smartphone and tablet owners 
in the area, the wealthier the users living in there. 
Infrastructure. Similar to the daylight satellite images, the in-
frastructure features capture the development of a place. Their 
main diference is that while infrastructure features are collected 
via online crowd-sourcing, satellite images are remotely sensed. 
Further, infrastructure features are computationally easier to han-
dle, however, they often provide outdated or no information about 
unpopular places. Here, we collect 54 infrastructure-based features 
from OSM [46, 50, 52], e.g., number of buildings or ATMs within a 
1.6x1.6 Km2 bounding box around each location, and the distance 
to the closest road or a particular point of interest, see Table A2. 
The advantage of the “closest distance” features (without bounding 
boxes) is to help mitigating the missing data and unpopularity is-
sues (e.g., the poorer the area, the longer the distance to the closest 
infrastructure). Note that although OSM features can be queried 
with a specifc date, this date does not necessarily refect the time 
since the feature has been physically available; instead, it shows its 
last modifed date in the platform. Thus, we omit time in the query. 
Connectivity. Another important proxy of wealth is provided by 
the number of antennas within an area, and the distance to the 
closest tower. For each location, we construct 9 connectivity-based 
features extracted from OpenCelliD [38], see Table A2. As before, 
the distance features help us mitigate missing values. 
Nightlight intensity. The intensity of light at night has been 
shown to be a good predictor of wealth, especially in wealthy ar-
eas [7, 36, 39, 54]. We leverage these correlations and construct 
36 nightlight-based features for each location using the monthly 
average radiance composite images extracted from Google Earth 
Engine [13, 28]. In particular, we measure 9 statistics within 4 dif-
ferent bufers, see Table A2. We apply a mask to all images and 
retrieve all pixels whose average radiance is greater than or equal to 
a threshold, rad ≥ 10, and compute the respective fraction of pixels, 
area, and radiance that fulfll that criteria. Though this threshold 
is arbitrary, it serves as a proxy to exclude empty areas. Finally, 
we rank all pixels based on their radiance and compute the mean 
among the top-30% and lowest-30%. Note that this is the only data 
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Figure 1: Architecture. We propose three models that learn to predict both the mean wealth of places and their respective 
standard deviation. The former represents the average wealth of households in a given area, and the latter indicates by how 
much the wealth of local households deviates from the mean. The Convolutional Neural Network model (CNN) is trained with 
daylight satellite images, and the CatBoost model (CB) is trained with metadata features such as demographics and mobility. 
The CNN+CB model is an extension of CB where in addition to the metadata features, it includes the third-to-last layer of the 
CNN as a low-dimension feature vector representation of the satellite images. Pre-processing of ground-truth data includes the 
computation of IWI scores per household, aggregation of IWI scores per cluster, and confguration of train and test sets to 
control for data recency, noisy locations, small training samples, and class imbalance. 

source that supports querying data from the past. Thus, in the case 
of DHS clusters, we make sure that the year of the nighttime data 
matches the year of the survey, and for populated places we query 
the current year. Additionally, we standardize each metric per year. 

3.4 Models 
We analyze the distribution of wealth across households in each clus-
ter, and found that around 82% of them are normally distributed.2 

Thus, we propose three machine learning models that learn to pre-
dict both the mean and standard deviation of IWI scores, see Figure 1. 
By predicting these two values, we gain additional information on 
how much the wealth of households deviates from each other in 
each cluster. In addition, using the inferred distributions allows to 
build synthetic populations which are crucial inputs for develop-
ment or epidemic modeling. For implementation details, see [20]. 

Image-based model (CNN). Our frst model learns to predict IWI 
scores using daylight satellite images, see Figure 1. Inspired by [48], 
this Convolutional Neural Network model contains 22 layers whose 
fnal-layer activation function is linear and uses the mean-squared-
error (MSE) as loss function. Here, we tune 4 hyper-parameters. 

Metadata-based model (CB). Our second model is a CatBoost 
regressor model [58] that learns to predict IWI scores from 173 meta-
data features, see Figure 1 and section 3.3. We additionally run this 
model for each data source separately to evaluate their individual 
performance. This model is tuned by 11 hyper-parameters. 

