
ar
X

iv
:1

11
1.

30
67

v2
 [

m
at

h.
PR

]
 2

0
O

ct
 2

02
0

A factor of i.i.d. with uniform marginals and infinite clusters

spanned by equal labels

Péter Mester∗

October 22, 2020

Abstract

We give an example of an FIID vertex-labeling of T3 whose marginals are uniform on [0, 1], and if we

delete the edges between those vertices whose labels are different, then some of the remaining clusters

are infinite.

1 Introduction

In this paper we answer a question asked by Gaboriau in his ICM survey in a slightly different language

(Question 5.6 in [G10]). The question concerns factor of i.i.d. processes (FIIDs from now on), which are

random elements of SΓ where Γ is a countable group and S is some label set (for us it will be [0, 1] or

{0, 1}n), and arise by applying an equivariant measurable map f : [0, 1]Γ → SΓ to an i.i.d. family {ωγ}γ∈Γ

where ωγ is uniform on [0, 1]. If Θ = f(ω) is an FIID and γ ∈ Γ, then Θ(γ) is a random variable whose

distribution (which does not depend on γ by the equivariance of f) will be called the marginal of Θ. For us

the group will be relevant as the vertex set of its Cayley graphs and we will give further intuition on FIIDs

in that case.

If L ∈ SV is a labeling of the vertex set V of a graph, then let clust(L) be the subgraph obtained

by deleting any edge whose endpoints got different labels by L. The connected components will be called

clusters.

Gaboriau asked if assuming that the marginals of an FIID on a Cayley graph are uniform on [0, 1] implies

that the corresponding clusters are finite? We will show by an example on the 3-regular tree T3 that the

answer is no:

Theorem 1.1. There is an FIID labeling Θ of T3, whose marginals are uniform on [0, 1] for which clust(Θ)

contains infinite clusters.

Actually T3 can be replaced by any nonamenable Cayley graph as [GL09] has shown that they always

contain an FIID spanning forest whose components have furcation vertices (defined in Section 4) and that

is the only thing our construction needs.

We will actually provide two slightly different constructions, where the first one can be said to be more

natural and the second one adds a little twist to it so that it will have the additional property that every

cluster will be infinite.

It is natural to think of FIIDs as the class of random labelings of the vertex set which can be obtained

by applying a local relabeling algorithm (f in the definition) which does not use any further randomness

beyond its input (ω in the definition). The reason we call this algorithm local is that the measurablility of

f implies that knowing the restriction of ω to a large enough ball B(v, r) allows us to approximate f(ω)(v),

∗Alfréd Rényi Institute of Mathematics

1

http://arxiv.org/abs/1111.3067v2

as the conditional expectation E
(

f(ω)
∣

∣ωB(v,r)

)

converges to f(ω) as r → ∞. See [L17] for a survey with

more references on FIIDs on trees.

In general it seems hard to decide whether or not an FIID process with a given property exists. The

locality mentioned above suggests that the answer to Gaboriau’s question should be affirmative since the

conditions imply that the vertices build a label whose specific value have probability zero, through a process

governed by local data so it seems surprising that vertices constituting whole infinite clusters could end up

find the same label. There is in particular a strong correlation decay found by [BSzV15] which can be an

obstruction for some processes to be FIID which might be seen as a quantitative version of this locality.

While we will show that it is possible, there is an intuition that the condition should imply that at least

the clusters are small in some sense. And indeed, a result by [ChI10] implies that the clusters under the

condition that the marginals are uniform on [0, 1] must be hyperfinite. In our context hyperfiniteness of the

forest clust(Θ) means that there is a sequence of random invariant forests {Fi}i∈N such that every component

of Fi is finite almost surely and (using the notation F (v) for the component of F containing the vertex v in

a forest F) Fi(v) ⊂ Fj(v) for i ≤ j and clust(Θ)(v) =
⋃

i∈N
Fi(v) for each vertex v. While it is itself true

for any countable set that it is an increasing union of finite sets, the extra requirement of achieving it with

random invariant proecesses makes hyperfiniteness a strong property. It implies that the clusters of clust(Θ)

must be finite or must have 1 or 2 ends (see [BLPS99]).

The following problem will not be pursued in this paper, but the example serves as a quick illustration

of this locality phenomenon of FIIDs contrasted with invariant processes in general.

