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PRESERVERS OF THE P -POWER AND THE WASSERSTEIN MEANS ON 2 × 2

MATRICES∗

RICHÁRD SIMON† AND DÁNIEL VIROSZTEK‡

Abstract. In one of his recent papers, Molnár showed that if A is a von Neumann algebra without I1, I2-type direct

summands, then any function from the positive definite cone of A to the positive real numbers preserving the Kubo-Ando

power mean, for some 0 6= p ∈ (−1, 1), is necessarily constant. It was shown in that paper that I1-type algebras admit

nontrivial p-power mean preserving functionals, and it was conjectured that I2-type algebras admit only constant p-power

mean preserving functionals. We confirm the latter. A similar result occurred in another recent paper of Molnár concerning

the Wasserstein mean. We prove the conjecture for I2-type algebras in regard of the Wasserstein mean, too. We also give two

conditions that characterise centrality in C∗-algebras.
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1. Introduction. A preserver is a map Φ from a set X to a set Y (often Y = X ) such that Φ

preserves a subset of elements, operation, quantity or structure of X . Preservers arise naturally in most areas

of mathematics, for example homomorphisms, isomorphisms in algebra, isometries in the study of metric

spaces, homeomorphisms, diffeomorphisms in topology, etc. However, the area where preserver problems are

systematically studied is mostly matrix theory and, its infinite dimensional counterpart, operator theory.

Linear preserver problems (where Φ is assumed to be linear) have distinguished importance among preserver

problems. For example, one of the most well-known results of this type is due to Frobenius who showed in

[12] that if Φ : Mn(C) → Mn(C) is linear and satisfies det(A) = det(Φ(A)) for all A ∈ Mn(C) then Φ is

necessarily of the form

Φ(A) = MAN (A ∈Mn(C)),

or

Φ(A) = MAtrN (A ∈Mn(C)),

where Atr denotes the transpose of A and M,N are non-singular matrices such that det(MN) = 1. A more

recent result of similar nature is due to Dolinar and Šemrl. They showed in [10] that if Φ : Mn(C)→Mn(C)

is a surjective map satisfying det(A + λB) = det(Φ(A) + λΦ(B)) for all A,B ∈ Mn(C), λ ∈ C, then Φ is

necessarily of the form of

Φ(A) = MAN (A ∈Mn(C)),

or of the form of

Φ(A) = MAtrN (A ∈Mn(C)),
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where M,N are non-singular matrices such that det(MN) = 1. Another celebrated result about linear pre-

servers is due to Banach and Stone. Their theorem concerns surjective linear isometries between continuous

function algebras of compact Hausdorff spaces [2, 23].

Theorem A (Banach-Stone). Let X,Y be compact Hausdorff spaces, and let C(X), C(Y ) denote the

continuous function algebras of X and Y with respect to the supremum norm. Let T : C(X) → C(Y ) be a

surjective linear isomorphism. Then, there exists a homeomorphism ϕ : Y → X and a function g ∈ C(Y )

with |g(y)| = 1 ∀y ∈ Y such that (Tf)(y) = g(y)f(ϕ(y)) ∀f ∈ C(X), y ∈ Y .

A Jordan-homomorphism is a linear map J between algebras A and B such that J(ab+ba) = J(a)J(b)+

J(b)J(a), ∀a, b ∈ A. Elementary calculations show that a linear map J is a Jordan-homomorphism if and

only if J(a2) = J(a)2 ∀a ∈ A, and all Jordan-homomorphisms preserve the Jordan triple product, that is,

J(bab) = J(b)J(a)J(b) ∀a, b ∈ A. We give a theorem of Kadison from [14] as an example of a theorem

concerning Jordan-homomorphisms which preserve a subset of elements of a C∗-algebra.

Theorem B (Kadison). Let A and B be unital C∗-algebras, and let J : A → B be a bijective Jordan-

homomorphism that maps precisely the self-adjoint elements of A to self-adjoint elements of B. Then, J is

an isometry that preserves commutativity, that is if ab = ba, a, b ∈ A then J(a)J(b) = J(b)J(a).

We now turn to the preservers of Kubo-Ando and other types of means, which are the main content of

this paper. Let H be a complex Hilbert space, and denote by B(H) the C∗-algebra of all bounded operators

on H and by B(H)+ the convex cone of positive semidefinite operators with respect to the Löwner order.

A Kubo-Ando mean is a binary operation σ on B(H)+ which satisfies the following conditions:

1. IσI = I

2. if A ≤ B and C ≤ D then AσB ≤ CσD
3. C(AσB)C ≤ (CAC)σ(CBC)

4. An ↓ A and Bn ↓ B strongly, then AnσBn ↓ AσB, where An ↓ A denotes monotone decreasing

convergence in the Löwner order.

