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Abstract

We consider the simple random walk on the graph corresponding to a Penrose
tiling. We prove that the path distribution of the walk converges weakly to that
of a non-degenerate Brownian motion for almost every Penrose tiling with respect
to the appropriate invariant measure on the set of tilings. Our tool for this is the
corrector method.
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1 Introduction
The Penrose tiling is the most famous aperiodic tiling of the plane, that is, a covering
with given polygons (two kinds of rhombuses in this case) without overlaps or gaps which
no translation of the plane maps to itself. We already have a good understanding of
the structure of the Penrose tilings, and several ways are known to construct them.
Because of these properties, they are studied in the field of diffusion in quasicrystalline
environment. In [10] Domokos Szász introduced that in the Lorentz gas model it would
be worth studying the case (as an aperiodic one) when the billiard obstacles are placed
corresponding to the Penrose tiling. He conjectured that the scaling limit of the diffusion
is a Brownian motion. A closely related model to this is the simple random walk on the
rhombuses of the Penrose tiling, precisely, which runs on the graph with the centers of
the rhombuses as vertices and the edges spanned by centers of neighboring rhombuses;
we call this a Penrose graph. Considering the set of Penrose tilings of the plane with
the appropriate shift invariant measure, we actually examine a random walk in random
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environment. The question of our interest is that whether the invariance principle holds,
that is, the scaling limit of the process is a Brownian motion. András Telcs proved this
in [12] for the annealed case, that is, for the case where we take the average of the walk
with respect to the mentioned invariant measure. The result of this paper is that the
invariance principle is also true for the quenched case, that is, for almost every concrete
tiling. More precisely, we firstly consider a fixed Penrose-tiling ω0 on the plane (we
also refer to this as a configuration) where the origin is the center of a tile, and confine
ourselves to the set Ω of tilings which can be obtained from ω0 by shifting the tiling
in such a way that the center of a tile moves to the origin. On the set of tilings in Ω
we can define a shift-invariant probability measure with respect to which a step along a
fixed principal direction is ergodic [9]. Denote this measure by P and the corresponding
expectation by E. Using the notation WT for the usual Borel-σ-algebra on C[0, T ], the
space of continuous functions on [0, T ], our result is the following:

Theorem 1.1. Let (Xn)n≥0 be the simple symmetric random walk on the Penrose graph
starting from the origin and let

B̃n(t) =
1√
n

(Xbtnc + (tn− btnc)(Xbtnc+1 −Xbtnc)) t ≥ 0.

Then for all T > 0 and for P-almost every ω ∈ Ω, the law of (B̃n(t) : 0 ≤ t ≤ T ) on
(C[0, T ],WT ) converges weakly to the law of a non-degenerate Brownian motion (Bt : 0 ≤
t ≤ T ).

Our proof applies the corrector method, a common way of proving invariance princi-
ples, firstly used by Kipnis and Varadhan [6]. It was also used by Berger and Biskup in [3]
and by Biskup and Prescott in [4] to prove the invariance principle on the supercritical
percolation cluster of Z2. The corrector method means the modification of the graph
with the shift of the vertices such that the walk on the new graph is a martingale; for
this case strong theorems are applicable. The main tasks are therefore the proof of the
existence of the corrector, and the estimation of the bias caused by that with respect to
the scaling limit. For the former, spectral theoretical considerations are needed, while
the latter is based on the already proven ergodicity of the walk.

Our paper is organized as follows: in Section 2, we give the definition of the Penrose
tiling, and a construction that our proof will rely on. This will show us the structure of
the set of all Penrose tilings and the shift-invariant measure on it. In Section 3, we prove
the existence of the corrector and its sublinearity. We conclude from this the invariance
principle for the corrected Penrose graph in Section 4, and for the original Penrose graph
in Section 5. Throughout the paper we follow some of the main steps of [3].

2 Basics of the construction of Penrose tilings and the
invariant measure

Penrose tilings are builded from two kinds of rhombuses with certain matchings rules (see
for example Penrose’s original paper [8]). Figure 1 shows these rhombuses. The "thin"
rhombus has angles of π/5 and 4π/5, while the "thick" rhombus has angles of 2π/5 and
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3π/5. A Penrose tiling is any tiling of the plane without gaps and overlaps using only
these two kinds of rhombuses that obeys the matching rules also shown in Figure 1: two
rhombuses can be placed next to each other only in a way such that their common side
has the same type of arrow pointing in the same direction. Penrose showed that any of
these tilings is aperiodic, i.e., there is no translation of the plane that maps a tiling to
itself.