Example 1.1. Assume we want an invariant random vertex set S of Td which is independent in the graph

theoretic sense (that is, S does not contain neighbors). We want the marginal probability pS of being in S

to be high. The optimal pS = 1
2 is achieved by the following random invariant process: Let v1, v2 ∈ V (Td)

be equivalent if their distance is even, and pick one of the classes with probability 1
2 to be S. If we want S

to be a FIID (i.e., its indicator 1S to be FIID), then a possible solution is the following code: at a vertex v

let f(v) := 1 iff for each neighbor w of v, ω(v) > ω(w) (where ω was the original source) and let f(v) = 0

otherwise, then S = {f(v) = 1 : v ∈ V (Td)} is an independent set. In this case pS = 1
d+1 .

While this simple construction can be improved, its basic features are known to hold even for a near-

optimal independent set arising as an FIID. Namely, the marginal of any FIID independent vertex set of

V (Td) is bounded away from 1
2 for any d ≥ 3 and it goes to zero as d → ∞. This follows easily from [B81],

however, its focus is on finite graphs. For the connection with FIIDs and references to further research in

this direction, see [RV17].

An example similar to the above will be used in our construction.

Example 1.2. Let r be a positive integer and let S be the FIID vertex set defined by the following code (which

will be the indicator of S): let 1S(v) = 1 iff the label ω(v) of v is maximal of all the labels within the ball of

radius r around v (otherwise 1S(v) = 0). Then S has the property that any two vertices of it have distance

at least r.

We will need this construction not only directly on T3 but also on some locally finite forests associated

to it. Then “distance” will refer to the distance within the forest (thus infinite between vertices of different

components). These forests will be random and S can be sampled independently of it. Notice that in this

way S guaranteed to intersect all infinite component of these forests (there will only be countably many

components).

We close this section with an important elementary observation.

By a un[0, 1] random variable we mean one which is uniform on [0, 1]. By x
d
∼ y we mean that the random

variable x and y has the same distribution, but with some abuse of notation we will also denote by x
d
∼ ν if

x has distribution ν. From a single x
d
∼ un[0, 1] we can obtain an i.i.d. family of infinitely many xj

d
∼ un[0, 1]

by reorganizing the bits of x. Using this when we describe the code f , we can assume that it can always

2

reach out for an additional un[0, 1] random variable independent of any other step of the algorithm. But,

importantly, every single random variable the algorithm uses is local in the sense that it must belong to

some vertex.

2 Voronoi partitions and other forests

So far we have defined FIIDs only as process that are labelings of the vertices, we extend the notion to

processes which are {0, 1}-labelings of the edges, so that then they can be used to encode subgraphs (which

are subforests in our case). The notion of equivariance goes through as an action of a group Γ on V extends

naturally to V × V . For example, we have already defined the forest clust(L) corresponding to a labeling L.

We now define Voronoi partitions. If S is a vertex set, we want to partition all the other vertices into

classes according to the closest element of S. We have to deal with the potential ambiguity if a vertex v is

at an equal distance from several elements of S, moreover, we want to make the partition classes connected.

Definition 2.1. Let F be any locally finite forest and let S ⊂ V (F) and a collection of distinct real numbers

{α(v)}v∈S be given. If v ∈ V (F), and the F -component which contains v also contains some element from S,

then let Sv ⊂ S be the set of those elements of S which are closest to v, i.e., Sv := {s : dF (v, s) = dF (v, S)}.

Let φ(S,α)(v) := s0 be that element of Sv for which α(s0) is minimal (by the local finiteness of F , Sv is

finite). Let two vertices v1, v2 be equivalent if φ(S,α)(v1) = φ(S,α)(v2). If the F -component of v does not

contain any element from S, then let the equivalence class of v be the singleton {v}. Let Vor(S, α) be the

partition corresponding to this equivalence.

The role of the α is to handle the ambiguity if |Sv| > 1, in this way the partition classes are indeed

connected (note that it is not true for just any convention that breaks the tie).

When we use Voronoi partitions, the forest will be in the form of clust(L) or something closely related,

the S will be an FIID set and the α will be extracted from the source. We will suppress α in the notation and

just denote the partition by Vor(S). We always assume that the hidden α is independent of any other steps

of the construction. We will refer to partition classes as cells and we will use this terminology in general

where we have a forest where every component is finite almost surely (we will see that Voronoi partitions

have this property). When we consider a Voronoi partition as a forest, we delete edges between vertices of

different cells and forget the distinguished vertex; in this way they are FIID forests.

