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Abstract
We provide a countable set of conditions based on elementary symmetric poly-
nomials that are necessary and sufficient for a trace class integral operator to
be positive semidefinite, which is an important cornerstone for quantum theory
in phase-space representation. We also present a new, efficiently computable
algorithm based on Newton’s identities. Our test of positivity is much more
sensitive than the ones given by the linear entropy and Robertson-Schrödinger’s
uncertainty relations; our first condition is equivalent to the non-negativity of
the linear entropy.

Keywords: density operators, positive semidefinite operators,
quantum theory, phase-space representation, trace class operators,
elementary symmetric polynomials

(Some figures may appear in colour only in the online journal)

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1751-8121/23/145203+14$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/acc147
https://orcid.org/0000-0002-2043-3423
mailto:j.bernad@fz-juelich.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/acc147&domain=pdf&date_stamp=2023-3-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


J. Phys. A: Math. Theor. 56 (2023) 145203 G Homa et al

1. Introduction

Quantum systems are described in terms of density operators, or, in mathematical language,
positive trace class operators with trace one [1]. In infinite-dimensional Hilbert spaces, this is a
rather abstract object, but with the help of the phase-space representation, the density operator
becomes a so-called quasi-probability distribution. The first of these was introduced byWigner
[2]. However, the concept of phase-space representation of a self-adjoint operator was already
proposed by Weyl a few years earlier [3], which he called Hermitian forms. The power of this
method was first demonstrated by Moyal [4]: later it has found many applications in quantum
chemistry, statistical mechanics, and quantum optics [5–8].

Dynamics in the phase-space representation result in partial differential equations, e.g. the
classical Liouville equation for the Wigner function, and therefore these exact equations are
successfully used for descriptions of open quantum systems [9], like the quantum Brownian
motion [10, 11]. However, these exact equations are usually subject to further assumptions,
which may lead to violations of the positivity of the density operator [12]. Testing of these
positivity violations is usually hard in the phase-space representation [13]. This is an essential
problem for the consistency check of different models, nonetheless, from the foundational
point of view of quantum mechanics the characterization of positivity with the so-called KLM
conditions has already started in the 1960s [14–16].

Further studies on trace-class operators in phase-space representation have been carried
out [17–20], but the positivity of the operator was usually provided by a non-countable set of
conditions. Recently, a countable set of conditions with the help of Gabor frames was found
[21], where one needs to test the positivity of matrices in which entries are calculated with the
help of a lattice structure. In this article we also provide a countable set of conditions, which are
necessary and sufficient for the positivity of a self-adjoint trace class operator. Furthermore,
they require a tractable computational process, which we demonstrate by examples.

The paper is organized as follows. In section 2 we establish notations and our main results,
which are obtained by using properties of trace class operators and elementary symmetric
polynomials. We apply the derived set of conditions to different examples in section 3 and
compare them with some frequently used simple tests. In section 4 we summarize and draw
our conclusions.

2. Theoretical and mathematical background

Recall that L2(Rn) denotes the Hilbert space of complex-valued square-integrable functions
defined on Rn. We consider Hilbert-Schmidt operators ρ̂ in the form

(ρ̂f)(x) =
ˆ ∞

−∞
ρ(x,y)f(y)dy, (1)

where ρ ∈ L2(R2) is the kernel and f ∈ L2(R), see [22]. The self-adjointness property is neces-
sary for the positivity of ρ̂, and it comes with ρ(x,y) = ρ∗(y,x), where z∗ denotes the com-
plex conjugate of z, thus we only consider self-adjoint operators from now on. Every Hilbert-
Schmidt operator is compact, that is, the closure of the image of the open unit ball under the
operator is compact [23]. Therefore, if ρ̂ is a (self-adjoint) compact operator then it has only
countably many eigenvalues {λn}∞n=0, see [23, theorem 4.25]. The eigenvalue equation of ρ̂ is
a Fredholm-type integral equation