Combined model (CNN+CB). Our third model feeds the third-to-
last layer of the CNN (layer #19) into the CB model, as additional 
784 features, see Figure 1. Here, we verify whether all 957 (metadata 
and image-based) features produce the highest performance. 

2Unlike the power-law wealth distribution of entire populations. 

3.5 Training 
We partition the data into train (80%) and test (20%) sets, and strat-
ify these partitions with respect to a 10-class discretized value of 
wealth (i.e., dividing IWI scores into 10 equal-width bins). Note that 
these classes are used for sampling purposes only, thus, they do not 
intervene in training or inference (see Section 5 for a discussion 
on sampling alternatives). We further use the train set for a 4-fold 
cross-validation, and tune the hyper-parameters of each model via 
Random Search on 200 combinations. We then use the best combi-
nation of hyper-parameters to train the model on the entire train 
set. To control for random fuctuations, we repeat this procedure 
3 times (i.e., in each run we shufe the data and use diferent ran-
dom seeds) and report the mean performance. Note as well that we 
evaluate our models on diferent confgurations of training data: 
(i) We use diferent years of ground-truth data to study data re-
cency issues, (ii) compare diferent relocation strategies to evaluate 
performance on noisy locations, (iii) compare the performance of 
the CNN model with and without data augmentation, (iv) compare 
multiple sample weight strategies to mitigate wealth imbalance, 
and (v) compare the performance of our models across diferent 
feature sources. Thus, for comparison, the split of the data sets is 
the same across relocations of the same recency and run. 

4 RESULTS 

4.1 Confguration trade-ofs 
While designing our models, we identifed several common ground-
truth data issues that can undermine the wealth inference problem. 
Their systematic exploration provides our frst set of contributions. 

Data recency. When using multiple data sources, a possible com-
plication comes from the diferent times when the datasets are 
recorded. For instance, most features are derived from snapshots 
taken in 2022, while the most recent available surveys date back 
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to 2019 and 2018 for SL and UG, respectively. Additionally, the 
most recent surveys only represent a few clusters, which might 
not be sufcient to train generalizable machine learning models. 
To mitigate the trade-of between sample size and data recency, we 
frst evaluate our models on diferent temporal confgurations of 
training and testing data using the latest two surveys as follows. (i) 
O-O: trains and tests on 2016, the oldest data. (ii) N-N: as before but 
on the newest data, 2018 in UG and 2019 in SL. (iii) O-N: trains on 
the oldest data, and tests on the newest. (iv) ON: combines both years 
in the train and test sets. We apply stratifed sampling in (i), (ii), and 
(iv), see Section 3.5. Figure B1 (a) and (e) show the results of recency 
for SL and UG, respectively. We found that the best performance 
for predicting the mean IWI in both countries is achieved by ON, 
while N-N and O-O are best for predicting the standard deviation 
in SL and UG, respectively, followed by ON. Thus, we choose ON 
as a baseline for the upcoming experiments since overall provides 
the best performance in both countries with a larger sample. For 
demonstration, we developed an interactive tool [69] to compare 
the inferred IWI scores at two diferent points in time. 
Relocation. Geo-located ground-truth data is anonymized by added 
noise to each cluster location to preserve the confdentiality of sur-
vey respondents [55]. While this is fundamental for ethical reasons, 
it induces uncertainty in the predictions. Previous work addresses 
this issue by either covering bigger areas around each cluster [14], 
or re-arranging locations in an iterative way while also adjusting 
their wealth [39]. While these options are plausible, it is unclear 
by how much they afect the prediction. Here, we move the noisy 
location of a cluster to the location of the closest populated place 
(obtained from OSM) without altering its IWI score. In case multiple 
clusters are assigned to the same populated place, we prioritize the 
cluster with fewer other potential matches. We repeat this itera-
tively until all clusters are re-arranged. We test two alternatives of 
this algorithm: (i) rc: where only rural clusters are relocated to their 
closest rural populated place, and (ii) ruc: where both rural and 
urban clusters are relocated accordingly. Figure B1 (b) and (f) show 
the results of relocation. In UG it is best to keep the noisy locations, 
while in SL performance improves when all or only rural clusters 
are relocated, though the gain compared to no relocation is minor. 
Thus, we keep the noisy locations for the upcoming experiments. 
Sample size. The performance of deep neural networks often im-
proves with larger amounts of training data, and the ≈ 1000 data 
points obtained by adding up the last two available surveys (see Ta-
ble A1), might still not be enough. Thus, we apply ofine augmen-
tation during training to increase the training samples by 500%. 
In particular, for each cluster in the image-based model (see Sec-
tion 3.4), we generate 5 new images as modifcations of the original 
satellite image by applying diferent augmentation techniques.3 