If we want to produce an FIID labeling with a un[0, 1] marginal whose clusters are finite but arbitrarily

large, that is easy. We can even sample an arbitrary random forest whose components are almost surely

finite, and label the vertices independently afterwards:

Lemma 2.1. Let Π be an FIID forest whose components are almost surely finite. There is an FIID labeling

θ with a un[0, 1] marginal which is constant over each component of Π (in fact, almost surely clust(θ) = Π),

and the θ-labels of different components of Π form an independent family.

Proof. Let (α(v), β(v))v∈V (T) be a collection of two independent un[0, 1] label over each vertex. For a

vertex v let Π(v) be the component of Π containing v. Since almost surely |Π(v)| < ∞ and the β(v)

labels are all distinct, there will be a unique v0 ∈ Π(v) for which β(v0) is minimal within Π(v) (i.e.,

β(v0) = min{β(w);w ∈ Π(v)}.) Then let v “copy” the α label from v0, meaning that θ(v) := α(v0).

The finiteness of the components above was crucial; when we construct the infinite clusters with uniform

labels, then the labels and the clusters will be built together step-by-step and not by selecting the infinite

clusters first and labeling them afterwards.

We will call a random forest whose components are almost surely finite a cell-partition and the components

will be called cells or Π-cells where the forest is denoted by Π. If Π is an FIID cell-partition, then let Ber(Π)

be the FIID {0, 1}-labeling λ with the properties that: its marginals are fair bits (P(λ(v) = 1) = P(λ(v) =

3

0) = 1
2), the labels are constant over a Π-cell (Π(v1) = Π(v2) implies λ(v1) = λ(v2)) and the labels over

different cells are independent. By the notation λ ∼ Ber(Π) we will mean that first Π is sampled, and then

(given Π) λ. The notation refers to Bernoulli site percolations and we will use Ber(Π) to imitate a Bernoulli

percolation on a graph whose vertices are the cells of Π. The fact that a labeling with this distribution can

be realized as an FIID labeling is a consequence of the previous lemma: the fair bits needed for Ber(Π) can

be obtained from the un[0, 1] θ-label guaranteed by the lemma, for example by defining the bit to be 1 if

θ > 1
2 and 0 if θ ≤ 1

2 .

One may notice that for a Voronoi type partition Vor(S) we do not need to know the finiteness of the

cells to label them as claimed in the lemma since each cell already comes with a single distinguished vertex

(the one from S) and the whole cell can copy labels from this distinguished vertex just as in the proof.

So, if a Voronoi partition had nonzero chance of producing infinite clusters, then that already would

witness the truth of our Theorem 1.1. However, a simple application of the Mass Transport Principle (see

Chapter 8 in [LP16]) shows that every Voronoi cell must be finite.

Lemma 2.2. If an invariant process R on a Cayley graph produces connected components with a single

distinguished vertex from each component, then each of these connected components must be finite.

Before the proof, note that this immediately implies that this is also true if the word “single” is replaced

by finitely many, as from the finitely many vertices we can select a uniform one and this still will be an

invariant process if the original one was.

Proof. Define the following function (which is invariant under graph automorphisms): F (x, y, ω) := 1 if x

is the distinguished vertex of the partition class containing y in the random configuration ω. We will call

F (x, y, ω) the mass sent by x to y or the mass received by y from x. The Mass-Transport Principle says that

if R is invariant, then for the identity o ∈ V the expected overall mass o receives is the same as the expected

overall mass it sends out. If there was a counterexample to the statement of the lemma, then the expected

mass the origin would receive would be no more than one (this is true even pointwise). However, the expected

mass it would send out is infinite (it even would send out infinite mass with positive probability).

Recall that if Π is a forest, then for a vertex v we denoted by Π(v) the component of v. If two forests

P, F are related in a way that P (v) ⊂ F (v) for all v, then we denote this relationship by P ≺ F or F ≻ P .

