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Abstract

We study the following game version of generalized graph Turán problems. For two
fixed graphs F and H , two players, Constructor and Blocker, alternately claim unclaimed
edges of the complete graph K

n
. Constructor can only claim edges so that he never claims

all edges of any copy of F , i.e. his graph must remain F -free, while Blocker can claim
unclaimed edges without restrictions. The game ends when Constructor cannot claim
further edges or when all edges have been claimed. The score of the game is the number
of copies of H with all edges claimed by Constructor. Constructor’s aim is to maximize
the score, while Blocker tries to keep the score as low as possible. We denote by g(n, H, F )
the score of the game when both players play optimally and Constructor starts the game.

In this paper, we obtain the exact value of g(n, H, F ) when both F and H are stars
and when F = P4, H = P3. We determine the asymptotics of g(n, H, F ) when F is a star
and H is a tree and when F = P5, H = K3, and we derive upper and lower bounds on
g(n, P4, P5).

1 Introduction

The Turán problem for a set F of graphs asks the following: What is the maximum number
ex(n,F) of edges that a graph on n vertices can have without containing any F ∈ F as a
subgraph? When F contains a single graph F , we simply write ex(n, F ). This function has
been intensively studied, starting with Mantel [17] and Turán [22] who determined ex(n, Kr)
where Kr denotes the complete graph on r vertices with r ≥ 3. See [8, 21] for surveys on this
topic.

There is a generalization of the Turán problem, when we count the maximum number of
copies of a certain graph H in a graph G on n vertices, provided that G does not contain
any F ∈ F as a subgraph, for a set F of graphs. To be more precise, let us introduce some
notation: for two graphs H and G, let N (H, G) denote the number of copies of H in G. We
say that a graph G is F-free, if G does not contain any F ∈ F as a subgraph. Given a graph
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H and a set F of graphs, let

ex(n, H,F) = max
G

{N (H, G) ∶ G is an F-free graph on n vertices}.

If F = {F}, we simply denote it by ex(n, H, F ). Note that the classical Turán problem
can be stated using this notion as ex(n, F ) = ex(n, K2, F ). This problem was initiated
by Zykov [23], who determined ex(n, Ks, Kt) exactly, however the systematic study of the
function ex(n, H, F ) started just recently in [1] by Alon and Shikhelman. This topic became
extensively investigated in the recent years, see e.g. [12, 9, 10] and the references therein.

Our goal is to introduce a game analogue of the parameter ex(n, H, F ) and provide some
results. For two fixed graphs F and H, two players, Constructor and Blocker alternately
claim an unclaimed edge of the complete graph Kn. Constructor can only claim edges so that
he never claims all edges of any copy of F , i.e. his graph must remain F -free, while Blocker can
claim unclaimed edges without restrictions. The game ends when Constructor cannot claim
further edges or when all edges have been claimed. The score of the game is the number of
copies of H with all edges claimed by Constructor. Constructor’s aim is to maximize the
score, while Blocker tries to keep the score as low as possible. We denote by g(n, H, F ) the
score of the game when both players play optimally and Constructor starts the game. Let us
note that for all the games that we study in this paper the identity of the starting player does
not have a big impact – it turns out that all the results still hold if Blocker starts the game.

Our Constructor-Blocker games borrow some aspects of two well-studied classes of combina-
torial games on graphs – the Maker-Breaker positional games, and the saturation games. It
turns out that these two settings fit together well to give us solid ground for a game version
of the above mentioned generalization of the Turán problem.

In a Maker-Breaker game the players alternately claim unclaimed elements of the board
X, which in our case is the edge set of the complete graph Kn on n vertices. A family G

of winning sets is given in advance, usually containing representatives of a graph theoretic
structure, e.g. all spanning trees or all copies of a fixed graph. Maker wins the game if he
occupies all elements of a winning set G ∈ G, and Breaker wins otherwise, i.e. if all the
elements of X are claimed and Maker did not fully occupy any G ∈ G. There is a vast
literature on positional games on graphs, we refer the reader to the books [3] and [13]. In our
setting it is worth mentioning the so-called scoring positional games, where Maker wants to
claim as many winning sets as possible, see e.g. [2].

In Hajnal’s triangle game two players also claim unclaimed edges of a complete graph in
turns, but this time the graph containing all the edges claimed by both players should be
triangle free. In the original version of the game [5, 11, 19], the player that cannot move,
i.e. who is forced to create a triangle, loses. Afterwards, the extremal version of the game, the
saturation game was introduced [4, 7, 20]: the players still have to make sure that no triangles
are created in the graph containing all claimed edges, but this time one of the players aims to
postpone the game’s end as long as possible, i.e. he tries to maximize the score of the game,
the total number of edges picked during the game, while the opponent tries to minimize the
score. This game has been generalized to arbitrary graphs [6, 14, 15, 18].

In our Constructor-Blocker games each player builds his own graph, as it is the case in Maker-
Breaker games, and in addition Blocker, like Breaker, has no restrictions on his moves. As
for Constructor, his graph must remain F -free resembling the setting in saturation games.
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Note that the following simple observation trivially holds.

Observation 1.1. For two graphs H, F and n ≥ 1 we have

g(n, H, F ) ≤ ex(n, H, F ).
In this paper, most of our interest will be directed towards the paths Pr on r vertices and the
stars Sr with r leaves. These are families very much studied in extremal graph theory. The
case H = P2 = S1 = K2 corresponds to maximizing/minimizing the number of edges claimed
by Constructor. A trivial strategy of Constructor would be to tell Blocker in advance which
particular copy of an F -free subgraph G of Kn with ex(n, F ) edges he will play in, and no
matter what Blocker does, Constructor will be able to claim half of the edges of this copy of
G. Together with Observation 1.1, we obtain the following.

Observation 1.2. For a graph F and n ≥ 1 we have

1
2ex(n, F ) ≤ g(n, K2, F ) ≤ ex(n, F ).

Our results on the case F = Sk+1 will include determining g(n, K2, Sk+1), and our result will
show that its value will be either equal or very close to ex(n, Sk+1), but we do not think that
would be the case for general F .

1.1 Our results

Star-star games. First we consider the case H = Sℓ and F = Sk+1, for some 1 ≤ ℓ ≤

k. If ℓ ≥ 2, then the score of the game is ∑v∈V (Kn) (d(v)
ℓ
), where d(v) is the degree of

v in Constructor’s graph at the end of the game. If ℓ = 1, then we count the number
1

2
∑v∈V (Kn) d(v) of edges. For comparison, we state the existence of k-regular or almost k-

regular graphs (graphs with all but one vertex having degree k and the last one having degree
k − 1) as these graphs contain the maximum number of Sℓ’s and thus determine the value of
ex(n, Sℓ, Sk+1).
Theorem A. For any k ≥ ℓ ≥ 2 we have

ex(n, Sℓ, Sk+1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(k

ℓ
) ⋅ n if nk is even,

(k

ℓ
)(n − 1) + (k−1

ℓ
) if nk is odd.