Unfortunately, our experiments suggest that augmentation adds 
little to nothing to the performance, see Figure B1 (c) and (g). How-
ever, this can be improved by considering more sophisticated tech-
niques [49, 62], which we leave for future work. 
Class imbalance. A further complication comes from imbalanced 
ground-truth data. In terms of types of settlements, both clusters 
and populated places are mostly located in rural areas, see Table A1. 
Wealth is also unequally distributed across clusters (i.e., ���� ≈ 0.31 
for both countries4), making the poor areas the majority. Recall that 

3brightness, noise, crop, erase, and rotation or fips. 
4The Gini coefcient is a measure of income inequality in society [65]. 

(a) Sierra Leone

IWI mean

(b) Uganda
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Figure 2: High-resolution poverty maps. Inferred mean (left) 
and standard deviation (right) of IWI scores using the best 
models, CB� and CB, at the populated places of (a) SL 
and (b) UG, respectively. Maps on the left (right) are color-
coded from brown-poor (orange-homogeneous) to green-rich 
(purple-heterogeneous) centered on their respective means. 
The capitals of both countries are among the wealthiest and 
more heterogeneous areas. Also, SL appears poorer than UG, 
which aligns with the estimated poverty rates by the World 
Bank [68]: 56.80% in 2018 for SL, and 21.40% in 2016 for UG. 

IWI scores are continuous real values that range from 0 (poorest) 
to 100 (richest). In order to account for socioeconomic class imbal-
ances we frst discretize these scores into 10 equal-width bins. Then, 
we apply a class-balanced loss based technique [16] to generate a 
weight for each data point in the training sample and pass these 
weights to the classifer.5 We see in Figure B1 (d) and (h) that adding 
sample weights only benefts the metadata model in SL. 

4.2 Performance 
Our second contribution and main outcome of our methodology is 
the inferred high-resolution poverty maps of SL and UG, see Fig-
ure 2. These maps are explained in more detail, for all investigated 
models, in our online interactive tool [69]. 
5We control the imbalance issues on wealth and type of settlement separately and in 
combination using 4 techniques: heuristics, Inverse Number of Samples (INS), Efective 
Number of Samples (ENS), and compute_sample_weight from sklearn in python [63]. 
Due to space limitations, out of the 20 confgurations, we report results using ENS 
with � = 0.9, the technique with best performance, see [20] for more details. 
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Table 1: Performance by model and feature-source. Each row shows the normalized root-mean-squared error (NRMSE= �) of 
predicting the mean � and standard deviation � of IWI scores. The CatBoost model (CB) is trained with metadata features 
(i.e., Demographics, Mobility, Population, Nightlight intensity, Antennas, and Infrastructure), and the CNN model (CNN) with 
daylight satellite images. The combined model (CNN+CB) uses all features. Model sub-indexes refer to “weighted samples” 
(CB� ) and “ofline augmentation” (CNN� ), two techniques applied during training to correct for wealth imbalance and small 
samples, respectively. The best performance across models is shown in blue, and within each model type in bold. 