Figure 1: The two kinds of rhombuses with the matching rules

The results of de Bruijn [2] show a property of the Penrose tiling (or from another
point of view, an equivalent definition) that will play a crucial role in our proof. His idea
of relating Penrose tilings to pentagrids was the basis of the work of Kunz [7] who gave
the invariant, ergodic measure that our proof relies on.

To start, we define the vectors

ek =

(
cos

2kπ

5
, sin

2kπ

5

)
,

ek⊥ =

(
cos

(
π

2
+

2kπ

5

)
, sin

(
π

2
+

2kπ

5

))
,

for k = 0, 1, 2, 3, 4, and the grids

Gk = {x ∈ R2 : x · ek⊥ − γk ∈ Z},

where γk ∈ [0, 1) and
4∑

k=0

γk = 0.

Thus, the grid Gk is a set of parallel lines oriented along ek. We call the union of
G0, . . . , G4 a pentagrid. Denote by S the set of intersections of any two lines of the
pentagrid. Given such a pentagrid, the corresponding Penrose tiling is constructed by
associating with each x ∈ S a tile containing x with edges perpendicular to the lines
intersecting at x. This is a thick rhombus if x ∈ Gi ∩ Gj with |j − i| ∈ {1, 4} and a
thin rhombus if |j − i| ∈ {2, 3}. (This construction works when there is no point of the
plane that belongs to at least three lines of the pentagrid, otherwise the tiling can be
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constructed as a limit in a particular sense.) By de Bruijn’s proof the matching rules are
satisfied in this procedure, and we obtain a Penrose tiling. Furthermore, every Penrose
tiling can be obtained from an appropriate pentagrid. We call the set of tiles (or the
corresponding set of graph vertices) associated with the intersections on a given line of
the pentagrid a ribbon. In other words, this is a path of consecutively neighboring tiles
where the borders between neighboring tiles are all parallel. When we fix a center of a
tile as the origin of the plane, we will refer to the directions of the lines of the pentagrid
through this origin as principal directions.

From this construction, it follows that the Penrose tilings of the plane, up to trans-
lations, can be parametrized as (i, j; γn, γm), where i, j ∈ {0, 1, . . . , 5}, j − i ≡ 1 or 2
mod (5) and γn, γm ∈ [0, 1). This is interpreted as the following: the origin is at a point
of Gi∩Gj, γi and γj are chosen to be 0, and with {l,m, n} = {1, . . . , 5}\{i, j} we choose
m and n so that m− n ≡ 1 or 2 mod (5) and the angles (en, em) and (ei, ej) intersect
each other. Moreover, we set γl = 1− γn − γm. With all of this, we uniquely determined
a pentagrid, and thus a Penrose lattice. This parametrization shows that Ω∗, the set of
all Penrose tilings of the plane is isomorphic to the union of ten tori.

A (random) walk on a Penrose tiling can be looked at as a sequence of elements of
Ω∗: instead of a moving particle in a fixed environment, we can consider the moving
environment as seen from the particle (the place of which is always the origin by defi-
nition). In this way, a step from one tile to a neighboring one corresponds to a shift of
the Penrose tiling. There are four types of these shifts (T1, . . . , T4) corresponding to the
four sides of a tile. (For the way to define T1, . . . , T4 unambiguously on the whole Ω∗, see
[7].) Kunz showed that under these shifts the following measure µ on Ω∗ is invariant and
ergodic (i.e., a subset of Ω∗ that is invariant under each Ti has measure 0 or 1). Take
the Lebesgue measure on the tori mentioned above (parametrized by the pairs (i, j)) for
which j − i ≡ 2 mod (5), and τ times the Lebesgue measure on the tori for which
j − i ≡ 2 mod (5), where τ = (1 +

√
5)/2. Then normalize this measure so as to be a

probability measure on Ω∗ to obtain µ.

3 The corrected Penrose graph
As we mentioned, we would like to find a vector called corrector for each vertex of the
graph for which if we shift the vertices by the corresponding correctors, leaving the system
of the edges unchanged, the simple symmetric random walk on the new (corrected) graph
is a martingale. In the following we construct this corrector and we prove its sublinear
property which implies that its effect vanishes in the scaling limit. This allows us to
derive the invariance principle for the original Penrose graph from that of the corrected
graph.

