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ABSTRACT
Asymptotic uniform upper density, shortened as a.u.u.d., or simply upper density, is a classical notion which was first

introduced by Kahane for sequences in the real line.

Syndetic sets were defined by Gottschalk and Hendlund. For a locally compact group 𝐺, a set 𝑆 ⊂ 𝐺 is syndetic, if there

exists a compact subset 𝐶 ⋐ 𝐺 such that 𝑆𝐶 = 𝐺. Syndetic sets play an important role in various fields of applications of

topological groups and semigroups, ergodic theory and number theory. A lemma in the book of Fürstenberg says that once a

subset 𝐴 ⊂ ℤ has positive a.u.u.d., then its difference set 𝐴 − 𝐴 is syndetic.

The construction of a reasonable notion of a.u.u.d. in general locally compact Abelian groups (LCA groups for short) was

not known for long, but in the late 2000’s several constructions were worked out to generalize it from the base cases of ℤ𝑑

and ℝ𝑑
. With the notion available, several classical results of the Euclidean setting became accessible even in general LCA

groups.

Here we work out various versions in a general locally compact Abelian group 𝐺 of the classical statement that if a set

𝑆 ⊂ 𝐺 has positive asymptotic uniform upper density, then the difference set 𝑆 − 𝑆 is syndetic.
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1. INTRODUCTION
The notion of syndetic sets was introduced in the fundamental book of Gottschalk and Hedlund

[7]. A subset 𝑆 ⊂ 𝐺 in a topological Abelian (semi)group is a syndetic set, if there exists a compact

set 𝐾 ⊂ 𝐺 such that for each element 𝑔 ∈ 𝐺 there exists a 𝑘 ∈ 𝐾 with 𝑔𝑘 ∈ 𝑆; in other words, in

topological groups ∪𝑘∈𝐾𝑆𝑘−1 = 𝐺.
Fürstenberg presents as [5, Proposition 3.19 (a)] the following.

PROPOSITION 1. Let 𝑆 ⊂ ℤ be a set having positive asymptotic uniform upper density 𝐷(𝑆) > 0. Then
𝑆 − 𝑆 is syndetic.
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Here asymptotic uniform upper density
1
stands for 𝐷(𝑆) ∶= lim𝑟→∞ sup𝑥∈ℤ

[𝑥−𝑟,𝑥+𝑟]∩𝑆|
2𝑟 . Generaliz-

ation of the notion to ℤ𝑑
and ℝ𝑑

, as well as for cases of non-discrete sets 𝑆 when the numerator

becomes the Lebesgue measure instead of the cardinality measure, are straightforward. So is the

extension of the proposition to these cases.

However, the notion of syndetic sets is even more general, and found many applications in

several areas including dynamical systems, number theory, harmonic analysis. Still, an appropriate

generalization of this proposition to general topological groups was not known, because there was

no reasonably general and suitable notion of upper density.

In the following we discuss two generalized notions of asymptotic uniform upper density, on

arbitrary LCA groups, which appeared only some fifteen years ago. With these generalized notions

of Kahane’s density, we are going to prove generalizations of the above statement which typically

read as follows.

THEOREM 1. Let 𝐺 be a LCA group and 𝑆 ⊂ 𝐺 a set with positive asymptotic uniform upper density:

𝐷(𝑆) > 0. Then the difference set 𝑆 − 𝑆 is a syndetic set.
In this, everything seems to be quite clear even in the generality of LCA groups – except for the

right definition or construction of the upper density. So, the bulk of the paper will be devoted to

sufficiently explain and describe various generalized notions of asymptotic uniform upper density

in locally compact Abelian groups.

The structure of the paper is as follows. In Section 2 we recall the classical notion of Kahane’s

density, in Section 3 we describe how the generalizations occurred, in Section 4 and 6 we explain

the generalized density notions. Then in Section 7 we recall results on difference sets, known to be

valid in ℤ or in some other special cases and including the above Proposition from Fürstenberg’s

book. These we extend to LCA groups with the new generalized density notions in Sections 8 and 9.

On our way we also prove some properties of our density notions, like e.g. subadditivity, which do

not seem to be so obvious from their abstract, somewhat tricky definition.

2. THE CLASSICAL NOTION OF A.U.U.D.
The notion of asymptotic uniform upper density – a.u.u.d. for short – of real sequences first ap-

peared in the PhD thesis [14] of J.-P. Kahane in 1954, see also [15]. Other early, but definitely later

appearances of the notion can be seen in e.g. [9], [17], [1], [2], [5].

Although his first construction was different, Kahane immediately shows [14, Ch. I, §3, no. 1, p.

20] that the notion can be equivalently defined as follows
2
.

DEFINITION 1 (Kahane). If 𝑆 ⊂ ℝ is a uniformly discrete sequence, then

𝐷#(𝑆) ∶= lim sup
𝑟→∞

sup𝑥∈ℝ #{𝑠 ∈ 𝑆 ∶ |𝑠 − 𝑥| ≤ 𝑟}
2𝑟

. (2.1)

In fact, Kahane uses lim sup|𝑥|→∞ also in place of sup𝑥∈ℝ, but these variants are easily seen to be

equivalent. Also, the lim sup is actually a limit, for the quantity essentially decreases in function

of 𝑟 . It is clear that a.u.u.d. is a translation invariant notion.

Kahane used the notion in harmonic analysis, and that remained a major field of applications ever

since. Quite fast several related results appeared and the notion proved to be very fruitfully applied

in seemingly different questions. A typical area of application is investigation of differences (additive

bases, difference sets, packing and tiling, sets avoiding certain prescribed distances etc.), which can

easily be understood if we e.g. note that in case 𝐷#(𝑆) > 0, then 𝑆 − 𝑆 has positive asymptotic upper

density
3 𝑑#(𝑆 − 𝑆) ≥ 𝐷#(𝑆), which is already a quite strong property. Still another area of application

occurs in ergodic theory [5].

1 It is often, but seemingly erroneously called Banach density, among others also by Fürstenberg.

2 It seems that in the literature almost exclusively this latter equivalent form of the definition is used, although Kahane’s

original formulation is quite useful.

3 This is defined in ℝ or ℤ as lim sup𝑟→∞
#{𝑠∈𝑆 ∶ |𝑠|≤𝑟}

2𝑟 , without taking a sup with respect to the center of the interval.
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As is already mentioned, in ℝ𝑑
or ℤ𝑑

one can analogously consider, with a fixed basic set 𝐾 ⊂ ℝ𝑑

like e.g. the unit ball or unit cube,

𝐷#
𝐾 (𝑆) ∶= lim sup

𝑟→∞

sup𝑥∈ℝ𝑑 #(𝑆 ∩ (𝑟𝐾 + 𝑥))
|𝑟𝐾 |

.

Here𝐾 ⊂ ℝ𝑑
can be e.g. any fat body, or can even bemore general,while for any Lebesguemeasurable

set 𝐴 ⊂ ℝ𝑑 |𝐴| stands for the Lebesgue measure of 𝐴. It is also well-known, that 𝐷#
𝐾 (𝑆) gives the same

value for all nice sets 𝐾 ⊂ ℝ𝑑
(although this fact does not seem immediate from the formulation).

To prove directly, it requires some tedious 𝜀-covering of the boundary of 𝐾1 by homothetic copies

of 𝐾2 etc. Landau works out this direct proof as [17, Lemma 4] in the generality of compact sets

𝐾 ⋐ ℝ𝑑
normalized to have unit measure and satisfying the condition that the boundary 𝜕𝐾 has

zero measure.

Actually, here we will obtain this as a side result, being an immediate corollary of our Theorem 3,

see Remark 2. Moreover, from our approach the same equivalence follows elegantly for arbitrary

bounded measurable sets 𝐾 , normalized to have unit measure and satisfying |𝜕𝐾 | = 0, i.e. the
compactness criterion can be dropped from conditions of Landau.

Also, non-discrete, but locally Lebesgue-measurable sets arise in the context (in problems of

plane geometry e.g.), where the natural density is defined by means of volume, not of cardinality.