ˆ ∞

−∞
ρ(x,y)ϕn(y)dy= λnϕn(x). (2)
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A self-adjoint Hilbert-Schmidt operator ρ̂ is trace class if

∥ρ̂∥1 =
∞∑
i=0

|λi|<∞. (3)

If ρ is continuous, we also have the formula

Tr{ρ̂}=
∞∑
i=0

λi =

ˆ ∞

−∞
ρ(x,x)dx. (4)

We will consider (self-adjoint) trace class integral operators throughout the paper. In quantum
mechanical descriptions of physical systems, these eigenvalues are probabilities, thus it is
required that 1⩾ λn ⩾ 0, i.e. ρ̂ is a positive semidefinite operator, and Tr{ρ̂}= 1.

Let P = {p(x)e−x2/2 : pis a complex polynomial from Rto C}. As the weighted polynomi-
als {xne−x2/2 : n⩾ 0} form a basis for L2(R) (see e.g. [24]), it follows thatP is dense in L2(R).
Assume that σ̂ is a positive semidefinite operator with unit trace and kernel σ(x,y), and the
function g satisfies

gf ∈ L2(R) for all f ∈ P. (5)

We claim that the kernel ρ(x,y) = g(x)∗σ(x,y)g(y) defines a positive semidefinite operator ρ̂,
which can be normalized to have unit trace. Indeed, as the operator ρ̂ and the inner product
⟨·, ·⟩ are continuous in L2(R) and P is dense in L2(R), it is enough to check that ⟨ f, ρ̂f⟩⩾ 0
for all f ∈ P . Fix an arbitrary f ∈ P . The positivity of σ̂ and gf ∈ L2(R) imply that

⟨ f, ρ̂f⟩=
ˆˆ

R2

f(x)∗g(x)∗σ(x,y)g(y)f(y)dxdy

=

ˆˆ
R2

[
g(x)f(x)

]∗
σ(x,y)

[
g(y)f(y)

]
dxdy⩾ 0, (6)

so ρ̂ is positive semidefinite. Hence if gj satisfy (5) for all j, then the convex combinations of
the form ∑

j

αjgj(x)
∗gj(y)σ(x,y) (7)

are also positive semidefinite operators, where αj ⩾ 0 and
∑

jαj = 1.
In the case of Schwartz kernels, (that is, ρ(x,y) and all of its mixed partial derivatives are

rapidly decreasing, see [25, p. 133] for the precise definition), ρ̂ is a trace class operator, see
[26, proposition 1.1] and the remark afterwards. Schwartz kernels appear naturally when one
studies the density operator of a quantum harmonic oscillator. Note that it is easy to transform
our kernel ρ(x,y) to the Wigner function W(x,p) and vice versa:

W(x,p) =
1

2πℏ

ˆ
R
e−

i
ℏ pyρ

(
x+

y
2
,x− y

2

)
dy, (8)

where i is the imaginary unit and ℏ denotes the reduced Planck constant.
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2.1. Main theorem

To determine positivity, our key tool will be the sequence ek, which is defined as the elementary
symmetric polynomials of the eigenvalues {λn}n⩾0:

ek =
∑

0⩽i1<···<ik

λi1 · · ·λik , for k⩾ 1. (9)

If ρ̂ is positive semidefinite operator, then λn ⩾ 0 for all n⩾ 0, and it is straightforward that
ek ⩾ 0 for each k⩾ 1. The reverse implication also holds. Our tests depend on the following
important claim:

Proposition 2.1.

ek ⩾ 0 for each k⩾ 1 =⇒ λn ⩾ 0 for all n⩾ 0.

Proof. Set e0 = 1, by [22, lemma 3.3]; we obtain

∞∏
n=0

(1+λnx) =
∞∑
k=0

ekx
k is finite for all x ∈ R. (10)

Although (10) is known, for the readers’ convenience and to make the proof self-contained, we
provide an easier, elementary proof for it, which does not use the theory of complex functions.

