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Abstract

Let H be a graph and p be an integer. The edge blow-up Hp of H is the graph
obtained from replacing each edge in H by a copy of Kp where the new vertices of
the cliques are all distinct. Let Ck and Pk denote the cycle and path of length k,
respectively. In this paper, we find sharp upper bounds for ex(n,K3, C

3
3 ) and the

exact value for ex(n,K3, P
3
3 ). Moreover, we determine the graphs attaining these

bounds.

1 Introduction

Notation. In this paper, we use Ck, Pk, Mk and Sk to denote the cycle, path, matching
and star with k edges, respectively. Let Kt be the complete graph on t vertices and Ks,t

be the complete bipartite graph with parts of size s and t. The vertex and edge sets of
a graph G are denoted by V (G) and E(G), respectively. Also we denote the number of
edges in G by e(G). For two graph G and H , let G ∪ H denote the disjoint union of G
and H . Let G+H denote the join of G and H , which is obtained from G ∪H by adding
all edges with one endvertex in V (G) and the other endvertex in V (H). Let T (G) denote
the set of all triangles in G and t(G) = |T (G)|. For a vertex v in V (G), let t(v) denote
the number of triangles containing v. For an edge uv, let N(uv) = N(u) ∩N(v). Hence,
|N(uv)| is the number of triangles containing uv. For a set of vertices S ⊆ V (G) we
denote by G[S] the induced subgraph of G on S and we set G − S = G[V (G)− S]. For
two disjoint sets of vertices U,W ⊆ V (G) we denote by G[U,W ] the bipartite subgraph
of G consisting of those edges with one endvertex in U and the other in W .

∗Correspondoing author. Email: hz18@mails.tsinghua.edu.cn
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Let H be a given graph and p be an integer greater than 2. The edge blow-up Hp of H
is the graph obtained from replacing each edge inH by a copy ofKp where the new vertices
of the cliques are all distinct. The problem of finding the Turán number of Hp for various
graphs H has attracted a lot of attention. The first results on the topic can be dated
back to 1960s. Moon [6], and independently Simonovits [7] determined the Turán number
ex(n,Mp

k ) for p ≥ 3. Much later Erdős, Füredi, Gould and Gunderson [2] determined the
Turán number ex(n, Sp

k) for p = 3, and then Chen, Gould, Pfender and Wei [1] extended
this result to any p ≥ 3. Glebov [4] determined the Turán number of P p

k . More recently,
Liu extended Glebov’s result to the edge blow-up of a family of trees and also determined
C

p
k for sufficiently large n. Wang, Hou, Liu and Ma [8] determined the ex(n, T P ) for a

larger family of trees and Yuan [10] determined ex(n,HP ) for any non-bipartite graph H

and p ≥ χ(H) + 1.
We will make use of the following result of Xiao, Katona, Xiao and Zamora [9], which

determined the value of ex(n, C3
3) for all n ≥ 6.

Theorem 1. (Xiao, Katona, Xiao and Zamora [9]) Let n ≥ 6 be an integer, then

ex(n, C3
3 ) =

{

⌊n2

4
⌋+ ⌊n

2
⌋ if n 6≡ 2 (mod 4),

n2

4
+ n

2
− 1 if n ≡ 2 (mod 4).

When n = 4k, Mn

4
+Mn

4
is the unique extremal graph.

When n = 4k + 1, (M⌊n

4
⌋ ∪K1) +Mn−1

4

and S⌊n

2
⌋ +K⌊n

2
⌋ are the extremal graphs.

When n = 4k + 2, (M⌊n

4
⌋ ∪ K1) + (M⌊n

4
⌋ ∪ K1), M⌈n

4
⌉ + M⌊n

4
⌋ and Sn

2
−1 + Kn

2
are the

extremal graphs.
When n = 4k + 3, (M⌊n

4
⌋ ∪K1) +M⌈n

4
⌉ and S⌊n

2
⌋ +K⌊n

2
⌋ are the extremal graphs.

In this paper, we will consider the generalized Turán number. Let T and H be graphs,
then the generalized Turán number ex(n, T,H) is the maximum number of copies of T
that an n-vertex H-free graph G can contain. If T = K2, then ex(n, T,H) is the classical
Turán number of H .