A theory of such means was introduced by Kubo and Ando in [15]. They showed in Theorem 3.2 that for an

infinite dimensional H, there is a one-to-one correspondence between Kubo-Ando means on B(H)+ and the

collection of operator monotone functions f : (0,+∞) → (0,+∞) with f(1) = 1. The operator monotone

function that corresponds to the Kubo-Ando mean σ is given by the formula f(t)I = IσtI, t > 0. Conversely,

the Kubo-Ando mean σ corresponding to the operator monotone function f is given by the formula AσB =

A
1
2 f(A−

1
2BA−

1
2 )A

1
2 . Because of the continuous function calculus, this formula makes sense in the setting

of general C∗-algebras, too. The most distinguished Kubo-Ando means are the harmonic, geometric, and

arithmetic means. The corresponding operator monotone functions are t → 2t
1+t , t →

√
t, t → 1+t

2 (t > 0),

respectively. Using the formula AσB = A
1
2 f(A−

1
2BA−

1
2 )A

1
2 , these means turn out to be the following for

invertible A,B ∈ B(H)+:

A!B = 2(A−1 +B−1)−1, A#B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 , A∇B =

A+B

2
.

The family of Kubo-Ando means we are mostly concerned about in this paper is the family of power means.

They are defined for p ∈ [−1, 1] \ {0} as

(1.1) AmpB = A
1
2

(
I + (A−

1
2BA−

1
2 )p

2

) 1
p

A
1
2 .



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 39, pp. 395-408, July 2023.

397 Preservers of the p-power and the Wasserstein means on 2× 2 matrices

the corresponding operator monotone functions are of the form of t → ( 1+tp

2 )
1
p . Note that both the Kubo-

Ando power means and Kubo-Ando geometric mean have interesting non-Kubo-Ando counterparts. The

so-called conventional p-power means [21] are obtained by applying function calculus naively and are defined

as

AmpB =

(
Ap +Bp

2

) 1
p

.

A type of geometric mean(called spectral geometric mean) was introduced by Fiedler and Pták in [11]. It is

defined as

A]B = (A−1#B)
1
2A(A−1#B)

1
2 .

Another mean, called the Wasserstein mean, was described in [4]. It is defined as

AσWB =
A+B +A ·A−1#B +A−1#B ·A

4
.

It coincides with the conventional p-power mean for p = 1/2 for commuting A and B. Note that the Kubo-

Ando geometric mean and the Wasserstein mean have strong connections with Riemannian and Finsler

geometry. If the C∗-algebra in consideration is Mn(C), then there is a natural Riemannian metric on the

positive definite cone of Mn(C). For positive definite A,B, the Kubo-Ando geometric mean A#B is the

midpoint of the unique geodesic curve

t→ A
1
2 (A−

1
2BA−

1
2 )tA

1
2 ,

connecting A and B in this Riemannian structure. In the more general setting of C∗-algebras, a Finsler

type structure can be given to the positive definite cone. For more details, see the papers [6, 7, 8, 9] and

Chapter 6. of [3]. Recall that there is an important metric on the positive definite cone of Mn(C), called

the Bures-Wasserstein metric. It is widely used in quantum information theory and in the theory of optimal

transport, and it is defined as

dBW (A,B) =
(

Tr(A) + Tr(B)− 2Tr(A
1
2BA

1
2 )

1
2

) 1
2

,

for positive definite matrices A,B. Here, Tr stands for the standard trace functional on Mn(C). It was

observed in [4] that there is a Riemannian geometry on the positive definite cone of Mn(C), whose geodesic

distance is exactly the Bures-Wasserstein metric, and the curve connecting two matrices A and B is

t→ (1− t)2A+ t2B + t(1− t)(A(A−1#B) + (A−1#B)A), t ∈ [0, 1].

The midpoint of this curve is exactly the Wasserstein mean of A and B. The means mentioned above have

been actively researched in the past decades, including from the viewpoint of preserver problems. We give

a very brief overview of results from this area. A description of geometric mean preserving maps on Hilbert

spaces was given in [18]. If H is a complex Hilbert space with dimH ≥ 2, and Φ : B(H)+ → B(H)+ is a

bijective map that preserves the geometric mean, that is, Φ(A#B) = Φ(A)#Φ(B), A,B ∈ B(H)+, then Φ

is necessarily of the form of

Φ(A) = SAS∗ A ∈ B(H)+,

for some bounded, invertible linear or conjugate linear operator S on H. The symbol A#B stands here for

the variational expression of the geometric mean,

A#B = max

{
X ≥ 0 :

[
A X

X B

]
≥ 0

}
,
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introduced by Ando in [1]. It coincides with the Kubo-Ando geometric mean for invertible operators. In

[19], Molnár showed that if Φ is a bijective map on the positive definite cone of B(H) for some complex

Hilbert space H that preserves the harmonic mean, that is, Φ(A!B) = Φ(A)!Φ(B) for all A,B ∈ B(H)++,

then there exists a bounded linear or conjugate linear operator S on H such that

Φ(A) = SAS∗, A ∈ B(H)++.

Preservers of the spectral geometric mean on Hilbert spaces were described in [17]. If H is a complex Hilbert

space, and Φ : B(H)++ → B(H)++ is a continuous bijective map satisfying

Φ(A]B) = Φ(A)]Φ(B), A,B ∈ B(H)++,

and in addition, Φ(I) = I and Φ has a continuous bijective extension to B(H)+ then there exists a unitary

or antiunitary operator U on H such that

Φ(A) = UAU∗, A ∈ B(H)++.