Then a.u.u.d of a Lebesgue-measurable set 𝐴 ⊂ ℝ𝑑
is defined as

𝐷𝐾 (𝐴) ∶= lim sup
𝑟→∞

sup𝑥∈ℝ𝑑 |𝐴 ∩ (𝑟𝐾 + 𝑥)|
|𝑟𝐾 |

. (2.2)

That motivates a further extension: we can consider asymptotic uniform upper densities of

measures, say some measure 𝜈 and not only sequences 𝑆 or sets 𝐴 ⊂ ℝ𝑑
. So, a general formulation in

ℝ𝑑
(or ℤ𝑑

) would thus be (writing | ⋅ | for the Lebesgue measure in ℝ𝑑
or for the cardinality measure

in ℤ𝑑
),

𝐷𝐾 (𝜈) ∶= lim sup
𝑟→∞

sup𝑥∈ℝ𝑑 𝜈(𝑟𝐾 + 𝑥)
|𝑟𝐾 |

, (2.3)

To make sense, it is only needed here that the measure 𝜈 is locally a finite measure. For simplicity,

in this work we will only consider nonnegative measures, so that mentioning measure will be

understood as such, always. (Even the very consideration of measures is above the needs of the

present work.) It is, however, not an essential restriction that the measure have to be a Borel measure

(i.e. the family of measurable sets contain the Borel sigma-algebra) – we can consider the outer

measure 𝜈 arising from 𝜈.
However, if we want to have translation invariance of a.u.u.d. (which is a basic requirement

towards any reasonable such density notion), then taking sup𝑥∈ℝ𝑛 inside leaves us with not much

choice regarding the measure in the denominator: at least asymptotically we need to have it

translation invariant, too. This, in turn, more or less determines the measure, too, if we want it

to be a Borel measure with finite values on compact sets. In fact, in any locally compact Abelian

group, such a translation invariant measure is unique (and thus is called the Haar measure) up to a

constant factor – in particular in ℝ𝑑
it must be the Lebesgue measure 𝜆 and in ℤ𝑑

it must be the

counting measure #.
The notion (2.3) of a.u.u.d. indeed remains translation invariant. E.g. in (2.1) 𝜈 ∶= # is the

cardinality or counting measure of a set 𝑆, while in (2.2) 𝜈 ∶= 𝜆|𝐴 is the trace of 𝜆 on the measurable

set 𝐴 ⊂ ℝ. In fact the point of view of measures, at least as concerns 𝜈 ∶= ∑𝑠∈𝑆 𝛿𝑠 with Dirac

measures 𝛿𝑠 placed at the points of 𝑠 ∈ 𝑆, has already been taken by Kahane himself in [13, page

303] under the name “measure caractéristique”.

3. THE APPEARANCE OF THE NOTION OF A.U.U.D. ON LCA GROUPS
Starting from 2003, we aimed at extending the notion of a.u.u.d. to locally compact Abelian groups

(LCA groups henceforth). Our work directly stemmed out from our interest in extending, to LCA

groups, some results on the so-called “Turán extremal problem”. We indeed succeeded to extend
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at least the “packing type estimate” of [16] from compact groups and ℝ𝑑
and ℤ𝑑

to general LCA

groups, see [19] and [20]. Further, in a recent work [3] we have similarly analyzed the Delsarte

extremal problem and its relation to packing. Note that the Delsarte extremal problem proved to

be the precise tool to prove the breakthrough result by Viazovska [26] regarding the densest ball

packing in ℝ8
, subsequently extended also to ℝ24

in [4].

The notion of a.u.u.d. is a way to grab the idea of a set being relatively considerable, even if not

necessarily dense or large in some othermore easily accessible sense. In many theorems, in particular

in Fourier analysis and in additive problems where difference sets are considered, the a.u.u.d. is the

right notion to express that a set becomes relevant in the question. However, previously the notion

was only extended to sequences and subsets of the real line, and some immediate relatives like ℕ,

ℤ𝑑
, ℝ𝑑

, as well as to finite, or at least finitely constructed (e.g. 𝜎-finite) cases.
A framework where the notion might be needed is the generality of LCA groups. In recent

decades it is more and more realized that many questions e.g. in additive number theory can

be investigated, even sometimes structurally better understood/described, if we leave e.g. ℤ, and
consider the analogous questions in Abelian groups. In fact, when some analysis, i.e. topology also

has a role – like in questions of Fourier analysis e.g. – then the setting of LCA groups seems to be

the natural framework. And indeed several notions and questions, where in classical results a.u.u.d.

played a role, have already been defined, even in some extent discussed in LCA groups. Nevertheless,

for long no attempt has been made to extend the very notion of a.u.u.d. to this setup.

Parallel to the first phase of ours, a research which aimed at extending the very first topic where

a.u.u.d. have been used – concerning conditions for sets being sets of sampling or sets of interpolation

– was successfully conducted in [8]. The construction there is particularly interesting, because it is

also a round-about way of arriving at a general notion of a.u.u.d. – demonstrating that there was no

immediate access, and the construction needed some effort. Indeed, to show that the constructed

density is equivalent in ℝ𝑑
to the classical one, is not quite obvious and is formulated and proved as

[8, Lemma 8].

Actually, the main results of [8] are formulated under the additional assumption that the dual

group 𝐺 is compactly generated, as it is needed for the construction of a.u.u.d. (The relaxation of this

extra condition is then discussed in [8, Section 8]. The key is that every bandlimited function 𝑓 in the

studied class of functions lives on a quotient𝐺/𝐾 and may be identified with a function 𝑓 ∈ 𝐿2(𝐺/𝐾)
with some compact subgroup 𝐾 such that 𝐺/𝐾 factors according to the structure theorem of locally

compact Abelian groups, generated compactly.) The paper constructs the definition of a.u.u.d.

referring to a tricky partial ordering relation of uniformly discrete subsets; it is then mentioned

that this definition can equivalently be defined using Haar measures, too. That later equivalent

formulation surfacing in [8, formula (18)] and the discussion following it hints the one we have

worked out along quite a different way; details will be seen below. The possibility of consideration

of measures and their a.u.u.d. is mentioned in this discussion, too.

We thank to Professor Joaquim Ortega-Cerdà for calling our attention to the (then also quite

recent) work [8] right the day after our initial preprint [18] appeared on the ArXiv. For the overlap

thus pointed out that earlier version of our work has never been published in a journal, although

later we have published a concise version without proofs in the conference abstract [21] and the

notion, being instrumental for the mentioned extension of the Turán extremal problem to LCA

groups, was also presented in the thesis [20] and the paper [19].

4. THE FIRST CONSTRUCTION OF A.U.U.D. IN LCA GROUPS
We will consider two generalizations here. The first applies for the class of Abelian groups 𝐺,
equipped with a topological structure which makes 𝐺 a LCA (locally compact Abelian) group.

Considering such groups are natural for they have an essentially unique translation invariant

Haar measure 𝜇𝐺 (see e.g. [23]), what we fix to be our 𝜇. By construction, 𝜇 is a Borel measure,

that is, the sigma algebra of 𝜇-measurable sets contains the sigma algebra of Borel mesurable sets,

denoted by  throughout. Furthermore, we will write 0 for the family of open sets with compact

closure. Sets 𝐵 ∈ 0 necessarily have positive, but finite Haar measure. If the topology changes,
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it is reflected by the corresponding change of the (essentially unique) Haar measure, and so the

characteristic property of being finite on 0 singles out the respective Haar measure from the family

of translation-invariant Borel measures, see [11, (15.8) Remarks, page 194].

Our heuristics in finding a definition of a.u.u.d. was the following. We wanted to grasp the fact

that the set, where we may analyze relative densities of the given set 𝐴 or measure 𝜈, must grow

large (as in case of ℝ the dilated copies 𝑟𝐾 do). However, in general LCA groups neither a standard

basic neighborhood of 0 nor dilations exist. Then we encountered the following nice and basic result

in LCA groups, see [23, 2.6.7. Theorem] or [12, (31.36) Lemma].

THEOREM 2. If 𝜀 > 0 and4 𝐶 ⋐ 𝐺, then there exists 𝑉 ∈ 0 such that
5 𝜇(𝑉 + 𝐶) < (1 + 𝜀)𝜇(𝑉 ).

Thinking of ℝ𝑑
, it is natural to visualize the content of this lemma as follows. For any given

compact set 𝐶 the difference between 𝑉 and 𝑉 + 𝐶 is just a bounded (compact) perturbation on

the boundary of 𝑉 , so if 𝑉 is chosen quite large, than the change of volume becomes relatively

negligible. This suggested us the idea of replacing limits and size restrictions by the trick of division

by 𝜇(𝑉 + 𝐶), in place of simply 𝜇(𝑉 ), in the definition of a.u.u.d., thus leading to (4.1). Indeed, if

𝜇(𝑉 ), that is 𝑉 , is large enough – in the sense of the above Theorem 2 – then the increase of 𝜇(𝑉 )
to 𝜇(𝑉 + 𝐶) does not matter asymptotically; and if 𝑉 is not enough large, than the division by a

larger measure (of 𝜇(𝐶 + 𝑉 )) makes the corresponding quantity out of interest in the search of high

relative density (i.e. in the inner supremum). That was our heuristical idea in the construction of

the below Definition 2.