3.1 The construction of the corrector

First of all, we introduce a few more notations that we use in this paper. Let S be the
set of planar vectors that occur in configuration ω0 (or in any ω ∈ Ω) as a vector from
the center of a tile to the center of one of it’s neighboring tiles (there are finitely many
such vectors). If in a configuration ω ∈ Ω x ∈ R2 is the center of a tile, then denote by
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τxω the configuration that we get by shifting ω so that the point x moves to the origin.
For a given ω ∈ Ω let Sω ⊆ S be the set of the centers of the tiles neighboring the tile
of the origin. Denote by H ⊆ R2 the set of the points on the plane that occur in some
configuration from Ω as the center of a tile. Furthermore, for a given ω ∈ Ω let Hω ⊆ H
be the set of points of the plane that occur in configuration ω as the center of a tile.

The shift-invariant probability measure P on Ω, already mentioned in Section 1, is
the restriction of the measure µ, introduced in Section 2, to Ω, normalized. With a slight
abuse of notation we denote by L2 = L2(Ω) the Hilbert space of scalar or vector valued
functions defined on Ω which are square integrable with respect to P, the scalar product
being < f, g >= E(f · g).

For a given ω ∈ Ω let (Xn)n≥0 be the simple symmetric random walk on the centers
of consecutively neighboring tiles starting from the origin and let Pω be the correspoding
probability measure. So, Pω(X0 = 0) = 1 and for any e ∈ R2

Pω(Xn+1 = x+ e|Xn = x) =
1

4
1{e ∈ Sω} ◦ τx (3.1)

Let Q be the Markov operator of the random walk on Ω, so for any function f ∈ L2(Ω),
Qf ∈ L2(Ω) is the following:

(Qf)(ω) =
1

4

∑
e∈Sω

f(τeω).

Since Q is the Markov operator of a reversible random walk, ||Q||L2 ≤ 1 and Q is self-
adjoint. Denote by V : Ω→ R2 the drift at the origin:

V (ω) =
1

4

∑
e∈Sω

e.

V is bounded, therefore V ∈ L2(Ω). These imply that the equation

(1 + ε−Q)ψε = V

can be solved uniquely for any ε > 0 with respect to ψε ∈ L2.

Theorem 3.1. There exists a function χ : Ω×H → R2 with which for any x ∈ H:

lim
ε↘0

1{x ∈ Hω}(ψε ◦ τx − ψε) = χ(x, ·) in L2.

For this function the followings apply:
(1) For P-almost every ω ∈ Ω:

χ(x, ω)− χ(y, ω) = χ(x− y, τyω)

for any x, y ∈ Hω.
(2) For P-almost every ω ∈ Ω the x 7→ χ(x, ω) + x function is harmonic with respect

to the transition probabilities given by (3.1).
(3) There exists a constant C <∞ for which

||(χ(x+ e, ω)− χ(x, ω))1{x ∈ Hω}1{e ∈ Sω} ◦ τx||2 < C

applies for any x ∈ H and for any e ∈ S.
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We call the function in the Theorem 3.1 the corrector. The value of the corrector at
the point x is intuitively the amount ’by which the drift collected by a walk starting from
x is larger than that of a walk starting from the origin’.

To prove Theorem 3.1 we examine the µV spectral measure of the (self-adjoint) oper-
ator Q : L2 → L2 with respect to V , i. e. the measure for which any continuous, bounded
function φ : [−1, 1]→ R satisfies

< V, φ(Q)V >=

1∫
−1

φ(λ)µV (dλ).

(Using that spec(Q) ⊆ [−1, 1] implies supp(µV ) ⊆ [−1, 1].) The following lemma is about
this measure.

Lemma 3.2.
1∫

−1

1

1− λ
µV (dλ) <∞.

Proof. Let f ∈ L2 be a bounded function. From the symmetry one can easily see that∑
e∈S

eE(f1{e ∈ Sω}) =
1

2

∑
e∈S

eE((f − f ◦ τe)1{e ∈ Sω}).