Let us now turn to the results that motivated the present work. Functionals (scalar valued maps) have

a distinguished role in functional analysis. In [21], Molnár showed that if A is a von Neumann algebra

without I1, I2 type direct summands, then there are only trivial functionals on the positive definite cone

of A that preserve the Kubo-Ando power mean for p ∈ (−1, 1), ie. if f : A++ → (0,+∞), such that

f(AmpB) = f(A)mpf(B), A,B ∈ A++, then f ≡ c for some positive constant c. In commutative algebras,

the conventional and Kubo-Ando power means coincide. The conventional power means have non-constant

preserving functionals, and their complete description was given in Proposition 5. in [21]. The absence of I2
type algebras in the statement comes from the nature of the proof: it heavily relies on the solution of the

Mackey-Gleason problem due to Brunce and Wright. It was conjectured in [21] that the result remains true

for I2 type algebras, too. A result and a conjecture of similar nature were formulated in [20] concerning the

Wasserstein mean. We confirm these two conjectures about the preserver functionals of the Wasserstein and

Kubo-Ando power means on M2(C).

2. Basic notions, notation. We denote abstract C∗-algebras with A. All C∗-algebras are assumed

to have an identity element, denoted by I. We denote by Asa,A+,A++, the real vector space of self-adjoint

elements, the positive semidefinite, and the positive definite cone of the algebra A. We use the same notation

in regard of the particular C∗-algebra M2(C).

3. Main result.

Theorem 3.1. Set p ∈ (−1, 1) \ {0} and let f : M++
2 (C)→ (0,∞) satisfy

(3.2) f (AmpB) = f(A)mpf(B)
(
A,B ∈M++

2 (C)
)
,

where mp denotes the Kubo-Ando p-power mean. Then f ≡ const > 0.

Proof. We first note that if f is a solution of (3.2), then so is λf for any λ > 0. Therefore, without loss

of generality assume that f(I) = 1. Let us define

(3.3) ϕ = (.)
p ◦ f ◦ (.)

1/p
.

Then, the preserver equation (3.2) reads in terms of ϕ as

(3.4) ϕ ((AmpB)
p
) =

ϕ (Ap) + ϕ (Bp)

2

(
A,B ∈M++

2 (C)
)
.
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In particular, if A1 and A2 commute, then

(3.5) ϕ

(
Ap1 +Ap2

2

)
=
ϕ (Ap1) + ϕ (Ap2)

2
.

A maximal Abelian sub-algebra of M2 (C) is clearly of the form A = linspan〈P, I − P 〉 for some rank-one

ortho-projection P, and hence, it is of the form A = linspan〈I,G〉 for some traceless self-adjoint unitary G,

where G is given by G = 2P − I. We denote the intersection of A and M++
2 (C) by A++. Note that the

p-th power function is a bijection on every A++. Therefore, (3.5) tells us that regardless of the choice of the

MASA A, the map ϕ : A++ → (0,∞) is a Jensen map; that is, it preserves the arithmetic mean.

We show that the Jensen property, together with positivity, implies continuity. We mostly follow the

argument of Proposition 5. in [21]. Since A++ is a Q-convex subset of the Q-linear space A, and (0,+∞) is a

Q-convex subset of the Q-linear space R, we obtain from [13], that ϕ is necessarily of the form ϕ(x) = L(x)+c,

for some fixed c ∈ (0,+∞) and additive function L : A++ → R. Since ϕ takes positive values, it follows

that L is non-negative. Indeed, ϕ is bounded from below on A++, so we get that nL(A) = L(nA) ≥ m,

for some m ∈ R. After dividing by n, and letting it tend to infinity we get that L(A) ≥ 0. For a fixed

A ∈ A++, the additive function t→ L(tA) on R is non-negative on the positive half line. Theorem 9.3.1 in

[16] states that any additive function of the reals which is bounded from below on a set of positive Lebesgue

measure is necessarily continuous. We claim that L is continuous as an A++ → R function. Indeed, let

P and Q be two perpendicular orthogonal projections, generating the commutative sub-algebra A. Then,

X = I + P and Y = I + Q are linearly independent positive definite elements; thus, any A ∈ A++ can be

expressed uniquely in the form of A = uX + vY . If An = unX + vnY is a sequence converging to A, we

must have that un → u and vn → v. We have that |L(An) − L(A)| = |L(unX + vnY ) − L(uX + vY )| =

|L(unX) − L(uX) + L(vnY ) − L(vY )| ≤ |L(unX) − L(uX)| + |L(vnY ) − L(vY )|. Since t → L(tX) is

continuous, L(unX) tends to L(uX) as un tends to u, and the same is true for vn, v and Y . Thus we have

that L is a continuous function from A++.

So ϕ is affine and non-negative on every commutative sub-cone. Consequently, using the basis {I,G} of

A we can expand ϕ the following way: there exists a non-negative constant cI , and for every traceless self-

adjoint unitary G there exists a constant cG with |cG| ≤ cI (this inequality follows from the non-negativity

of ϕ) such that

(3.6) ϕ (tI + sG) = cIt+ cGs+ (1− cI) (0 ≤ |s| < t) .