Features Sierra Leone Uganda 

De Mo Po Nl An In Im �� �� �� �� 

Metadata-all CB ✓ ✓ ✓ ✓ ✓ ✓ - 0.46 0.81 0.46 0.83 
CB� ✓ ✓ ✓ ✓ ✓ ✓ - 0.44 0.78 0.47 0.85 

Metadata-single CB� ✓ 
-

-
✓ 

-
-

-
-

-
-

-
-

-
-

0.73 
0.47 

0.94 
0.81 

0.77 
0.55 

0.97 
0.92 

- - ✓ - - - - 0.45 0.79 0.61 0.90 
- - - ✓ - - - 0.52 0.83 0.50 0.86 
- - - - ✓ - - 0.52 0.87 0.56 0.89 
- - - - - ✓ - 0.51 0.85 0.61 0.89 

Image-only CNN 
CNN� 

-
-

-
-

-
-

-
-

-
-

-
-
✓ 
✓ 

0.57 
0.59 

0.90 
0.94 

0.60 
0.59 

0.94 
0.91 

Combined CNN+CB ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.45 0.82 0.51 0.86 
CNN+CB� 
CNN� +CB 
CNN� +CB� 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

✓ 
✓ 
✓ 

0.45 
0.46 
0.45 

0.80 
0.82 
0.79 

0.52 
0.47 
0.47 

0.86 
0.83 
0.85 

Our third and last set of contributions addresses our research 
questions. Here, we disentangle the performance of our models 
by reporting the normalized root-mean-squared errors (����� = 
���� ) for the inference of both predicted mean and predicted stan-��_true 

dard deviation (STD). Results are based on the combination of the 
last two available surveys using noisy locations. For comparison, we 
report model performance with and without augmentation (CNN� 
vs. CNN), and with and without sample weights (CB� vs. CB). 
RQ1: Model selection and feature-source importance. As shown 
in Table 1, we fnd that the metadata-all models, which use all non-
image features, outperform the other models in terms of predicted 
mean (�� ) and STD (�� ) of IWI scores. In SL, the CB� model, that 
balances the skewness of wealth in the data, provides the best per-
formance, while the unbalanced CB model appears the best in UG 
(shown in blue). Interestingly, including all features in the combined 
model improves the performance only for UG as compared to the 
performance of individual feature-sources. 

From the metadata-single results shown in Table 1, we fnd that 
while most of the features can provide relatively good predictive 
performance, the population (Po) and nightlight intensity (Nl) fea-
tures alone are good predictors of wealth in SL and UG, respectively. 
This aligns with previous studies that show that population den-
sity [11] and luminosity [36] are strongly correlated with economic 
growth. Surprisingly, the image-only models achieve the worst per-
formance, however, they can be improved by combining them with 
the metadata features. 
RQ2: Intersectionality. The overall performance shown above is 
not informative about the intersectionality of the models, e.g., the 
prediction of wealth in poor-rural areas might not be as accurate 
as in rich-urban areas. Therefore, we assess the performance of 
our models at the intersection between types of settlements and 
socioeconomic classes; both derived from the DHS data. The former 

is given, and the latter we infer by transforming the true mean IWI 
scores into quintiles (i.e., 5 equally-populated bins). Results based on 
the predicted mean wealth (�� ) are shown in Table 2. We see that the 
CB models, which appeared to be the best in the overall performance 
(in Table 1), were found to be good only in certain regions. In SL, 
the lowest quintiles (Q1, Q2) are best captured by the CB model 
in rural areas, while the middle (Q2, Q3) and rich quintiles (Q4, 
Q5), regardless of their type of settlement, are best captured by the 
CNNs and the combined models, respectively. In UG, on the other 
hand, the richest quintile (Q5) is best captured by the CB model, 
while the middle quintiles (Q2-Q4) are best explained by the CNNs 
or combined models everywhere. Moreover, the poorest quintile 
(Q1) is best captured by the combined and CB models in rural and 
urban areas, respectively. These results demonstrate that there is 
no model that fts very well all types of settlements and wealth 
quintiles at the same time; thus, it is important to systematically 
explore them across diferent sub-populations. 