So, for any fixed vector a ∈ R2:

< f, a · V > = E[f(a · V )] = E

[
f

(
a ·

(
1

4

∑
e∈S

e1{e ∈ Sω}

))]

=
1

4

∑
e∈S

(e · a)E[f1{e ∈ Sω}]

=
1

2

1

4

∑
e∈S

(e · a)E[(f − f ◦ τe)1{e ∈ Sω}]

≤ 1

2

(
1

4

∑
e∈S

(e · a)2P(e ∈ Sω)

) 1
2
(

1

4

∑
e∈S

E[(f − f ◦ τe)2
1{e ∈ Sω}]

) 1
2

(3.2)

Here the inequality is the consequence of the Cauchy–Schwartz inequality since the map-
ping

(f1, f2) 7→ 1

4

∑
e∈S

E[f1f2]

is a scalar product on the functions defined on Ω×S and in our case f1 = (e·a)1{e ∈ Sω},
f2 = (f − f ◦ τe)1{e ∈ Sω}. The first term of the product obtained in (3.2) is a constant
multiple of |a|, while the other term (because of the symmetry) can be written in the
following form:(

2

4

∑
e∈S

E(f(f − f ◦ τe)1{e ∈ Sω})

) 1
2

= (2 < f, (1−Q)f >)
1
2 .
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Therefore we obtained that there exists a constant C < ∞ with which for any function
f ∈ L2:

| < f, a · V > |2 ≤ C|a|2 < f, (1−Q)f >

If we apply this result for a function of the form f = a · ϕ(Q)V where we write the two
coordinate vector in the place of a we get the following: for every continuous, bounded
function ϕ : [−1, 1] 7→ R∣∣∣∣∣∣

1∫
−1

ϕ(λ)µV (dλ)

∣∣∣∣∣∣
2

= | < ϕ(Q)V, V > |2

= | < (1, 0) · ϕ(Q)V, (1, 0) · V > + < (0, 1) · ϕ(Q)V, (0, 1) · V > |2

≤ 2| < (1, 0) · ϕ(Q)V, (1, 0) · V > |2 + 2| < (0, 1) · ϕ(Q)V, (0, 1) · V > |2

≤ 2C[< (1, 0) · ϕ(Q)V, (1, 0) · (1−Q)ϕ(Q)V >

+ < (0, 1) · ϕ(Q)V, (0, 1) · (1−Q)ϕ(Q)V >]

= 2C < ϕ(Q)V, (1−Q)ϕ(Q)V >

= 2C

1∫
−1

(1− λ)ϕ(λ)2µV (dλ).

Substituting ϕε(λ) = min(1
ε
, 1

1−λ) with ϕ and using that (1− λ)ϕε(λ) ≤ 1, we get∣∣∣∣∣∣
1∫

−1

ϕε(λ)µV (dλ)

∣∣∣∣∣∣
2

≤ 2C

1∫
−1

ϕε(λ)µV (dλ),

therefore
1∫

−1

ϕε(λ)µV (dλ) ≤ 2C.

Using the monotone convergence theorem,

1∫
−1

1

1− λ
µV (dλ) = sup

ε>0

1∫
−1

ϕε(λ)µV (dλ) ≤ 2C <∞.

Our next lemma is about ψε defined above.

Lemma 3.3.
lim
ε↘0

ε||ψε||22 = 0.

Furthermore, if for e ∈ S, we define G(ε)
e (ω) = 1{e ∈ Sω}(ψε ◦ τe − ψε)(ω), then for any

x ∈ H and for any e ∈ S the following holds:

lim
ε1,ε2↘0

||1{x ∈ Hω}(G(ε1)
e ◦ τx −G(ε2)

e ◦ τx)||2 = 0.
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Proof. By the definition of ψε,

ε||ψε||22 =

1∫
−1

ε

(1 + ε− λ)2
µV (dλ).

The integrand is dominated by 1
1−λ which tends to 0 on [−1, 1) as ε↘ 0. Using Lemma

3.2 and it’s consequence that µV ({1}) = 0, the dominated convergence theorem proves
the first proposition.

In order to prove the second proposition, notice that by the shift-invariance of P,

||1{x ∈ Hω}(G(ε1)
e ◦ τx −G(ε2)

e ◦ τx)||2 ≤ ||G(ε1)
e −G(ε2)

e ||2.

Considering the square of the right side and taking the average for the vectors in Sω:

1

4

∑
e∈S

||G(ε1)
e −G(ε2)

e ||22 =
1

4

∑
e∈S

||1{x ∈ Sω}((ψε1 − ψε2) ◦ τe − (ψε1 − ψε2))||22

= 2 < ψε1 − ψε2 , (1−Q)(ψε1 − ψε2) >

= 2

1∫
−1

(ε1 − ε2)2(1− λ)

(1 + ε1 − λ)2(1 + ε2 − λ)2
µV (dλ).