Note that cG ≡ c−G. Now let us consider the commutative sub-algebras generated by the specific traceless

self-adjoint unitaries

σz =

[
1 0

0 −1

]
and σx =

[
0 1

1 0

]
.

It will be useful in the sequel that conjugation with the unitary matrix

(3.7) U =
1√
2

(σz + σx) =
1√
2

[
1 1

1 −1

]
,

maps σx and σz to each other, that is,

(3.8) UσzU
∗ = σx and UσzU

∗ = σx.

Now let

(3.9) A = tI + sσz and B = tI + sσx,
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for some 0 ≤ |s| < t. By this definition and (3.8), we have

UAU∗ = B and UBU∗ = A.

Consequently, using that functional calculus is compatible with unitary conjugations,

U (AmpB)U∗ = (UAU∗)
1
2

(
I + U(A−

1
2BA−

1
2 )pU∗

2

) 1
p

(UAU∗)
1
2 ,

(3.10) = B
1
2

(
I + ((UAU∗)

− 1
2 (UBU∗) (UAU∗)

− 1
2 )p

2

) 1
p

B
1
2 = BmpA = AmpB.

Equivalently,

UAmpB = AmpBU,

which means that AmpB is in the commutative sub-algebra generated by U = 1√
2

(σz + σx) for every possible

choices of t and s in (3.9). By this feature of the p-power mean for the family of matrix pairs

(3.11) Aε := I + εσz and Bε := I + εσx (ε ∈ (−1, 1)) ,

and by (3.6), we have

(3.12) ϕ ((AεmpBε)
p
) = cI

1

2
tr (AεmpBε)

p
+ cU

1

2
tr (U (AεmpBε)

p
) + (1− cI) .

Let us introduce the notation

(3.13) gp(x) =

(
1 + xp

2

)1/p

.

We compute the left hand side of (3.12) in the small ε regime up to second order. We start with estimating

A
− 1

2
ε with its binomial series expansion around the identity:

A
− 1

2
ε BεA

− 1
2

ε =

=

(
I − 1

2
εσz +

3

8
ε2I + O

(
ε3
))

(I + εσx)

(
I − 1

2
εσz +

3

8
ε2I + O

(
ε3
))

= I − 1

2
εσz −

1

2
εσz +

1

4
ε2I +

3

8
ε2I +

3

8
ε2I + εσx −

1

2
ε2σzσx −

1

2
ε2σxσz + O

(
ε3
)
.

Since σzσx = −σxσz, those terms cancel out, and after arranging the other terms together, we arrive at

A
− 1

2
ε BεA

− 1
2

ε = I + ε(σx − σz) + ε2I + O
(
ε3
)
.

Computing the first and second order derivatives of gp(x) =
(
1+xp

2

) 1
p gives that g′p(x) = 1

p ·
(
1+xp

2

) 1
p−1 ·

pxp−1

2 = 1
2 ·
(
1+xp

2

) 1
p−1 ·xp−1, hence g′p(1) = 1

2 , and g′′p (x) = 1
2

(
1
p − 1

) (
1+xp

2

) 1
p−2 · x

p−1

2 ·x
p−1+ 1

2

(
1+xp

2

) 1
p−1 ·

(p− 1)xp−2, which leads us to g′′p (1) = 1
4

(
1
p − 1

)
+ p−1

2 . Therefore,

gp

(
A
− 1

2
ε BεA

− 1
2

ε

)
= I +

1

2
ε(σx − σz) +

1

2
ε2I +

1

2

(
1

4

(
1

p
− 1

)
+
p− 1

2

)
ε22I + O

(
ε3
)
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= I +
1

2
ε(σx − σz) +

1

2
ε2
(

1 +
1

2

(
1

p
− 1

)
+ p− 1

)
+ O

(
ε3
)

= I +
1

2
ε(σx − σz) +

1

2
ε2
(

1

2

(
1

p
− 1

)
+ p

)
I + O

(
ε3
)
.

Since AεmpBε = A
1
2
ε gp

(
A
− 1

2
ε BεA

− 1
2

ε

)
A

1
2
ε , it follows that

AεmpBε =

(
I +

1

2
εσz −

1

8
ε2I + O

(
ε3
))
×

×
(
I +

1

2
ε(σx − σz) +

1

2
ε2
(

1

2

(
1

p
− 1

)
+ p

)
I + O

(
ε3
))
×

×
(
I +

1

2
εσz −

1

8
ε2I + O

(
ε3
))

=

= I +
1

2
εσz −

1

8
ε2I +

1

2
εσz +

1

4
ε2I − 1

8
ε2I +

1

2
ε(σx − σz)+

+
1

4
ε2σz(σx − σz) +

1

4
ε2(σx − σz)σz +

1

2
ε2
(
p+

1

2

(
1

p
− 1

))
I + O

(
ε3
)

= I +
1

2
ε(σz + σx) + ε2

(
−1

8
+

1

4
− 1

8
− 1

4
− 1

4
+
p

2
+

1

4p
− 1

4

)
I + O

(
ε3
)

= I +
1

2
ε(σz + σx) +

(
p

2
+

1

4p
− 3

4

)
ε2I + O

(
ε3
)
.