DEFINITION 2. Let 𝐺 be a LCA group and 𝜇 ∶= 𝜇𝐺 be its Haar measure. If 𝜈 is another (locally finite
6
,

nonnegative) measure on 𝐺 with the sigma algebra of measurable sets being  , then we define

𝐷(𝜈) ∶= inf
𝐶⋐𝐺

sup
𝑉∈∩0

𝜈(𝑉 )
𝜇(𝐶 + 𝑉 )

. (4.1)

In particular, if 𝐴 ⊂ 𝐺 is Borel measurable and 𝜈 = 𝜇𝐴 is the trace of the Haar measure on the set 𝐴,
then we get

𝐷(𝐴) ∶= 𝐷(𝜇𝐴) ∶= inf
𝐶⋐𝐺

sup
𝑉∈0

𝜇(𝐴 ∩ 𝑉 )
𝜇(𝐶 + 𝑉 )

. (4.2)

If Λ ⊂ 𝐺 is any (e.g. discrete) set and 𝛾 ∶= 𝛾Λ ∶= ∑𝜆∈Λ 𝛿𝜆 is the counting measure of Λ, then we get

𝐷#(Λ) ∶= 𝐷(𝛾Λ) ∶= inf
𝐶⋐𝐺

sup
𝑉∈0

#(Λ ∩ 𝑉 )
𝜇(𝐶 + 𝑉 )

. (4.3)

REMARK 1. If we do not want to bother with 𝜈-measurability of sets, i.e. with 𝑉 ∈  , then we may

as well use the outer measure 𝜈, defined for arbitrary sets. As for all 𝐶 we want 𝐶 + 𝑉 belong to

 (for 𝜇(𝐶 + 𝑉 ) to make sense), it is natural to consider 𝑉 ∈  only; but if we further drop the

condition that 𝑉 be compact, then the definition becomes untractable already in ℝ. Indeed, then it

can easily happen – and in fact that is what happens normally with a compact 𝐶 having 𝜇(𝐶) > 0 –
that 𝜇(𝑉 + 𝐶) = ∞; further, it is easy to find cases where also the numerator is infinite. Take e.g. 𝜈
to be the counting measure # and Λ some sequence Λ = {𝜆𝑘 ∶ 𝑘 ∈ ℕ}, say tending to infinity; then it

is easy to define a (non-compact, but still measurable) union 𝑉 of decreasingly small neighborhoods

of the points 𝜆𝑘 such that the Haar measure of 𝑉 equals 1, but all of Λ stays in 𝑉 , hence the counting
measure of Λ ∩ 𝑉 is infinite. To avoid such untractable situations, we are thus restricted to 𝑉 ∈ 0,

which simultaneously guarantees 𝜇(𝐶 + 𝑉 ) > 0, too, hence the fraction in the definition remains

meaningful.

The very first thing one wants to have after such an abstract definition, based only on some

tricky heuristics, is to see that it indeed is a generalization of the classical notion.

4 As is commonly used, in any topological space 𝑋 we write 𝑌 ⋐ 𝑋 if 𝑌 is a compact subset of 𝑋 .

5 Note on passing that multiplication is continuous, but assuming only that 𝑉 is to be Borel measurable may not suffice

for our purposes. We are thankful to our referee who called our attention to the fact that then 𝐶 + 𝑉 is not necessarily

Borel measurable, (not even for compact 𝐶), as was shown by counterexamples in [6] and in [22].

6 A measure is called locally finite if the measure of any measurable set, contained in some compact set, is finite.
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THEOREM 3. Let 𝐾 be any bounded, open subset of ℝ𝑑
with |𝐾 | = |𝐾 | = 1 (i.e. assume that 𝐾 itself is

of positive, normalized volume 1 and its closure is of the same measure). Let 𝜈 be any (nonnegative,

locally finite) measure with sigma algebra of measurable sets  . Then we have

𝐷(𝜈) = 𝐷𝐾 (𝜈).

The same statement applies also to ℤ𝑑
.

REMARK 2. In particular, we find that the asymptotic uniform upper density 𝐷𝐾 (𝜈) does not depend
on the choice of 𝐾 , as long as 𝐾 is bounded and open with |𝐾 | = 1 and |𝜕𝐾 | = 0.

REMARK 3. If we further drop the condition that 𝐾 be bounded, then the statement may fail – or

becomes untractable – already in dimension 1, i.e. for ℝ.

The proof of this equivalence result was stated in [19] as Proposition 1 and fully proved in [18]

as Theorem 1 and in [20] as Theorem 3.1. Given that the proof is not available in a journal, for the

reader’s convenience we give the proof here, too.

5. PROOF OF THEOREM 3
Proof of 𝐷(𝜈) ≥ 𝐷𝐾 (𝜈). Assume first that 𝐾 is a convex body (which is then also bounded, and of

boundary measure zero with 𝟎 ∈ int 𝐾 ). Let now 𝜏 < 𝜏′ < 𝐷𝐾 (𝜈) and 𝐶 ⋐ ℝ𝑑
be arbitrary. Since 𝐶 is

compact, and 𝟎 ∈ int 𝐾 , for some sufficiently large 𝑟 ′ > 0 we have 𝐶 ⋐ 𝑟 ′𝐾 , hence by convexity also

𝐶 + 𝑟𝐾 ⊂ 𝑟 ′𝐾 + 𝑟𝐾 = (𝑟 ′ + 𝑟)𝐾 for any 𝑟 > 0.
Observe that in view of 𝜏′ < 𝐷𝐾 (𝜈) there exist 𝑟𝑛 → ∞ and 𝑥𝑛 ∈ ℝ𝑑

with 𝜈(𝑟𝑛𝐾 + 𝑥𝑛) > 𝜏′|𝑟𝑛𝐾|.
With large enough 𝑛, we also have |(𝑟𝑛 + 𝑟 ′)𝐾 |/|𝑟𝑛𝐾| = (1+ 𝑟 ′/𝑟𝑛)𝑑 < 𝜏′/𝜏, hence with 𝑉 ∶= 𝑟𝑛𝐾 +𝑥𝑛
we find 𝜈(𝑉 ) > 𝜏′|𝑟𝑛𝐾| > 𝜏|(𝑟𝑛 + 𝑟 ′)𝐾 | = 𝜏|𝑥𝑛 + 𝑟𝑛𝐾 + 𝑟 ′𝐾| ≥ 𝜏|𝑉 + 𝐶|. This proves that 𝐷(𝜈) ≥ 𝜏,
whence the assertion.

The proof is only slightly more complicated for the general case. What we need to observe is that

if 𝐵 ⊂ ℝ is the unit ball, then for 𝜂 → 0we have |𝐾 +𝜂𝐵| → |𝐾| (where 𝐾+𝜂𝐵 = {𝑥+𝜂𝑏∶ 𝑥 ∈ 𝐾, 𝑏 ∈ 𝐵}
is the usual Minkowski- or complexus sum). So if 𝐶 ⋐ 𝑎𝐵 holds (with some 𝑎 chosen sufficiently

large) then for any given 𝜂 > 0 we necessarily have |𝑟𝐾 + 𝐶| ≤ |𝑟𝐾 + 𝑎𝐵| = 𝑟𝑑 |𝐾 + (𝑎/𝑟)𝐵| ≤
𝑟𝑑(1 + 𝜂)|𝐾 | = (1 + 𝜂)|𝑟𝐾 | for all 𝑟 > 𝑟0 = 𝑟0(𝜂, 𝑎) (where we have used also that |𝐾 | = |𝐾 |).

As above, take 𝜏 < 𝜏′ < 𝐷𝐾 (𝜈) and 𝜏′|𝑟𝑛𝐾| < 𝜈(𝑟𝑛𝐾 + 𝑥𝑛) with 𝑟𝑛 → ∞. Next let us apply the

above with 𝜂 ∶= 𝜏′/𝜏 − 1, noting that as 𝑟𝑛 → ∞, in particular we have 𝑟𝑛 > 𝑟0 for 𝑛 ≥ 𝑛0. We thus

find for all 𝑛 ≥ 𝑛0 the inequalities 𝜏|𝑟𝑛𝐾 + 𝑎𝐵| < 𝜏(1 + 𝜂)|𝑟𝑛𝐾| = 𝜏′|𝑟𝑛𝐾| < 𝜈(𝑟𝑛𝐾 + 𝑥𝑛), whence also
𝜏|𝑟𝑛𝐾 + 𝐶| < 𝜈(𝑟𝑛𝐾 + 𝑥𝑛). It follows that lim sup𝑛→∞ 𝜈(𝑟𝑛𝐾 + 𝑥𝑛)/|𝑟𝑛𝐾 + 𝐶| > 𝜏, for any 𝜏 < 𝐷𝐾 (𝜈),
whence even 𝐷(𝜈) ≥ 𝐷𝐾 (𝜈), as wanted. □

Proof of 𝐷𝐾 (𝜈) ≥ 𝐷(𝜈). We have already shown in [19, Lemma 2] the following lemma.