The integrand is dominated by 1
1−λ again and tends to 0 as ε1, ε2 ↘ 0. Therefore Lemma

3.2 and the dominated convergence theorem proves the second proposition as well.

Proof of Theorem 3.1. Let us use the previously introduced notations. By Lemma 3.3
G

(ε)
e ◦ τx converges in L2 as ε ↘ 0. Let Gx,x+e = limε↘0G

(ε)
e ◦ τx. It is clear that

Gx,x+e(ω) + Gx+e,x(ω) = 0 and generally:
∑n

k=0Gxk,xk+1
= 0, if (x0, . . . , xn) is a closed

loop in Hω. Therefore the following definition makes sense:

χ(x, ω) :=
n−1∑
k=0

Gxk,xk+1
(ω),

where (x0, . . . , xn) is an arbitrary path in Hω, where x0 = 0 and xn = x. As we mentioned
above, this sum is independent from the path. The claim about the shift-invariance follows
from Gx,x+e = G0,e ◦ τx.

By the shift-invariance, to prove the harmonicity of x 7→ x+χ(x, ω) it is enough that
almost surely

1

4

∑
e∈Sω

χ(0, ω)− χ(e, ω) = V (ω).

Since χ(e, ·)− χ(0, ·) = G0,e, the left side of the equation is the limit of the following as
ε↘ 0:

1

4

∑
e∈Sω

ψε − ψε ◦ τe = (1−Q)ψε.

By the definition of ψε, we have (1 − Q)ψε = −εψε + V . From this we get the desired
equality by Lemma 3.3 (εψε → 0 in L2).
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In order the prove part (3) of the theorem, notice that by the definition of the corrector

(χ(x+ e, ω)− χ(x, ω))1{x ∈ Hω}1{e ∈ Sω} ◦ τx = Gx,x+e(ω).

Gx,x+e is the L2-limit of the functions G(ε)
e ◦ τx that have L2-norm bounded above by the

L2-norm of G(ε)
e L2. This implies (3) with C = maxe∈S ||G0,e||2.

3.2 Sublinearity of the corrector along the ribbons

Firstly, we prove the sublinear growth of the corrector along the ribbons. For a given
configuration ω, let us fix one of the principal directions directed in a particular way.
Denote the centers of the tiles along this principal direction starting at the origin by
z0(ω) = 0, z1(ω), z2(ω), . . .

Theorem 3.4. For P-almost every ω ∈ Ω:

lim
k→∞

χ(zk(ω), ω)

k
= 0.

Firstly, we prove the following:

Proposition 3.5.

E(|χ(z1(·), ·)|) <∞,
E(χ(z1(·), ·)) = 0.

Proof. χ(x, ·) is the L2-limit of the functions χε(x, ·) = ψε ◦ τx − ψε (as ε↘ 0) on the set
{x ∈ Hω}. It is clear that

|χε(z1(ω), ω)| ≤
∑
e:e∈S

|G(ε)
e (ω)|.

By Theorem 3.1 ||G(ε)
e ||2 < C for every e and ε > 0. This yields χ(z1(·), ·) ∈ L1.

E(χ(z1(·), ·)) = 0 follows from the fact that χε(z1(·), ·) converges to χ(z1(·), ·) in L2,
and E(χε(z1(·), ·)) = E(ψε ◦ τz1 − ψε) = 0.

Proof of Theorem 3.4. Let f(ω) = χ(z1(ω), ω) and let σ : Ω → Ω be the shift ω 7→
τz1(ω)(ω). σ is ergodic ([9], Theorem A) and from the above f ∈ L1, E(f) = 0. Therefore
Birkhoff’s ergodic theorem and part (1) of Theorem 3.1 yields

lim
k→∞

χ(zk(ω), ω)

k
= lim

k→∞

∑k−1
l=0 f ◦ σl(ω)

k
= 0.
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3.3 Sublinearity on the whole plane

After proving the sublinear growth of the corrector along the ribbons, we can do the same
on the whole plane.

Theorem 3.6.
lim
n→∞

max
x∈Hω
|x|≤n

χ(x, ω)

n
= 0

P-almost surely where |x| denotes the graph distance from the origin.