Although several results about the Turán number of an edge blow-up of a graph have
been obtained, less is known about the generalized Turán number of such graphs. How-
ever, there have been some results in this direction. Liu and Wang [5] determined the value
of ex(n,Kp, S

p
2) and ex(n,Kp,M

p
2 ). Later Gerbner and Patkós [3] determined ex(n,Kr, S

p
2)

and ex(n,Kr,M
p
2 ) for any r, p, and Yuan and Yang [11] determined ex(n,K3,M

3
2 ) for all n.

Recently, Zhu, Chen, Gerbner, Győri and Hama Kairm [12] determined ex(n,K3, S
3
k) for

any k.
Our results concern the edge blow-ups of cycles and paths. We prove the following

theorems.

Theorem 2. Let n ≥ 22 be an integer, we have

ex(n,K3, C
3
3) ≤

n2

4
− 1 + 14|n,

where 14|n is the indicator function for 4|n. Furthermore, equality holds when n is even
and M⌈n

4
⌉ +M⌊n

4
⌋ is the unique extremal graph.

Theorem 3. Let n ≥ 3003 be an integer. We have

ex(n,K3, P
3
3 ) =

⌊

(n− 1)2

4

⌋

,

and the unique extremal graph is K1 +K⌊n−1

2
⌋,⌈n−1

2
⌉.
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The rest of the paper is organized as follows. In Section 2, we prove Theorem 2. In
Section 3, we prove Theorem 3. In Section 4, we mention some problems about the general
case: ex(n,K3, C

3
k) and ex(n,K3, P

3
k ).

2 Proof of Theorem 2

One can see that when n is even, the graph M⌈n

4
⌉ +M⌊n

4
⌋ contains

n2

4
− 1+14|n triangles.

So our aim is to show that ex(n,K3, C
3
3) ≤ n2

4
− 1 + 14|n.

Let n ≥ 22 be an integer and G be an n-vertex C3
3 -free graph with t(G) being the

maximum. We may assume every edge is contained in at least one triangle, otherwise we
delete this edge.

We define the weight of uv by

w(uv) :=
1

|N(uv)| .

For a triangle xyz, its weight is defined by w(xyz) = w(xy) + w(xz) + w(yz). We will
prove the upper bound by making use of the following claims.

Claim 1. For any triangle xyz in G,

1 +
1

n− 2
≤ w(xyz) ≤ 3,

or w(xy) = w(yz) = w(xz) = 1
3
and there exists another two vertices u, v such that

{x, y, z, u, v} induces a copy of K−
5 or K5.

Proof. Since each edge is contained in at least one triangle, without loss of generality, we
have

1

n− 2
≤ w(yz) ≤ w(xz) ≤ w(xy) ≤ 1.

If w(xy) = 1, then w(xyz) ≥ 1 + 2
n−2

and we are done. Next we may assume w(xy) ≤ 1
2

and we distinguish two cases based on whether w(xy) = 1
2
or w(xy) ≤ 1

3
.

First suppose w(xy) = 1
2
and let N(xy) = {z, z′}. If w(xz) = 1

2
, then w(xyz) ≥ 1+ 1

n−2

and we are done. Thus we may assume w(xz) ≤ 1
3
and let y′ ∈ N(xz) − {y, z′}. If

w(yz) ≤ 1
4
, then we can find a vertex x′ ∈ N(yz)−{x, y′, z′} and {x, y, z, x′, y′, z′} contains

a copy of C3
3 , a contradiction. Hence w(yz) = w(xz) = 1

3
and w(xyz) = 7

6
≥ 1 + 1

n−2
,

inequality holds since n ≥ 22.
Now suppose w(xy) ≤ 1

3
. Let u, v ∈ N(xy)−{z}. If w(yz) ≤ 1

4
, then there is a vertex

x′ ∈ N(yz)−{u, v, x}. Also we can find a vertex y′ ∈ N(xz)−{y, x′} and another vertex
in {u, v} not equal to y′ (say u 6= y′). Then {y′, x′, u, x, y, z} contains a copy of C3

3 , a
contradiction. It follows that w(xz) = w(yz) = w(xy) = 1

3
. Furthermore, if N(yz)− {x}

or N(xz)− {y} is not equal to {u, v}, then one can check that we still can find a copy of
C3

3 , a contradiction. Hence {x, y, z, u, v} induces a copy of K−
5 or K5.