RQ3: Wealth variability. When predicting aggregated economic 
indicators, mean values are often not enough to understand the 
distribution of wealth across households. Thus, by predicting the 
STD, and understanding its relation with the mean, we gain ad-
ditional insights about the socioeconomic diversity of individuals 
living in the same populated places. From the results shown in Fig-
ure 3, we fnd that the best inference model in each country predicts 
well—with slight overestimation—the minimum mean wealth as 
compared to the true values (orange curves in Q1); crucial for pol-
icy making when targeting places in need. However, the inference 
somewhat underestimates the mean wealth at the richest end of the 
spectrum (Q5) as the models miss to capture the wealth of outlier 
rich locations; especially in urban areas (blue curves). 

Meanwhile, we also fnd a positive and signifcant correlation 
between the mean and STD of wealth for both true and predicted 
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Table 2: Performance by intersectionality. For each country we divide the true mean IWI scores into quintiles and measure the 
root-mean-squared error (RMSE) of predicting the mean wealth (�� ) at the intersection between countries, types of settlements, 
quintiles, and models. Bold values refer to the best performance in each quintile and type of settlement. 

Sierra Leone Uganda 

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 

Rural 

Urban 

CB 
CB� 
CNN 
CNN� 
CNN+CB 
CNN+CB� 
CNN� +CB 
CNN� +CB� 
CB 
CB� 
CNN 
CNN� 
CNN+CB 
CNN+CB� 
CNN� +CB 
CNN� +CB� 

5.48 
7.64 
7.72 
8.96 
6.24 
6.23 
6.74 
6.55 

-
-
-
-
-
-
-
-

3.18 
4.83 
4.48 
5.07 
3.49 
3.66 
3.38 
3.45 
18.07 
10.30 
4.54 
6.77 
15.48 
14.15 
16.17 
15.99 

5.77 
5.18 
4.67 
4.80 
4.78 
4.75 
5.03 
5.02 
8.13 
8.16 
2.83 
2.21 
4.73 
6.53 
6.84 
8.06 

10.46 
10.18 
10.59 
10.30 
9.81 
9.74 
10.55 
10.54 
6.18 
8.67 
11.03 
10.96 
6.70 
6.77 
5.82 
5.75 

23.20 
22.47 
22.56 
23.41 
20.18 
21.36 
22.64 
22.11 
9.69 
11.34 
12.84 
13.23 
9.62 
9.33 
9.48 
9.31 

7.01 
8.83 
9.84 
9.66 
7.20 
7.67 
6.67 
6.87 
6.42 
11.70 
9.77 
10.11 
9.02 
8.66 
10.45 
8.86 

4.06 
5.08 
5.51 
5.11 
4.49 
4.51 
4.26 
4.15 
6.96 
7.38 
5.41 
5.10 
5.99 
7.13 
5.77 
6.54 

3.63 
5.06 
4.87 
4.61 
4.26 
4.22 
3.35 
3.59 
10.08 
12.19 
11.95 
13.94 
10.63 
10.96 
10.03 
9.86 

8.04 
8.47 
7.55 
7.44 
7.67 
7.59 
7.54 
7.59 
6.77 
9.68 
7.77 
8.34 
7.71 
8.13 
6.67 
6.72 

12.54 
15.48 
16.47 
16.72 
15.07 
15.07 
13.78 
13.84 
9.33 
12.83 
13.38 
13.18 
10.97 
11.08 
9.67 
9.70 

values; especially in rural areas (orange curves). This trend indi-
cates that larger socioeconomic variation characterizes wealthier 
places. However, in urban areas, this correlation tends to follow a 
non-monotonic pattern. While the STD appears to be the smallest 
at the poorest places, after reaching a maximum for middle class 
locations, it gets smaller for the richest areas. This means that while 
middle class people tend to live in places with higher socioeconomic 
variations, the poorest and the richest live in more homogeneous 
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Figure 3: Wealth variability. Relationship between the mean 
(x-axis) and standard deviation (y-axis) of wealth in SL and 
UG (columns) for urban (blue) and rural (orange) clusters on 
the test sets. True values are shown at the top, (a) and (b), and 
predicted values using the best model in each country are 
at the bottom, (c) and (d). Curves are 2�� order polynomial 
fts, and labels show the average # of places �̄, and the mean 
Pearson correlation �̄  between the two predicted variables. 

communities, signaling their segregation from the rest of the pop-
ulation. In Figure B2, we further confrm the positive correlation 
between population size and inferred wealth in populated places; 
aligned with our feature importance analysis. Moreover we fnd 
a strong distinction between rural and urban areas, the latter ap-
pearing more populated and wealthier, yet depicting the already 
mentioned segregated mixing patterns, especially in SL. 