If k ≥ ℓ = 1, then ex(n, S1, Sk+1) = ⌊kn

2
⌋.

Note that with his last claimed edge Blocker can prevent Constructor from building a k-
regular graph whenever nk is even, so he can achieve that the sum of degrees in Constructor’s
graph is at most nk−2 or nk−1, depending on the parity of nk. This gives the upper bound
for the game score, and we are able to provide a matching lower bound.

Theorem 1.3. For 2 ≤ ℓ ≤ k there exists n0(k, ℓ) such that if n ≥ n0(k, ℓ) we have
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g(n, Sℓ, Sk+1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(k

ℓ
) ⋅ (n − 2) + 2 ⋅ (k−1

ℓ
) if nk is even,

(k

ℓ
)(n − 1) + (k−1

ℓ
) if nk is odd.

For 1 = ℓ ≤ k, we have g(n, S1, Sk+1) = ⌊nk−1

2
⌋.

Tree-star games. Next we consider the case when H is a tree T and F = Sk+1. The
number of vertices in a graph T is denoted by ∣T ∣. Clearly, if the maximum degree of T is
more than k, then ex(n, T, Sk+1) = 0. Observe that if the girth of a k-regular graph G on n

vertices is more than ∣T ∣ (the radius of T would suffice), then the number of copies of T in
G is the maximal that can be achieved by greedily embedding T to G. The existence of such
graphs is well-known, implying the following extremal result.

Theorem B. For any k ≥ 2 and tree T with maximum degree at most k, there exists nk(T )
such that whenever n ≥ nk(T ), we have

ex(n, T, Sk+1) = mn,k,T ,

where mn,k,T is the number of T ’s in an almost k-regular graph on n vertices with girth more
than ∣T ∣.
We can prove that the score of the game is not far from ex(n, T, Sk+1).
Theorem 1.4. For any k ≥ 2 and tree T with maximum degree at most k, we have

g(n, T, Sk+1) = ex(n, T, Sk+1) − Ok,T (1).
Path-path games. We consider two games with both H and F being paths.

One can find generalized Turán results about paths in the article of Győri, Salia, Tompkins
and Zamora [12].

Theorem C ([12], Theorem 14, Remark 31). There exists an integer n0 such that for all
n ≥ n0 we have

ex(n, P3, P4) = (n − 1
2 ).

For every integer n ≥ n0 we have

ex(n, P4, P5) = ⌊n − 2
2 ⌋ ⌈n − 2

2 ⌉ .

Let

B(n) ∶= (⌊n−2

2
⌋

2
) + (⌈n−2

2
⌉

2
).

In the case H = P3, F = P4 we can determine the exact game score.

1In [12], the value of ex(n, P4, P5) is incorrectly stated to be ⌊n−1

2
⌋ ⌈n−1

2
⌉.
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Theorem 1.5. There exists an integer n0 such that for every n ≥ n0, we have

g(n, P3, P4) = B(n).
When H = P4 and F = P5 we provide the following bounds.

Theorem 1.6. We have

8
49n

2
− o(n2) ≤ g(n, P4, P5) ≤ 4

23n
2
+ o(n2).

Triangle-path game. Finally, we study the first instance of the case H = K3, and F = Pk.
Observe that all components of a P4-free graph that contain a triangle are triangles, so
Blocker can easily prevent Constructor building any triangles, i.e. g(n, K3, P4) = 0. Therefore
we consider the case H = K3, F = P5. Luo proved the following.

Theorem D ([16], Corollary 1.7). We have

ex(n, K3, P5) = n − O(1).
The extremal graph consists of pairwise vertex-disjoint K4’s. Our next result shows that
Constructor can build one out of the four possible K3’s in each K4.

Theorem 1.7. We have
g(n, K3, P5) = n

4 − o(n).
The rest of the paper is organized as follows. In Section 2 we deal with the tree-star games
and the star-star games, proving Theorem 1.3 and Theorem 1.4. Section 3 is devoted to
the path-path games, where we prove Theorem 1.5 and Theorem 1.6. Finally, the proof of
Theorem 1.7 on the triangle-path game is in Section 4.

Notation.

In a Constructor-Blocker game, given i ≥ 1, we denote by Gi[C] (Gi[B]) the graph of the first
i edges picked by Constructor (Blocker, resp.) and we denote by Gend[C] the graph formed
by the edges picked by Constructor at the end of the game.

Given a graph G, we denote by d(G) the average degree of that graph.

2 Tree-star games and star-star games

In this section, we prove Theorem 1.3 and Theorem 1.4. The two proofs use the same ideas
and the calculations are also similar, therefore we introduce a general framework. The number
of Sℓ’s in a graph G is ∑v∈V (G) (dG(v)

ℓ
) if ℓ ≥ 2, and 1

2
∑v∈V (Kn) d(v) if ℓ = 1, so to maximize

this quantity, Constructor, who is not allowed to have degree k+1 in his graph, should build a
graph that is "as close to being k-regular as possible". When Constructor wants to maximize
the number of copies of T for some tree T on t vertices, then based on Theorem B, in addition
to building an almost k-regular graph, he has to make sure that the girth of his graph is larger
than the radius of T .
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For a non-negative integer C, let us introduce an auxiliary game that we refer to as the
Sk+1-free C-bounded symmetric forbidden neighborhoods game (Sk+1-free C-BSFN game, for
short). In this game, most things stay the same, Constructor is still not allowed to create
an Sk+1. But on top of this, in every move he is shown a family {Fv ∶ v ∈ Kn} of forbidden
neighborhoods with the property that u ∈ Fv if and only if v ∈ Fu and all Fu have size at
most C, and he is not allowed to pick an edge uv with u ∈ Fv. These Fv ’s may change from
move to move, but their size is never more than C. The ordinary Sk+1-free game is equivalent
to the case C = 0.

With the help of this game we will later help Constructor to maintain high girth, by forbidding
edges joining two vertices at distance at most t− 1. As all degrees in Constructor’s graph are
at most k throughout the game, C = k(k − 1)t−2 will be an adequate choice for that game.

Some of our auxiliary lemmas will be stated in this context as well. A graph G = (V, E)
together with sets Fv ⊆ V with ∣Fv∣ ≤ C for all v ∈ V will be called a graph with C-BSFN.

Our general result is as follows.

Theorem 2.1. For any k ≥ 1, C ≥ 0 there exists n0 = n0(k, C) such that if n ≥ n0, then
in the Sk+1-free C-BSFN game on a vertex set of size n, Constructor can build a graph of
minimum degree at least k− 1 such that ∣{v ∶ dG[C](v) = k− 1}∣ ≤ 2+ 4C. Moreover, if C = 0
and nk is odd, then ∣{v ∶ dG[C](v) = k − 1}∣ ≤ 1.