To such a pair we associate a new forest:

Definition 2.2. If F, P are forests on the same vertex set and P ≺ F , then we associate to this pair a new

forest F/P called the large scale forest (or when F is a tree, the large scale tree). The vertices of F/P

are the components of P and two P -components t1, t2 are connected in F/P if their distance is 1 in F . For

a vertex v let F/P (v) be the subtree of F/P which contains P (v).

When we use this large scale forest construction P -components will be finite (so P is a cell-partition). If

there is a further cell-partition Π on F/P , then there is a natural corresponding cell-partition glueΠ(P) on

F so that P ≺ glueΠ(P) ≺ F . We just glue together the cells of P according to Π, meaning that if C is a

Π-cell consisting of the P -cells C1, . . . , Cl, then
⋃

{Ci : Ci ∈ C} will be a glueΠ(P)-cell and, as these cells

already partition all the vertices of F , defines glueΠ(P).

Note also that, in the case F, P are FIID subforests of T3 and P ≺ F and P is a cell-partition, then by

Lemma 2.1 we can assume that the vertices of F/P are equipped with a family of i.i.d. random variables

x(v)v∈V (F/P)
d
∼ un[0, 1] which we can use to build Voronoi type partitions on F/P as an FIID-forest on the

original T3.

4

3 High Level Overview

To highlight the ideas of the construction, we first show the modest claim that for any positive integer n,

there is an FIID labeling θn on T3 whose marginal is uniform on the label set {0, 1}n and clust(θn) contains

infinite clusters. We will use the basic theory of Bernoulli percolation on trees, see [LP16] or [P19].

A Bernoulli-p site percolation (Ber(p)-labeling from now on) is the labeling where each vertex is labeled

with 1 with probability p and with 0 with probability 1−p independently of the others. On Td it has infinite

clusters whose label is constant 1 exactly if p(d− 1) > 1. If L0, . . . , Ln−1 are independent Ber(12)-labelings,

and we concatenate them to get the {0, 1}n-labeling Ln := (L0, . . . , Ln−1), then for any s ∈ {0, 1}n the

distribution of vertices whose Ln-label is s will be the same as the distribution of vertices whose label is 1

in a single Ber(1
2n)-labeling. In particular, there will be infinite clusters in clust(Ln) on Td if d > 2n + 1.

This is not yet the θn we promised, as we want to label T3 instead of Td where d depends on n. But we

can imitate a tree whose minimal degree is at least d within T3 using Voronoi partitions and the large scale

tree construction. As in Example 1.2, let S be an FIID vertex set in T3 for which any two v1, v2 ∈ S has

distance at least 2r + 1, then let Π0 := Vor(S). Each Π0-cell contains the ball BT3
(v, r) around each v ∈ S.

This implies that the large scale tree T3/Π0 has minimal degree at least |BT3
(v, r)| + 2.

For large enough r the random tree T3/Π0 has minimal degree at least 2n +2, so using the FIID labeling

Ber(Π0) guaranteed by Lemma 2.1 and concatenating n independent versions λi ∼ Ber(Π0) to form θn, we

get an FIID {0, 1}n-labeling which has infinite clusters and marginals uniform on {0, 1}n.

This proves the claim, but how do we get a labeling which has uniform marginals on [0, 1]? If we keep

adding extra independent bits to the already constructed θn by further λj ∼ Ber(Π0)-labelings and take

the sequence of bits as the binary representation of a real from [0, 1], then we would get a labeling with

un[0, 1]-marginals. Of course in this labeling there would not be any infinite clusters.

However, if instead of the “static” sequence Π0, . . . ,Π0, . . . , with the i.i.d. labels λi ∼ Ber(Π0), we use

a dynamically changing sequence of cell-partitions Π0 ≺ · · · ≺ Πn ≺ . . . , and the corresponding sequence

of labelings Λ0 ∼ Ber(Π0), . . . ,Λn ∼ Ber(Πn), . . . , then we will be able to use infinitely many bits and thus

getting un[0, 1]-marginals, while also having infinite clusters. The essence of how this sequence is constructed

and what issue needs to be taken care of is already visible in the step from Π0 to Π1.

