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THE SUP-NORM PROBLEM FOR AUTOMORPHIC CUSP FORMS OF PGL(n,Z[i])

PÉTER MAGA AND GERGELY ZÁBRÁDI

Abstract. Let φ be an L2-normalized Hecke–Maaß cusp form for PGLn(Z[i]) on the locally symmetric space
X := PGLn(Z[i])\PGLn(C)/PUn. If Ω is a compact subset of X, then we prove the bound ‖φ|Ω‖∞ ≪Ω

λ
n(n−1)/4−δ
φ for some δ > 0 depending only on n, where λφ is the Laplace eigenvalue of φ.

1. Introduction

Given a Riemannian locally symmetric space X = Γ\S, it is a classical analytic problem to give pointwise
bounds for (L2-normalized) eigenfunctions F of the algebra of invariant differential operatorsD(S), uniformly
in S in terms of the Laplace eigenvalue λF of F . If X is compact, then Sarnak [Sar] proved the baseline
bound

(1) ‖F‖∞ ≪X λ
dim(X)−rk(X)

4

F .

The exponent on the right-hand side is known to be sharp in general. It is also known in some special cases
that if X is not compact, then ‖F‖∞ might be considerably larger (see [BT20]), but (1) still holds if F is
retsriced to compact subsets of X . The sup-norm problem in the theory of automorphic forms asks if the
exponent of (1) can be strengthened if X is an arithmetic manifold and F is an eigenfunction not only of
D(S) but of the full Hecke algebra of X .

An important motivation comes from quantum mechanics. Classical mechanics interprets a freely moving
particle as a geodesic flow. The quantum mechanical interpretation of the same object is an L2-normalized
linear combination of eigenstates. Since the geodesic flow is ergodic with respect to the Liouville measure
on the tangent space, the correspondence principle of quantum mechanics suggests that the masses of the
eigenstates reproduce the invariant measure in the high-energy limit. Bounds on the sup-norm (or in general,
the Lp norm for any p > 2) of eigenstates control their mass concentration, and hence are in connection with
the quantum unique ergodicity conjecture of Rudnick and Sarnak [RS94]. Other important connections of
sup-norm bounds are towards the multiplicity problem, nodal domains of automorphic forms and bounds
for L-functions, see e.g. [Sar], [GRS13], [BH10].

In improving (1), there are (at least) two independent directions of research: one is to find as strong power-
savings as possible among special circumstances, typically in rank one (see e.g. [IS95] and [BHMM20]), the
other one is to find any power-saving in higher rank or among as general circumstances as possible (see
e.g. [BP16], [BM15], [BM16]). We pick up the thread in the second theme, where the current limitation
of our knowledge is an unpublished a manuscipt [Mar], which proves power-saving for a wide class of sym-
metric spaces, more specifically, for arithmetic quotients of quasi-split groups with the exception of the type
SU(n, n− 1). (We note that even though [Mar] is not peer-reviewed, it is widely accepted in the community
as being correct.)

In these notes, we introduce a new method, based and improved on that of [BM16], to tackle the sup-norm
problem. As a test application, we prove a saving over (1) in the case of the locally symmetric space

X := Γ\G/K, Γ := PGLn(Z[i]), G := PGLn(C), K := PUn.

Admittedly, our result follows from the main result of [Mar] (see especially [Mar, Corollary 1.4]), but we
strongly believe that the novelty of the method deserves attention, and might have the potential to address
the type SU(n, n− 1), the exceptional case in Marshall’s work.
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All along the paper, we think of n > 2 as being fixed, in particular, all implied constants below are allowed
to depend on n.

Before stating our main result, we fix some notations. Since it is convenient to work with matrices instead
of their projectivization, we shall realize elements of G as the rightmost nonzero entry of the bottom row is
1. We will also talk about points of X or G/K as matrices, by which we mean any matrix which represents
them. Let A stand for the diagonal subgroup of G consisting of positive real entries and let N be the
upper-triangular unipotent subgroup. Then the Iwasawa decomposition reads as G = NAK. We write a for
the Lie algebra of A, a∗ for its dual and a

∗
C for the complexification of a∗. Fixing bases in a

∗ and a
∗
C, we

may view them as appropriate subsets of Rn and Cn, respectively. Let W stand for the Weyl group, Σ for
the set of roots and Σ+ for the set of positive roots corresponding to N . For α ∈ Σ, let m(α) be the real
dimension of the corresponding root space. For λ ∈ a

∗, define

D(λ) :=
∏

α∈Σ+

(1 + |〈α, λ〉|)m(α),

where 〈·, ·〉 is induced by the Killing form.
In our special situation, define, for 1 6 j 6 n, the function ej on a as ej(diag(a1, . . . , an)) = aj , and then

a set of positive roots is given by ej − ek with 1 6 j < k 6 n. The corresponding root space is spanned
by the matrices Ejk and iEjk, where Ejk is the matrix which 1 at position j, k and otherwise zero, hence
m(ej − ek) = 2.

A Hecke–Maaß cusp form φ on X comes with archimedean Langlands parameters µφ = (µ1, . . . , µn) ∈
a
∗
C/W ⊂ Cn/W such that µ1 + . . . + µn = 0 and {µ1, . . . , µn} = {µ1, . . . , µn}. In our parametrization,

(µ1, . . . , µn) ∈ Rn corresponds to the tempered spectrum, and we have that ℑµ1, . . . ,ℑµn = O(1). Let µ∗
φ

stand for ℜµφ. Since for the Laplace eigenvalue λφ of φ,

λφ ≍ 1 + ‖µ1‖
2 + . . .+ ‖µn‖

2

holds, we have

D(µ∗
φ) ≪ λ

n(n−1)
2

φ .