Let us fix an arbitrary real x. First, we show that
∏∞

n=1(1+ |λnx|)<∞. By the Taylor
expansion of log(1+ x) there exists an 0< ε < 1 such that | log(1+ |x|)|< 2|x|whenever |x|<
ε. Let N= N(x,ε) be a sufficiently large positive integer such that |λnx|< ε for all n⩾ N.
Clearly, it is enough to prove that

∏
n⩾N(1+ |λnx|) is finite. We can estimate its logarithm as

∣∣∣∣∣∣log
∏

n⩾N

(1+ |λnx|)

∣∣∣∣∣∣⩽
∑
n⩾N

| log(1+ |λnx|)|⩽
∑
n⩾N

2|λnx|= 2|x|
∑
n⩾N

|λn|<∞,

hence
∏∞

n=1(1+ |λnx|) is finite.
After the expansion

∏m+1
n=1 (1+λnx) contains all terms of

∏m
n=1(1+λnx), so the product∏∞

n=1(1+λnx) = limm→∞
∏m

n=1(1+λnx) is an infinite series by definition. Moreover,∏∞
n=1(1+λnx) and

∑∞
k=0 ekx

k are the same series with rearranged terms. Since
∏∞

n=1(1+
|λnx|) is finite, these series are absolutely convergent, so they are equal and finite. This
implies (10).

Now, we can finish our proof. Assume to the contrary that there is an integer m⩾ 0 such
that λm < 0. Let x0 =−1/λm, then clearly x0 > 0 and

∏∞
n=0(1+λnx0) = 0. Equation (10)

implies that
∑∞

k=0 ekx
k
0 = 0. Using that x0 > 0, e0 = 1, and ek ⩾ 0 for all k⩾ 1, we obtain that∑∞

k=0 ekx
k
0 ⩾ 1, which is a contradiction. The proof is complete.

Thus, when ek ⩾ 0 for each k⩾ 1 then ρ̂ is a positive semidefinite operator. It is worth noting
that eks have been used for the positivity test of n× n self-adjoint matrices, where it is enough
to check n− 1 conditions [27].
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2.2. Newton’s identities and a useful estimation

Now,we need to express all the eks with the help of the kernel ρ(x,y).We calculate themoments
Mk of ρ̂ as

Mk =
∞∑
i=0

λki = Tr{ρ̂k}=
ˆ ∞

−∞
ρ(xk,x1)

k−1∏
i=1

ρ(xi,xi+1)
k∏
i=1

dxi. (11)

Despite the countably infinite number of eigenvalues, we can still obtain Newton’s identities
[28] in the form

ek =
1
k!

∣∣∣∣∣∣∣∣∣∣∣

M1 1 0 · · ·
M2 M1 2 0 · · ·
...

. . .
. . .

Mk−1 Mk−2 · · · M1 k− 1
Mk Mk−1 · · · M2 M1

∣∣∣∣∣∣∣∣∣∣∣
. (12)

We note that an equivalent option is to use the Fredholm expansion [22, theorem 3.10] (for
the original source see [29]). Furthermore, in case of M1 = 1 the quantity 2e2 = 1−M2 is
called linear quantum entropy in the literature, see for example [30]. The sequence ek rapidly

converges to zero. Indeed, expanding
(∑∞

n=0 |λn|
)k

yields the following inequality, see [22,
lemma 3.3 (3.4)]:

|ek|⩽
(∑∞

n=0 |λn|
)k

k!
for all k⩾ 1. (13)

Finally, it is worth to mention that for ρ(x,y) ∈ L2(R2n) with x= (x1,x2, . . .,xn)T and y=
(y1,y2, . . .,yn)T (T denotes the transpose of vectors) our proof works verbatim.

3. Examples

In this section, we apply our method to various examples. First, we look at the known case of
Gaussian quantum states and then at different kernels ρ(x,y) in the form of a polynomial mul-
tiplied by a Gaussian function. We also do a comparison with other approaches like the phys-
ically motivated Robertson–Schrödinger uncertainty relations. Throughout the entire section,
we omit physical dimensions.

