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Abstract

Since the earliest days of Heavy Ion Physics thermal soft photon radiation emitted during the reaction had been theorized as a
smoking gun signal for formation of a quark-gluon plasma and as a tool to characterize its properties. In recent years the existence
of excess photon radiation in heavy ion collisions over the expectation from initial hard interactions has been confirmed at both
RHIC and LHC energies by PHENIX and ALICE respectively. There the radiation has been found to exhibit elliptic flow v2

well above what can currently be reconciled with a picture of early emission from a plasma phase. During the 2007 and 2010
Au+Au runs PHENIX has measured a high purity sample of soft photons down to pT > 0.4 GeV/c using an external conversion
method. We present recent systematic studies by PHENIX from that sample on the centrality dependence of the soft photon yield,
and elliptic and triangular flow v2 and v3 in Au+Au collisions which fill in the experimental picture and enable discrimination of
competing soft photon production scenarios.
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1. Introduction

Collisions of heavy ions create dense and hot states of hadronic medium like the Quark Gluon Plasma (QGP), for
which direct photons, i.e. photons not produced in decays of hadrons, provide an excellent probe: they can be produced
during all stages of the interaction, and leave the medium virtually undisturbed due their vanishing interaction cross
section with the hadronic medium. They can thus probe the full space-time evolution of the system. Here photons with

transverse momenta pT =
√

p2
x + p2

y & 2.5 GeV/c are produced predominately in early, hard interactions and called
hard photons, while photons with smaller transverse momentum are called soft and thought to be produced from the
medium. The photon yield gives experimental access to the rates of their different production processes, and their
correlation with the event geometry, i.e. their elliptical and triangular flow coefficients v2 and v3, are sensitive to the
dynamics of the medium. While direct photon yield and flow integrate over all production channels, both quantities
measured together strongly constrain possible production scenarios.

Measurements of soft photons are notoriously difficult in electromagnetic calorimeters due to large contamination
from misidentified hadrons and a deteriorating energy resolution. Instead we here reconstruct photons from external
conversions to electrons and positrons. For the 2007 and 2010 RHIC runs the HBD detector was installed in the
PHENIX detector providing spatially well-defined conversion locations on a cylindrical shell R = 60 cm from the
beam pipe with X/X0 = 2 to 3% [1]. We identify conversion pairs by their characteristic apparent pair masses

1A list of members of the PHENIX Collaboration and acknowledgments can be found at the end of this issue.
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(a) Correlation between pair mass assuming production of electron and
positron at the nominal interaction point Mcgl, and at the HBD shell Matm.
The concentration of photons with 10 MeV/c2 < Mcgl < 15 MeV/c2 and
Matm < 5 MeV/c2 corresponds to conversions in the HBD shell; the op-
posite concentration at 10 MeV/c2 < Matm < 15 MeV/c2 and Mcgl <
5 MeV/c2 is due to decay photons from π0 Dalitz decays, π0 → γ(ee).
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(b) Rγ for different centrality classes from the 2007 and 2010 runs, com-
pared to the virtual photon result from PHENIX [2]. Here and later sta-
tistical uncertainties are shown as bars, systematic uncertainties as boxes.
Both results agree within uncertainties.

Figure 1.

(opening angles) at the nominal interaction vertex and at the HBD detector shell. Momenta of electrons and positrons
can be calculated assuming they came from either the vertex or the HBD shell, and their invariant pair mass (opening
angle) at the vertex and the HBD shell can be compared, see Fig. 1a. Applying a simultaneous selection on both mass
variables allows a clean separation of electron-positron pairs from Dalitz decays and external photon conversions with
the level of background < 1% in the conversion sample while maintaining a good photon momentum resolution.

2. Direct photon yield

While by selecting on the two apparent pair masses we have already arrived at a very pure photon sample its
relation to the actual photon production rate Y incl

γ depends on detector-specific quantities, namely the photon conver-
sion probability pconv, the geometrical acceptance of the detector for electron-positron pairs aee, and the efficiency
of the used experimental cuts εee, with the exact values only known inside relatively large systematic uncertainties.
Instead of attempting to accurately determine these correction factors we follow a different approach: in addition to
the raw yield of photons N incl

γ , we measure a raw yield of photons from the decay π0 → γγ, Nπ0

γ which we extract by
pairing one photon reconstructed in a conversion pair with another photon reconstructed in the PHENIX calorimeters
with very loose cuts and estimation of the combinatorial background with mixed-event photon-photon pairs. The raw
π0-tagged yield Nπ0

γ is related to the yield Yπ0

γ by the same detector-dependent factors as the inclusive photon yield,
and additionally a conditional acceptance factor 〈ε f 〉 quantifying the probability to reconstruct both photons from a
π0 decay, given that one photon was already reconstructed in a conversion pair. Since we use only very loose cuts
to select calorimeter photons we can trade less dependence on systematic uncertainties for reduced statistical signifi-
cance via the signal-to-background ratio in the π0-tagged sample. The shared factors then drop out in the ratio of both
quantities so that we can formulate a quantity Rγ,