The main result of this paper is the following.

Theorem 1. For any n > 2, there exists some δ = δ(n) > 0 with the following property. For any L2-
normalized Hecke–Maaß cusp form φ on X and any compact Ω ⊂ X,

‖φ|Ω‖∞ ≪Ω D(µ∗
φ)

1
2−δ.

In particular,

‖φ|Ω‖∞ ≪Ω λ
n(n−1)

4 (1−2δ)

φ .

Since n(n− 1)/4 = (dim(X)− rk(X))/4, this is a saving over (1). We note that the case n = 2 was solved
in [BHM16].

Our method closely follows the one introduced in [BM16], however, the counting problem in this situation
is more challenging (because of the too large maximal compact subgroup of G, as it will be briefly exposed
below). This requires an improvement in the counting techniques, which is the heart of this paper (vaguely
speaking, a combination of Lemma 4 and Lemma 8). As a by-product, there is no need of Linnik type
theorems about small primes in arithmetic progressions (i.e. zero repulsion of L-functions) any more.

We remark that with some work, the jungle of O(1)’s below (particularly in Section 4) can be made
explicit, hence an explicit subconvexity saving is available, see the work [Gil20] over the rational field (in
fact, now it is easier, since the reference to Linnik type theorems is removed). We also note that the implied
constant (which depends on Ω) can be also made fully explicit, so the method in principle is effective, e.g.
we do not need any reference to Siegel zeroes.

Acknowledgements. We thank Valentin Blomer for useful discussions about the topic of the paper. We
also thank Gergely Harcos and Vitezslav Kala for discussions about some closely related questions.

The research towards this work was supported by NKFIH (National Research, Development and In-
novation Office) Grants KKP 133819 (PM), FK 135218 (PM), FK 127906 (GZ), K 135885 (GZ), ELKH
(Eötvös Loránd Research Network) Grant SA-71/2021 (PM & GZ), and the MTA Rényi Intézet Lendület
Automorphic Research Group (PM & GZ).
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2. Reduction to a counting problem

In this section, we reduce the problem to a matrix counting problem, following the lines of [BM15] and
[BM16], where PGLn(Z)\PGLn(R)/POn was treated. Since the spherical Hecke algebra is isomorphic in
that case to ours at the archimedean and all relevant non-archimedean places, almost everything follows
verbatim, so we give only a brief exposition, with some emphasis on the small difference coming from the
fact that the maximal compact subgroup is the orthogonal group in the real case and the unitary group in
the complex case.

Let fµφ
: K\G/K → C be the spherical function constructed in [BM16, pp.1276–1277] (here we utilize

that A, a∗, a∗C are the same for PGLn(R) and PGLn(C)). Denoting by f̃µφ
its spherical transform, for any

x, y ∈ G, we have the pre-trace formula

(2)

∫

f̃µφ
(µ̟)F̟(x)F̟(y) d̟ =

∑

γ∈Γ

fµφ
(x−1γy),

where the integral on the left is meant over the full spectrum of Γ\G.
The idea of amplification in the current setup can be summarized as follows. Assume we want to estimate

our form φ at a point g ∈ Ω. Then in (2), we set x := g and we take y of the form γg, where γ runs through
right coset representatives corresponding to certain Hecke operators. An appropriate weighted sum of these
results in a positive operator on L2(X), hence from the left-hand side, all but the one term corresponding to
F̟ = φ can be dropped (for this positivity argument, see also [BHMM20, Section 3]). All in all, we arrive
at a bound of the form

C|φ(g)|2 6
∑

γ∈Γ′

fµφ
(g−1γg)

with Γ′ being a finite set of matrices arising from the Hecke operators utilized, and C is a positive constant
coming from f̃µφ

and the corresponding Hecke eigenvalues. Then, using that fµφ
decays controllably away

from K (see [BP16, Theorem 2]), to bound |φ(g)|, we essentially have to count those γ ∈ Γ′ for which g−1γg
is close to K.

To be a little more concrete, let L > 2 be a parameter, and assume that P is a set of primes π lying above
distinct split rational primes such that L 6 N(π) < 2L with N standing for the norm. Then the discussion
of [BM15, Sections 4, 6] (which in fact uses [BP16, Theorem 2], and see also [BM16, Section 2]) leads to, for
any number M > 1,

(3) |φ(g)|2 ≪M,Ω D(µ∗
φ) ·





1

#P
+D(µ∗

φ)
−κLK +

n
∑

ν=1

1

(#P)2

∑

π,π′∈P

#S(Q, πν , π′ν ,M)

Lν(n−1)



 , g ∈ Ω,

where K is a fixed number depending only on M and n, κ > 0 is also a fixed number depending only on n;
and

S(Q, πν , π′ν ,M) :=
{

γ ∈ SLn(Z[i]) · diag(1, π
ν , . . . , πν , πνπ′ν) · SLn(Z[i]) :

‖| det γ|−
2
n · γ∗Qγ −Q‖∞ 6 max

(

N(π)−M , N(π′)−M
)

}(4)

with Q := | det g|2/n · (g∗)−1g−1, and by ‖ · ‖∞ applied to a matrix, we mean its largest entry in absolute
value. Note that in [BM15] and [BM16], the transpose of γ and g are taken instead of their adjoint.