From this, we get that

(AεmpBε)
p

= I +
p

2
ε(σz + σx) +

(
p2

2
+

1

p
− 3p

4

)
ε2I +

p(p− 1)

2

ε2

4
2I + O

(
ε3
)
.

Therefore, by (3.12) we get that

ϕ ((AεmpBε)
p
) =

(3.14) = cI

(
1 +

(
p2

2
+

1

4
− 3p

4
+
p(p− 1)

4

)
ε2
)

+ cU
pε√

2
+ O

(
ε3
)

+ (1− cI).

On the other hand, the binomial expansion of Aε and Bε around the identity gives

Apε = (I + εσz)
p = I + pεσz +

p(p− 1)

2
ε2I + O

(
ε3
)
,

and

Bpε = (I + εσx)p = I + pεσx +
p(p− 1)

2
ε2I + O

(
ε3
)
.

By (3.6), this implies

(3.15) ϕ(Apε) = cI

(
1 +

p(p− 1)

2
ε2
)

+ cσz
pε+ O

(
ε3
)

+ (1− cI),

and

(3.16) ϕ(Bpε ) = cI

(
1 +

p(p− 1)

2
ε2
)

+ cσx
pε+ O

(
ε3
)

+ (1− cI),
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We substitute Aε and Bε to the preserver equation (3.4) and get

(3.17) ϕ ((AεmpBε)
p
) =

ϕ(Apε) + ϕ(Bpε )

2
.

By (3.14),(3.15), and (3.16), we get that (3.17) is equivalent to

cI

(
1 +

(
p2

2
+

1

4
− 3p

4
+
p(p− 1)

4

)
ε2
)

+ cU ·
pε√

2
+ O

(
ε3
)

=

(3.18) = cI

(
1 +

p(p− 1)

2
ε2
)

+
pε√

2

cσz
+ cσx√

2
+ O

(
ε3
)
.

Comparing the first order terms in (3.18) gives that

cU = c 1√
2
(σx+σz) =

1√
2

(cσx + σz),

while comparing the second order terms gives

(3.19) cI

(
p2

2
+

1

4
− 3p

4
+
p(p− 1)

4
− p(p− 1)

2

)
= 0.

Simple calculations show that (3.19) is equivalent to cI · (p− 1)2 = 0. This means that if p 6= 1, than cI = 0,

which means that cG = 0 for all self-adjoint traceless unitary G, which implies that f ≡ constant, as desired.

If p = 1, then all positive linear functionals satisfy (3.17).

We summarise our knowledge about Kubo-Ando power mean preserving functionals in the following

corollary.

Corollary 3.2. Let A be a von Neumann algebra without type I1 direct summands. If p ∈ (−1, 1), p 6=
0, then any function f : A++ → (0,+∞) satisfying f(AmpB) = f(A)mpf(B) is necessarily constant.

Proof. The case omitting I2-type algebras has been already dealt with in Theorem 8. in [21], and we

have just proven the statement for I2-type algebras.

We follow a similar programme concerning preserver functions of the Wasserstein mean.

Theorem 3.3. Let f : M++
2 (C)→ (0,∞) satisfy

(3.20) f (AσWB) = f(A)σW f(B)
(
A,B ∈M++

2 (C)
)
,

where σW denotes the Wasserstein mean. Then, f is necessarily constant.

Proof. Note that if f satisfies (3.20), then so does λf for any λ > 0. Therefore, without the loss of

generality we can assume that f(I) = 1. Now let ϕ be defined as ϕ = (.)
1
2 ◦ f ◦ (.)2. Then, the preserver

equation (3.20) in terms of ϕ reads as

(3.21) ϕ((AσWB)
1
2 ) =

ϕ(A
1
2 ) + ϕ(B

1
2 )

2

(
A,B ∈M++

2 (C)
)
.

As we mentioned before, a straightforward calculation shows that if A and B commute, their Wasserstein

mean coincides with the conventional power mean for p = 1/2. Therefore, for commuting A,B (3.21) reads

as

ϕ

(
A

1
2 +B

1
2

2

)
=
ϕ(A

1
2 ) + ϕ(B

1
2 )

2

(
A,B ∈M++

2 (C)
)
.
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Since the square root function is a bijection on the positive definite cone, this can be rewritten as

(3.22) ϕ

(
A+B

2

)
=
ϕ(A) + ϕ(B)

2

(
A,B ∈M++

2 (C)
)
.

We get that ϕ preserves the arithmetic mean of commuting elements. Note that we are in the same position

as we were in the proof of Theorem 3.1. We can repeat the reasoning from there, and we obtain that ϕ must

be continuous on all maximal Abelian sub-algebras. Therefore, ϕ is affine on every commutative sub-cone, so

there exists a non-negative constant cI , and for every traceless self-adjoint unitary G, there exists a constant

cG such that |cG| ≤ cI such that

(3.23) ϕ(tI + sG) = cIt+ cGs+ (1− cI) (0 ≤ |s| < t).

Now let, σz, σx, U be as in Theorem 3.1. Using that functional calculus is compatible with unitary conjuga-

tions, we get that

UAσWBU
∗ = (UAU∗)

− 1
2

(
UAU∗ + U(A

1
2BA

1
2 )

1
2U∗

2

)2

(UAU∗)
− 1

2

= B−
1
2

(
B + (B

1
2AB

1
2 )

1
2

2

)2

B−
1
2 = BσWA = AσWB.