For the proof of Theorem 2.1, we will need four technical lemmata. Before introducing these
auxiliary statements, let us briefly summarize Constructor’s strategy so that the Reader
should have a better understanding on why these lemmas will turn out to be helpful. It is
easy to come up with a strategy for Constructor to build an almost perfect matching playing
on Kn even if Blocker starts the game. Therefore Constructor’s strategy in the C-BSFN game
will consist of two parts: in the first part, Constructor creates a graph with most degrees being
k − 1 and the rest of them k. Then in the second part, Constructor tries to build an almost
perfect matching on the vertices of degree k − 1. Of course, after the first part, players do
not play on Kn any more, as some edges are already taken, so Constructor needs to come up
with a modified strategy for some simple scenarios. This is done in Lemma 2.4 and Lemma
2.5, when the assumption on the graph of occupied edges is either that at least half of the
vertices are isolated or that all vertices are of bounded degree. So when building his graph
with minimum degree k−1 (during the first part of his strategy), Constructor must make sure
that every vertex of degree k − 1 in his graph, should be adjacent to many free edges. This is
done in Lemma 2.2. Then a technical analysis will be presented to show how Constructor can
achieve from this initial graph that the total graph should satisfy the assumptions of Lemma
2.4 and Lemma 2.5.

Lemma 2.2. For any integers k ≥ 1, C ≥ 0 and ε > 0 there exists n0(k, C, ε) such that for
n ≥ n0(k, C, ε) Constructor can play on Kn in the Sk+1-free C-BSFN game such that after
some round t ≥ 1 we have the following:

1. dGt[C](v) ∈ {k − 1, k} for all v ∈ V (Kn),
2. if dGt[C](v) = k − 1, then dGt[C]∪Gt[B](v) ≤ εn,

3. ∣{v ∈ V (Kn) ∶ dGt[C](v) = k}∣ ≤ εn.
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Proof. We say that a vertex v is dangerous if dGi[C]∪Gi[B](v) ≥ εn/2. Constructor’s strategy
is as follows: if after round i there exists a dangerous vertex v with dGi[C](v) < k, then
Constructor considers an arbitrary such v and picks an available edge uv with u ∉ Fv such
that among such vertices u, the Constructor-degree dGi[C](u) is minimum. If after round
i all dangerous vertices w have dGi[C](w) = k, then Constructor considers a vertex v with
minimum dGi[C](v) and picks an available uv with u ∉ Fv such that among such vertices u,
the Constructor-degree dGi[C](u) is minimum.

We claim that for every j = 0, 1, . . . , k − 1, there exists ij such that

(1) dGij
[C](v) ∈ {j, j + 1} for all non-dangerous v ∈ V (Kn),

(2) if dGij
[C](v) = j, then dGij

[C]∪Gij
[B](v) ≤ εn,

(3) ∣{v ∈ V (Kn) ∶ dGij
[C](v) = j + 1}∣ ≤ εn, and

(4) dGij
[C](v) = k for all dangerous vertices v ∈ V (Kn).

Once this claim is proved, the statement of the lemma is the case j = k − 1. We will prove
the claim by induction on j, with the case j = 0 trivially true at the beginning of the game.

First observe that, as the number of edges played during the game is at most kn, the number
of vertices that become dangerous during the game is at most a constant D = D(k, ε). Next,
we claim that after any round i for a vertex v with dGi[C](v) < k, the number of vertices
u for which either uv is already picked or u ∈ Fv is at most 3εn/4 using the trivial bound
dGi[C]∪Gi[B](v) + C for this quantity. This is certainly true for non-dangerous vertices, as
for such v by definition we have dGi[C]∪Gi[B](v) + C ≤ εn/2 + C ≤ 3εn/4 for n large enough.
At the moment a vertex v becomes dangerous, its total degree is εn/2. By the strategy of
Constructor, until v reaches Constructor degree k, there can be at most kD turns, and thus
dGi[C]∪Gi[B](v) ≤ εn/2 + 2kD and so dGi[C]∪Gi[B](v) + C ≤ εn/2 + 2kD + C ≤ 3εn/4 for n

large enough.

So assume our claim above holds for j−1. Then, because of the previous observation, as long
as ∣{v ∶ dGi[C](v) = j − 1}∣ > 3εn/4, Constructor after choosing v will always pick an edge uv

with dGi[C](u) = j − 1, and so all non-dangerous vertices will have Constructor degree j − 1
or j. This also implies that when the game reaches ∣{v ∶ dGi[C](v) = j − 1}∣ ≤ 3εn/4, we
will have ∣{v ∶ dGi[C](v) = j}∣ > (1 − ε)n, and thus during this phase the "u-vertex" of the
edge picked by Constructor will have dGi[C](u) = j − 1 or j. By our strategy, the v-vertex
is either dangerous or has dGi[C](u) = j − 1. Therefore until all j − 1 Constructor-degree
vertices and all dangerous vertices with Constructor-degree less than k are eliminated, at
most 3εn/4 + kD < εn vertices of Constructor-degree j + 1 are created. This finishes the
induction step and thus the proof of the lemma.

Lemma 2.3. Let G be a graph with C-BSFN and with average degree d, maximum degree ∆.
Also suppose ∣V (G)∣ ≥ 1 + 2d + 2C + ∆. Then there exist two non-adjacent vertices x and y

in G such that dG(x) + dG(y) ≥ 2d and x ∉ Fy.

Proof. Suppose for a contradiction that G is a counterexample. Let Z denote the set of
vertices with degree at least d, i.e. Z ∶= {v ∶ dG(v) ≥ d}. If we can find two non-adjacent
vertices x, y in Z with x ∉ Fy, then we are done.

7



Then we have ∆ < 2d since otherwise an x of degree at least 2d and any non-adjacent y

with y ∉ Fx (and such y exists as ∣V (G)∣ ≥ 1 + 2d + 2C + ∆) would show that G is not a
counterexample. This argument also proves that Z ⊆ {v} ∪ NG(v) ∪ Fv holds for all v ∈ Z,
in particular ∣Z∣ ≤ 1 + ∆ + C.

Now consider the auxiliary bipartite graph B with classes Z and V (G) \Z with uv ∈ E(B) if
and only if uv ∉ E(G), u ∈ Z, v ∉ Z and u ∉ Fv. As Z ⊆ {v}∪Fv ∪NG(v) and the maximum
degree of G is at most ∣V (G)∣ − 1 − 2d − 2C, therefore

dB(v) ≥ ∣V (G)∣ − 1 − ∣Fv∣ − dG(v) ≥ 2d + C ≥ 1 + ∆ + C ≥ ∣Z∣
for any v ∈ Z, where for the last two inequalities, we used the inequalities (∆ < 2d and∣Z∣ ≤ C + 1 + ∆) proved in the previous paragraph. So by Hall’s condition, there exists a
matching M that covers Z. If there exists xy ∈ M with dG(x)+ dG(y) ≥ 2d, then G is not a
counterexample. Otherwise

d =
1∣V (G)∣ ∑

x

dG(x) = 1∣V (G)∣
⎛⎜⎜⎝ ∑

xy∈M

(dG(x) + dG(y))+ ∑
v∉⋃e∈M e

dG(v)⎞⎟⎟⎠ < d.