By the prime number theorem, we can choose P to satisfy #P ≫ε L1−ε for any ε > 0. Therefore, if we
were able to prove that

#S(Q, πν , π′ν ,M) ≪Ω,M Lν(n−1)−η

holds for every 1 6 ν 6 n with some η > 0, then (3) would imply Theorem 1 by setting L to be a very small
positive power of D(µ∗

φ). We prove it in a weaker form, which still suffices for Theorem 1.
Before formulating this weaker statement, we fix some notation. Introduce the notation Sn for the real

vector space of self-adjoint matrices in Cn×n and Pn ⊂ Sn for the open convex cone of positive definite
matrices. Given a compact set Ω ⊂ X as in Theorem 1, we introduce

Ω′ :=

{[

1

2
, 2

]

· | det g|
2
n · (g∗)−1g−1 : g ∈ Ω

}

.
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Then Ω′ is a compact subset of Pn in the subspace topology.

Proposition 1. Let ε > 0 be arbitrary. There exist positive numbers α(ε) > 1 and M(ε) > 1 (both depending
only on n and ε) with the following properties. For any compact Ω ⊂ X, there exists a constant L(Ω) > 2
(depending only on n, α(ε), M(ε) and Ω) such that the following holds. For any L0 > L(Ω), there exists some

L0 6 L 6 L
α(ε)
0 such that for any prime π lying above a split rational prime and satisfying L 6 N(π) < 2L,

we have

(5) #S(Q, πν , πν ,M(ε)) ≪Ω,ε L
ν(n−1)+ε, Q ∈ Ω′, 1 6 ν 6 n;

and for any two distinct primes π, π′ lying above distinct split rational primes, we have

(6) #S(Q, πν , π′ν ,M(ε)) = 0, Q ∈ Ω′, 1 6 ν 6 n.

This still suffices for the proof of Theorem 1. Indeed, we apply Proposition 1 with any 0 < ε < 1/2.
There are implied numbers α := α(ε) > 1 and M := M(ε) > 1, and together with the further input Ω,
one more number L(Ω) by Proposition 1. Then take L0 := D(µ∗

φ)
ω , where ω > 0 is a fixed constant to be

specified later. By Proposition 1, if L0 > L(Ω), we can find some with D(µ∗
φ)

ω 6 L 6 D(µ∗
φ)

αω such that

the countings (5) and (6) hold for any primes L 6 N(π), N(π′) < 2L. Then in every term of (3), we get a
power-saving, as soon as ω > 0 in the beginning is chosen sufficiently small. Now we return to the condition
L0 > L(Ω). Apart from a finite set of Hecke–Maaß cusp forms depending only on Ω, this is indeed satisfied
by L0 = D(µ∗

φ)
ω. The finitely many exceptional forms are treated then by adjusting the implied constant

(note that the implied constant might depend on Ω, only the saving in the exponent must be absolute).
The rest of the paper is hence devoted to the proof of Proposition 1.
We conclude this section by illustrating why this counting problem is harder for PGLn(Z[i]) than for

PGLn(Z) in the special case when Q is the unit matrix. Then in S(. . . ), we have a condition on the Smith
normal form which is of the same complexity in both cases. However, the other condition is that γ is
projectively equivalent to an orthonormal matrix, which intuitively happens more often over C than over R,
since

dim(PGLn(C)) = 2n2 − 2, dim(PUn) = n2 − 1 =
dim(PGLn(C))

2
,

while

dim(PGLn(R)) = n2 − 1, dim(POn) =
n2 − n

2
<

dim(PGLn(R))

2
,

i.e. PUn is a “thicker” subgroup of PGLn(C) than POn of PGLn(R).

3. Counting techniques in a special case

In this section, we introduce counting techniques for a situation which is very special in many different
aspects. First, we will assume that Q is diagonal, moreover, its entries belong to the base field Q(i). Then
these together imply that the diagonal entries are rational, i.e. Q = diag(q1, . . . , qn) with q1, . . . , qn ∈ Q.
Then qj ≍Ω 1 for all 1 6 j 6 n, and we also assume that the numerator and the denominator of qj for all
1 6 j 6 n (in their simplest form) are both coprime to π, π′. Our final simplification is that we allow no
error term in (4), which we will denote by writing ∞ in place of M .

Our convention will be that vectors, i.e. elements of Z[i]n,Cn, etc. are always meant as column vectors.
We also introduce the notation vπ(q), for any prime π ∈ Z[i] and any q ∈ Q(i), which denotes the π-valuation
of q. Occasionally, we may use this notation for vectors or matrices with entries from Q(i), then it means
the minimal π-adic valuation attained by the entries.

Lemma 1. Let π ∈ Z[i] be a prime lying above a split rational prime p = ππ, ρ ∈ N, and let A ∈ Q(i)n×n

be a self-adjoint matrix such that vπ(A) > 0. Let x = (ξ1, . . . , ξn)
t, y = (υ1, . . . , υn)

t ∈ Z[i]n be vectors
satisfying vπ(x) = vπ(y) = 0 such that for any 1 6 j < k 6 n, πρ | (ξjυk − ξkυj). Then the following
statements hold.