Claim 2. t(G) ≤ e(G).

Proof. By Claim 1, we have

t(G) =
∑

xyz∈T (G)

1 ≤
∑

xyz∈T (G)

(w(xz) + w(yz) + w(xy)) = e(G),

as required.

3



Claim 3. For any triangle xyz, w(xyz) ≥ 1 + 1
n−2

, i.e., there is no K−
5 in G.

Proof. Suppose to the contrary that there is a subgraph H of G isomorphic to K5 or K
−
5

induced on the set {v1, v2, v3, v4, v5}. If H is isomorphic to K−
5 , then we may assume

without loss of generality v4v5 is not an edge.
One can check that for any edge vivj in H , N(vivj) ⊆ V (H). Otherwise we can find

a copy of C3
3 . Let S = (N(v4) ∩ N(v5)) − V (H) if H is isomorphic to K−

5 and S = ∅
otherwise.

If |S| ≤ n− 10, then e(G− V (H)) ≤ (n−5)2

4
+ n−5

2
by Theorem 1, and we have

e(G) ≤ e(H) + e(G[V (H), V (G) \ V (H)]) + e(G− V (H))

≤ 10 + (n− 5) + |S|+ (n− 5)2

4
+

n− 5

2

<
n2

4
− 1.

By Claim 2, it follows that G is not the extremal graph.
If |S| > n−10, then G[S] is P3-free, otherwise together with v4, v5, we can find a copy

of C3
3 . Hence e(G− V (H)) ≤ (n− 5− |S|)|S|+ |S|+

(

n−5−|S|
2

)

. When n ≥ 22, we have

e(G) ≤ 9 + (n− 5) + |S|+ (n− 5− |S|)|S|+ |S|+
(

n− 5− |S|
2

)

≤ 8n− 56

<
n2

4
− 1.

Again by Claim 2, we are done.

Let T1(G) = {xyz ∈ T (G) : w(xyz) ≥ 1 + 2
n
} and T2(G) = T (G) − T1(G). We have

the following bound on the average weight of a triangle in G.

Claim 4. The average weight of each triangle in G is at least 1 + 2
n
.

Proof. If T2(G) is empty, then there is nothing to prove. Hence we may assume T2(G) 6= ∅.
Let xyz be a triangle in T2(G) with w(xy) ≥ w(xz) ≥ w(yz). By Claim 1 and 3, we

have w(xy) ∈ {1, 1
2
}. If w(xy) = 1, then

w(xyz) ≥ 1 +
2

n− 2

which means xyz ∈ T1(G), a contradiction. So w(xy) = 1
2
. Let N(xy) = {z, x′}. Suppose

N(xz) − {y, x′} 6= ∅ and y′ ∈ N(xz) − {y, x′}. Then either N(yz)− {x, x′, y′} 6= ∅ and
we can find a copy of C3

3 , or N(yz) = {x, x′, z′} which means {x, y, z, x′, y′} contains a
copy of K−

5 , or w(yz) ≥ 1
2
which means w(xyz) = 3

2
≥ 1 + 2

n
. In all of these cases, we

get a contradiction. Hence, N(xz) = {y, x′} and w(xy) = w(xz) = 1
2
and so w(yz) ≤ 2

n
.

For the edges x′y, x′z, we deduce that w(x′y) = w(x′z) = 1
2
. If not, suppose w(x′y) < 1

2
.

Let u be in N(x′y) − {x, z}. Since |N(yz)| > n
2
, let v be in N(yz) − {x, x′, u}. Then

{u, v, x′, x, y, z} contains a copy of C3
3 , a contradiction. It follows that the triangle x′yz

is also in T2(G).
Therefore, for any triangle xyz in T2(G), there is a unique triangle x′yz in T2(G) such

that {x, x′, y, z} induces a copy of K4 and w(xy) = w(xz) = w(x′y) = w(x′z) = 1
2
. Hence,

4



we can partition the set of triangles in T2(G) into pairs (xyz, x′yz). For each such pair,
we define a mapping

φ(xyz, x′yz) = {xyz, x′yz, xx′y, xx′z}.