RQ4: Cross-country model transferability. We test the transfer-
ability of our models by training them in one country to predict the 
wealth in the other without further training. Figure 4 shows the per-
formance of the models in terms of normalized root-mean-squared 
errors (NRMSE) for both within country (x-axis) and cross-country 
(y-axis) validations. We found three main patterns: (i) Model trans-
ferability across countries achieves higher errors compared to the 
within-country counterpart, i.e., most data points are above the diag-
onal. Although this was expected, CB models provide surprisingly 
good performance in transferability, landing close to the diagonal 
line in many cases. This can be due to the several metadata sources 
these models rely on since they may compensate data quality dif-
ferences across layers. An interesting exception is for SL, where the 
STD is somewhat better predicted from a CB model trained on UG 
than the corresponding model trained on SL, see the dark blue dot 
below the diagonal in Figure 4 (b). (ii) Model transferability is asym-
metric, i.e., training on SL to predict UG leads to smaller errors than 
vice versa. This may be due to the wider range of mean wealth in 
UG compared to SL, i.e., 99% of clusters in UG fall within the distri-
bution of mean wealth in SL, see Table A1. Thus, models trained in 
UG may infer values that fall of the wealth range characterizing SL, 
resulting in larger inference errors. (iii) There is a trade-of between 
model transferability and feature availability when only one feature 
source is present. Naturally, model transferability pays-of if no fea-
ture is available. However, if only the best metadata-single features 
are available, i.e., nightlight intensity (Nl) in UG and population 
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Figure 4: Cross-country model performance. We test model 
transferability by using the models trained in one country to 
predict the wealth in the other without further training. For 
each response variable (columns a and b), model (color), and 
country (markers), we show model performance in terms 
of normalized root-mean-squared errors (NRMSE) for both 
within country (x-axis) and cross-country (y-axis) validations 
for SL (×) and UG (·). Dotted lines with labels indicate the 
within-country metadata-single performance for population 
(Po), nightlight intensity (Nl), and demographics (De). 

(Po) in SL (leftmost dotted lines in Figure 4), then model transfer 
should be avoided since the transferred model’s performance is 
worse than using the single available local feature source; except 
for CNN� +CB∗ and CB when inferring STD in UG. On the other 
hand, if only the worst metadata-single features are available, i.e., 
demographics (De) (rightmost dotted lines in Figure 4), then model 
transferability yields an advantage for almost all models. 

5 LIMITATIONS AND FUTURE WORK 
The main limitations of our methods are rooted in multiple aspects. 
First, the recency, quality, coverage, and biases of the diferent data 
sources that we use may hinder the performance of the inference 
task. We discussed in detail the efects of these issues and showed 
how to address them. Meanwhile, the multiple layers of collected 
features seem to account for the efects of low data quality in certain 
layers, making our models successful in predicting wealth even in 
data-sparse regions. Second, even though our models achieve high 
performance, comparable with previous work [14, 39], we cannot 
assume the poverty maps to be the possibly most precise represen-
tation of actual wealth. As we argued, data recency and sample size 
are important aspects to consider during training. Moreover, the 
timestamps of most features do not match the timestamps of the 
ground-truth data; the former cannot be queried retrospectively 
in time. Thus, more recent ground-truth data is required to infer 
up-to-date poverty maps. Third, the current implementation of 
our methodology most reliably works for low- and middle-income 
countries since it relies on DHS survey data. Nevertheless, our code 
and results are openly available [20], thus, new types of ground-
truth data and features can be easily plugged into our framework, 
e.g., housing prices, mobile airtime payments, or street view im-
agery. Similarly, additional methods can be incorporated into our 
pipeline to extend the explanations of our results. For example, acti-
vation maps [2] can be used to understand the under-performance 
of the image-only models in poor areas, and geographical stratifca-
tion [14] could guarantee a better spatial coverage during training 
in addition to the stratifcation of wealth (cf. Section 3.5). 