(a) For some a ∈ Z coprime to p, we have y ≡ ax mod πρ, and this a is well-defined modulo pρ.
(b) Choosing a ∈ Z with this property in (a), there also exists a b ∈ Z (unique modulo pρ) with b ≡ ai mod πρ,

so we further have

(7) 2x∗Ay ≡ (a− bi)x∗Ax+ (a′ − b′i)y∗Ay mod pρ,
4



where a′ ∈ Z (resp. b′ ∈ Z) stands for the multiplicative inverse of a (resp. of b) modulo pρ.
(c) We have πρ | a′ − b′i and πρ | a− bi for the integers a, b, a′, b′ defined above.

Proof. This is a variant of [BM16, Lemma 3], but the proof in this case is a little more computational.
Without loss of generality, we may assume that π ∤ ξn. Then π ∤ υn, for if not, then for some 1 6 j 6 n− 1,
π ∤ υj , and then π ∤ (ξnυj − ξjυn). Then a ≡ υnξ

−1
n mod πρ does the job, since υj ≡ ξjυnξ

−1
n ≡ aξj mod πρ

for any 1 6 j 6 n − 1. Also, a can be chosen in Z uniquely modulo pρ since 0, 1, . . . , pρ − 1 is a set of
representatives modulo πρ (i.e. we have the isomorphism Z/(pρ) ∼= Z[i]/(πρ)). The proof of (a) is complete.

As for (b), fix any representative a ∈ Z and let b ∈ Z be such that b ≡ ai mod πρ. Then πρ divides all
the entries in y − ax whence πρ divides all the entries in (y − ax)∗. So we deduce

0 ≡ (y − ax)∗A(y − ax) = y∗Ay + a2x∗Ax− ax∗Ay − ay∗Ax mod pρ = (ππ)ρ

hence

(8) x∗Ay + y∗Ax ≡ ax∗Ax + a′y∗Ay mod pρ

where a′ ∈ Z is a multiplicative inverse of a modulo pρ. Similarly, πρ divides all the entries in iy − bx and
πρ divides all the entries in (iy − bx)∗ as ai ≡ b mod πρ. So we compute

0 ≡ (iy − bx)∗A(iy − bx) = y∗Ay + b2x∗Ax− bix∗Ay + biy∗Ax mod pρ

whence

(9) x∗Ay − y∗Ax ≡ −bix∗Ax− b′iy∗Ay mod pρ

where b′ ∈ Z is a multiplicative inverse of b modulo pρ. The statement follows by adding equations (8) and
(9).

For part (c), we compute πρ | i(b− ai) = ib+ a whence πρ | a+ bi = a− bi. Similarly, πρ | a′b′(b− ai) ≡
a′ − b′i. �

Lemma 2. Let A ∈ Ω′, and assume that x1, . . . , xk ∈ Z[i]n are linearly independent vectors for some
0 6 k 6 n− 1. Then for any real number β > 2,

#{y ∈ Z[i]n : y∗Ay = β2, and x∗
jAy = 0 for any j = 1, . . . , k} ≪Ω,ε β

2(n−k−1)+ε

for any ε > 0.

Proof. See [BM15, Corollary 5.3]. �

We slightly extend the notation S(Q, πν , π′ν ,∞) for π, π′ ∤ m ∈ Z[i] as

Sm(Q, πν , π′ν ,∞) :=
{

γ ∈ SLn(Z[i]π,π′) · diag(1, πν , . . . , πν , πνπ′ν) · SLn(Z[i]π,π′) :

mγ ∈ SLn(Z[i]), | det γ|
− 2

n · γ∗Qγ = Q
}

,

where by Z[i]π,π′ , we mean the ring of elements a ∈ Q(i) which satisfy vπ(a), vπ′(a) > 0.

Lemma 3. Let π ∈ Z[i] be a prime lying above a split rational prime, and π ∤ m ∈ Z[i]. Let Q =
diag(q1, . . . , qn) with qj ∈ Q, qj ≍Ω 1 for all 1 6 j 6 n. Then for any 1 6 ν 6 n,

#Sm(Q, πν , πν ,∞) ≪Ω,ε |m|2n
2−2+ε den(Q)

(2n−1)(n−1)
2 N(π)ν(n−1)+ε.

for any ε > 0. Here, den(Q) denotes the least common multiple of the denominator of the diagonal entries
of Q (written in simplest form).

Proof. By the definition of Sm(Q, πν , πν ,∞), any matrix counted there must have a column not completely
divisible by π, and we may assume that it is the first column γ1. Since (mγ1)

∗Q(mγ1) = |m|2N(π)ν , we
have, by Lemma 2 that the number of possible mγ1’s is Oε(|m|2(n−1)+εN(π)ν(n−1)+ε). Now it suffices to
prove that fixing γ1, there are OΩ(m