3.1. The Gaussian case: a reminder

One of the simplest examples of a density operator is the Gaussian quantum state

ρG(x,y) = 2

√
C
π
exp

[
−
(
A(x− y)2 + iB(x2 − y2)+

+C(x+ y)2 + iD(x− y)+E(x+ y)+
E2

4C

)]
, (14)

with real parameters A> 0,C> 0,B,D,E. It can be checked easily that Tr{ρ̂}= 1. Orthonor-
malized eigenvectors and eigenvalues are given in [31] (after correcting some minor errors):

5
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ϕn(x) =

√
2(AC)1/4√

π2nn!
Hn

(
2(AC)1/4

(
x+

E
4C

))

× exp

[
−x2

(
2
√
AC+ iB

)
− x

(√A
C
E+ iD

)
−

√
AC

8C2
E2

]
(15)

and

λn = ϵ0ϵ
n, (16)

where we used the notations

ϵ0 =
2
√
C√

A+
√
C
, ϵ=

√
A−

√
C√

A+
√
C
, r= 2(AC)1/4, s=

E
4C

. (17)

HereHn is the nth Hermite polynomial. From the spectrum of ρ̂G it is clear that ρ̂G is a positive
operator precisely if

A⩾ C> 0. (18)

The moments defined in (11) are given by

Mk =
ϵk0

1− ϵk
, (19)

and one can check that all the eks are strictly positive if and only if A⩾ C.

3.2. Linear polynomials multiplied by a Gaussian

More interesting behavior of eks can be exhibited if ρG(x,y) is multiplied by a self-adjoint
polynomial with real coefficients and variables x,y. First, we consider here the case of linear
polynomials:

ρ(x,y) = (α1(x+ y)+ iβ1(x− y)+ γ0)ρG(x,y), where (α1,β1) ̸= (0,0).

By calculating eks and applying proposition 2.1 in special cases we predicted that there
exists no positive operator of the above form, see figure 1 for illustration: We define the
functions {Θk}k⩾1 such that Θk(t) = 1 if ei(t)⩾ 0 for all 1⩽ i⩽ k and Θk(t) = 0 otherwise.
Therefore, Θk is the indicator function of the set of parameters t for which ei(t)⩾ 0 for all
1⩽ i⩽ k, which seem to form rapidly decreasing intervals as k→∞. This suggests that
{t : ei(t)⩾ 0for all i⩾ 1}= ∅. The following theorem shows that this is indeed the case.

Proposition 3.1. Assume that

ρ(x,y) = (α1(x+ y)+ iβ1(x− y)+ γ0)ρG(x,y)

such that (α1,β1) ̸= (0,0). Then ρ̂ is not positive semidefinite.

Proof. Define the complex, square integrable function

Ψ(x) := exp
(
−x2 + bx+ icx

)
× exp

(
−iBx2 +Ex− iDx

)
,

where b,c ∈ R. It is sufficient to show that the integral

Π=Π(b,c) :=
ˆ
R2

Ψ∗(x)Ψ(y)ρ(x,y)dxdy

6
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Figure 1. SeveralΘks calculated for ρ(x,y) of equation (20) as functions of the Gaussian
parameter 1/A. The parameters of the Gaussian are: C= 1, B= D= 0 and E= 1. The
polynomial parameters are set to α1 = 1, β1 = 0, γ0 = 2, and α2 = β2 = γ2 = 0.

can attain negative values for some parameters b,c. We can calculate that

Π= 2
√
πCe−

E2

4C ((2A+ 1)(2C+ 1))−3/2 e
2Ab2−2Cc2+b2−c2

2(4AC+2A+2C+1)

× ((2A+ 1)α1b+(2C+ 1)β1c+(2A+ 1)(2C+ 1)γ0) .