This means that UAσWB = AσWBU . In other words, AσWB is in the commutative sub-algebra generated

by U = 1√
2
(σx + σz) for every possible choices of s and t. Now, by (3.22) we get that

ϕ
(

(AεσWBε)
1
2

)
= cI

1

2
tr(AεσWBε)

1
2 + cU

1

2
tr(U(AεσWBε)

1
2 ) + (1− cI).

Following the notation of Theorem 3.1, let Aε = I + εσz, and Bε = I + εσx. Then, A
1
2
ε = I + 1

2εσz −
1
8ε

2I +

O
(
ε3
)

and

A
1
2
ε BεA

1
2
ε =

= I +
1

2
εσz −

1

8
ε2I + εσx +

1

2
ε2σxσz +

1

2
εσz +

1

4
ε2σ2

z +
1

2
ε2σzσx −

1

8
ε2I + O

(
ε3
)

=

= I + ε(σz + σx) + O
(
ε3
)
.

Then, (
A

1
2BA

1
2

) 1
2

= I +
1

2
ε(σz + σx)− 1

8
ε2(σz + σx)2 + O

(
ε3
)

= I +
1

2
ε(σz + σx)− 1

4
ε2I + O

(
ε3
)
.

Note that the Wasserstein mean of a pair A,B can be expressed in the following form:

(3.24) AσWB =
A+B +A−

1
2

(
A

1
2BA

1
2

) 1
2

A
1
2 +A

1
2

(
A

1
2BA

1
2

) 1
2

A−
1
2

4
.

We compute the different components of the expression above separately and then add them together.

A
− 1

2
ε

(
A

1
2
ε BεA

1
2
ε

) 1
2

A
1
2
ε =
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=

(
I − 1

2
εσz +

3

8
ε2I + O

(
ε3
))(

I +
ε

2
(σz + σx)− 1

4
ε2I + O

(
ε3
))
×

(3.25) ×
(
I +

1

2
εσz −

1

8
ε2I + O

(
ε3
))

= I +
ε

2
(σz + σx) +

ε2

2
· σxσz + O

(
ε3
)
.

Note that the other term, A
1
2
ε

(
A

1
2
ε BεA

1
2
ε

) 1
2

A
− 1

2
ε is the adjoint of what we just computed; therefore, it

equals to I + ε
2 (σz + σx) + ε2

2 · σzσx + O
(
ε3
)
. From these, we get that the Wasserstein mean of Aε, Bε is

AεσWBε =
I + εσz + I + εσx + I + ε

2 (σz + σx) + I + ε
2 (σz + σx) + O

(
ε3
)

4
=

(3.26) = I +
1

2
ε(σz + σx) + O

(
ε3
)
.

Now we get that

(AεσWBε)
1
2 = I +

1

4
ε(σz + σx)− 1

32
ε2(σz + σx)2 + O

(
ε3
)

=

(3.27) = I +
1

4
ε(σz + σx)− 1

16
ε2I + O

(
ε3
)
.

We get that

ϕ((AεσWBε)
1
2 ) = cI · (I −

1

16
ε2) + cU

√
2

4
ε+ O

(
ε3
)

+ (1− cI).

The binomial expansion of A
1
2
ε and B

1
2
ε around the identity gives us

A
1
2
ε = I +

1

2
εσz −

1

8
ε2I + O

(
ε3
)
,

B
1
2
ε = I +

1

2
εσx −

1

8
ε2I + O

(
ε3
)
.

From (3.23), it follows that

ϕ(A
1
2
ε ) = cI(1−

1

8
ε2) +

1

2
εcσz

+ (1− cI) + O
(
ε3
)
,

ϕ(B
1
2
ε ) = cI(1−

1

8
ε2) +

1

2
εcσx

+ (1− cI) + O
(
ε3
)
.

From (3.21), we obtain that

cI · (1−
1

16
ε2) + cU

√
2

4
ε = cI(1−

1

8
ε2) +

1

4
ε(cσz

+ cσx
).

This implies that cI(
1
8ε

2− 1
16ε

2) = 0, which means that cI = 0; therefore ,cG ≡ 0 for all self-adjoint traceless

unitary G, so f ≡ constant as we claimed.

We can formulate a corollary similar to the case of Kubo-Ando mean preserving functionals.

Corollary 3.4. Let A be a von Neumann algebra without type I1 direct summands. Then any function

f : A++ → (0,+∞) satisfying f(AσWB) = f(A)σW f(B) is necessarily constant.
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Proof. The case omitting I2-type algebras has been already dealt with in [20], and we have just proven

the statement for I2-type algebras.

In the previous theorem, when we showed that UAσWB = AσWBU , we essentially showed that the

arithmetic and the Wasserstein mean of pairs of matrices in the form of sI+ tσx, sI+ tσz, (|t| < 1) commute.

This is not true in general. In fact, we have the following result.

Remark 3.5. Let A be a C∗-algebra such that for every A,B ∈ A++ A+B
2 ·AσWB = AσWB · A+B

2 holds.