There are “target degrees” D0 and D1 which for now are just large integers (a target degree was implicit

before where T3/Π0 had minimal degree at least 2n+2). Π0 and Λ0 ∼ Ber(Π0)) are defined as before, where

now we want T3/Π0 to have minimal degree at least D0. We get the random forest F0 := clust(Λ0), and

of course Π0 ≺ F0. We want to build Π1 in such a way that Π0 ≺ Π1 ≺ F0 and “whenever possible” the

components of the large scale forest F0/Π1 should have minimal degree at least D1. So the goal in this

second step is similar to the one in the first step, when we wanted T3/Π0 to have minimal degree at least

D0.

A key difference is that in the first step we worked in the the known tree T3, while now we have to deal

with the random forest F0. We can see immediately that the target degree goal cannot be reached for all

components of F0/Π1, as F0 contains finite clusters. One can also build infinite trees in an adversarial way

(see Example 4.1) which are obstacles to this goal. However, F0 is defined by an invariant random process

which avoids those sorts of examples (by the same application of the Mass Transport Principle we saw

before). But a random invariant process may produce a bi-infinite path, which would also be an obstacle

to our goal. The kind of random components we will need are the ones which contain furcation vertices

(defined in the next section) and we will find that a Bernoulli imitating process like the ones we build as

Ber(Π) will contain enough of them if we take some care.

5

4 Furcations

Furcation vertices will let us reach our target degree goal through Lemma 4.1, and will find trees containing

them in Bernoulli clusters through Lemma 4.2.

Definition 4.1. If T is a tree, we say that v ∈ V (T) is a furcation if after deleting v from T among the

remaining components there are at least 3 infinite ones. If a tree T has a furcation we will say that T is

forking. When F is a forest and v ∈ V (F), then we will also say that v is a furcation of F if it is a furcation

of the subtree F(v) containing it.

As a trivial example for a tree without furcation consider a bi-infinite path. The next example shows

trees whose furcations are arranged in an adversarial fashion and if S is the set of their furcations, then the

cells of Vor(S) are not finite. These examples are also worth keeping in mind, as they would be obstacles to

our target degree goals. However, they simply cannot occur in an invariant process on a Cayley-graph (as

we have seen in the application of the Mass Transport Principle).

Example 4.1. A ray emanating from v is half-infinite path starting from v. Let T⊥ be a tree (defined up to

isomorphism) which has a unique vertex of degree 3 and all the other degrees are 2 (i.e., three disjoint rays

emanating from a single vertex). As a further example consider the tree T⊥⊥ obtained from a bi-infinite path

P by attaching to each vertex v a ray Rv (which are not interesecting each other or P).

The following can be proven by induction on r.

Lemma 4.1. If C is a finite, connected subset of a tree and contains at least r furcations, then after deleting

C from the tree, among the remaining components there will be at least r + 2 which are infinite.

We mentioned that a Ber(p)-labeling on Td has infinite clusters whose label is constant 1 if p(d− 1) > 1.

This applies in particular to a Ber(12) labeling of T4. This implies that for a specific vertex v of T4 the

probability that v will be in an infinite cluster in a Ber(12)-labeling is positive. For us, however, forking

clusters will be needed, and in the case of Bernoulli percolations,, we can easily get their existence from the

infinite ones as follows.

For all ǫ > 0 there exists a D(ǫ) ∈ N, such that if T is a tree whose minimal degree is at least D(ǫ) and

r is a distinguished vertex (the “root”) of T , then in a Ber(12)-labeling of T the cluster of the root r will be

a forking one with probability at least 1− ǫ.

To see this, consider first the rooted tree (T, r) built from rooted copies (T1, r1), . . . , (TD, rD) of T4 (so

Ti is a 4-regular tree and ri is one of its vertices and D will be fixed later) by adding a new vertex r to this

collection and make it into a tree by connecting r to ri for all i (no other edges are added). For r to be in

a forking cluster in a Ber(12)-labeling of T it is enough if there are at least three such (Ti, ri) so that ri in

an infinite cluster of the labeling restricted to Ti and r is connected to ri. The probability of this clearly

goes to 1 as D → ∞. If D := D(ǫ) is chosen so that this probability is at least 1 − ǫ, then in a tree whose

minimal degree is at least D we can take any vertex to be the root and embed this (T, r) graph into it.

Choose a sequence ǫ0 ∈ (0, 1), . . . , ǫn ∈ (0, 1), . . . tendig to 0 fast enough so that
∏∞

n=1(1 − ǫn) > 0.

Define Dn := D(ǫn) and use this sequence as the target degree in our construction.