LEMMA 1. Let 𝑊 be any Borel measurable subset of a LCA group 𝐺 with its closure 𝑊 compact, and

let 𝜈 be a nonnegative, uniformly locally bounded
7
Borel measure on 𝐺.

Denote 𝐷(𝜈) = 𝜌. If 𝛾 < 𝜌 is given arbitrarily, then there exists 𝑥 ∈ 𝐺 such that

𝜈(𝑊 + 𝑥) ≥ 𝛾𝜇(𝑊 ).

To prove the inequality 𝐷𝐾 (𝜈) ≥ 𝐷(𝜈), and whence Theorem 3, it remains to choose an arbitrary

𝛾 < 𝐷(𝜈), put𝑊 ∶= 𝑟𝐾 with any 𝑟 > 0, and apply the Lemma: we will get a translate𝑊 +𝑥 = 𝑟𝐾 +𝑥
with 𝜈(𝑥+𝑟𝐾) ≥ 𝛾|𝑟𝐾 |. Then it follows that inf𝑟>0 sup𝑥∈ℝ𝑑 𝜈(𝑥+𝑟𝐾)/|𝑟𝐾 | ≥ 𝛾 , whence also𝐷𝐾 (𝜈) ≥ 𝛾 ,
and this holding for all 𝛾 < 𝐷(𝜈) gives the statement. □

7 A nonnegative Borel measure 𝜈 is uniformly locally bounded, if for any compact set 𝐾 there exists a finite constant

𝑐 = 𝑐𝐾 such that 𝜈(𝐾 + 𝑥) ≤ 𝑐 for all 𝑥 ∈ 𝐺.
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6. AN EVEN LARGER NOTION OF A.U.U.D.
Note if we consider the discrete topological structure on any Abelian group 𝐺, it makes 𝐺 a LCA

group with Haar measure 𝜇𝐺 = #, the counting measure. Therefore, our notions above certainly

cover all discrete groups. This is the natural structure for ℤ𝑑
, e.g. On the other hand all 𝜎-finite

groups admit the same structure as well, unifying considerations. (Note that ℤ𝑑
is not a 𝜎-finite

group since it is torsion-free, i.e. has no finite subgroups.)

Furthermore, we also introduce a second notion of density as follows.

DEFINITION 3. Let 𝐺 be a LCA group and 𝜇 ∶= 𝜇𝐺 be its Haar measure. If 𝜈 is another (locally finite,

nonnegative) measure on 𝐺 with the sigma algebra of measurable sets being  , then we define

Δ(𝜈) ∶= inf
𝐹⊂𝐺,#𝐹<∞

sup
𝑉∈∩0

𝜈(𝑉 )
𝜇(𝐹 + 𝑉 )

. (6.1)

In particular, if 𝐴 ⊂ 𝐺 is Borel measurable and 𝜈 = 𝜇𝐴 is the trace of the Haar measure on the set 𝐴,
then we get

Δ(𝐴) ∶= Δ(𝜇𝐴) ∶= inf
𝐹⊂𝐺,#𝐹<∞

sup
𝑉∈0

𝜇(𝐴 ∩ 𝑉 )
𝜇(𝐹 + 𝑉 )

. (6.2)

If Λ ⊂ 𝐺 is any (e.g. discrete) set and 𝛾 ∶= 𝛾Λ ∶= ∑𝜆∈Λ 𝛿𝜆 is the counting measure of Λ, then we get

Δ#(Λ) ∶= Δ(𝛾Λ) ∶= inf
𝐹⊂𝐺,#𝐹<∞

sup
𝑉∈0

#(Λ ∩ 𝑉 )
𝜇(𝐹 + 𝑉 )

.

The two definitions are rather similar, except that the requirements for Δ refer to finite sets only.

Because all finite sets are necessarily compact, (4.1) of Definition 2 extends the same infimum over

a wider family of sets than (6.1) of Definition 3; therefore we get

PROPOSITION 2. Let 𝐺 be any LCA group, with normalized Haar measure 𝜇. Then we have

Δ(𝜈) ≥ 𝐷(𝜈).

Furthermore, in a discrete Abelian group 𝐺 we always have Δ(𝜈) = 𝐷(𝜈).
The second part is even more obvious, because in discrete groups the Haar measure is the

counting measure and the compact sets are exactly the finite sets. So there is no difference for ℤ,
e.g. In general, however, the two densities, defined above, may be different.

As for the heuristical idea of grasping growth of 𝑉 through the above trick of taking 𝜇(𝑉 + 𝐶)
instead of dilations – which in general do not exist – we must admit that in Definition 3 the heuristics

fail. That is the essence of the following straightforward example, showing that indeed Δ(𝜈) > 𝐷(𝜈)
for some 𝜈whenever 𝐺 is not discrete. This we were guessing and V. Totik showed that this is indeed

the case.

PROPOSITION 3 (Totik, [25]). If 𝐺 is a non-discrete LCA group, then there exists a probability measure

𝜈 such that Δ(𝜈) > 𝐷(𝜈).

Proof. First we find an open set which has small Haar measure (which is clearly not possible if 𝐺
was discrete.) Take an open neighborhood 𝑈 of 0 with compact closure (and thus of finite Haar

measure 0 < 𝜇(𝑈) < ∞), and let 𝑈0 ∶= 𝑈 .
First we will construct other neighborhoods 𝑈𝑘 inductively for all 𝑘 ∈ ℕ and with small Haar

measure. As𝐺 is non-discrete,with any given 𝑘 the neighborhood 𝑈𝑘 contains some point 0 ≠ 𝑥𝑘 ∈ 𝑈𝑘
out of 0 itself. As addition is a continuous function from 𝐺 ×𝐺 → 𝐺, 0+ 𝑥𝑘 = 𝑥𝑘 ∈ 𝑈𝑘 , and 𝑈𝑘 is open,
there exists a neighborhood 𝑉𝑘 of 0, so that 𝑉𝑘 × (𝑉𝑘 + 𝑥𝑘) is mapped inside 𝑈𝑘 . Also, by assumption

that 𝐺 is Hausdorff, there are neighborhoods𝑊𝑘 and𝑊 ′
𝑘 of 0 and 𝑥𝑘 , respectively, which are disjoint.

Therefore, taking now 𝑈𝑘+1 ∶= 𝑉𝑘 ∩ 𝑊𝑘 ∩ 𝑈𝑘 ∩ (𝑊 ′
𝑘 − 𝑥𝑘) ∩ (𝑈𝑘 − 𝑥𝑘) (which is still a neighborhood

of 0) we find that 𝑈𝑘+1 ∩ (𝑈𝑘+1 + 𝑥𝑘) = ∅ while 𝑈𝑘+1, 𝑈𝑘+1 + 𝑥𝑘 ⊂ 𝑈𝑘 . It follows that 𝑈𝑘+1 is an open

neighborhood of 0, within 𝑈𝑘 , and its Haar measure is at most 𝜇(𝑈𝑘)/2.
Therefore, arbitrarily small Haar measures can be prescribed: if 𝜂 > 0, there exists some open

neighborhood𝑊 of 0 such that 0 < 𝜇(𝑊 ) < 𝜂. It also follows by outer regularity of 𝜇 that 𝜇({0}) = 0
for the one point compact set {0}, whence for any finite set 𝐹 ⊂ 𝐺 we have 𝜇(𝐹) = 0, too.
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Now we take 𝜈 ∶= 𝛿0 the Dirac measure at 0. Let us compute first 𝐷(𝜈). Consider 𝐶 ⋐ 𝐺 with

a positive measure; clearly then sup𝑉∈0
𝜈(𝑉 )/𝜇(𝑉 + 𝐶) ≤ 1/𝜇(𝐶). In fact, this would be attained

for 𝑉 ∶= {0}, which is of measure 0, and has compact closure. So, if it was 𝑉 ∈ 0, then taking

infimum over 𝐶 we would find that 𝐷(𝜈) = 1 if the group 𝐺 is compact but non-discrete (and thus is

normalized to have 𝜇(𝐺) = 1, the infimum actually attained for 𝐶 ∶= 𝐺) and 𝐷(𝜈) = 0 when 𝐺 is

non-compact (and thus there exist compact sets of arbitrarily large measure).