Then, A is commutative. Moreover, if A ∈ A++ is an element such that for all B ∈ A++ A+B
2 · AσWB =

AσWB · A+B
2 holds, then A is central.

Proof. It will be beneficial to write the arithmetic mean in its Kubo-Ando form: A
1
2
I+A−

1
2BA−

1
2

2 A
1
2 .

Then the equation reads as follows:

A−
1
2

(
A+ (A

1
2BA

1
2 )

1
2

2

)2

A−
1
2 ·A 1

2
I +A−

1
2BA−

1
2

2
A

1
2 =

= A
1
2
I +A−

1
2BA−

1
2

2
A

1
2 ·A− 1

2

(
A+ (A

1
2BA

1
2 )

1
2

2

)2

A−
1
2 .

The A−
1
2 , A

1
2 terms in the middle cancel out in both sides of the equation. After multiplying both sides

with 4 and 2 we arrive at:

A−
1
2

(
A+ (A

1
2BA

1
2 )

1
2

)2
· (I +A−

1
2BA−

1
2 )A

1
2 = A

1
2 (I +A−

1
2BA−

1
2 ) ·

(
A+ (A

1
2BA

1
2 )

1
2

)2
A−

1
2 .

Now after multiplying with A
1
2 from both sides, we get that:

(3.28)
(
A+ (A

1
2BA

1
2 )

1
2

)2
· (I +A−

1
2BA−

1
2 )A = A(I +A−

1
2BA−

1
2 ) ·

(
A+ (A

1
2BA

1
2 )

1
2

)2
.

The left-hand side of (3.28) equals to:

A3 + (A
1
2BA

1
2 )

1
2A2 +A(A

1
2BA

1
2 )

1
2A+A

1
2BA

3
2 +A

3
2BA

1
2 +

+(A
1
2BA

1
2 )

3
2 +A(A

1
2BA

1
2 )

1
2A−

1
2BA

1
2 +A

1
2B2A

1
2 .

The right-hand side equals to:

A3 +A(A
1
2BA

1
2 )

1
2A+A2(A

1
2BA

1
2 )

1
2 +A

3
2BA

1
2 +A

1
2BA

3
2 +

+A
1
2BA−

1
2 (A

1
2BA

1
2 )

1
2A+ (A

1
2BA

1
2 )

3
2 +A

1
2B2A

1
2 .

Most of the terms cancel out, and what we get is:

(A
1
2BA

1
2 )

1
2A2 +A(A

1
2BA

1
2 )

1
2A−

1
2BA

1
2 = A2(A

1
2BA

1
2 )

1
2 +A

1
2BA−

1
2 (A

1
2BA

1
2 )

1
2A.

This must hold for all A,B ∈ A++, so if we replace B with t2B and take derivative at t = 0 we get that

A2(A
1
2BA

1
2 )

1
2 = (A

1
2BA

1
2 )

1
2A2 A,B ∈ A++.

After multiplying with A−2 from the right-hand side and then squaring both sides, we arrive at

A
5
2BA−

3
2 = A

1
2BA

1
2 ,
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which is equivalent to A2B = BA2. An element commutes with the same elements as its square root;

therefore, we get that the positive definite cone of A is commutative. Since any element of a C∗-algebra

is the linear combination of at most four positive elements, we get that A is commutative. Note that we

showed more: we did not change A in the proof at all, so the statement can be strengthened in the following

way: if A is an element in A++ such that (3.28) holds for all B ∈ A++, then A is necessarily a central

element of the algebra.

During the proof of Theorem 3.1, we showed that the arithmetic and Kubo-Ando p-power means of pairs

of matrices in the form of sI + tσx, sI + tσz, (|t| < 1) commute. We have a similar result to the one that

was discussed in the previous Remark.

Remark 3.6. Let p ∈ [−1, 1) \ {0}, and let A be a C∗-algebra such that AmpB · A+B
2 = A+B

2 · AmpB

for every A,B ∈ A++. Then, A is commutative. Moreover, if A ∈ A++ and AmpB · A+B
2 = A+B

2 · AmpB

for every B ∈ A++ for some p ∈ [−1, 1) \ {0} then A is central.

Proof. After multiplying with 2
1
p · 2, we are left with(

I + (A−
1
2BA−

1
2 )p
) 1

p

A(I +A−
1
2BA−

1
2 ) = (I +A−

1
2BA−

1
2 )A

(
I + (A−

1
2BA−

1
2 )p
) 1

p

.

This must be true for all positive definite elements. If A,B are positive definite elements, then so is A
1
2BA

1
2 .

Replacing B with A
1
2BA

1
2 gets us to

(I +Bp)
1
p A(I +B) = (I +B)A (I +Bp)

1
p .

Now we replace B with ε
1
pB, and then, we use the binomial series expansion around the identity for small

values of ε. (
I +

1

p
εBp + O

(
ε2
))

A
(
I + ε

1
pB
)

=
(
I + ε

1
pB
)
A

(
I +

1

p
εBp + O

(
ε2
))

.