Lemma 4.2. If a sequence (T1, r1), . . . , (Tn, rn), . . . of rooted trees is given, where the minimal degree of

Tn is at least Dn, and each of these trees are independently Ber(12)-labeled, then with positive probability the

roots of all of these trees will be in a forking cluster simultaneously.

We add a more process-oriented corollary to this. Assume that we start with a rooted tree (T0, r0) which

has minimal degree at least D0, and we run the following process: label T0 by a Ber(12)-labeling L0, and if

the cluster of r0 in clust(L0) is not-forking, then stop, otherwise generate a new random rooted tree (T1, r1)

whose minimal degree is at least D1. If the process has not stopped after n steps, then we will have a rooted

6

(Tn, rn) tree with minimal degree at least Dn. From here the process continues as in the beginning: let Ln

be a Ber(12)-labeling of Tn (which is conditioned on (Tn, rn) is independent of the previous steps) and stop

if the cluster of rn is not-forking, otherwise generate a random (Tn+1, rn+1) tree whose minimal degree is at

least Dn+1. Then with positive probability the above process never stops and the generated sequence of bits

L0(r0), . . . ,Ln(rn), . . . will be i.i.d., so the random real number whose bits are this sequence has distribution

un[0, 1].

Remark 1. For us the distinction between an infinite and a forking tree is very important. However, it is

known from [LS99] that if λ is any Bernoulli percolation on any Cayley graph, then its infinite clusters are

indistinguishable by any invariant Borel property (which includes the one of being forking). Thus as soon as

there are forking clusters with positive probability, then we know than in fact all infinite clusters are forking.

Our labelings are not immediately Bernoulli ones, but cooked up from them in a way that this theorem would

likely go through. However we did not try to use this direction as what we need can be obtained directly from

the very basics of percolation theory on a tree.

In our construction, Bernoulli processes on large scale forests (from Definition 2.2) will be used, and with

the aid of the above, we will find forking forking ones among its clusters. We will put those clusters into use

through the following lemma.

Lemma 4.3. If Π is an FIID cell-partition of T3 and F is an FIID subforest of T3 in such a way that

Π ≺ F , and D is a positive integer, then there is cell partition furcD(Π) such that Π ≺ furcD(Π) ≺ F

also holds, and whenever for a vertex v the tree F (v) is forking, then the furcD(Π)(v)-cell contains at least

D furcations of F (v).

Proof. We first show that there exists a partition Π∃f for which Π ≺ Π∃f ≺ F and whenever F (v) is forking,

then Π∃f(v) contains at least one furcation of F (v). Let FΠ be the set of those Π-cells which contain at least

one furcation of F . Our goal is achieved if we manage to glue Π-cells within a forking component to form

bigger (but still finite) cells in such a way that every new cell contains at least one “old” Π-cell from FΠ.

Voronoi cells on the large scale forest are just right for this purpose. Move to the large scale forest F/Π

and build Vor(FΠ). This Vor(FΠ) is “almost” the partition Π∃f we seek, except that it lives in F/Π instead

of F . We bring it back to F in the obvious way as Π∃f := glue
Vor(FΠ)(Π).

Note that the finiteness of the new cells are guaranteed by induction, as every new cell either contains

the distinguished finite subset which was an old cell from FΠ, or (in case the F -component of a cell does not

contain any furcation) the new cell is just equal to the old one.

Now that we have Π∃f, we can define fD(Π). Since every Π∃f-cell within a forking F -cluster contains

at least one furcation, it is enough if we manage to glue together Π∃f-cells in such a way that every new

cell of a forking cluster contains at least D “old” Π∃f-cells. To achieve this we can use the same idea as in

the very first step described in the high level overview in constructing Π0 and the associated large scale tree

T3/Π0, but this time we work within the forking components of F/Π∃f. In the large scale forest F/Π∃f

every forking component has minimal degree at least 3. In F/Π∃f select an FIID vertex set S where the

minimal distance between distinct vertices is at least 2D+1 and S has at least one element in every forking

component of F/Π∃f. In the corresponding Voronoi partition Vor(S), every cell C belonging to a forking

component of F/Π∃f will contain at least |BT3
(o,D)| ≥ D many vertices of F/Π∃f (o denotes a generic

vertex of T3). Thus we can define fD(Π) := glue
Vor(S)(Π

∃f). The new cells are finite again by induction.