Firstly, we introduce a few notations. Consider the two principal directions directed in
a fixed way. In a configuration ω denote by a0(ω) = 0, a1(ω), a2(ω), . . . the centers of the
consecutively neighboring tiles along the first principal direction in the positive direction,
starting at the origin, and by 0, a−1(ω), a−2(ω), . . . in the negative direction. For the other
principal direction we use the notions b0(ω) = 0, b1(ω), b2(ω), . . . and 0, b−1(ω), b−2(ω), . . .
similarly. Furthermore, if in a configuration ω x, y ∈ Hω are on the same ribbon, then
denote by dω(x, y) the number of steps needed to take on the ribbon from x to y.

Definition 3.1. For given numbers K > 0, ε > 0 we call the point x ∈ Hω K, ε-good in
a configuration ω, if

|χ(x, ω)− χ(y, ω)| < K + εdω(x, y)

holds for every y ∈ Hω that is on the same ribbon as x (along one of the principal
directions). The set of the K, ε-good points in a configuration ω is denoted by GK,ε(ω).

There are 10 different types of rhombuses that occur in a configuration from Ω, if we
distinguish the rhombuses that can be moved into each other by a nontrivial rotation
(and translation). This is because in the construction of the tiling the 5 kinds of lines
in the pentagrid creates 10 different kinds of intersections and each has a different type
of rhombus corresponding to it. Denote these 10 types by R1, R2, . . . , R10. Let Ri be
the event that the rhombus of the origin is of type Ri. From Theorem 3.4 we have that
for every ε > 0 and i ∈ {1, . . . , 10} there exists K > 0 such that P(0 ∈ GK,ε, Ri) > 0.
Therefore for any given ε there is a K which is good for every i in this sense.

The following lemma is about the density of the K, ε-good points of a given kind.

Lemma 3.7. Fix an i ∈ {1, . . . , 10}. Let ε > 0 and K be large enough such that
P(0 ∈ GK,ε,Ri) > 0. For given n ≥ 1 and ω ∈ Ω let k0 < k1 < . . . < kr be the
indices from [−n, n] for which aki ∈ GK,ε(ω) and the rhombus of aki is of type Ri (let us
call these good indices). Let

∆n(ω) = max
j=1,...,r

dω(akj , akj−1
).

(If there is no such ki, then let ∆n(ω) =∞.) Then almost surely

lim
n→∞

∆n

n
= 0.

The same is true for the other ribbon through the origin, with bi’s instead of ai’s.
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Proof. Since σ : Ω → Ω, ω 7→ τa1(ω) is ergodic with respect to P, Birkhoff’s theorem
gives

lim
n→∞

1

n+ 1

n∑
k=0

1{0 ∈ GK,ε, Ri} ◦ σk = P(0 ∈ GK,ε, Ri) =: p (3.3)

almost surely. Now suppose that ∆n

n
does not tend to 0, so there is a δ > 0 for which

∆n > δn for infinitely many n’s. By (3.3) there exists an N for which if n > N then

1

n+ 1

n∑
k=0

1{0 ∈ GK,ε, Ri} ◦ σk ∈ I = (p(1− δ/16), p(1 + δ/16)),

and the same is true when k goes to (−n) in the summation. Let us fix a large K for
which (Kδ − 2N − 1)/2 > Kδ/4, and ∆K > δK. Then in [−K,K] there is an interval
[L1, L2] which is disjoint from [−N,N ] and has length larger than Kδ/4 in which there
is not any good index. We can assume that this is on the positive half line. Then

L2∑
k=0

1{0 ∈ GK,ε, Ri} ◦ σk ∈ (L1 + 1)I ∩ (L2 + 1)I.

But on the right-hand side, we have the empty set since

(L1 + 1)p(1 + δ/16) < (L2 + 1)p(1− δ/16),

as
(L2 − L1)p− pδ(L1 + L2 + 2)/16 > Kδp/4− pδ2K/16 > 0.