We get that

A+ ε
1
pAB +

1

p
εBpA+

1

p
ε

1
p+1BpAB + O

(
ε2
)

=

= A+
1

p
εABp + ε

1
pBA+

1

p
ε

1
p+1BABp + O

(
ε2
)
.

(3.29)

Let us assume first that 0 < p < 1. Therefore, 1
p > 1, and it makes sense to differentiate with respect

to ε and then plug in ε = 0. From this, we get that 1
pAB

p = 1
pB

pA. Since the function t → tp is a

bijection on the positive definite cone, we get that AB = BA for all positive definite A,B which concludes

the proof. Note that similarly to the previous remark, we did not change A during the proof; therefore, the

statement can be strengthened in the following way: if A is a fixed positive definite element in a C∗-algebra

A such that AmpB · A+B
2 = A+B

2 · AmpB for some p ∈ (−1, 1) \ {0} for all B ∈ A++, A is necessarily

central. Now let us turn to the case −1 < p < 0. The fact that Am−pB = (A−1mpB
−1)−1 implies that

AmpB = (A−1m−pB
−1)−1; therefore, we can assume that 0 < p < 1 in this case as well, if we write A−1, B−1

in the Kubo-Ando power mean and invert it, and A,B in the arithmetic mean. Once again, we interpret the

arithmetic mean as a p-power mean for p = 1. The equation we have is

A
1
2

(
I + (A

1
2B−1A

1
2 )p

2

)− 1
p

A
1
2 ·A 1

2
I +A−

1
2BA−

1
2

2
A

1
2

= A
1
2
I +A−

1
2BA−

1
2

2
A

1
2 ·A 1

2

(
I + (A

1
2B−1A

1
2 )p

2

)− 1
p

A
1
2 .

(3.30)
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We can cancel out the A
1
2 terms from the ends of both sides and after multiplying with 2−

1
p+1 we are left

with (
I + (A

1
2B−1A

1
2 )p
)− 1

p

A(I +A−
1
2BA−

1
2 ) = (I +A−

1
2BA−

1
2 )A

(
I + (A

1
2B−1A

1
2 )p
)− 1

p

.

Just like in the case 0 < p < 1, we can replace B with A
1
2BA

1
2 and arrive at(

I + (B−1)p
)− 1

p A(I +B) = (I +B)A
(
I + (B−1)p

)− 1
p .

Now if we replace B with B−1 and then replace it with ε
1
pB, we get that

(I + εBp)−
1
pA(I + ε−

1
pB−1) = (I + ε−

1
pB−1)A(I + εBp)−

1
p .

Now we use binomial expansion around the identity:

(I − 1

p
εBp + O

(
ε2
)
)A(I + ε−

1
pB−1) = (I + ε−

1
pB−1)A(I − 1

p
εBp + O

(
ε2
)
).

This is equivalent to

A+ ε−
1
pAB−1 − 1

p
εBpA− 1

p
ε1−

1
pBpAB−1 + O

(
ε2
)

+ ε−
1
pAB−1O

(
ε2
)

=

= A− 1

p
εABp + ε−

1
pB−1A− 1

p
ε1−

1
pB−1ABp + O

(
ε2
)

+ ε−
1
pB−1AO

(
ε2
)
.

(3.31)

A cancels out, and after multiplying with ε
1
p, we get that

AB−1 − 1

p
ε1+

1
pBpA− 1

p
εBpAB−1 + O

(
ε2
)

= −1

p
ε1+

1
pABp +B−1A− 1

p
εB−1ABp + O

(
ε2
)
.

(3.32)

Now we differentiate with respect to ε and then plug in ε = 0. We arrive at

−1

p
BpAB−1 = −1

p
B−1ABp.

This means that ABp+1 = Bp+1A. Since t→ tp+1 is a bijection on the positive definite cone, we obtain that

A commutes with any positive definite element of A which concludes the proof. Proof for the case p = −1.

We have that

(3.33)
2

A−1 +B−1
· A+B

2
=
A+B

2
· 2

A−1 +B−1
.

After multiplying from both sides with (A−1 +B−1), we get

(A+B)(A−1 +B−1) = (A−1 +B−1)(A+B).

This is equivalent to

AB−1 +BA−1 = A−1B +B−1A.

Now we replace B with tB, and after multiplying with t we obtain that

AB−1 + t2BA−1 = t2A−1B +B−1A.

We have a polynomial of t on each side of the equation, say p(t) and q(t), and these polynomials are equal for

all t > 0. Since two polynomials are equal if and only if their coefficients coincide, we get that AB−1 = B−1A,

which implies that A commutes with the positive definite cone of A, therefore A is central.
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[12] G. Frob. Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Sitzungsber. Königl. Preuss. Akad.

Wiss. Berlin., 994–1015, 1897.

[13] R. Ger. On extensions of polynomial functions. Results Math., 26:281–289, 1994.

[14] R.V. Kadison. Isometries of operator algebras. Ann. Math., 54:325–338, 1951.

[15] F. Kubo, and T. Ando. Means of positive operators. Math. Ann. 246:205–224, 1980.

[16] M. Kuczma. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s

Inequality. Second edition. Edited and with a preface by Attila Gilányi. Birkhäuser, Verlag, Basel, 2009.
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