This contradiction completes the proof.

Lemma 2.4. Let n, C be integers with n ≥ 4C ≥ 0, n ≥ 3 and suppose G ⊆ Kn is a graph
with V (G) = V (Kn) such that D(G) ∶= {v ∈ V (G) ∶ dG(v) > 0} is of size at most n−C

2
. Then

in a Blocker-start C-SBFN game, Constructor can build a matching in Kn \ G with at least⌊n−4C−1

2
⌋ edges.

Proof. We proceed by induction on n. If C ≥ 1 and n = 4C or n = 4C + 1, then there
is nothing to prove. If C = 0 and n = 3 or n = 4, then G contains at most one edge, so
Constructor can take an edge after Blocker’s first move.

Suppose n ≥ 4C + 2 and the statement is proved for n− 2 and G ⊆ Kn is as in the statement
of the lemma. We consider two cases, depending on whether the edge taken in Blocker’s first
move is disjoint with D(G) or not.

If Blocker plays an edge uv with u ∈ D(G), then Constructor can take any edge uv
′ with

v ≠ v
′, v

′
∉ Fu. Such v

′ exists as ∣V (Kn) \ [D(G) ∪ {v}]∣ ≥ ⌈n+C

2
⌉ − 1 > C. Then G \ {u, v

′}
and Kn \ {u, v

′} satisfy the induction hypothesis.

Suppose that Blocker plays an edge uv with u, v ∉ D(G). If ∣D(G)∣ = ⌊n−C

2
⌋, then 4C ≤ n

implies C < ⌊n−C

2
⌋ = ∣D(G)∣, and thus Constructor can spot v

′
∈ D(G) with v

′
∉ Fu.

Constructor can play uv
′, and G\{u, v

′}, Kn \{u, v
′} and D(G\{u, v

′}) = D(G) \ {v
′} satisfy

the induction hypothesis. Finally, if ∣D(G)∣ < ⌊n−C

2
⌋, then ∣D(G)∣ ≤ n−2−C

2
, and Constructor

can play any uv
′ with v

′
≠ v, v

′
∉ Fu. Then D(G \ {u, v

′}) = D(G) is still small enough to
satisfy the induction hypothesis for G \ {u, v

′}, Kn \ {u, v
′}.

Lemma 2.5. Let G ⊆ Kn with V (G) = V (Kn) be a graph with maximum degree at most
∆. Then in a Blocker-start C-BSFN game, Constructor can build a matching M in Kn \ G

covering at least n − ∆ − 2 − C vertices. Moreover, if ∆ ≤ 1, C = 0 and n is odd, then M

covers n − 1 vertices, while if ∆ ≤ 1, C = 0 and n is even, then M covers n − 2 vertices.
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Proof. Suppose first C > 0 or ∆ ≥ 2. If n < ∆ + C + 3, there is nothing to prove. Then we
proceed by induction on n. If G ⊆ Kn has maximum degree at most ∆ and Blocker’s first
edge is xy, then, as n ≥ ∆ + 3 + C, there exists a z ∈ V (Kn) \ {y} with xz ∉ E(G), z ∉ Fx.
Constructor can play the edge xz, and then G[V (G) \ {x, z}] ⊆ Kn−2 has maximum degree
at most ∆ and the statement follows.

The case ∆ = C = 0 is covered by Lemma 2.4. If C = 0, ∆ = 1, then G is a partial matching.
If n = 2, then there is nothing to prove. If n = 3, then G consists of a single edge, so
Constructor can claim the third edge in K3 even after Blocker’s starting move. For n ≥ 4,
we proceed by induction on n: if Blocker picks xy, then, as n ≥ 4 and ∆ = 1, there exists z

with xz unclaimed, so Constructor can pick xz. Then G[V (G)\{x, z}] satisfies the inductive
hypothesis.

Proof of Theorem 2.1.

Phase 1. First by choosing ε =
1

100k2 in Lemma 2.2, Constructor can build a graph such that
after round t1 we have:

1. dGt1 [C](v) ∈ {k − 1, k} for all v ∈ V (Kn),
2. if dGt1[C](v) = k − 1, then dGt1[C]∪Gt1 [B](v) ≤ n

100k2 , and

3. ∣{v ∈ V (Kn) ∶ dGt1[C](v) = k}∣ ≤ n

100k2 .

Phase 2. The goal of Constructor during Phase 2 (that starts with round t1 + 1) is to
decrease below 2 the average total degree in the graph that is induced by the vertices with
Constructor degree k−1. To do so Constructor will consider the graph that contains vertices
of Constructor degree k − 1, and pick the vertices x and y to connect relying on Lemma 2.3.

Let us denote by X
k−1
t (C) the set of those vertices whose Constructor degree is k − 1 after

round t, i.e. X
k−1
t (C) ∶= {v ∶ dGt[C](v) = k − 1}. For x ∈ X

k−1
t (C) let us denote by dt(x) the

total degree of x in the graph induced by the vertices of X
k−1
t (C), so in the graph Gt[Xk−1

t (C)].
Let us denote by dt the average total degree and by ∆t the maximum total degree of the graph
Gt[Xk−1

t (C)].
Using these notations, after round t1 we have:

• ∣Xk−1
t1

(C)∣ ≥ (1 −
1

100k2 )n,

• ∆t1
≤

n

100k2 , and

• dt1
≤

2⋅#{total number of edges played}∣Xk−1
t (C)∣ ≤

2∑v dGt[C](v)∣Xk−1
t (C)∣ ≤

2(k−1+ 1

100k2 )n
(1− 1

100k2 )n ≤ 2k.

In each round t with t1 ≤ t ≤ t2, for some later defined t2 that we will need to be at most
t1 +

(1−ε)n(k−1)
2k

, Constructor applies Lemma 2.3 with d = dt, ∆ = ∆t, finds vertices x and y

and connects them with an edge. If there are more possibilities (of pairs of vertices) to pick,
then he prioritizes an edge that contains a vertex with maximum total degree among vertices
that are adjacent to edges xy satisfying the statement of Lemma 2.3.

Let us suppose that Constructor connects the picked vertices (and so these vertices will have
Constructor degree k). The analysis how the average total degree changes is the next claim.