Proof of Theorem 3.6. Let us fix an ε > 0 and then a K0 such that P(0 ∈ GK,ε,Ri) > 0
is true for any i when K ≥ K0. Let Ω∗ ⊆ Ω be the set of those configurations for which
the statement of the previous lemma applies in both principal directions and for which
the part (1) of Theorem 3.1 applies. (P(Ω∗) = 1.) Let us fix an ω ∈ Ω∗ and a K ≥ K0 for
which 0 ∈ GK,ε. (There exists such K by Theorem 3.4.) Let the rhombus of the origin
be of type Ro. Let (xk)k∈Z be the increasing two-sided sequence for which the points axk
are exactly the K, ε-good points of the corresponding ribbon through the origin of which
the rhombuses are of type Ro. Let n1(ω) be the least integer for which every n ≥ n1(ω)
satisfies ∆n/n < ε where in the definition of ∆ we take into account the rhombuses of
type Ro. We define the indices (yk)k∈Z similarly for the other ribbon through the origin;
n2(ω) corresponds to n1(ω) in this case. For positive n let u(n) be the largest integer for
which xu(n) < n while u(−n) is the least integer for which xu(−n) > −n. We define the
numbers v(n), v(−n) similarly for the y’s instead of the x’s. Let n0 ≥ n1, n2 be so large
that for n ≥ n0 u(n) and v(n) are positive while u(−n) and v(−n) are negative. Let us
denote by Hn the centers of tiles in the area enclosed by the ribbons going through the
points axu(n)

, axu(−n)
, byv(n)

and byv(−n)
but not through the origin. (This area is finite since

the bounding ribbons on opposite sides are parallel to each other.) We will prove that
for every n ≥ n0(ω)

max
x∈Hn

|χ(x, ω)| ≤ 2K + cεn

11



with some constant c.
Let us denote by G the union of the good ribbons, where we call a ribbon good if it

goes through one of the points axk or byk . (Since the rhombuses are of the same type,
every good ribbon runs along one of the two principal directions.) In order to bound the
value of the corrector, assume that x ∈ Hn \G. Then x lies in a part of the plane, which
is enclosed by two parallel good ribbons. Two neighboring parallel good ribbons are at
most εn steps from each other measured on the ribbon which goes through the origin
and intersects both of them. Therefore, from x we can access a good ribbon in at most
c1εn steps, where c1 is a universal constant. So, using the harmonicity of the function
x 7→ x+ χ(x, ω), the minimum/maximum principle gives

max
x∈Hn\G

|χ(x, ω)| ≤ cεn+ max
x∈Hn∩G

|χ(x, ω)| (3.4)

with some universal constant c.
In order to bound the value of the corrector on Hn∩G, let us firstly consider a ribbon

that goes through the point byk but not through the origin. For all points x ∈ Hn of
this ribbon it is true that |χ(x, ω) − χ(byk , ω)| ≤ K + εn, since byk ∈ GK,ε and the shift-
invariance holds. Using the same argument for the ribbon connecting byk and the origin,
we get

|χ(x, ω)| ≤ 2K + 2εn

for every x ∈ G ∩Hn. Using this and the bound from (3.4) we get

max
x∈Hn

|χ(x, ω)| ≤ 2K + (c+ 2)εn.

ε was arbitrary, therefore this proves the theorem.

4 Invariance principle on the corrected Penrose graph
The next lemma shows the martingale property of the corrected walk.

Lemma 4.1. Let us fix ω ∈ Ω. Given a path of random walk (Xn)n≥0 with law Pω, let

M (ω)
n = Xn + χ(Xn, ω) n ≥ 0.

Then (M
(ω)
n )n≥0 is an L2-martingale for the filtration (σ(X0, . . . , Xn))n≥0. Moreover, con-

ditioned on Xk0 = x, the increments (M
(ω)
k+k0
−M (ω)

k0
)k≥0 have the same law as (M

(τxω)
k )k≥0.

The proof is word by word the same as for Lemma 6.1 in [3].
The invariance principle for the corrected walk is stated by the following theorem.

Theorem 4.2. Let us fix ω ∈ Ω. Let (B̂
(ω)
n (t) : t ≥ 0) be defined by

B̂(ω)
n (t) =

1√
n

(M
(ω)
btnc + (tn− btnc)(M (ω)

btn+1c −M
(ω)
btnc)) t ≥ 0.

Then for all T > 0 and P-almost every ω, the law of (B̂
(ω)
n (t) : 0 ≤ t ≤ T ) on (C[0, T ],WT )

(WT is the usual Borel-σ-algebra) converges to the law of a Brownian motion (Bt : 0 ≤
t ≤ T ) with diffusion matrix D, where

D = E
(
Eω

(
M

(ω)
1 M

(ω)
1

T
))

,

12



in other words,
Di,j = E(Eω((ei ·M (ω)

1 )(ej ·M (ω)
1 ))),

where e1, e2 are the unit coordinate vectors. This matrix D is positive definite, so the
Brownian motion in the limit is non-degenerate.