2n(n−1) den(Q)(2n−1)(n−1)/2) ways to finish the matrix.
We group the possible second columns γ2 according to their π-valuation. When vπ(γ2) > ν, then

mγ2/π
ν ∈ Z[i]n and ‖mγ2/π

ν‖ ≍Ω ‖mγ2/π
ν‖Q = |m|, hence there are OΩ(|m|2n) such choices for such

a γ2. Now fix 0 6 µ < ν, and then it suffices prove that the number of possible γ2’s satisfying vπ(γ2) = µ is
OΩ(|m|2n den(Q)(2n−1)/2), since the same can be repeated for all further columns.
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Let x, y be second columns after the first column γ1 such that vπ(x) = vπ(y) = µ. Consider then the
vectors x′ := mx/πµ and y′ := my/πµ. By Lemma 1(a), x′ and y′ are both multiples of mγ1 modulo
πν−µ, and then by transitivity, multiples of each other modulo πµ−ν . Introduce then Q′ := den(Q)Q. With
this notation, since x′∗Q′x′ = y′∗Q′y′ = |m|2q2 den(Q)πν−µπν−µ = |m|2q2 den(Q)N(π)ν−µ, (7) gives that
x′∗Q′y′ is divisible by N(π)ν−µ. On the other hand, viewing Cn as R2n, we obtain, for the Q-angle of x and
y that

∢Q(x, y) = arccos
ℜ(x∗Qy)

√

(x∗Qx)(y∗Qy)
= arccos

ℜ(x′∗Q′y′)
√

(x′∗Q′x′)(y′∗Q′y′)
= arccos

ℜ(x′∗Q′y′)

|m|2q2 den(Q)N(π)µ−ν
.

Since the numerator in the rightmost expression is divisible by N(πµ−ν), this continues, for some ℓ ∈
{0, 1, 2, . . .}, as

∢Q(x, y) = arccos

(

1−
ℓ

|m|2q2 den(Q)

)

≫Ω |m|−1 den(Q)−1/2, if ℓ 6= 0, i.e. x 6= y.

This means that the number of possible second columns is OΩ(|m|2n−1 den(Q)(2n−1)/2) (this is rather ele-
mentary, see also [BM16, Lemma 4]). The proof is complete. �

Lemma 4. Let π, π′ ∈ Z[i] be distinct primes lying above distinct split rational primes, and let m ∈ Z[i]
such that vπ(m) = vπ′(m) = 0. Let further Q = diag(q1, . . . , qn) such that qj ∈ Q and vπ(qj) = vπ′(qj) = 0
for all 1 6 j 6 n. Then for any 1 6 ν 6 n,

#Sm(Q, πν , π′ν ,∞) = 0.

Proof. First observe that if 1 6 ν 6 n− 1, then

| det γ|
2
n = (ππ)

ν(n−1)
n

(

π′π′
)

ν
n /∈ Q,

hence | det γ|2/nγ∗Qγ 6= Q, implying #Sm(Q, πν , π′ν ,∞) = 0 in this case, so from now on, we assume ν = n.
Any γ counted in #Sm(Q, πn, π′n,∞) must have a column, say, the first one γ1 such that vπ(γ1) = 0.

Now we prove that any choice of γ2 leads to a contradiction. Let µ := vπ(γ2) > 0. Then we apply Lemma 1,
in particular, (7) for γ1 and γ′

2 := γ2/π
µ, with the notation p = ππ, a, b ∈ Z coprime to p such that

1 6 a, b, a′, b′ 6 pn−µ − 1, γ′
2 ≡ aγ1 mod πn−µ, b ≡ ai mod πn−µ, a′, b′ are the multiplicative inverse of a, b

modulo pn−µ, respectively. We infer

(10) 0 = π−µγ∗
1Qγ2 = γ∗

1Qγ′
2 ≡ (a− bi)pn−1π′π′q1 + (a′ − b′i)pn−1−µπ′π′q2 mod pn−µ,

which is immediately a contradiction for µ > 1, since the second term in the rightmost expression is not
divisible by pn−µ, while the first one and the sum are.

Now assume µ = 0. By Lemma 1(c) we have π | a − bi and π | a′ − b′i. So in (10) the first term on the
right-hand side is not divisible by πn (since π ∤ a−bi as p ∤ a−bi), while the second one and the sum are. �

4. Exchanging matrices

Recall that we want to prove the countings (5) and (6) for N(π), N(π′) ∈ [L, 2L) with an appropriate
choice of L > L0 not exceeding a fixed power of L0. Our strategy is to switch Q for other matrices with
better and better arithmetic properties. Note that a priori, Q is a point on a real manifold with entries that
might be highly transcendental. We first informally describe these switches. First we will write Q1 in place
of Q in order to guarantee that

S(Q, πν , π′ν ,M) ⊆ S(Q1, π
ν , π′ν ,∞)

for every admissible choice of π, π′, ν satisfying that N(π), N(π′) are between two fixed powers of L0. This
new Q1 will have entries in a number field K ⊇ Q(i). Using this Q1, we will be able to show that in an
appropriate subinterval (again, the norms are between two fixed powers of L0), all the γ’s correspond to
π = π′ or ν = n.

Secondly, in this subinterval, we will find a Q2, this time satisfying that

S(Q, πν , π′ν ,M) ⊆ S(Q2, π
ν , π′ν ,∞)

for every admissible choice of π, π′, ν satisfying that N(π), N(π′) fall into an even shorter subinterval (again,
between two powers of L0). This new Q2 will have entries in Q(i), and we will have a control on their height.
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Finally, we will diagonalize Q2 into Q3, again, with a control on the height of the entries, which necessarily
will be rational. This diagonalization process will affect the counted γ’s themselves, but not their number,
and we will have a good control on the possible denominators of the newly counted γ’s, i.e.