9



Consider now the maximum degree. Blocker can increase the degree of one or two vertices x

and y of maximum total degree. If this increased maximum degree is still smaller than 2dt,
then no matter what Constructor plays, we will have ∆t+1 ≤ 2dt. If this increased maximum
degree is larger than 2dt, then by the prioritization rule of Constructor’s strategy, Constructor
will pick an edge adjacent to x. Then x and the edge xy will be eliminated, and the degree
of y will be again at most ∆t. We obtained the following claim.

Claim 2.6. For all t with t1 ≤ t ≤ t2 (where t2 ≤ t1 +
nk

2(k+1)), we have

∆t+1 ≤ max{∆t, 2dt} ≤
n

100k2
, and (1)

dt+1 ≤
dt∣Xk−1

t (C)∣ − 2(dt(x) + dt(y)) + 2

∣Xk−1
t (C)∣ − 2

≤
dt ⋅ (∣Xk−1

t (C)∣ − 4) + 2

∣Xk−1
t (C)∣ − 2

. (2)

For all t with t1 ≤ t ≤ t1 +
nk

2(k+1) , the number of vertices in X
k−1
t (C) is at least n(1 −

1

100k2 −

k

k+1
) ≥

n

2(k+1) ≥ 1 + 2dt + 2c + 2∆t, so the assumptions of Lemma 2.3 stay valid for these

values of t. Therefore as long as we choose t2 with t2 ≤ t1 +
nk

2(k+1) , Constructor is able to
follow the given strategy.

Note that if dt ≥ 2, then by (2) we have

dt+1 ≤ dt ⋅
∣Xk−1

t (C)∣ − 3

∣Xk−1
t (C)∣ − 2

,

so if Constructor follows the given strategy in Phase 2 during s rounds after t1, then either
at some round we have dt < 2 or we have

dt1+s ≤ dt1
⋅

∣Xk−1
t1

(C)∣ − 3

∣Xk−1
t1

(C)∣ − 2
⋅

∣Xk−1
t1

(C)∣ − 5

∣Xk−1
t1

(C)∣ − 4
⋯

∣Xk−1
t1

(C)∣ − (2s + 1)
∣Xk−1

t1
(C)∣ − 2s

≤ dt1
⋅

∣Xk−1
t1

(C)∣ − (2s + 1)
∣Xk−1

t1
(C)∣ − 2

.

(3)

As dt1
≤ 2k, and the fraction in the right hand side of (3) is at most n−(2s+1)(1− 1

100k2 )n−2
, by putting

s1 =
nk

2(k+1) , we have dt1+s1
< 2, which means that we will have a first round t1+s ≤ t1+

nk

2(k+1)
for which dt1+s < 2. Let us define t2 as t1 + s. Note that at the end of Phase 2 we have∣Xk−1

t1+s∣ ≥ ( 1

k+1
−

1

100k2 )n.

Phase 3. In this phase, Constructor’s goal is to achieve an even sparser induced subgraph,
obtaining either dt <

1

2
or the graph contains just a matching. Then he will be able to finish

the game with either Lemma 2.4 or Lemma 2.5.

More precisely, in Phase 3 Constructor first does a similar thing as in Phase 2. He tries to
pick 2 vertices x, y ∈ X

k−1
t (C) with dt(x) + dt(y) ≥ 4 and y /∈ Fx and connect them.

• If he can find such pairs till the average total degree in Gt[Xk−1
t (C)] will be less than 1

2
− δ

with some δ, then he continues as in Case 1 below, or

10



• if at some round he can not find 2 vertices x, y ∈ X
k−1
t (C) with dt(x) + dt(y) ≥ 4 and

y /∈ Fx, then he continues either as in Case 2, Case 3 or Case 4 below.

Note that if Constructor can pick 2 vertices x, y ∈ X
k−1
t (C) with dt(x)+dt(y) ≥ 4 and y /∈ Fx

then in (2) we still have

dt+1 ≤ dt ⋅
∣Xk−1

t (C)∣ − 3

∣Xk−1
t (C)∣ − 2

.

Case 1. For all t with t2 ≤ t ≤ t3 ≤ t2 +
n

2(k+2) we have 2 vertices x, y ∈ X
k−1
t (C) with

dt(x) + dt(y) ≥ 4 and y /∈ Fx.

Then using (3) we have dt2+s <
1

2
− δ with some s ≤

n

2(k+2) and δ > 0. It means that

the number of vertices that are touched by some edge is less than ∣Xk−1
t2+s(C)∣(1

2
− δ). As

∣Xk−1
t2+s(C)∣(1

2
− δ) < ∣Xk−1

t2+s(C)∣−C

2
, and ∣Xk−1

t2+s(C)∣ is linear in n, we can apply Lemma 2.4 after
round t2 + s and we are done.

Note that if we are not in Case 1, for the graph Gt[Xk−1
t (C)], we have ∆t ≤ 3. Indeed, we

know that ∆t ≤ εn by (1), and even if we consider t = t2+
n

2(k+2) , the size of the set of vertices

of Constructor degree k−1 is at least ( 1(k+1)(k+2) − 1

100k2 )n, and so as ∆t +1+C < ∣Xk−1
t (C)∣,

that means there is a vertex y ∈ X
k−1
t (C) such that y /∈ Fx, which means we are in Case 1, a

contradiction. Therefore Lemma 2.5 finishes the proof unless C = 0. So from now on we will
assume C = 0 and we need to deal with the cases ∆t ∈ {0, 1, 2, 3}.

Case 2. ∆t ≤ 1

The moreover part of Lemma 2.5 finishes the proof.

Case 3. ∆t = 2

Note that as we are not in Case 1, we cannot have two non-adjacent vertices of degree 2, so
we have 1, 2 or 3 vertices of degree two and they form a clique. If x is one such vertex, then
Constructor connects x to any available vertex. As degree 2 vertices formed a clique of size
at most 3, Gt+1[Xk−1

t+1 (C)] is a matching and Constructor can apply the moreover part of
Lemma 2.5 and we are done.

Case 4. ∆t = 3

Let x be a vertex in X
k−1
t (C) with dt(x) = 3. Observe that the vertices in X

k−1
t (C) that are

not adjacent to x form an independent set in Gt[Xk−1
t (C)] (otherwise we would be in Case

1), so we can apply Lemma 2.4, as 4 <
∣Xk−1

t (C)∣
2

.