Note that only the last factor ofΠmight be non-positive. Since (α1,β1) ̸= (0,0), this factor
is a non-constant linear polynomial in the variables b and c, which can clearly attain negative
values. This completes the proof.

3.3. Quadratic polynomials multiplied by a Gaussian

Now we consider second degree, self-adjoint polynomials multiplied by a Gaussian, in which
case we will obtain more sophisticated behavior from the point of view of positivity. Define

ρ(x,y) =
1
N
ρG(x,y)

(
α2(x− y)2 + iβ2(x

2 − y2)

+γ2(x+ y)2 +α1(x+ y)+ iβ1(x− y)+ γ0

)
, (20)

where

N= γ0 +
γ2 −α1E

2C
+

γ2E2

4C2

is a normalization factor ensuring Tr{ρ̂}= 1.

7
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The calculation of the quantities ek can be done directly through equations (11) and (12).
In case of equation (20), there is an alternative way to obtain the moments Mk. One needs to
calculate the matrix elements ρm,n = ⟨ϕm, ρ̂ϕn⟩ of ρ̂ (see equation (20)) between the statesm,n
explicitly given by (15). By repeated use of the well-known recursion for Hermite polynomials

Hn+1(x) = 2xHn(x)− 2nHn−1(x), (21)

it turns out that ρm,n is a band matrix with two subdiagonals below and above the diagonal,
that is, ρm,n = 0 if |m− n|> 2. Explicit form for the matrix elements can be obtained as

ρm,n =
√
n(n− 1)ϵn−2(a2 − ib2)δn,m+2 +

√
nϵn−1(a1 − ib1)δn,m+1

+ ϵn(a0 + nb0)δn,m+
√
n+ 1ϵn(a1 + ib1)δn,m−1

+
√

(n+ 1)(n+ 2)ϵn(a2 + ib2)δn,m−2, (22)

where δn,m is the Kronecker delta and the quantities a2,b2,a1,b1,a0 and b0 are real-valued
constants. They depend linearly on the polynomial parameters α2,β2,γ2,α1,β1,γ0, but non-
linearly on the Gaussian parameters used in equation (17). Namely:

a0 =
1
r2

(
(1− ϵ)α2 +(1+ 4r2s2 + ϵ)γ2 − 2r2sα1 + r2γ0

)
,

b0 =
ϵ0
r2ϵ

(
−(1− ϵ)2α2 +(1+ ϵ)2γ2

)
,

a1 =−ϵ0(1+ ϵ)√
2r

(4sγ2 −α1) ,

b1 =
ϵ0(1− ϵ)√

2r
(2sβ2 −β1) ,

a2 =
ϵ0
2r2

(
(1− ϵ)2α2 +(1+ ϵ)2γ2

)
,

b2 =−ϵ0(1− ϵ2)

2r2
β2. (23)

After finding the matrix elements, the summation over the diagonal elements of kth power of
this latter matrix yields Mk. Fortunately, this expression involves some combinations of the
form

∑∞
n=0 n

pϵnq with integers p,q and ϵ from equation (17), which can be given explicitly. In
fact, this serves as a validation of the numerical evaluation of equation (11).

3.4. Testing our method for families where positivity is understood

From now on, our kernels will be quadratic polynomials multiplied by a Gaussian. First, we
apply our method in a special situation, where ρ̂ is a positive semidefinite operator in the
entire parameter region. In figure 2 we use ρ(x,y)∝ (4xy+ 1)ρG(x,y). As g(x) = x satisfies
property (5), we obtain that ρ(x,y) is proportional to a convex combination of the form (7),
hence positive. In this case we fix the Gaussian parameter A= 1, and plot some eks in the
region of positivity allowed by equation (18). As expected, we obtained positive values for all
calculated eks in the region 0<

√
C⩽ 1, see figure 2.