Note that, while this and similar methodologies have been im-
plemented for a social good, they may also be misused, e.g., for 
commercial purposes which may increase the inequality gap be-
tween the rich and the poor. One way to mitigate this issue is by 
implementing better synergies between data providers and analysts 
to keep track of whom is using the data and for what purposes. 

In the future, we aim to tackle these limitations and explore 
the spatial and temporal transferability of single- and multi-source 
models with missing data layers at the target population. Further, 
we will consider combining the best of each model to produce more 
stable and consistent results across diferent sub-populations. 

6 CONCLUSION 
In this work, we showed how to produce high-resolution poverty 
maps to interpret wealth distributions using multimodal data. We 
proposed machine learning models that learn to predict the mean 
and standard deviation of wealth in places from low- and mid-
dle income countries, and showcased their capabilities in Sierra 
Leone and Uganda. These models rely on a multimodal architec-
ture composed by sensor and online crowd-sourced data. Moreover, 
we systematically studied four major issues namely data recency, 
noisy locations, small training samples, and class imbalance, and 
conducted an ablation study to evaluate their performance. 

Our fndings show that: (1) The combined data features outper-
form satellite images in solving the inference task. Further, popula-
tion and nightlight intensity features are the strongest predictors of 
wealth in SL and UG, respectively, followed by the mobility features 
in both countries. (2) There is no single model or feature source 
that can predict wealth very accurately at the intersection between 
all socioeconomic classes and types of settlements. However, in 
general, the poorest areas are best inferred by the CB models using 
metadata-only features, while wealthier areas are best inferred by 
the CNN or combined models using daylight satellite images. (3) Our 
models capture well the mean and standard deviation of wealth, 
their correlation, and non-monotonous dependencies. This way 
they provide information about the socioeconomic heterogeneity 
at given places and refect segregation between diferent classes. (4) 
There is an asymmetric trade-of between geographical transferabil-
ity and data availability where countries with sparse information 
may beneft from reusing models trained in other countries. 

To conclude, our results shed light on the importance of produc-
ing accountable models to guarantee accurate predictions across 
all types of settlements and socioeconomic groups. Finally, beyond 
our scientifc results, we made our code and results openly avail-
able [20], and built an online interactive visualization tool [69] to 
help identifying places in need for the development of fair policy 
and intervention designs. 
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A APPENDIX TABLES 

Table A1: Locations. Household and cluster data are gathered via the Demographics and Health Survey program (DHS), and 
populated places from OpenStreetMap (OSM). Rural and urban labels of clusters are directly assigned by the DHS, and for 
populated places we infer them from their type: urban if they are cities, towns or neighborhoods, and rural if they are villages, 
hamlets or isolated dwellings. Statistical signifcance (****), p-value ≤ 0.0001. 

Country Sierra Leone Uganda 

Years 2016, 2019 2016, 2018 
DHS households 19975 27798 
DHS clusters 893 1001 
- oldest, newest 336, 557 685, 316 
- urban 308 (34%) 242 (24%) 
- rural 585 (66%) 759 (76%) 
- IWI mean (�) 
min, max, mean, std.dev. 4.2, 72.7, 26.2, 15.6 2.0, 82.9, 24.8, 14.9 

- IWI std.dev. (�) 
min, max, mean, std.dev. 3.8, 22.8, 10.4, 3.5 3.9, 22.4, 11.4, 3.4 

- Pearson corr. (� and �) 0.71 (****) 0.64 (****) 
- Gini IWI mean 32 31 
WorldBank Gini index 35.7 (2018) 42.7 (2019) 
OSM populated places 9881 27791 
- urban 366 (4%) 348 (1%) 
- rural 9515 (96%) 27443 (99%) 
Relocated DHS cluster 705 (79%) 733 (73%) 
- urban 120 (39%) 71 (29%) 
- rural 585 (100%) 662 (87%) 

Table A2: Features. Population, mobility and demographics are datasets provided by Meta. Infrastructure features are extracted 
from OpenStreetMap. Connectivity features refer to the antennas provided by OpenCelliD. Nightlight intensity scores are 
provided by Google as well as the daylight satellite images. For more technical details see [20]. 