Rγ =
Y incl
γ

Ydecay
γ

=
Y incl
γ /Yπ0

γ

Ydecay
γ /Yπ0

γ

=

N incl
γ /pconvaeeεee

Nπ0
γ /pconvaeeεee〈ε f 〉

Ydecay
γ

Yπ0
γ

=

〈ε f 〉
N incl
γ

Nπ0
γ

Ydecay
γ

Yπ0
γ

(1)
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(a) Direct photon pT spectra for different centrality classes. The shaded
bands indicate Ncoll-scaled fits to PHENIX pp data. While the direct pho-
ton yield varies over two orders of magnitude between centralities the
shape shows little change, also see the text.
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(b) The pT -integrated direct photon yield for different lower integration
limits, note logarithmic axes. The dashed lines indicate independent fits
to each set up measurements. The centrality-dependence of the integrated
direct photon yield shows no dependence on the lower integration limit
outside of uncertainties.

Figure 2. Direct photon yield

Here we have used the yield of photons from the decay of any hadron Ydecay
γ which can be calculated from the

known hadron yields and their branching ratios to photons. The numerator of the RHS of Eq. (1) depends only on
measured raw yields and the conditional acceptance 〈ε f 〉 which has to be determined in a Monte Carlo simulation
of the detector; the denominator depends on known yields and branching ratios and can be calculate in e.g. a simple
phase space simulation. With these definition any measurement Rγ > 1 corresponds to a direct photon signal. Our
results for Rγ are show in Fig. 1b. We observe a substantial direct photon signal.

From Rγ we can calculate the direct photon yield shown in Fig. 2a,

Ydirect
γ = (Rγ − 1)Ydecay

γ (2)

and analyze its centrality-dependence. We find that the direct photon excess over the Ncoll-scaled pp yield has inverse
slopes roughly independent of centrality, (239 ± 25 ± 7) MeV/c (0-20%), (260 ± 33 ± 8) MeV/c (20-40%), (225 ±
28 ± 6) MeV/c (40-60%), and (238 ± 50 ± 6) MeV/c (60-92%), and the pT -integrated yield of the excess over the
Ncoll-scaled pp yield has a power-law dependence on the number of participants Npart, Nγ ∝ Nα

part with a power larger
than that of hadrons, α = 1.48 ± 0.08(stat) ± 0.04(syst), see Fig. 2b.

3. Direct photon v2 and v3

The elliptical and triangular flow coefficients v2 and v3 of direct photons can be calculated from the raw inclusive
photon flow coefficients vincl

n , the expectation for photons from hadron decays vdecay
n , and the known composition of
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Figure 3. The direct photon v2 (top) and v3 (bottom) as a function of the photon pT in different centrality classes. The results from this analysis are
shown with circle markers, from a preliminary calorimeter analysis as squares. Both results are consistent within systematic uncertainties.

the inclusive photon sample quantified by Rγ,

vdirect
n =

Rγvincl
n − vdecay

n

Rγ − 1
(3)

Here the vn can be calculated from the angles between the n-th order event plane measured at forward rapidities
1.0 < |η| < 2.8, ψn, and the photon direction φn with a Fourier decomposition, v′n = 〈cos 2(φn − ψn)〉. To obtain the
actual vn we perform resolution corrections of the raw v′n with the 3-subevent method [3], taking the difference to
results from a 2-subevent resolution correction into account the systematic uncertainties. The vdecay

n can be calculated
in a phase space simulation from the known vn and yields of the parent hadrons and their branching ratios to photons
by measuring the decay photon φn against the known event planes, i.e. with perfect resolution. Our result for the direct
photon v2 and v3 are shown in Fig. 3. We observe markedly positive, non-zero coefficients which remain large down
to low pT across all centralities.

4. Conclusions

We have extracted a high-purity sample of soft photons and simultaneously measured the direct photon yield and
the direct photon elliptical and triangular flow coefficients v2 and v3, and extended the measurements in the soft regime.
We find a substantial direct photon signal consistent with an earlier measurement using virtual photons [2], and with
pT -integrated yields growing with the number of participants Npart faster than the yield of soft hadrons. The shape of
the direct photon spectra shows no changes outside of uncertainties across centralities. The coefficients of the elliptical
flow measured in the same direct photon sample show markedly positive values, consistent with results from a virtual
photon analysis [4] and preliminary results from an analysis of photons measured in the PHENIX calorimeters. While
as one might expected from the more eccentric collision geometry we find increasing v2 values when going to more
peripheral collision, the v2 of direct photons appears to show less pT dependence than that of soft hadrons, even with
an indication of flattening towards the smallest pT as already indicated by earlier measurements [5].
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