5 The main construction

Now we give the precise definition of the sequence of cell-partitions Π0 ≺ Π1 ≺ · · · ≺ Πn ≺ . . . ; this will

gives us also the sequence of Λi ∼ Ber(Πi) labels, where conditioned on Πi the label Λi will be independent

from the previous labels (but Πi itself depends on {(Πj ,Λj)}j<i).

7

Π0 and Λ0 are as defined before in Section 3. Assume that Π0 ≺ · · · ≺ Πn and Λ0, . . . ,Λn are defined.

Let Fn := clust(Λ0, . . . ,Λn), where (Λ0, . . . ,Λn) is the {0, 1}n+1-label obtained by concatenating the Λis.

We want to define Πn+1 in such a way that Πn ≺ Πn+1 ≺ Fn, and if for a vertex v the tree Fn(v) is

forking, then the Πn+1(v)-cell should contain at least Dn+1 furcations of Fn. We use Lemma 4.3 for the

pair Πn ≺ Fn and define Πn+1 := fDn+1
(Πn).

This concludes the construction of Π0 ≺ · · · ≺ Πn ≺ . . . and thus also that of Λi ∼ Ber(Πi), with the

specification that conditioned on Πi the Λi must be independent of the previous steps (which implies that for

a generic vertex o the sequence Λ0(o),Λ1(o), . . . , of bits is i.i.d.). Because Πn+1 ≺ Fn := clust(Λ0, . . . ,Λn),

if we define Π∞(o) :=
⋃

i∈N
Πi(o), then for any v1, v2 ∈ Π∞(o) and m ∈ N we have Λm(v1) = Λm(v2). Thus

if we define Λ∞(o) to be the real number from [0, 1] whose consecutive bits are Λ0, . . . ,Λn, . . . (which is an

i.i.d. sequence, so Λ∞(o) has distribution un[0, 1]), then v1, v2 ∈ Π∞(o) also implies Λ∞(v1) = Λ∞(v2), thus

Π∞(o) will be contained within a single cluster of clust(Λ∞). Moreover, if Fn(o) is a forking cluster, then

|Πn+1(o)| ≥ Dn+1 as it contains at least Dn+1 furcation of Fn(o). So if Fi(o) is forking for every i, then

Π∞(o) ⊃ Πm(o) contains at least Dm element for any m, and as Dm → ∞, this implies Theorem1.1.

To conclude, we observe that indeed it happens with positive probability that Fn(o) is forking for all n,

because of the corollary to Lemma 4.2 using the process of generating rooted trees. The correspondence is

as follows. Start with the rooted tree (T0, r0) := (T3/Π0(o),Π(o)) whose minimal degree is greater than D0.

Use our Λ0 ∼ Ber(Π0) which is a Ber(12)-labeling of T0. Stop the process if the cluster F0(o) of Π0(o) is not

forking, otherwise continue by creating the next random rooted tree (F0/Π1(o),Π1(o)), whose minimal degree

is greater than D1. In general, if the process has not stopped, then the rooted tree (Tn, rn) is constructed as

the random rooted tree (Fn/Πn+1(o),Πn+1(o)). Notice that – by the finiteness of the cells – moving from the

tree Fn(o) to its large scale version Fn/Πn+1(o) does not change its being forking or not (while it increases

its minimal degree), so the correspondence between our construction and the process oriented corollary to

Lemma 4.2 is complete. Our example is also manifestly hyperfinite because not only Π∞(o) ⊂ clust(Λ∞) for

any o which already means Π∞ ≺ clust(Λ∞) but actually Π∞ = clust(Λ∞) (and Π∞(o) is an increasing union

of the finite Πn(o)s). To see this, consider an edge e connecting a vertex vin ∈ Π∞(o) with vout 6∈ Π∞(o),

notice that for any i, the labels Λi(vin) and Λi(vout) are independent, so they cannot be all equal. So e is

deleted from clust(Λ∞).

6 Merging small clusters into big ones and the second construction

Assume that we classify trees as “small” and “big” and our classification scheme has the natural property

that being big is upward closed in the sense that if T is a tree which contains a big subtree, then T is itself big.