Name Source # Features 

Population † 

Mobility ‡ 

Meta 

Meta 

9 

27 

distance_to_closest_tile, population_in_closest_tile, total_population_within(radius), 
and gravitational_closest_tile� = population/distance� , where � ∈ {1.0, 1.5, 2.0} and 
radius ∈ {1.6, 2.0, 5.0, 10.0} Km. 
distance_to_closest_tile, average_distance_in, average_distance_out, people_flow_in� , 
people_flow_out� , in_degree� , out_degree� , pagerank� , and weighted_pagerank� , 
where � ∈ {None, 1.0, 1.5, 2.0}. When � = None, we assume raw values 
(without the � exponent), otherwise we adapt the gravitational formula [37] as before: 
metric/distance� , where the distance between the location and the closest tile 
is measured in meters using KD-tree nearest neighbor search [61]. 

Demographics § Meta 37 Behavior (5 mobility, 1 business, 4 network, 6 technology), Life events (2), Industry 
(4 employment), User device (4 assets), User-OS (5 assets), Education (4), Interests (2) 

Infrastructure † OpenStreetMap 54 Roads (4), Buildings (2), POIs (24 counts, 24 distances) 
Connectivity † OpenCelliD 9 distance_to_closest_cell, number_of_cells ∈ ������ , number_of_towers ∈ ������ , 

Nightlight intensity ‡ Google 36 
where radius ∈ {1.6, 2.0, 5.0, 10.0} Km. 
min, max, mean, median, frac_pixels, frac_area, frac_sum_rad, t30_mean, and l30_mean 

Daylight satellite images § Google -
for radius ∈ {1.6, 2.0, 5.0, 10.0} Km. 
A 640x640 image for each place at zoom level 16 (e.g., buildings and streets) 

† Open access ‡ Upon request § API costs can be covered by free-tiers, sand-box accounts, or Google Cloud research credits for Google products 
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Figure B1: Ablation results. Results on (a,e) recency, (b,f) relocation, (c,g) augmentation, and (d,h) weighting are shown for SL and 
UG, respectively. Each bar shows the performance of each model as the normalized root-mean-squared error (NRMSE) for the 
prediction of the mean � (light blue) and standard deviation � (dark blue) of the IWI scores. This normalization allows comparing 
the two outcomes, and we see that � is easier to infer than � . Recency and relocation values are averages across the CB and 
CNN models (i.e., neither weighted nor augmented samples). Additionally, experiments across diferent recency confgurations 
use no relocation (relocation=none). The rest of experiments use the combined recency (recency=ON) since in both countries, 
combining the last two available surveys as ground-truth yields the smallest �� across all recency confgurations. In terms of 
relocation, the noisy locations are best for UG (relocation=none), and while relocation is better in SL (relocation≠none), we use 
the noisy locations in further experiments since the diference in performance is minimal. Augmentation only benefts UG, 
and weighted samples beneft only SL. Note that the combined models (CNN∗+CB∗) are excluded from this analysis. 
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Figure B2: Mean wealth, variability and population size: These are the predicted values of wealth on the populated places of (a) 
SL and (b) UG using their respective best models CB� and CB. The x-axis shows the predicted mean IWI scores while the y-axis 
shows the predicted standard deviations. We see that urban places (blue) are often wealthier than the rural ones (similar as in 
the ground-truth data, see Figure 3), and wealthier places tend to be more populated than the poor. Here, population refers to 
the number of total people within the populated place in a diameter of � ≈ 1.6 Km from its centroid. Annotations refer to the 
number of populated places �, and the Pearson correlation � between the two predicted variables. 
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