Proof of Theorem 1.3. Constructor follows his strategy in a Sk+1-free 0-BSFN game provided
by Theorem 2.1. So he can build a graph Gend[C] of minimum degree k − 1 with ∣{v ∶

dGend[C](v) = k − 1}∣ ≤ 2. Counting the Sℓ’s in Gend[C] confirms the statement of Theorem
1.3.
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Proof of Theorem 1.4. Constructor follows his strategy in a Sk+1-free C-BSFN game with
C = k(k−1)∣T ∣−2 provided by Theorem 2.1. At any round, and for any vertex v the forbidden
neighborhood Fv consists of all vertices at distance at most ∣T ∣ − 1 from v. So Constructor
can build a graph Gend[C] of minimum degree k − 1 with ∣{v ∶ dGend[C](v) = k − 1}∣ ≤ 2+ 4C

and if C = 0 and nk is odd, then ∣{v ∶ dGend[C](v) = k − 1}∣ = 1. Counting the T ’s in Gend[C]
confirms the statement of Theorem 1.4.

3 Path-path games

In this section, we prove Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5. Let us observe that any P4-free graph must be a disjoint union of
vertices, stars and triangles.

We start by exhibiting a strategy for Constructor that will ensure that at the end of the
game his graph consists of two disjoint stars spanning all n vertices. To do that, before the
game starts he fixes two vertices, v1 and v2, and then he follows a simple pairing strategy –
whenever Blocker claims an edge xvi, for some vertex x and i ∈ {1, 2}, Constructor responds
by claiming xv3−i. If Blocker claims an edge disjoint from {v1, v2} or an edge xv2 such that xv1

is already claimed by Constructor, and also in the very first move of the game, Constructor
picks a vertex y that is isolated in his graph and claims the edge yv1.

Following this strategy Constructor clearly ends up with two disjoint stars on n vertices, Sa

and Sn−a−2, for some integer a. The number of P3’s in his graph is (a

2
) + (n−a−2

2
), which is

minimized when a and n − a − 2 differ by at most 1, implying g(n, P3, P4) ≥ B(n).
Next, we analyse Blocker’s prospects in this game. The following strategy will be referred to
as the Basic Strategy of Blocker. After each move of Constructor, we locate the connected
component C in Constructor’s graph containing that move. If C is an isolated edge or a
triangle, Blocker responds by claiming an arbitrary edge. If C is a star centered at v with
at least two leaves, Blocker responds by claiming an edge incident to v, if such an edge is
available; otherwise, he claims an arbitrary edge.

From the beginning of the game, Blocker will follow the Basic Strategy. He suspends it at
most once, when Constructor’s graph consists of nontrivial components, S1 and S2, each of
which is a star with at least three leaves. For S1 and S2, we denote the center vertices by
v1 and v2, respectively, and the number of leaves by a1 and a2, respectively. W.l.o.g. let us
assume that a1 ≥ a2. We distinguish two cases.

(i) a1 − a2 > 3

Blocker locates a vertex x such that the edge xv1 is already claimed by him and the
edge xv2 is unclaimed, and claims xv2. After that, he gets back to following the Basic
Strategy to the end of the game.

(ii) a1 − a2 ≤ 3

Blocker repeatedly locates the larger (at that point) of Constructor’s two stars, breaking
ties arbitrarily, with its center at vℓ, with ℓ ∈ {1, 2}, and claims the edge between vℓ and
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a vertex y that is isolated in Constructor’s graph. If Constructor does not claim the
edge yv3−ℓ in his following move, Blocker claims that edge and gets back to following
the Basic Strategy to the end of the game. Otherwise, he keeps playing according to
the strategy described in case (ii).

If at any point in the game the strategy calls for Blocker to claim an edge that he claimed
earlier, when he was to “claim an arbitrary edge”, he just claims a new arbitrary edge and
continues.

Let us show that Blocker can always follow this strategy. Once the strategy in case (i) is
activated, Blocker surely claimed at least a1 − 2 edges incident to v1 since up to that point
he followed the Basic Strategy. As the number of vertices of S2 is a2 + 1 < a1 − 2, there must
exist a suitable vertex x for Blocker’s move in (i). In case (ii), Blocker can clearly play as
long as there are isolated vertices in Constructor’s graph.

We move on to analysing the Constructor’s graph at the end of the game.

Claim 3.1. At the end of the game, Constructor will not have a star with more than n/2+2
leaves.

Proof of Claim. While Blocker follows the Basic Strategy, at any round Constructor adds an
edge to a star Blocker adds his edge to the same center vertex. In every star Constructor has
one edge head start when he claims the very first edge, as Blocker does not respond in the
same way to isolated edges. Furthermore, due to parity, when Constructor claims the last
edge of a star Blocker may not have an available unclaimed edge to respond.

If case (i) is activated, then Constructor plays exactly one move to which Blocker does not
respond by the Basic Strategy. Altogether, the number of edges of Constructor incident to a
vertex cannot be larger than the number of Blocker’s edges incident to that same vertex by
more than 3.

If case (ii) is activated, both players claim edges incident to either v1 or v2. As initially
a1 − a2 ≤ 3, we have that, for both v1 and v2, the number of Constructor’s edges and the
number of Blocker’s edges played incident to that vertex within case (ii) may differ by at most
3. Altogether, the number of edges of Constructor incident to a vertex cannot be larger than
the number of Blocker’s edges incident to that same vertex by more than 6.

Having in mind that the total number of edges incident to a vertex is n − 1, the assertion of
the claim readily follows.

Suppose that at the end of the game Constructor has k triangle components, and t star
components with, respectively, s1, s2, . . . , st leaves. We have 3k + ∑t

i=1(si + 1) ≤ n, and
Claim 3.1 implies si ≤ n/2 + 2, for all i. The number of P3’s Constructor created is N ∶=

3k +∑t
i=1 (si

2
).

Let us first analyze the case k = 0, t = 2 and s1 + s2 = n − 2. As the game ends with two
stars of Constructor, one of the cases (i), (ii) was activated during the game. Activating case
(i) would result in a vertex that is in neither of the two stars, which is in contradiction with
s1+s2 = n−2. Similarly, activating case (ii) and afterwards getting back to the Basic Strategy
results in a vertex that is in neither of the two stars, which is again not possible. Hence, the
only remaining possibility is that Blocker activated case (ii) and stayed in it to the end of the
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game. But that results in stars which are balanced, i.e. ∣s1 − s2∣ ≤ 1. Note that in this case
we have N = B(n). Observe that we use the condition n ≥ n0 so that Blocker has space to
force Constructor to balance his stars with his first two moves played in case (ii).

Our aim is to show that all other possibilities for Constructor’s graph at the end of the game,
as long as it satisfies the restrictions listed above, result in smaller value of the function N .

If k ≥ 2, we can replace all triangles with one new star thus increasing N . If k = 1, then
removing the triangle and adding its three vertices as new leaves of a star increases N . Hence,
to maximize N we must have k = 0.

If k = 0, t = 2 and s1 + s2 < n − 2, Claim 3.1 upper bounds both s1 and s2 and in this case
the maximal value of N is obtained for s1 = ⌈n/2 + 2⌉ and s2 = n− 3− s1. It is easy to check
that such N is less than B(n), for n large enough.