#S(Q, πν , π′ν ,M) 6 #S(Q2, π
ν , π′ν ,∞) 6 #Sm(Q3, π

ν , π′ν ,∞)

for π, π′, ν as above. Then to the rightmost count here, we will apply Lemmata 3–4, which in fact will be of
the quality of (5) and (6).

Now we carry out this plan in detail. First we formulate a statement on effective computability. The field
of algebraic numbers is denoted by Q. Given an algebraic number a, we define the complexity of a as

comp(a) := inf
a= b

c

b,c∈OQ(a)

(

max
σ∈HomQ(Q(a),C)

|σ(b)|+ max
σ′∈HomQ(Q(a),C)

|σ′(c)|

)

+ 1

with OQ(a) standing for the ring of integers of Q(a).

Lemma 5. Let a1, . . . , am be algebraic numbers and put K := Q(a1, . . . , am). Assume that f : Q
m

→ Q is a
function of m variables that is computed altogether by t additions, subtractions, multiplications and divisions.
Then we have

comp(f(a1, . . . , am)) 6

(

max
16j6m

(comp(aj))

)Om,t,deg(K:Q)(1)

.

Proof. See the first paragraph of the proof of [BM16, Lemma 5]. �

Include Ω′ in some Ω1 which is still a compact subset of Pn in such a way that Ω′ ⊂ int(Ω1). We make
this inclusion in a well-defined way, say, Ω1 is the set of self-adjoint, positive definite matrices of eigenvalues
between a/2 and 2b, where a, b are respectively the smallest and the largest eigenvalues of matrices in Ω′.
Then dist(Ω′, Pn \Ω1) ≫Ω 1, where by the distance of matrices, we mean the one induced by the maximum
of the entrywise distance.

Given any matrix γ ∈ GLn(C), we define the following linear transformation Bγ : Sn → Sn:

Bγ(A) := γ∗Aγ − | det(γ)|
2
nA, A ∈ Sn.

For any 0 < C1 < C2, we introduce the notation P(C1, C2) for the set of primes π ∈ Z[i] satisfying that
ℜπ,ℑπ > 0 and C1 6 N(π) < C2 (then in particular, elements of P(C1, C2) lie above distinct split rational
primes). Another notation we introduce is T > 1, a fixed number depending only on n, which exceeds all
the implicit constants in O(1)’s ever mentioned in the paper.

Lemma 6. Let D > 2 and E > 2 be arbitrary. Then there exist some M > 2 (depending on n,D,E) and
L1(Ω) > 2 (depending on n,D,E,M,Ω) such that the following holds. For any Q ∈ Ω′, there exists some
1 6 j 6 n2 + 1 satisfying that

S(Q, πν , π′ν ,M) = ∅

for all π, π′ ∈ P(2L
(DE)j

0 , 2L
(DE)j+1

0 ), unless π = π′ or ν = n.

Proof. Fix Q ∈ Ω′. For any L0 > 2, consider the subspaces (for the moment, with some unspecified M > 2)

Hj :=
⋂

γ∈S(Q,πν ,π′ν ,M)

π,π′∈P(L0,2L
(DE)j

0 )
16ν6n

kerBγ , j = 1, . . . , n2 + 2.

Then Sn ⊇ H1 ⊇ . . . ⊇ Hn2+2 ⊇ {0} and dim(Sn) = n2 imply that Hj = Hj+1 for some 1 6 j 6 n2 +1. Fix
the smallest such j. Since dimSn−dimHj 6 n2, we in fact obtain Hj by intersecting only n2 many kerBγ ’s,

say, Hj = ∩t
ℓ=1 kerBγℓ

with some t 6 n2. Since each entry of each such γℓ has complexity OΩ((L
(DE)j

0 )O(1)),

Hj is defined via a system of linear equations with entries from K = Q(i, π
1/n
1 , . . . , π

1/n
2n2 ) of complexity

OΩ((L
(DE)j

0 )O(1)) by Lemma 5 (since the linear system defining Hj can be computed in O(1) steps from the
used γ’s).
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By assumption, dist(Q, kerBγ) ≪ L−M
0 , where by dist, we mean the distance in Sn as a real vector space

of dimension n2. We claim that this implies that dist(Q,Hj) = OΩ((L
(DE)j

0 )O(1)L−M
0 ). Indeed, take basis

matrices V1, . . . , Vm of the linear span of the (kerBγℓ
)⊥’s such that each Vℓ′ is in one of the kerBγℓ

’s, its

entries are in K of complexity OΩ((L
(DE)j

0 )O(1)) (this can be done, because such a basis can be computed
from the γℓ’s, and then Lemma 5 applies). Such a basis can be orthogonalized by Gram–Schmidt into
V ′
1 , . . . , V

′
m, and then

dist(Q,Hj) = ‖ projH⊥

j
(Q)‖ =

∥

∥

∥

∥

∥

m
∑

ℓ′=1

〈Q, V ′
ℓ′〉

〈V ′
ℓ′ , V

′
ℓ′〉

V ′
ℓ′

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

m
∑

ℓ′=1

∑m
ℓ′′=1 Uℓ′ℓ′′〈Q, Vℓ′′〉

〈V ′
ℓ′ , V

′
ℓ′〉

V ′
ℓ′

∥

∥

∥

∥

∥

,

where U is the matrix standing for the Gram–Schmidt process. Since 〈Q, Vℓ′′〉 ≪ L−M
0 (because for every