Next we compute Δ(𝜈). The same heuristical argument (with the same choice of {0} for 𝑉 )
with a finite set 𝐹 ⊂ 𝐺 in place of 𝐶 ⋐ 𝐺 gives that Δ(𝜈) = inf𝐹⊂𝐺,#𝐹<∞ 1/𝜇(𝐹), which, however,
is 1/0 = ∞ whenever 𝐺 is non-discrete. Even if we restrict 𝑉 ∈ 0, the same result obtains

taking first some 𝑉 ∈ 0 with 0 < 𝜇(𝑉 ) < 𝜂, and then writing 𝜈(𝑉 )/𝜇(𝑉 + 𝐹) ≥ 1/(#𝐹𝜂), hence
sup𝑉∈0

𝜈(𝑉 )/𝜇(𝑉 + 𝐹) ≥ sup𝜂>0 1/(#𝐹𝜂) = ∞, for any fixed finite subset 𝐹 . On this, not even the

subsequent inf𝐹 can help. Therefore the inequality Δ(𝜈) > 𝐷(𝜈) is proved if 𝐺 is non-discrete. □

Note that here – contradicting to our original heuristics of 𝜇(𝐶+𝑉 ) → ∞ together with 𝜇(𝑉 ) → ∞
whenever the defined value of our density is approximated closely – the sets which exhibit close-

to-optimal density are very small ones. Applications of density are used in different contexts; in

general in e.g. number theory a density is understood as some form of asymptotic density, with

measures tending to infinity, but in e.g. real analysis local densities, over small neighborhoods, are

equally important. Even if we have a certain heuristics telling what we would like to grasp, we

should be careful not to be misled by our own imaginations: this density, what we have defined

above, may be extremal also in small sets sometimes. We will see other instances, too, when the

heuristics – e.g. that “the larger the density is, the better it is for a plausible statement” – may fail.

7. SOME ADDITIVE NUMBER THEORY FLAVORED RESULTS FOR DIFFERENCE SETS
We have already noted that extremal problems of Turán and Delsarte, as well as conditions for sets

being sets of sampling or interpolation, can be investigated in the generality of LCA groups by

means of the a.u.u.d. properly extended. Here we collect a few other instances, mainly of number

theoretic flavor, where generalizations have also been tried, and where we will apply our general

definition to extend known results of more restrictive cases to LCA groups in general.

Let us denote the usual upper density of 𝐴 ⊂ ℕ as 𝑑(𝐴) ∶= lim sup𝑛→∞ 𝐴(𝑛)/𝑛 > 0 with

𝐴(𝑛) ∶= #(𝐴 ∩ [1, 𝑛]). Erdős and Sárközy (seemingly unpublished, but quoted in [10] and in [24])

observed the following.

PROPOSITION 4 (Erdős–Sárközy). If the upper density 𝑑(𝐴) of a sequence 𝐴 ⊂ ℕ is positive, then writing

the positive elements of the sequence 𝐷(𝐴) ∶= 𝐷1(𝐴) ∶= 𝐴 − 𝐴 as 𝐷(𝐴) ∩ ℕ = {(0 <)𝑑1 < 𝑑2 < … }
we have 𝑑𝑛+1 − 𝑑𝑛 = 𝑂(1).

This is analogous, but not contained in the following result of Hegyvári, obtained for 𝜎-finite
groups. An Abelian group is called 𝜎-finite (with respect to𝐻𝑛), if there exists an increasing sequence

of finite subgroups 𝐻𝑛 so that 𝐺 = ∪∞𝑛=1𝐻𝑛. For such a group Hegyvári defines asymptotic upper

density (with respect to 𝐻𝑛) of a subset 𝐴 ⊂ 𝐺 as

𝑑𝐻𝑛(𝐴) ∶= lim sup
𝑛→∞

#(𝐴 ∩ 𝐻𝑛)
#𝐻𝑛

.

Note that for finite groups this is just #(𝐴∩𝐺)/#𝐺. Hegyvári proves the following [10, Proposition 1].

PROPOSITION 5 (Hegyvári). Let 𝐺 be a 𝜎-finite Abelian group with respect to the increasing, exhausting

sequence 𝐻𝑛 of finite subgroups and let 𝐴 ⊂ 𝐺 have positive upper density with respect to 𝐻𝑛. Then

there exists a finite subset 𝐵 ⊂ 𝐺 so that 𝐴 − 𝐴 + 𝐵 = 𝐺. Moreover, we have #𝐵 ≤ 1/𝑑𝐻𝑛(𝐴).
A subset 𝑆 ⊂ 𝐺 in a topological Abelian (semi)group is called a syndetic set, if there exists a

compact set 𝐾 ⊂ 𝐺 such that for each element 𝑔 ∈ 𝐺 there exists a 𝑘 ∈ 𝐾 with 𝑔𝑘 ∈ 𝑆; in other

words, in topological groups ∪𝑘∈𝐾𝑆𝑘−1 = 𝐺.

Fürstenberg presents as [5, Proposition 3.19 (a)] the following.

PROPOSITION 6 (Fürstenberg). Let 𝑆 ⊂ ℤ with positive a.u.u.d. Then 𝑆 − 𝑆 is syndetic.
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In the following we use the above extended notions of a.u.u.d. on arbitrary LCA groups, and

present various generalized versions of the above results. Furthermore, we obtain sharpened variants

of these results making use of both density notions.

8. THE FIRST EXTENSION OF THE PROPOSITIONS OF ERDŐS–SÁRKÖZY, OF HEGYVÁRI,AND OF FÜRSTENBERG
Recalling the definition Δ from Definition 3, in this section we will prove the following result.

THEOREM 4. If 𝐺 is a LCA group with Haar measure 𝜇, and 𝐴 ⊂ 𝐺 has Δ(𝐴) > 0, then there exists a

finite subset 𝐵 ⊂ 𝐺 so that 𝐴 − 𝐴 + 𝐵 = 𝐺. Moreover, we can find 𝐵 with #𝐵 ≤ [1/Δ(𝐴)].
Theorem 1, stated in the Introduction, will be a corollary of this result.

REMARK 4. We need a translation-invariant (Haar) measure, but not the topology or compactness.

Proof of Theorem 4. Assume that 𝐻 ⊂ 𝐺 satisfies (𝐴−𝐴)∩ (𝐻 −𝐻) = {0} and let 𝐿 = {𝑏1, 𝑏2, … , 𝑏𝑘}
be any finite subset of 𝐻 . By construction, we have (𝐴+ 𝑏𝑖) ∩ (𝐴+ 𝑏𝑗 ) = ∅ for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. Take
now 𝐶 ∶= 𝐿 in the definition of density (6.2) and take 0 < 𝜏 < 𝜌 ∶= Δ(𝐴). By Definition 3 of the

density Δ(𝐴), there are 𝑥 ∈ 𝐺 and 𝑉 ⊂ 𝐺 open with compact closure – or, a 𝑉 ⊂ 𝐺 with 0 < |𝑉 | < ∞
if 𝐺 is discrete – satisfying

|𝐴 ∩ (𝑉 + 𝑥)| > 𝜏|𝑉 + 𝐿|. (8.1)

In the other direction,

𝑉 + 𝐿 =
𝑘

⋃
𝑗=1

(𝑉 + 𝑥 + (𝑏𝑗 − 𝑥)) ⊃
𝑘

⋃
𝑗=1

(((𝑉 + 𝑥) ∩ 𝐴) + 𝑏𝑗) − 𝑥

and as 𝐴+𝑏𝑗 (thus also ((𝑉 +𝑥) ∩𝐴)+𝑏𝑗 ) are disjoint, and the Haar measure is translation invariant,

we are led to

|𝑉 + 𝐿| ≥ 𝑘|(𝑉 + 𝑥) ∩ 𝐴|. (8.2)

Combining (8.1) and (8.2) we are led to

|𝑉 + 𝐿| > 𝑘𝜏|𝑉 + 𝐿|,

hence after cancelation by |𝑉 + 𝐿| > 0 we get 𝑘 < 1/𝜏 and so in the limit 𝑘 ≤ 𝐾 ∶= [1/𝜌]. It follows
that 𝐻 is necessarily finite and #𝐻 ≤ 𝐾 .

So let now 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑘} be any set with the property (𝐴 − 𝐴) ∩ (𝐵 − 𝐵) = {0} (which implies

#𝐵 ≤ 𝐾 ) and maximal in the sense that for no 𝑏′ ∈ 𝐺 ⧵ 𝐵 can this property be kept for 𝐵′ ∶= 𝐵 ∪ {𝑏′}.
In other words, for any 𝑏′ ∈ 𝐺 ⧵ 𝐵 it holds that (𝐴 − 𝐴) ∩ (𝐵′ − 𝐵′) ≠ {0}.

Clearly, if 𝐴 − 𝐴 = 𝐺 then any one point set 𝐵 ∶= {𝑏} is such a maximal set; and if 𝐴 − 𝐴 ≠ 𝐺,
then a greedy algorithm leads to one in ≤ 𝐾 steps.