Note that since w(x′z) = 1
2
and N(x′z) = {x, y}, then N(xx′)∩N(yz) = ∅ and |N(xx′)| <

n − |N(yz)| ≤ n
2
. This means xx′y, xx′z are in T1(G). Furthermore, by Claim 3, each

triangle is contained in at most one copy of K4, so xx′y, xx′z do not belong to any other
φ(uvw, u′vw). Since

w(xyz) + w(x′yz) + w(xx′y) + w(xx′z)

= 4 +
2

|N(yz)| +
2

N(xx′)

≥ 4 +
8

|N(xx′)|+ |N(yz)| ≥ 4 +
8

n
,

we can transfer the weight of xx′y, xx′z to xyz, x′yz and ensure the average weight is at
least 1 + 2

n
.

Now by the Claim 4 and Theorem 1, we have

t(G) =
∑

xyz∈T (G)

1 ≤ n

n+ 2

∑

xyz∈T (G)

1 +
2

n

≤ n

n+ 2

∑

xyz∈T (G)

(w(xz) + w(yz) + w(xy))

≤ n

n+ 2
e(G) ≤ n2

4
− 1 + 14|n.

Equality holds if and only if e(G) attains the maximum and the average weight of each
triangle is exactly 1 + 2

n
. Hence, by the characterization of the extremal graphs for

ex(n, C3
3 ) in Theorem 1, we have G = M⌈n

4
⌉ +M⌊n

4
⌋ when n is even. �

3 Proof of Theorem 3

Let t(u, v) denote the number of triangles containing u or v or both. First, we use a
technique to reduce the proof of Theorem 3 to the case that each vertex is contained in
many triangles. To this end we use the following lemma.

Lemma 1. Suppose G is a P 3
3 -free graph on at least 300 vertices. If for any two different

vertices u, v, we have t(u), t(v) ≥ n
2
− 1 and t(u, v) ≥ n − 2, then t(G) ≤

⌊

(n−1)2

4

⌋

and

equality holds if and only if G = K1 +K⌊n−1

2
⌋,⌈n−1

2
⌉.

First we will show how to deduce Theorem 3 from Lemma 1, then we will prove Lemma 1.

3.1 Proof of Theorem 3 using Lemma 1.

Let G be a P 3
3 -free graph on n vertices with n ≥ 3003 and t(G) ≥

⌊

(n−1)2

4

⌋

. We initialize

Gn = G and define a process of as follows: for j < n, let Gj = Gj+1− v1 if t(v1) <
j+1
2

−1

5



in Gj+1, or Gj−1 = Gj+1 − {v1, v2} if t(v1, v2) < (j + 1)− 2 in Gj+1. Suppose the process
ends at Gℓ and for any two vertices u, v in Gℓ, we have t(u), t(v) ≥ ℓ

2
−1 and t(u, v) ≥ ℓ−2.

Note that
(

ℓ

3

)

≥ t(Gℓ) ≥
⌊

(ℓ− 1)2

4

⌋

+
n− ℓ

2

Hence ℓ ≥ 3
√
3n ≥ 300 and by Lemma 1, Gℓ contains a copy of P 3

3 , a contradiction.
That is to say, Gn satisfies the conditions in Lemma 1 and we are done. �

3.2 Proof of Lemma 1.

Let G = G1∪· · ·∪Gc be a P 3
3 -free graph on n ≥ 300 vertices, where Gi are the connected

components of G, for 1 ≤ i ≤ c. We may assume each edge of G is contained in at least
one triangle, otherwise we delete it and the conditions still hold in the resulting graph.
For any two distinct vertices u, v, we have t(u), t(v) ≥ n

2
−1 and t(u, v) ≥ n−2. It follows

that v(Gi) ≥ δ(G) ≥ √
n.

As mentioned in the introduction, Yuan and Yang [11] determined ex(n,K3,M
3
2 ) for

all n.

Theorem 4. (Yuan and Yang [11]) For n ≥ 7, we have

ex(n,K3,M
3
2 ) = max

{

3n− 8,

⌊

(n− 1)2

4

⌋}

.

Furthermore, K3 +Kn−3 or K1 +K⌊n−1

2
⌋,⌈n−1

2
⌉ is the unique extremal graph.