ℓ′′, we have Vℓ′′ ∈ kerBγℓ
for some ℓ), and all the coefficients (including the entries of U , by Lemma 5) are of

complexity OΩ((L
(DE)j

0 )O(1)), we indeed see that dist(Q,Hj) = OΩ((L
(DE)j

0 )O(1)L−M
0 ), applying Lemma 5

again.
Now if M is large enough, say,

(11) M > T · (DE)n
2+2 + 1,

where recall that T > 1 is an upper bound on all the implicit constants in O(1)’s ever mentioned in the
paper, then dist(Q,Hj) = OΩ(L

−1
0 ) (since j 6 n2 +1, the exponent n2 +2 seems to be an overkill, but for a

later reference, it is better to force M even a slightly larger). Then with the convenient choice of L1(Ω) > 2,
if L0 > L1(Ω), then Hj ∩ intΩ1 6= ∅, in particular, Hj 6= {0}. Further, since Hj is defined over K, we may
find and fix some 0 6= Q1 ∈ Hj with entries in K.

By the definition of Hj and its choice Hj = Hj+1, we have that for any π, π′ ∈ P(L0, 2L
(DE)j+1

0 ) and any
1 6 ν 6 n,

S(Q, πν , π′ν ,M) ⊆ S(Q1, π
ν , π′ν ,∞).

Assume that γ ∈ S(Q, πν , π′ν ,M) for some π, π′ ∈ P(2L
(DE)j

0 , 2L
(DE)j+1

0 ). Since Q1 has a nonzero entry,
say, Qrs, this implies via the last display that

γ∗
rQ1γs = | det(γ)|

2
nQrs,

where γr, γs stand for the rth and sth column of γ, respectively. Here, the left-hand side is in K, so is the
right-hand side, which implies that | det(γ)|2/n = (ππ)ν(n−1)/n(π′π′)ν/n ∈ K. By the independence of roots

(a theorem of Besicovitch [Bes40]) and that K is defined by nth roots of primes of norm less than 2L(DE)j ,

while primes in the definition of Hj+1 have norms at least 2L(DE)j , we see that π = π′ or ν = n, and the
proof is complete. �

Lemma 7. Let D > 2 be arbitrary, and assume that E > Dn2+1. Let M,L1(Ω) > 2 be given by Lemma 6
and (11). For any Q ∈ Ω′, and for the corresponding j 6 n2+1 given by Lemma 6, there exists a self-adjoint

matrix Q2 with entries in Q(i) of complexity OΩ((L
Dk(DE)j

0 )O(1)) for some k ∈ {0, . . . , n2} such that for any

π, π′ ∈ P(2L
Dk(DE)j

0 , 2L
Dk+1(DE)j

0 ) and any 1 6 ν 6 n,

S(Q, πν , π′ν ,M) ⊆ S(Q2, π
ν , π′ν ,∞).

Proof. Define the subspaces

H ′
k :=

⋂

γ∈S(Q,πν,π′ν ,M)

π,π′∈P(2L
Dk(DE)j

0 ,2L
Dk+1(DE)j

0 )
16ν6n

kerBγ , k = 0, . . . , n2 + 1.

Then Sn ⊇ H ′
0 ⊇ . . . ⊇ H ′

n2+1 ⊇ {0} and dim(Sn) = n2 imply that H ′
k = H ′

k+1 for some 1 6 k 6 n2. Fix
the smallest such k.

By our choice Dn2+1 < E we have 2L
(DE)j

0 6 2L
Dk(DE)j

0 < 2L
Dk+1(DE)j

0 < 2L
(DE)j+1

0 , so we may apply

Lemma 6 to deduce S(Q, πν , π′ν ,M) = ∅ unless π = π′ or ν = n. In particular, we have | det(γ)|2/n =
(ππ)ν(n−1)/n(π′π′)ν/n ∈ Z for all γ ∈ S(Q, πν , π′ν ,M) in the definition of H ′

k. Therefore all linear maps Bγ
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in the definition of H ′
k are defined over Q(i). As in the proof of Lemma 6, we find a matrix Q2 ∈ intΩ1 ∩H ′

k

with entries in Q(i) of complexity OΩ((L
Dk(DE)j

0 )O(1)) by Lemma 5 such that the conclusion holds. (Note
that this is the point where we use the slightly stronger condition (11) put on M that it exceeds not only
(DE)j · O(1), but Dk(DE)j · O(1).) �

Lemma 8. Let D > 2 be arbitrary, and let E be as in Lemma 7, then M,L1(Ω) as given by Lemma 6. For
any Q ∈ Ω1, let j, k be the numbers given also by Lemmata 6–7. There exists some m ∈ Z[i] of complexity

OΩ((L
Dk(DE)j

0 )O(1)) and a matrix U ∈ SLn(Z[i,
1
m ]) with the following properties:

(a) All entries of U and U−1 have complexity OΩ((L
Dk(DE)j

0 )O(1)).

(b) Q3 := U∗Q2U is diagonal with entries in Q of complexity OΩ((L
Dk(DE)j

0 )O(1)) and lies in a compact
subset Ω2 ⊂ Pn depending only on Ω.

(c) For any π, π′ ∈ P(2L
Dk(DE)j

0 , 2L
Dk+1(DE)j

0 ) not dividing m, and any 1 6 ν 6 n, we have

#S(Q2, π
ν , π′ν ,∞) 6 #Sm(Q3, π

ν , π′ν ,∞).