Further on, if t > 2, then by removing the smallest of the stars and repeatedly attaching its
vertices, one by one, to the smallest (at that point) of the remaining stars we increase N .
Therefore, t = 2 is required to maximize N , as Claim 3.1 eliminates the option t = 1.

Hence, if Blocker follows the described strategy Constructor cannot claim more than B(n)
many P3’s, implying g(n, P3, P4) ≤ B(n).

Proof of Theorem 1.6. Throughout the game, let C denote Constructor’s graph. We first
study Constructor’s prospects, exhibiting a strategy enabling him to claim a large double star,
and analyzing that strategy to obtain the lower bound. As we are aiming for an asymptotic
result, we will omit floors and ceilings for ease of presentation.

In his first move, Constructor claims an edge v1v2. Then, he proceeds to Stage 1, following a
pairing strategy: if Blocker claims the edge xvi, for i ∈ {1, 2} and some vertex x isolated in C,
Constructor responds by claiming xv3−i, and if Blocker claims an edge disjoint with {v1, v2},
Constructor claims xv1 for some vertex x isolated in C. Stage 1 ends when one of the vertices
v1, v2 has 3(n − 2)/7 hanging edges in C, assume w.l.o.g. that that vertex is v1.

In Stage 2, Constructor repeatedly claims an edge between v2 and a vertex isolated in C, for
as long as such edges are available, and then proceeds to Stage 3.

In Stage 3, Constructor repeatedly claims an edge between v1 and a vertex isolated in C, for
as long as such edges are available. Once this stage ends Constructor is done building his
double star and for the remainder of the game he claims arbitrary free edges disjoint from
the double star.

Constructor can clearly follow the described strategy, and at the end of the game, one of
the components in C will be a double star centered at v1 and v2. It remains to estimate the
number of P4’s guaranteed to be found in that double star.

After Stage 1 the number of leaves adjacent to v1 in C is 3(n − 2)/7, the number of leaves
adjacent to v2 in C is between 0 and 3(n − 2)/7 − 1, and at that point Blocker does not have
a claimed edge between any vertex isolated in C and either v1 or v2.

When Stage 2 finishes, the vertices still isolated in C can be classified into two sets: U1,
containing those vertices x for which Blocker claimed xv2 but xv1 is unclaimed, and U2,
containing those vertices y for which Blocker claimed both yv1 and yv2. Let us denote by
U0 the leaves of Constructor’s star centered at v2 at the end of Stage 2, and let ui ∶= ∣Ui∣,
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i ∈ {0, 1, 2}. Note that

u0 + u1 + u2 =
4(n − 2)

7 . (4)

Furthermore, as Blocker started claiming edges between U1 ∪U2 and {v1, v2} only in Stage 2,
and he claimed one for every vertex in U1 and two for every vertex in U2, we have

u0 ≥ u1 + 2u2. (5)

In Stage 3, Constructor will claim at least half of the edges between v1 and U1, and after
Stage 3 the number of P4’s in his double star will be at least (3(n − 2)/7 + u1/2) ⋅ u0. Ex-
pressing u2 from (4) and plugging it into (5) gives a lower bound on u0, implying that the
number of P4’s that Constructor created is at least

(3(n − 2)
7 +

u1

2 ) ⋅
1
3 (8(n − 2)

7 − u1) =
1
6 (6(n − 2)

7 + u1) ⋅ (8(n − 2)
7 − u1) ≥

8(n − 2)2

49 .

To get the last inequality we observe the expression preceding it as a quadratic function of
u1. This function has its maximum in u1 = (n − 2)/7, and we want to minimize it. Knowing
that 0 ≤ u1 ≤ 2(n − 2)/7, which is a direct consequence of (4) and (5), the minimum of the
above quadratic function when restricted to that interval is achieved when u1 = 0.

Next, we describe and analyze a strategy for Blocker. Throughout the game we keep track
of all nontrivial connected components in C, and after every move of Constructor, Blocker
responds by claiming an edge incident to the component X containing that Constructor’s
move. Depending on what X is, we distinguish several cases.

(i) If X is a star centered at a, Blocker claims an edge between a and b such that ab is un-
claimed, prioritizing vertices b that are centers of other Constructor’s star components,
sorted by size in decreasing order; if there is no available unclaimed edge incident to a,
Blocker plays arbitrarily.

(ii) If X is a double star centered at u and v, where the star at v is not larger than the
star at u, Blocker claims an unclaimed edge between v and a vertex w isolated in C,
prioritizing vertices w for which uw is already claimed by him. If uw is unclaimed and
Constructor does not claim it in his following move in this component, Blocker responds
by claiming uw, thus isolating w from that double star.

If there is no available unclaimed edge at v, Blocker plays arbitrarily.

(iii) If X is neither a star nor a double star, Blocker plays arbitrarily.

We claim that whenever Constructor connects stars S1 and S2 in C into a double star by
claiming the edge between their centers, at least one of them has at most 2

√
n leaves. Suppose

for a contradiction that both stars have at least 2
√

n leaves. Looking back earlier in the game
when the first of the two stars, w.l.o.g. let that be S1, got

√
n leaves, S2 was still to receive

more than
√

n of Constructor’s edges. Each of those edges would be responded by a Blocker’s
edge at the center of S2, as advised by case (i) of the strategy. But all that time S1 is among
the

√
n largest stars of Constructor, so Blocker will surely claim the edge connecting the

centers of S1 and S2 before Constructor does, a contradiction.
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Hence, the first time a double star in C is created, the smaller of its stars has at most 2
√

n

leaves. Let us observe the double star that is the largest double star (by the number of
vertices) in Constructor’s graph at the end of the game. We denote the number of leaves of
its smaller star by s1 and the number of leaves of its larger star by s2, where s1 ≤ s2.

Throughout the game, case (ii) of the strategy implies that after the stars are joined into the
double star, for every two new leaves of the smaller Constructor’s star, Blocker isolates one
vertex from that double star. Indeed, looking at the sequence of moves on that component,
whenever Constructor increases the smaller star Blocker responds at that same star, following
case (ii). After that point, Constructor may repeatedly increase the other star a number of
times, but the next time he goes back to the first star Blocker will isolate a vertex from that
Constructor’s component.

We now count the number of times Constructor added a new leaf to the currently smaller star
(i.e. the star that was smaller of the two at the time the leaf was added), from the moment
the double star is first created to the end of the game. Observe that the size of the currently
smaller star increases only when Constructor adds a leaf to the currently smaller star, and it
increases by exactly one. Therefore, this must have happened at least s1 − 2

√
n times.