Now, we examine the family ρ(x,y)∝ (4xy+ γ0)exp
[
−
(
4(x− y)2 +(x+ y)2

)]
. We show

that ρ̂ is positive semidefinite if and only if γ0 ⩾ 0. Indeed, if γ0 ⩾ 0 then ρ̂ is positive semi-
definite by (7). Applying the following fact for z= 0 shows that ρ̂ is not positive semidefinite
if γ0 < 0.

8
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Figure 2. Several eks as functions of
√
C. For better visualization eks are scaled by

k!. The parameters of the Gaussian are A= 1, B= D= E= 0, the polynomial para-
meters are chosen to be: α2 =−1, γ2 = γ0 = 1, α1 = β1 = β2 = 0. ρ(x,y)∝ (4xy+
1)ρG(x,y).

Fact 3.2. Let ρ be a kernel and z ∈ R such that ρ is continuous at (z, z). If ρ̂ is positive semi-
definite, then ρ(z,z)⩾ 0.

Proof. Assume to the contrary that ρ(z,z)< 0 and ρ̂ is positive semidefinite. By the continuity
of ρ at (z, z) we can choose ε> 0 such that ρ(x,y)< 0 for all x,y ∈ [z− ε,z+ ε]. Define the
square integrable function Ψ such that Ψ(x) = 1 if z− ε⩽ x⩽ z+ ε and Ψ(x) = 0 otherwise.
Then clearly

⟨Ψ, ρ̂Ψ⟩=
ˆ z+ε

z−ε

ˆ z+ε

z−ε

Ψ∗(x)Ψ(y)ρ(x,y)dxdy< 0.

This contradicts that ρ̂ is positive semidefinite, which concludes the proof.

Let ρp be our kernels, where the parameter p runs over a subset of the Euclidian space Rd,
and ei(p) incorporates the parameter dependence of the ei quantities. Our numerical experience
is that the sequence of sets

Hk = {p : ei(p)⩾ 0for all 1⩽ i⩽ k}

rapidly converges to the parameter space of positivity as k→∞. We illustrate this behavior
with figure 3, where p= γ0 and we know that the final set of positivity is H∞ = [0,∞).

9
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Figure 3. Several eks calculated for ρ(x,y) of equation (20) as functions of the polyno-
mial parameter γ0. The parameters of the Gaussian are: A= 4, C= 1, and B= D= E=
0. The polynomial parameters are: α2 =−1 and α1 = β1 = β2 = 0. For γ0 < 0, ρ̂ is not
a positive operator. We scaled the eks appropriately for better visualization.

3.5. Prediction based on our method and comparison with other approaches

In figures 4 and 5 the parameters are chosen in such a way that at γ2 = 1 the density operator
is known to be positive semidefinite by (7). In the following, we also demonstrate that the
moments alone (by checking ifMk > 1, which would imply the existence of a negative eigen-
value) do not reveal too much information about the positivity of ρ̂. Indeed, if M2 ⩽ 1, then
Mk ⩽M2 ⩽ 1 for all k⩾ 2, so M2 contains all the information. As 1−M2 = 2e2, this method
is equivalent to testing e2 < 0. In figure 4 we have plotted some moments as functions of the
polynomial parameter γ2. Note thatM2 > 1 for γ2 ≲−0.65, which implies the non-positivity
of ρ̂ in that region.

In figure 5 we have plotted some eks for the same parameters and note that e2 < 0 provides
the same region γ2 ≲−0.65 that is given by M2 > 1 above. Several eks are negative on the
interval γ2 > 0, where the moments do not indicate non-positivity, according to figure 4. How-
ever, negative values for the eks give us parameters γ2, where the corresponding ρ̂ is definitely
a non-positive operator. The common interval, where all the calculated values ek are posit-
ive is 0≲ γ2 ≲ 4, which includes the point γ2 = 1, where ρ̂ is a positive semidefinite oper-
ator. The calculation of ek for big k is not an easy task, because they tend to zero very fast,
see equation (13). To compensate this rapid decay, we have multiplied the quantities ek with
appropriate numbers. Our general observation after several simulations is that if ρ is a second
degree polynomial multiplied by a Gaussian as above, then the parameter set of positivity after
k tests, i.e. {γ : ei(γ)⩾ 0for all 1⩽ i⩽ k} form a decreasing and nested sequence of sets. It
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Figure 4. Some moments Mk of ρ(x,y) (of the form equation (20)) as a function of the
polynomial parameter γ2. The parameters of the Gaussian are A= 3/2,C= 1, B= D=
E= 0. The polynomial parameters are α2 =−1, γ0 = 1, α1 = β1 = β2 = 0. At γ2 = 1,
ρ̂ is a positive operator.