Proof. We construct U in a way such that Q3 is a Gram–Schmidt orthogonalized form of Q2, i.e.

Q3 = U∗Q2U,

where U is an
(

n
2

)

long composition of elementary base changes idn +uEℓ1ℓ2 for ℓ1 6= ℓ2, where u is chosen to
eliminate the entry at position ℓ1, ℓ2 (note that U is not canonically determined, since we can eliminate the

elements in any order, fix one once for all). Noting that each entry of Q2 has complexity OΩ((L
Dk(DE)j

0 )O(1)),
this proves (a) by Lemma 5.

As for (b), first we claim that in a Gram–Schmidt step applied to a positive definite matrix, one diagonal
entry decreases in absolute value, and all the others remain the same. It suffices to check this for 2 × 2
blocks, where we see the calculation

(

1 0

− b
a 1

)(

a b

−b c

)(

1 − b
a

0 1

)

=

(

a 0

0 c− |b|2

a

)

.

Here, 0 < c− |b|2/a < c, so the claim is proven.
As a result, when we diagonalize any element of Ω1, the resulting diagonal matrix cannot have entry larger

than the largest eigenvalue in Ω1, say, λ. But then the smallest eigenvalue cannot be smaller than ∆/λn−1,
where ∆ is the smallest determinant attained in Ω1. Therefore, any Gram–Schmidt process applied to any
element of Ω1 leads to positive definite matrices with eigevalues between ∆/λn−1 and λ. The set of such
matrices is a good choice for Ω2.

The rationality of Q3 is obvious, since it is self-adjoint and with diagonal entries a priori in Q(i). Then
observe that the matrix Q3 is computed in O(1) many steps from Q2, which verifies via Lemma 5 that the

entries of Q3 are indeed of complexity OΩ((L
Dk(DE)j

0 )O(1)). This proves (b).
Also, put m := den(U−1) den(U) (which is den(U)2, since det(U) = 1). Then m can be computed in

O(1) steps, and referring to Lemma 5, we see that the complexity of m is OΩ((L
Dk(DE)j

0 )O(1)) as claimed.
In particular, we have mU−1γU ∈ Z[i]n×n for any γ ∈ SLn(Z[i]).

Finally, if π, π′ ∤ m, then the base change given by U does not alter the π- and π′-parts of the Smith
normal form. Hence if γ ∈ S(Q2, π

ν , π′ν ,∞), then

| det(γ)|
2
nQ3 = | det(γ)|

2
nU∗Q2U = U∗γ∗Q2γU = (U−1γU)∗U∗Q2U(U−1γU) = (U−1γU)∗Q3(U

−1γU)

shows that U−1γU ∈ Sm(Q3, π
ν , π′ν ,∞). Since the U -conjugation is a bijection, we obtain (c). �

5. The endgame

Let ε > 0 be given as in the input of Proposition 1. Choose then D > 2 such that Dε/2 > T + 1, where
recall that T > 1 is an upper bound on all implicit constants in O(1)’s ever mentioned in the paper. Let
then E > 2 as needed in Lemma 7, and then M > 2 as implied by Lemma 6. This M will be the M(ε) of
Proposition 1.
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Now let Ω, hence Ω′,Ω1,Ω2 be given. Let L(Ω) be large enough such that on the other hand L(Ω) >

L1(Ω) of Lemmata 6–7, and on the other hand that for any L0 > L(Ω), and any m implied by Lemma 8

(for any possible 1 6 j 6 n2 + 1 and 0 6 k 6 n2), N(m) < L
Dk+1(DE)j

0 , which can be achieved, since

N(m) = OΩ(L
Dk(DE)j

0 ). This in particular implies π ∤ m for any π ∈ P(L
Dk+1(DE)j

0 , 2L
Dk+1(DE)j

0 ). Note
that at this point none of j, k,m is fixed, but we have the claimed bounds and the non-divisibility relations
on them.

Let then Q ∈ Ω′ and L0 > L(Ω) be arbitrary. Then there exist some 1 6 j 6 n2 + 1 given by Lemma 6,
0 6 k 6 n2 and Q2 given by Lemma 7, Q3 and m ∈ Z[i] given by Lemma 8 with the properties given there.

Let then L := L
Dk+1(DE)j

0 , which satisfies the magnitude requirement of Proposition 1 that L0 6 L 6 L
α(ε)
0 ,

where α(ε) is a constant depending only on ε (we can take α(ε) = Dn2+1(DE)n
2+1). For any π, π′ ∈ P(L, 2L)

and any 1 6 ν 6 n, we have, combining Lemmata 7–8, that

#S(Q, πν , π′ν ,M) 6 #S(Q2, π
ν , π′ν ,∞) 6 #Sm(Q3, π

ν , π′ν ,∞).

Therefore, it suffices to estimate the rightmost expression from above. We apply Lemma 4 for π 6= π′ to
see the count is 0, which proves (6). When π = π′, then we apply Lemma 3 (with ε/2 written in place of ε
there) to see it is

OΩ((L
Dk(DE)j

0 )O(1)) ·OΩ,ε((L
Dk+1(DE)j

0 )ν(n−1)+ ε
2 ) = OΩ,ε(L

ν(n−1)+ε),

where the last bound holds by the choice of D and by N(π) < 2L. This proves (5).
The proof of Proposition 1 and hence that of Theorem 1 are complete.
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