Hence, every increase of the size of the smaller star by two results in (at least) one isolated
vertex. If the number of isolated vertices is denoted by ℓ, we have ℓ ≥ (s1 − 2

√
n)/2. As

ℓ + s1 + s2 ≤ n, we have
3s1

2 + s2 ≤ n +

√
n. (6)

Let us first assume that s2 < 2n/11. In that case, for any Constructor’s double star that has
a leaves in one star and b leaves in the other, a + b < 4n/11 holds. Therefore, the number

of P4’s in that double star is ab ≤ (a+b

2
)2

<
n

11
(a + b), so the total number of P4’s in the

Constructor’s graph is upper bounded by (n/11) ⋅ n < 4n
2/23 and we are done. Hence, from

now on we can assume that s2 ≥ 2n/11.

In case s1 < 2n/11, the number of P4’s in the largest Constructor’s double star at the end
of the game is s1s2 ≤

2n

11
(s1 + s2 −

2n

11
). For any other Constructor’s double star that has a

leaves in one star and b leaves in the other, the number of P4’s is ab ≤ (a+b

2
)2

<
2n

11
(a + b),

having in mind that for all Constructor’s double stars that are not the largest we have a+b <

n/2 < 8n/11. Hence, the total number of P4’s in Constructor’s graph is upper bounded
by (2n/11)(9n/11) < 4n

2/23 and again we are done, so from now on we can assume that
s1 ≥ 2n/11.

If we denote the number of vertices that are not in the largest Constructor’s component by
s3, we have s3 ≤ n − s1 − s2, and the number of P4’s on s3 vertices cannot be larger than(s3/2)2. If by S we denote the total number of Constructor’s P4’s at the end of the game, we
have

S ≤ s1s2 + (s3

2 )2

≤ s1s2 +
1
4 (n − s1 − s2)2

.

From (6) we get s2 ≤ n − 3s1/2 + o(n), and s1 ≥ 2n/11 guarantees s2 ≥ n − 9s1/2. Within
that interval the previous upper bound on S is maximized for s2 = n − 3s1/2 + o(n), and we
get

S ≤ s1 ⋅ (n −
3s1

2 ) +
1
4 (n − s1 − (n −

3s1

2 ))2

+ o(n2) = s1n −
23s

2
1

16 + o(n2).
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The last expression is maximized for s1 = 8n/23, giving S ≤ 4n
2/23 + o(n2).

4 Triangle-path game

Proof of Theorem 1.7. Note that in a P5-free graph, the only way to have more than one
triangle in a connected component is to have a component that is a subgraph of K4.

We start by exhibiting a strategy for Blocker:

(a) Whenever Constructor claims an edge that is (after he claimed it) in a Constructor’s
connected component on three vertices, if there is a free edge in that component, Blocker
claims it.

(b) Whenever Constructor claims an edge that is (after he claimed it) in a Constructor’s
connected component on four vertices, if there is a free edge in that component, Blocker
claims it.

(c) Otherwise, Blocker plays arbitrarily.

If Blocker follows this strategy, because of part (a), Constructor will be unable to ever create
a triangle in a component on three vertices. Therefore, when he first creates a component on
four vertices it will have three of his edges. The part (b) ensures that after that, as long as
this component spans four vertices, Constructor can claim at most one more edge in it. This
is not enough to ever create two triangles in a component.

To sum up, Constructor will not create an isolated triangle, and in each of his connected
components he will have at most one triangle, implying g(n, K3, P5) ≤ n/4.

Next, we describe and analyze a strategy for Constructor. As long as the number of vertices
isolated in his graph is not less than 5

√
n, Constructor repeatedly goes through the following

sequence of steps, building his connected components one by one.

1. Among the isolated vertices in his graph, he spots a set of five vertices X = {v1, v2, . . . , v5}
such that all edges induced on X are unclaimed, and claims v1v2. If Blocker responds
by claiming an edge in X, w.l.o.g. let us assume that this edge is incident with v5.

2. Next, Constructor claims v1v3. If Blocker does not respond by claiming v2v3, Construc-
tor claims it in his following move completing a component on three vertices with a
triangle.

3. Otherwise, Constructor claims v1v4, and in his following move he claims either v2v4 or
v3v4, completing a component on four vertices with a triangle.

Clearly, as long as Constructor can follow this strategy his graph will consist of connected
components on either three or four vertices, each containing a triangle, and the number of
the edges he claimed will be less than n. It remains to verify that each time when he is to
play step 1, he can spot a set X that satisfies the conditions.

Denote by L the set of vertices isolated in Constructor’s graph, and let ℓ ∶= ∣L∣. The total
number of five vertex subsets from L is (ℓ

5
), and each edge Blocker claimed can be contained
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in at most (ℓ

3
) such sets. Therefore, knowing that ℓ > 5

√
n and that Blocker claimed less than

n edges, there must always be a suitable X completely free of Blocker’s edges.

Hence, following the above strategy Constructor will create connected components on either
three or four vertices, each containing a triangle, until he spans all but at most 5

√
n vertices.

This implies g(n, K3, P5) ≥ n/4 − 5
√

n/4 = n/4 − o(n).
5 Conclusion and further work

In this paper, we introduce a game analogue of the generalized graph Turán problem, the
Constructor-Blocker game, and provide results for several natural choices for H and F , but
there are many more that remain unexplored. It would be interesting to see where the score
of the game lies for a variety of other combinations both H and F , and what is its relation to
the corresponding generalized Turán number. We are particularly curious about the leading
term of g(n, P4, P5), for which we provide bounds in Theorem 1.6.

As a natural extension of our game setup we could allow H and/or F to be representatives of
a graph-theoretic structure that depends on the order of the board n, say a spanning graph
like a spanning tree or a Hamilton cycle.

Also, what we study is sometimes referred to as an unbiased game, where each player claims
one edge per move. It would be interesting to study the (1 ∶ b) biased version, for an integer
b > 1, in which Blocker claims b edges per move.

In an effort to design a game version of the generalized graph Turán problem, we opted for
combining aspects of the Maker-Breaker positional games and the saturation games in the
way described in the introduction. The same general approach readily gives several more
possibilities for the game definition. In order to describe them we will refer to the edges
claimed by the first player (resp. second player) as red (resp. blue) edges, and all the edges
claimed by both players (i.e. the union of red and blue edges) as black edges.

(a) Adhering more to the saturation games, we could forbid moves of both players that
create a copy of F in the black graph, counting the copies of H also in the black graph
at the end of the game.

(b) In another approach somewhere in between (a) and our Constructor-Blocker games, we
could forbid moves (of both players) that create a copy of F in the black graph, but
count the copies of H in the red graph at the end of the game.

(c) Then, there is an option of forbidding each player to claim a copy of F in his own color,
while counting the copies of H in the black graph at the end of the game.

In all three versions the first player would try to maximize the number of counted copies of H,
while the second player’s goal would be to minimize it. As in the original Constructor-Blocker
game, we are curious to know what the score of the game would be for various graph pairs in
each of these cases, and where would it stand related to the corresponding generalized Turán
number, as well as the score in other versions.
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