Now we can prove 𝐴−𝐴+𝐵 = 𝐺. Indeed, if there exists 𝑦 ∈ 𝐺⧵ (𝐴−𝐴+𝐵), then (𝑦 −𝑏𝑗 ) ∉ 𝐴−𝐴
for 𝑗 = 1, … , 𝑘, hence 𝐵′ ∶= 𝐵 ∪ {𝑦} would be a set satisfying (𝐵′ −𝐵′) ∩ (𝐴−𝐴) = {0}, contradicting
maximality of 𝐵. □

COROLLARY 1. Let 𝐴 ⊂ ℝ𝑑
be a (measurable) set with Δ(𝐴) > 0. Then there exist 𝑏1, … , 𝑏𝑘 with

𝑘 ≤ 𝐾 ∶= [1/Δ(𝐴)] so that ∪𝑘𝑗=1(𝐴 − 𝐴 + 𝑏𝑗 ) = ℝ𝑑
.

This is interesting as it shows that the difference set of a set of positive density Δ is necessarily

rather large: just a few translated copies cover the whole space.

Observe that we have Proposition 1 as an immediate consequence of Theorem 4, because ℤ is

discrete, and thus the two notionsΔ and𝐷 of a.u.u.d. coincide; moreover, the finite set𝐵 ∶= {𝑏1, … , 𝑏𝑘}
is a compact set in the discrete topology of ℤ. But in fact we can as well formulate the following

extension.

COROLLARY 2. Let 𝐺 be a LCA group and 𝑆 ⊂ 𝐺 a set with positive a.u.u. density, i.e. 𝐷(𝑆) > 0 (where
𝐷(𝑆) = 𝐷(𝜇|𝑆), in line with (4.2) above). Then the difference set 𝑆 − 𝑆 is a syndetic set: moreover,

the set of translations 𝐾 , for which we have 𝐺 = 𝑆 − 𝑆 + 𝐾 , can be chosen not only compact, but

even to be a finite set with #𝐾 ≤ [1/𝐷(𝑆)] elements.
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This corollary is immediate, because Δ(𝑆) ≥ 𝐷(𝑆) according to Proposition 2. Note that we have

already stated a less precise form of this (without the estimate on the size of 𝐾 ), as Theorem 1 in

the Introduction.

This indeed generalizes the proposition of Fürstenberg. Also this result contains the result of

Hegyvári: for on 𝜎-finite groups the natural topology is the discrete topology, whence the natural

Haar measure is the counting measure, and so on 𝜎-finite groups Corollary 2 and Theorem 4

coincides. Finally, this also generalizes and sharpens the Proposition of Erdős and Sárközy. Indeed,

on ℤ orℕ we naturally have Δ(𝐴) = 𝐷(𝐴) ≥ 𝑑(𝐴), so if the latter is positive, then so is 𝐷(𝐴); and
then the difference set is syndetic, with finitely many translates belonging to a translation set 𝐾 ⊂ ℕ,

say, covering the whole ℤ. Hence 𝑑𝑛+1 − 𝑑𝑛 − 1 cannot exceed the maximal element of the finite set

𝐾 of translations.

9. STILL ANOTHER EXTENSION OF THE LEMMA OF FÜRSTENBERG
The above given generalization is satisfactory for discrete groups in particular, for those groups the

Δ notion of density matches the 𝐷 notion, and is hence a generalized version of the density used

in ℤ by Fürstenberg. However, for general LCA groups, a generally smaller density, that is 𝐷, is
known to be the right generalization. The above Corollary 2 settled the generalization right for this

density notion. Here we pass on to a third density notion, more precisely, the same density notion

but applied to the discrete “characteristic measure” or “cardinality measure”. Again, for discrete

groups it matches the above two notions, as is trivial from the fact that in discrete groups the Haar

measure is just the counting measure. However, in general LCA groups, the number of elements is

considerably larger than the Haar measure – in fact the cardinality measure is infinite whenever

the Haar measure is positive. Therefore, out of all the a.u.u.d. notions, 𝐷#(𝑆) ∶= 𝐷(𝛾𝑆) becomes

the largest, and knowing that this upper density is positive, is in general the weakest possible

assumption on a set. Nevertheless, we have the following result even with this bigger notion of

a.u.u.d..

THEOREM 5. Let 𝐺 be a LCA group and 𝑆 ⊂ 𝐺 a set with a positive, (but finite) a.u.u.d., regarding

now the counting measure of elements of 𝑆 in the definition of a.u.u.d., i.e. 𝐷#(𝑆) ∶= 𝐷(𝛾𝑆) in line

with (4.3). Then the difference set 𝑆 − 𝑆 is a syndetic set.
REMARK 5. One would like to say that a density +∞ is “even the better”, so that we could drop the

finiteness condition from the formulation of Theorem 5. However, in non-discrete groups this is

not the case: such a density can in fact behave quite unexpectedly. Consider e.g. the set of points

𝑆 ∶= {1/𝑛∶ 𝑛 ∈ ℕ} as a subset of ℝ. Clearly for any compact 𝐶 of positive Haar (i.e. Lebesgue)

measure |𝐶| > 0, and for any 𝑉 ∈ 0 of finite measure and compact closure, |𝑉 +𝐶| is positive but finite.
Therefore, whenever 0 ∈ int 𝑉 , we automatically have #(𝑆 ∩ 𝑉 ) = ∞ and also #(𝑆 ∩ 𝑉 )/|𝐶 + 𝑉 | = ∞,

hence 𝐷#(𝑆) = ∞; but 𝑆 − 𝑆 ⊂ [−1, 1]. Thus with a compact 𝐵 it is not possible for 𝐵 + 𝑆 − 𝑆 to cover
𝐺 = ℝ, and whence 𝑆 − 𝑆 is not syndetic.
PROBLEM 1. The implicitly occurring set of translations 𝐾 , for which we have 𝐺 = (𝑆 −𝑆)+𝐾 , seems

not too well controlled in size by the proof below. However, there follows some bound, see Remark 6.

One may want to find the right bound, perhaps even 𝜇(𝐾) ≤ [1/𝐷(𝑆)], for an appropriately chosen

compact set of translates 𝐾 . This we cannot do yet.

Proof of Theorem 5. Even if the proof may be not the optimal one, we consider it worthwhile to

present it in full detail, for the auxiliary steps done seem to be rather general and useful statements.

Correspondingly, we break the argument in a series of lemmas.

LEMMA 2. Let 𝑆 ⊂ 𝐺 and assume 𝜌 ∶= 𝐷#(𝑆) = 𝐷(𝛾|𝑆) ∈ (0, ∞). Consider any compact set 𝐻 ⋐ 𝐺
satisfying the “packing type condition” 𝐻 − 𝐻 ∩ 𝑆 − 𝑆 = {0} with 𝑆. Then we necessarily have

𝜇(𝐻) ≤ 1/𝐷#(𝑆).

Proof. Let 0 < 𝜏 < 𝜌 be arbitrary. By definition of 𝐷#(𝑆), (using 𝐻 in place of 𝐶) there must exist a

set 𝑉 ∈ 0 so that∞ > #(𝑆 ∩𝑉 ) > 𝜏𝜇(𝑉 +𝐻), therefore also #(𝑆 ∩𝑉 ) > 𝜏𝜇((𝑆 ∩𝑉 )+𝐻). However, for
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any two elements 𝑠 ≠ 𝑠′ ∈ (𝑆 ∩ 𝑉 ) ⊂ 𝑆, (𝑠 +𝐻) ∩ (𝑠′ +𝐻) = ∅, since in case 𝑔 ∈ (𝑠 +𝐻) ∩ (𝑠′ +𝐻) we
have 𝑔 = 𝑠 +ℎ = 𝑠′ +ℎ′, i.e. 𝑠 − 𝑠′ = ℎ−ℎ′, which is impossible for 𝑠 ≠ 𝑠′ and (𝐻 −𝐻)∩ (𝑆 − 𝑆) = {0}.
Therefore for each 𝑠 ∈ (𝑆 ∩ 𝑉 ) there is a translate of 𝐻 , totally disjoint from all the others: i.e. the

union (𝑆 ∩ 𝑉 ) + 𝐻 = ∪𝑠∈(𝑆∩𝑉 )(𝑠 + 𝐻) is a disjoint union. By the properties of the Haar measure, we

thus have 𝜇((𝑉 ∩ 𝑆) + 𝐻) = ∑𝑠∈(𝑆∩𝑉 ) 𝜇(𝑠 + 𝐻) = #(𝑉 ∩ 𝑆)𝜇(𝐻).
Whence we find #(𝑆 ∩ 𝑉 ) ≥ 𝜏#(𝑆 ∩ 𝑉 )𝜇(𝐻). As #(𝑆 ∩ 𝑉 ) > 𝜏𝜇(𝑉 + 𝐻) was positive, we can cancel

with it and infer 𝜇(𝐻) ≤ 1/𝜏. This holding for all 𝜏 < 𝜌 = 𝐷#(𝑆), we obtained that any compact set

𝐻 , satisfying the packing type condition with 𝑆, is necessarily bounded in measure by 1/𝐷#(𝑆). □

LEMMA 3. Suppose that 𝑆 − 𝑆 ∩ 𝐻 − 𝐻 = {0} with 𝜌 ∶= 𝐷#(𝑆) = 𝐷(𝛾|𝑆) ∈ (0, ∞) and 𝐻 ⋐ 𝐺 with

0 < 𝜇(𝐻 − 𝐻). Then the set 𝐴 ∶= 𝑆 + 𝐻 , (that is the trace of the Haar measure on 𝐴) has the
asymptotic uniform upper density 𝐷(𝜇|𝐴) not less than 𝜌 ⋅ 𝜇(𝐻).