Figure 5. Several functions ek calculated for ρ(x,y) of equation (20) as functions of the
polynomial parameter γ2. The parameters of the Gaussian are A= 3/2,C= 1, B= D=
E= 0. The polynomial parameters are α2 =−1, γ0 = 1, α1 = β1 = β2 = 0. At γ2 = 1,
ρ̂ is a positive operator. We scaled the eks appropriately for better visualization.
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Figure 6. Functions e2, e8 andZ calculated for ρ(x,y) of equation (20) as functions of the
polynomial parameter γ2. The parameters of the Gaussian are A= 3/2,C= 1, B= D=
E= 0. The polynomial parameters are α2 =−1, γ0 = 1, α1 = β1 = β2 = 0. At γ2 = 1,
ρ̂ is a positive operator. We scaled the eks appropriately for better visualization.

also seems that these sets (which might be not connected sets in general) rapidly converge to
the final set of positivity, namely {γ : ei(γ)⩾ 0 for all i⩾ 1}.

Finally, we compare our approach to the Robertson-Schrödinger uncertainty relations
[32, 33], which are frequently used to test the positivity of ρ̂, see [34]. However, it is known
since the 1980s that fulfilling the uncertainty relations is necessary, but not sufficient, to ensure
the positivity of ρ̂ [17, 20, 35]. The uncertainty relations for essentially self-adjoint operators
Â and B̂ read as

σRS ⩾
1
4

∣∣∣⟨ÂB̂− B̂Â⟩
∣∣∣2 , (24)

where ⟨Ô⟩= Tr
{
ρ̂Ô

}
. Here

σRS =∆Â2∆B̂2 −
(
⟨ÂB̂+ B̂Â⟩/2−⟨Â⟩⟨B̂⟩

)2
, (25)

where ∆Ô2 = ⟨Ô2⟩− ⟨Ô⟩2. For the special choices of Â= x̂ and B̂= p̂ we define

Z≡ σRS
ℏ2

− 1
4
⩾ 0. (26)

This method tests for Z⩾ 0, and Z is plotted in figure 6 for the same parameters as in figures 4
and 5 together with e2 and e8. This clearly demonstrates that the indicator Z for this choice of
Â and B̂ is not much better than e2, and much worse than e8. However, in the special case of
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ρG(x,y), the tests based on the Robertson-Schrödinger uncertainty relation and e2 are equival-
ent, which is well known.

4. Discussion and conclusions

In summary, we have established a computationally tractable method to test the positivity of
trace class integral operators via countably many conditions given by proposition 2.1. A big
advantage of our approach is that it extends the method of linear entropy, yet requires only
elementary mathematics. In the case of physical applications, phase-space representation is
meant to be described by the Wigner function, however, our method requires an extra step,
namely the inverse of equation (8), which is usually straightforward.

We have also demonstrated in section 3 via several cases that our method is efficient, con-
sistent with the well understood cases, and we can converge rapidly to the interval of paramet-
ers where positivity occurs. Furthermore, we showed in section 3 that our approach is much
more sensitive than the ones given by the methods of Robertson-Schrödinger’s uncertainty
relation in a special case.

From a longer-term perspective, our approach can serve as a control for every non-unitary
dynamic in the phase-space representation to monitor non-physical evolution. This may apply
to unitary dynamic as well, when numerical approximations are applied.
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