If no Gi contains two vertex-disjoint triangles, then since v(Gi) ≥
√
n ≥

√
300, we have

t(Gi) ≤
⌊

(v(Gi)−1)2

4

⌋

by Theorem 4 and

t(G) =
c

∑

i=1

t(Gi) ≤
⌊

(n− 1)2

4

⌋

.

Equality holds if and only if G is connected and G = K1 +K⌊n−1

2
⌋,⌈n−1

2
⌉.

Therefore, we may assume without loss of generality that G1 contains two vertex-
disjoint triangles. We define the distance between two vertex-disjoint triangles as the
minimum length of a path with endvertices in the respective triangles. Among all vertex-
disjoint triangle pairs in G1, let x1y1z1, x2y2z2 be two vertex disjoint triangles whose
distance is the smallest and let P = x1 · · · y2 be a path of minimal length between them.
First suppose the length of P is at least 2. Let x+

1 be the vertex adjacent to x1 on the
path P and let x1x

+
1 w be a triangle containing the edge x1x

+
1 . Then we either find a copy

of P 3
3 if w ∈ {x2, y2, z2}, or we find another two vertex disjoint triangles whose distance

is smaller, and in both cases we obtain a contradiction. Hence we have that P = x1y2 is
a single edge.

Note that x1y2 is also contained in a triangle and the third vertex of this triangle
must be in {y1, z1, x2, z2}. Without loss of generality, say x1y2z2 is a triangle. Let S =
(N(y2) ∩N(z2))− {x1, y1, z1}. Obviously, we have that S is nonempty and independent,
since x2 ∈ S and G contains no copy of P 3

3 .
Suppose u is a vertex in N(y2)− (S ∪{x1, y1, z1, z2}) and uy2w is a triangle containing

the edge uy2. If w does not belong to {x1, y1, z1}, then y1z1x1, x1z2y2, y2uw forms a

6



copy of P T
3 . If w ∈ {x1, y1, z1}, then y1z1x1, wuy2, y2z2x2 forms a copy of P T

3 . In both
cases we have a contradiction. It follows that N(y2) ⊂ S ∪{x1, y1, z1, z2} and analogously
N(z2) ⊂ S ∪ {x1, y1, z1, y2}.

Since δ(G) ≥ √
n, then |S| ≥ 2. We may assume that for each edge of the form y2u

and z2u with u ∈ S, is only contained in the triangle y2uz2. If not, suppose y2uw is a
new triangle distinct from y2uz2. Since S is independent, we have w ∈ {x1, y1, z1}. Let
u′ ∈ S − {u}, then y1z1x1, wuy2, y2u

′z2 forms a copy of P 3
3 , a contradiction. Therefore,

if we delete the two vertices y2, z2 we destroy at most |S|+9 triangles. By the condition
t(u) + t(v) ≥ n− 2, we have |S| ≥ n − 11. We obtain that the total number of triangles
is at most

(n− 11)

(

11

2

)

+

(

11

3

)

<

⌊

(n− 1)2

4

⌋

,

where the equality holds because n ≥ 300. It follows that G is not the extremal graph,
and we are done. �

4 Concluding remarks

In this paper, we studied the generalized Turán number of edge blow-ups of the graphs
C3

3 and P 3
3 . It would be interesting to consider the general case of C3

k and P 3
k . In this

section, we pose two conjectures about the generalized extremal numbers of these graphs.
Let H(n, p, t) denote the graph Kt−1+Tp(n−t+1), where Tp(n−t+1) is the balanced

p-partite complete graph on n − t + 1 vertices, i.e., the Turán graph. Let H+(n, p, t) be
the graph obtained from H(n, p, t) by adding an extra edge in any class of Tp(n− t+ 1).

Based on the our results and the Turán number of ex(n, C3
k) and ex(n, P 3

k ), we pose
the following conjecture for the generalized Turán number.

Conjecture 1. When k ≥ 4 and n is sufficiently large, H(n, 2, ⌊k−1
2
⌋+1) is the unique ex-

tremal graph for both ex(n,K3, C
3
k) and ex(n,K3, P

3
k ) when k is odd, and H+(n, 2, ⌊k−1

2
⌋+

1) is the unique extremal graph when k is even.
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