Proof. Let 𝐶 ⋐ 𝐺 be arbitrary. We want to estimate from below the ratio 𝜇(𝐴 ∩ 𝑉 )/𝜇(𝐶 + 𝑉 ) for an
appropriately chosen 𝑉 ∈ 0. Let us fix that we will take for 𝑉 some set of the form 𝑈+𝐻 with 𝑈 ∈ 0.

Clearly 𝐴∩𝑉 = (𝑆+𝐻)∩(𝑈 +𝐻) ⊃ (𝑆 ∩𝑈)+𝐻 . Now for any two elements 𝑠 ≠ 𝑡 ∈ 𝑆, thus even more

for 𝑠, 𝑡 ∈ (𝑆 ∩ 𝑉 ), the sets 𝑠 + 𝐻 and 𝑡 + 𝐻 are disjoint, this being an easy consequence of the packing

property because 𝑠+𝑞 = 𝑡+𝑟 ⇔ 𝑠−𝑡 = 𝑞−𝑟 , which is impossible for 𝑠−𝑡 ≠ 0 by condition. Therefore
by the properties of the Haar measure we get 𝜇((𝑆 ∩ 𝑈) + 𝐻) = ∑𝑠∈(𝑆∩𝑈) 𝜇(𝑠 + 𝐻) = #(𝑆 ∩ 𝑈) ⋅ 𝜇(𝐻).
In all, we found 𝜇(𝐴 ∩ 𝑉 ) ≥ #(𝑆 ∩ 𝑈) ⋅ 𝜇(𝐻).

It remains to choose 𝑉 , that is, 𝑈 , appropriately. For the compact set 𝐶 + 𝐻 ⋐ 𝐺 and for any

given small 𝜀 > 0, by definition of 𝐷#(𝑆) = 𝜌 there exists some 𝑈 ∈ 0 such that #(𝑆 ∩ 𝑈) >
(𝜌 − 𝜀)𝜇((𝐶 + 𝐻) + 𝑈). Choosing this particular 𝑈 and combining the two inequalities we are led to

𝜇(𝐴∩𝑉 ) ≥ (𝜌−𝜀)𝜇(𝐶+𝐻+𝑈)𝜇(𝐻), that is, for 𝑉 ∶= 𝑈+𝐻 written in 𝜇(𝐴∩𝑉 )/𝜇(𝐶+𝑉 ) ≥ (𝜌−𝜀)𝜇(𝐻).
As we find such a 𝑉 for every positive 𝜀, the sup over 𝑉 ∈ 0 is at least 𝜌𝜇(𝐻), and because

𝐶 ⋐ 𝐺 was arbitrary, we infer the assertion. □

LEMMA 4. Suppose that 𝑆 − 𝑆 ∩ 𝐻 − 𝐻 = {0} with 𝜌 ∶= 𝐷#(𝑆) = 𝐷(𝛾|𝑆) ∈ (0, ∞) and 𝐻 ⋐ 𝐺 with

0 < 𝜇(𝐻). Then there exists a finite set 𝐵 = {𝑏1, … , 𝑏𝑘} ⊂ 𝐺 of at most 𝑘 ≤ [1/(𝜌𝜇(𝐻))] elements

so that 𝐵 + (𝐻 − 𝐻) + (𝑆 − 𝑆) = 𝐺. In particular, the set 𝑆 − 𝑆 is syndetic with the compact set of

translates 𝐵 + (𝐻 − 𝐻).

Proof. By the above Lemma 3 we have an estimate on the asymptotic uniform upper density of

𝐴 ∶= 𝑆+𝐻 (i.e. 𝜇|𝐴). But then we may apply Corollary 2 to see that the difference set (𝑆+𝐻)−(𝑆+𝐻)
is a syndetic set with the set of translates 𝐵 admitting #𝐵 ≤ [1/𝐷(𝜇|𝐴)] ≤ [1/(𝜌𝜇(𝐻))]. Because
also the set 𝐻 is compact, this yields that 𝑆 is syndetic as well, with set of translations being

𝐵 + (𝐻 − 𝐻). □

One may think that it is not difficult, for a discrete set 𝑆 of finite density with respect to counting

measure, to find a compact neighborhood 𝑅 of 0, so that 𝑅 ∩ (𝑆 − 𝑆) be almost empty with 0 being

its only element. If so, then by continuity of subtraction, also for some compact neighborhood

𝐻 of zero with (𝐻 − 𝐻) ⊂ 𝑅 (and, being a neighborhood, with 𝜇(𝐻) > 0, too) we would have

(𝐻 − 𝐻) ∩ (𝑆 − 𝑆) = {0}, the packing type condition, whence concluding the proof of Theorem 5.

Unfortunately this idea turns to be naive. Consider the sequence 𝑆 = {𝑛 + 1/𝑛∶ 𝑛 ∈ ℕ} ∪ ℕ (in

ℝ), which has asymptotic uniform upper density 2 with the cardinality measure, whilst 𝑆 − 𝑆 is

accumulating at 0.

Nevertheless, this example is instructive. Whatwewill find, is that sets offinite positive asymptotic

uniform upper density cannot have a too dense difference set: it always splits into a fixed, bounded

number of disjoint subsets so that the difference set of each subset already leaves out a fixed compact

neighborhood of 0. This will be the substitute for the above naive approach to finish our proof

of Theorem 5 through proving also some kind of subadditivity of the asymptotic uniform upper

density – another auxiliary statement interesting for its own right.

Brought to you by MTA Rényi Alfréd Matematikai Kutatóközpont - MTA Alfréd Rényi Institute of Mathematics | Unauthenticated | Downloaded 04/03/24 06:03 PM UTC



Mathematica Pannonica New Series 29 /NS 3/ (2023) 2, 268–281 279

LEMMA 5. Let 𝐻 ∈ 0 and let 𝑆 have positive but finite asymptotic uniform upper density with

respect to cardinality measure, i.e. 𝜌 ∶= 𝐷#(𝑆) ∈ (0, ∞).
Then there exists a finite disjoint partition 𝑆 = ⋃𝑛

𝑗=1 𝑆𝑗 of 𝑆 such that (𝑆𝑗 − 𝑆𝑗 ) ∩ (𝐻 − 𝐻) = {0}.
Moreover, for any given 𝜀 > 0 choosing an appropriate 𝐻 ∈ 0, depending on 𝜀 > 0, we can even

guarantee that the number 𝑛 of subsets in the partition is not more than (1 + 𝜀)𝜌𝜇(𝐻 − 𝐻).

Proof. Let us start with choosing a compact set 𝐶 ⊂ 𝐺 such that sup𝑉∈0
#(𝑆 ∩𝑉 )/𝜇(𝐶+𝑉 ) < 𝜌+𝜀/2.

By definition of 𝐷#(𝑆) such 𝐶 exists for all 𝜀 > 0.
Let 𝑠 ∈ 𝑆 be arbitrary, and put 𝑄 ∶= 𝐻 − 𝐻 , and consider 𝑅 ∶= 𝑠 + 𝑄 for an arbitrary, but fixed

𝑠 ∈ 𝑆. Let us try to estimate the number of other elements of 𝑆 falling in 𝑅. Clearly 𝑅 ∈ 0, so we

have #(𝑆 ∩ 𝑅)/𝜇(𝐶 + 𝑅) ≤ sup𝑉∈0
#(𝑆 ∩ 𝑉 )/𝜇(𝐶 + 𝑉 ) < 𝜌 + 𝜀/2. That is, we already have a bound

𝑘 ∶= #(𝑆 ∩ 𝑅) ≤ (𝜌 + 𝜀/2)𝜇(𝐶 + 𝑅) with the given 𝐶 = 𝐶(𝜀), independently of 𝑅, i.e. of 𝐻 .