Two natural examples are: “being infinite” and “being forking”. We show that if we have a {0, 1}-labeling

which almost surely has big clusters, then there is a natural way to “merge” the small clusters into the big

ones so that at the end only big ones remain. It will be achieved through a “relabeling” which replaces the

old label L by a new one L∗ so that all the clusters of the L∗ label are big.

This merging process will not need any extra randomness. It consist of iterating the following: if a small

L-cluster C is at distance 1 from a big one, then every vertex in C switches its label so that C “joins” the

forking cluster. Note that there is no ambiguity: if there are more than one big clusters at distance 1, then

each must have the same label as we only have two labels. In this way the big clusters have grown and we

repeat the process. The fact that any small cluster is at finite distance from some big one (simply by the

existence of big clusters) implies that every cluster will join a big one eventually.

Using this relabeling we can modify the construction so that every cluster will be infinite.

This is also built through a sequence of cell partition P0, . . . , Pn, . . . , but the labeling will not be simply

a version of Ber(Pi). We assume that P0, . . . , Pn and labels L0, . . . , Ln are already defined. As before, this

gives Fn := clust((L0, . . . , Ln)), and it will also be true by the iteration step that Pn ≺ Fn. Moreover, we

will have that in the large scale forest Fn/Pn every component is forking. We define Pn+1 in such a such

8

a way that in the large scale forest Fn/Pn+1every component has minimal degree at least 4 (this can be

done just as in the previous section with the target degree being 4 this time). Then first define the labeling

l ∼ Ber(Pn+1) (independent of the previous steps conditioned on Pn+1), then clust(l) will contain forking

clusters so we can use the relabeling construction to get l∗ =: Ln+1. This gives a labeling as claimed.

7 Acknowledgements.

This work was partially supported by the ERC Consolidator Grant 772466 “NOISE”. At earlier stages the

work was also partially supported by NSF Grant DMS-1007244, and OTKA Grant K76099. I am grateful for

Russell Lyons for suggesting working on this problem and for useful discussions and for helping improving

the first version of the text. I also thank the anonymous referee of the first submitted version for useful

feedback. I am indebted to Gábor Pete for useful discussions throughout the writing of this version and for

Sándor Rokob for useful feedback.

References

[BSzV15] Á. Backhausz, B. Szegedy, B. Virág. Ramanujan graphings and correlation decay in local algo-

rithms Random Structures and Algorithms 47 (2015), 424-435

[BLPS99] I. Benjamini, R. Lyons, Y. Peres and O. Schramm. Group-invariant Percolation on Graphs Geo-

metric and Functional Analysis 9 (1999), 29–66.

[B81] B. Bollobás. The Independence Ratio of Regular Graphs Proceedings of the American Mathemat-

ical Society 83 (1981), 433-436

[ChI10] I. Chifan and A. Ioana. Ergodic subequivalence relations induced by a Bernoulli action. Geometric

and Functional Analysis 20 (2010), 53-67.

[G10] D. Gaboriau. Orbit equivalence and measured group theory. Proceedings of the ICM (Hyderabad,

India, 2010), Vol. III. 1501-1527.

[GL09] D. Gaboriau and R. Lyons. (2009) A measurable-group-theoretic solution to Von Neumann’s

Problem. Inventiones Mathematicae 177 (2009), 533-540.

[L17] R. Lyons. Factors of IID on Trees Combinatorics, Probability and Computing 26 (2017), 285-300.

[LP16] R. Lyons and Y. Peres. Probability on trees and networks. Cambridge University Press, 2016.

Available at http://mypage.iu.edu/~rdlyons

[LS99] R. Lyons and O. Schramm. Indistinguishability of percolation clusters. Annals of Probability 27

(1999), 1809–1836.

[P19] G. Pete. Probability and Geometry on Groups. Book in preparation,

http://www.math.bme.hu/~gabor/PGG.pdf

[RV17] M. Rahman and B. Virág. Local algorithms for independent sets are half-optimal Annals of

Probability 45 (2017), 1543-1577

9

http://mypage.iu.edu/~rdlyons
http://www.math.bme.hu/~gabor/PGG.pdf

	1 Introduction
	2 Voronoi partitions and other forests
	3 High Level Overview
	4 Furcations
	5 The main construction
	6 Merging small clusters into big ones and the second construction
	7 Acknowledgements.