Proof. Without much loss of generality, we can assume that T = 1. Let Fk = σ(X0, . . . , Xk)
and let us fix a vector a ∈ R2. We will show that for any choice of a the piecewise lin-
earization of t 7→ a ·M (ω)

btnc scales to a one-dimensional Brownian motion with variance
t(a ·Da). Using the Cramér–Wold device (Theorem 2.9.2 of Durrett [5]), this implies the
statement of the theorem for the scaling limit.

We will use the Lindeberg–Feller martingale CLT (Theorem 7.7.3 of Durrett [5]). For
this let us consider the following probability variable for m ≤ n:

V (ω)
n,m(ε) =

1

n

m∑
k=0

Eω(|a · (M (ω)
k+1 −M

(ω)
k )|21{|a · (M (ω)

k+1 −M
(ω)
k )| ≥ ε

√
n}|Fk).

In order to apply the CLT we need to verify that for P-almost every ω the following two
properties hold:
(1) V (ω)

n,btnc(0)→ t(a ·Da) in Pω-probability for all t ∈ [0, 1].
(2) V (ω)

n,n (ε)→ 0 in Pω-probability for all ε > 0.
Both of these properties will be implied by ergodicity. By the last conclusion of

Lemma 4.1, we may write

V (ω)
n,m(ε) =

1

n

m∑
k=0

fε√n(τXk
ω),

where
fK(ω) = Eω([a ·M (ω)

1 ]21{|a ·M (ω)
1 | ≥ K}).

Now if ε = 0, ergodicity implies for P-almost every ω that

lim
n→∞

V
(ω)
n,btnc(0) = tE(Eω([a ·M (ω)

1 ]2)) = t(a ·Da).

Di,j is finite since the corrector is square integrable.
On the other hand, when ε > 0, for any positive K, we have fε√n ≤ fK once n is

sufficiently large. Therefore P-almost surely

lim sup
n→∞

V (ω)
n,n (ε) ≤ E(Eω([a ·m(ω)

1 ]21{|a ·m(ω)
1 | ≥ K}))→ 0,

asK →∞, where to apply the dominated convergence theorem we used that a·M (ω)
1 ∈ L2.

This completes the proof.
The positive definiteness of D can be seen from that the contrary would mean that

there is a vector v ∈ R2 \ {0} for which

0 = vTDv = E
[
Eω

[(
vTM

(ω)
1

)(
vTM

(ω)
1

)T]]
,

so vTM (ω)
1 = 0 for almost every ω ∈ Ω and for all four possible initial step. But this

would imply that the corrected graph is almost surely a single point or it is located on a
line. But this cannot be possible because the sublinearly growing corrector cannot push
the original graph to a line since the graph has points arbitrarily far from this line.
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5 The elimination of the corrector
Our final task is to estimate the effect of the corrector made on the path of the walk.

Proof of Theorem 1.1. We prove that B̃n(t)⇒ B(t), where the covariance matrix of the
Brownian motion B is D defined above. Since M (ω)

n = Xn + χ(Xn, ω), it is enough to
show that, for P-almost every ω,

max
1≤k≤n

|χ(Xk, ω)|√
n

→ 0

in Pω-probability as n → ∞. By Theorem 3.6 we know that for ε > 0 there exists a
K = K(ω) <∞ such that

|χ(x, ω)| ≤ K + ε|x| ∀x ∈ Hω.

If ε < 1/2, then this implies

|χ(Xk, ω)| ≤ 2K + 2ε|M (ω)
k |.

The above CLT for (M
(ω)
n ) tells us that maxk≤n |M (ω)

k |/
√
n converges in law to the max-

imum of a Brownian motion B(t) over t ∈ [0, 1]. Hence, if we denote the probability
law of the Brownian motion by P , then by the Portmanteau Theorem (Theorem 2.1 of
Billingsley [1]),

lim sup
n→∞

Pω

(
max
k≤n
|χ(Xk, ω)| ≥ δ

√
n

)
≤ P

(
2K + 2ε max

0≤t≤1
|M (ω)

k | ≥ δ
√
n

)
≤ P

(
max
0≤t≤1

|B(t)| ≥ δ

2ε

)
.

The right side tends to zero as ε↘ 0 for all δ > 0.
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