Next we show how to obtain the bound 𝑘 ∶= #(𝑆 ∩ 𝑅) ≤ (𝜌 + 𝜀)𝜇(𝑄) for some appropriate

choice of 𝐻 . This hinges upon a variant of the above mentioned Theorem 2, but now in the form

that for 𝑉 we can even take an open set of the form 𝑊 − 𝑊 , where 𝑊 ∈ 0 is also an open set

of compact closure. That variant can be extracted from the proofs cited above. So, for the given

compact set 𝐶 ⋐ 𝐺 and for any given (small) 𝜂 > 0 there exists 𝑉 = 𝑊 − 𝑊 , 𝑊 ∈ 0, so that

𝜇(𝐶 + 𝑉 ) < (1 + 𝜂)𝜇(𝑉 ).
In all, working with the above chosen compact set 𝐶 = 𝐶(𝜀/2) belonging to 𝜀/2 and with an

appropriate choice of 𝐻 ∶= 𝑊 , coming from 𝑉 = 𝑊 −𝑊 and 𝑊 belonging to 𝐶 and 𝜂, we even have

𝑘 ∶= #(𝑆 ∩ 𝑅) ≤ (𝜌 + 𝜀/2)𝜇(𝐶 + 𝑅) < (𝜌 + 𝜀/2)(1 + 𝜂)𝜇(𝑄). Note that here the dependence on 𝐶
disappears from the end formula, but there is a dependence of 𝐻 on 𝜂 and 𝐶 through the choice of 𝑉 .

It remains to construct the partition once we have a compact neighborhood 𝐻 of 0 and a finite

number 𝑘 ∈ ℕ such that #(𝑆 ∩ (𝑠 + 𝐻 − 𝐻) ≤ 𝑘 for any 𝑠 ∈ 𝑆. More precisely, we will construct a

disjoint partition with 𝑛 ≤ 𝑘 parts, so the above estimate of 𝑘 will also imply the asserted bound

𝑛 ≤ (1 + 𝜀)𝜌𝜇(𝐻 − 𝐻).
This is a standard argument. Consider a graph on the points of 𝑆 defined by connecting two

points 𝑠 and 𝑡 exactly when 𝑡 ∈ 𝑠 + 𝐻 − 𝐻 . By virtue of the symmetry of 𝑄 ∶= 𝐻 − 𝐻 this happens

exactly when 𝑠 ∈ 𝑡 +𝐻 −𝐻 , so the above definition defines indeed a graph, not just a directed graph,

on the points of 𝑆. In this graph by condition the degree of any point of 𝑠 ∈ 𝑆 is at most 𝑘 − 1, as
there are at most 𝑘 − 1 further points 𝑡 of 𝑆 in 𝑠 + 𝐻 −𝐻 . But it is well-known that such a graph can

be partitioned into 𝑘 subgraphs with no edges within any of the induced subgraphs.
8
That is, the set

of points 𝑆 split into the disjoint union of some 𝑆𝑗 with no two points 𝑠, 𝑡 ∈ 𝑆𝑗 being in the relation

𝑡 ∈ 𝑠 + 𝐻 − 𝐻 , defining an edge between them.

It is easy to see that with this we have constructed the required partition: the 𝑆𝑗 are disjoint, and so
are (𝑆𝑗 −𝑆𝑗 ) and𝐻−𝐻 ⧵{0}, for any 𝑗 = 1, … , 𝑘, because 𝑠−𝑡 = ℎ−ℎ′ implies 𝑡 = 𝑠+ℎ′−ℎ ∈ 𝑠+𝐻 −𝐻 ,

excluded by construction. This concludes the proof. □

LEMMA 6 (subadditivity). Let 𝜈0 = ∑𝑛
𝑗=1 𝜈𝑗 be a sum of measures, all on the common set algebra  of

measurable sets. Then we have 𝐷(𝜈0) ≤ ∑𝑛
𝑗=1 𝐷(𝜈𝑗 ).

In particular, this holds for one given measure 𝜈 and a disjoint union of sets 𝐴0 = ∪𝑛𝑗=1𝐴𝑗 , with

𝜈𝑗 ∶= 𝜈|𝐴𝑗 , for 𝑗 = 0, 1, … , 𝑘. If 𝜈 = 𝜇, this gives 𝐷(∪𝑛𝑗=1𝐴𝑗 ) ≤ ∑𝑛
𝑗=1 𝐷(𝐴𝑗 ).

Proof. Let us write 𝜌𝑗 ∶= 𝐷(𝜈𝑗 ), 𝑗 = 0, 1, … , 𝑛. A.u.u.d. is clearly monotone in the measures

considered, therefore all 𝜈𝑗 have an a.u.u.d 0 ≤ 𝜌𝑗 ≤ 𝜌 < ∞.

Let 𝜀 > 0 be arbitrary, and take 𝐶𝑗 ⋐ 𝐺 so that for all 𝑉 ∈ 0 in the definition of 𝐷(𝜈𝑗 ) we have
𝜈𝑗 (𝑉 ) ≤ (𝜌𝑗 + 𝜀)𝜇(𝐶𝑗 + 𝑉 ) for 𝑗 = 1, … , 𝑛. Such 𝐶𝑗 exist in view of the infimum on 𝐶 ⋐ 𝐺 in the

definition (4.1) of a.u.u.d.

8 The proof of this is very easy for finite or countable graphs: just start to put the points, one by one, inductively into

𝑘 preassigned sets 𝑆𝑗 so that each point is put in a set where no neighbor of it stays; since each point has less than 𝑘
neighbors, this simple greedy algorithm can not be blocked and the points all find a place. For larger graphs the same

argument works in each connected, (hence countable) component.
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Consider the (still) compact set 𝐶 ∶= 𝐶1 + ⋯ + 𝐶𝑛. By definition of a.u.u.d. there is 𝑉 ∈ 0 such

that 𝜈0(𝑉 ) ≥ (𝜌0 − 𝜀)𝜇(𝐶 + 𝑉 ). Obviously, 𝜇(𝐶𝑗 + 𝑉 ) ≤ 𝜇(𝐶 + 𝑉 ), so on combining the above we

obtain

𝜌0 − 𝜀 ≤
𝜈0(𝑉 )

𝜇(𝐶 + 𝑉 )
=

∑𝑘
𝑗=1 𝜈𝑗 (𝑉 )

𝜇(𝐶 + 𝑉 )
≤

𝑘

∑
𝑗=1

𝜈𝑗 (𝑉 )
𝜇(𝐶𝑗 + 𝑉 )

≤
𝑘

∑
𝑗=1

(𝜌𝑗 + 𝜀),

that is, 𝜌0 − 𝜀 ≤ ∑𝑗 (𝜌𝑗 + 𝜀). This holding for all 𝜀, we find 𝜌0 ≤ ∑𝑗 𝜌𝑗 , as it was to be proved. □

Continuation of the proof of Theorem 5. We take now an arbitrary compact neighborhood 𝐻 ⋐ 𝐺
of 0, with of course 𝜇(𝐻) > 0. By Lemma 5 there exists a finite disjoint partition 𝑆 = ∪𝑛𝑗=1𝑆𝑗 with
(𝑆𝑗 − 𝑆𝑗 ) ∩ (𝐻 − 𝐻) = {0}. By subadditivity of a.u.u.d. (that is, Lemma 6 above), at least one of

these 𝑆𝑗 must have positive a.u.u.d. 𝜌𝑗 (with respect to the counting measure), namely of density

0 < 𝜌/𝑛 ≤ 𝜌𝑗 ≤ 𝜌 < ∞, with 𝜌 ∶= 𝐷#(𝑆).
Selecting such an 𝑆𝑗 , we can apply Lemma 4 to infer that already 𝑆𝑗 – hence also 𝑆 ⊃ 𝑆𝑗 – is

syndetic. □

REMARK 6. In fact, the above proof also provides an estimate on the measure of the compact transla-

tion set 𝐵 + 𝐻 − 𝐻 exhibiting the syndetic property of 𝑆 − 𝑆, or, more precisely, already of some

𝑆𝑗 − 𝑆𝑗 , if we select 𝐻 suitably. Namely, #𝐵 ≤ 1/𝜌𝑗𝜇(𝐻), where 𝜌𝑗 ≥ 𝜌/𝑛 and 𝑛 ≤ (1 + 𝜀)𝜌𝜇(𝐻 − 𝐻)
yield 𝜇(𝐵 + 𝐻 − 𝐻) ≤ (𝑛/𝜌)𝜇(𝐻) ≤ (1 + 𝜀)𝜇(𝐻 − 𝐻)/𝜇(𝐻).
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