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ABSTRACT
We present examples of multiplicative semigroups of positive reals (Beurling’s generalized integers) with gaps bounded from
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1. INTRODUCTION
Let 𝐺 = {𝑔1, 𝑔2, …} be a sequence of real numbers, 1 < 𝑔1 ≤ 𝑔2 ≤ … (generators) and 𝐵 = {𝑏0, 𝑏1, …},
𝑏0 = 1 < 𝑏1 ≤ 𝑏2 ≤ … the sequence of products formed by elements of 𝐺. If 𝐺 is the set of primes, 𝐵
will be the set of positive integers. The name honours Beurling, who was the first to study analogs

of the prime-number theorem for such systems.

If 𝐺 is a set of multiplicatively independent integers, 𝐵 will be a subset of positive integers, hence

𝑏𝑖+1 − 𝑏𝑖 ≥ 1. If furthermore 𝐺 contains all but finitely many primes, then 𝑏𝑖+1 − 𝑏𝑖 will also be

bounded from above. Lagarias [3] proved that there is no other example consisting of integers, and

asked whether there is another example made of reals.

I conjecture that such a set does not exist.

As a first step towards this conjecture, we show that a certain simple attempt to construct such a

set must fail, namely we cannot omit a small set of primes and replace them by non-integers.

THEOREM 1. Let 𝑃 be a set of primes such that

∑
𝑝∉𝑃

1/𝑝 < ∞ (1.1)

and 𝛼 ∈ ℝ ⧵ ℤ, 𝛼 > 1. With 𝐺 = 𝑃 ∪ {𝛼} we have

lim inf 𝑏𝑖+1 − 𝑏𝑖 = 0.

On the other hand, we can add extra elements to a very thin set of primes.
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THEOREM 2. Let 𝑃 be a set of primes such that

∑
𝑝∈𝑃

1
√𝑝

< ∞.

There exist numbers 𝛼 ∈ ℝ ⧵ ℤ, 𝛼 > 1 such that for 𝐺 = 𝑃 ∪ {𝛼} we have 𝑏𝑖+1 − 𝑏𝑖 ≥ 1. The set of
such numbers 𝛼 has positive measure.

The above theorem was stated as to form a contrast to Theorem 1, but in fact there is nothing

special in the primes.

THEOREM 3. Let 𝐺′
be a set of reals such that

∑
𝑔∈𝐺′

1
√𝑔

< ∞. (1.2)

Let 𝐵′
be the sequence of products formed by elements of 𝐺′

. Assume that 𝑏′𝑖+1 − 𝑏′𝑖 ≥ 𝛿 > 0 for all 𝑖.
There exist numbers 𝛼 ∈ ℝ ⧵ ℤ, 𝛼 > 1 such that for 𝐺 = 𝐺′ ∪ {𝛼} we have 𝑏𝑖+1 − 𝑏𝑖 ≥ 𝛿. The set of
such numbers 𝛼 has positive measure.

Unfortunately we cannot say much about sets of primes which are neither almost full nor very

thin. The metric appoach of Theorem 3 cannot be substantially improved. We illustrate this by the

example of squares, where conditon (1.2) “just” fails.

THEOREM 4. Let 𝐺′ = {𝑝2} be the set of prime squares, 𝐵′ = {𝑛2} the set of squares.
There exist infinitely many numbers 𝛼 ∈ ℝ ⧵ ℤ, 𝛼 > 1 such that for 𝐺 = 𝐺′ ∪ {𝛼} we have

𝑏𝑖+1 − 𝑏𝑖 ≥ 1. The set of such numbers 𝛼 has measure 0.

Call a set of Beurling-integers maximal lacunary, if inf 𝑏𝑖+1 − 𝑏𝑖 > 0, but the inclusion of any

number to 𝐺 spoils this property.

PROBLEM. How thin can a maximal lacunary Beurling-set be? Is 𝐵(𝑥) = 𝑂(
√
𝑥) possible?

𝑥1/2+𝜀 is possible, as the following easy example shows.

THEOREM 5. Let 1 < 𝑐 < 2, 𝐺 = {𝑝𝑐} be the set of 𝑐-th powers of primes, 𝐵 = {𝑛𝑐}. This set is maximal

lacunary.

The densest example of a lacunary 𝐵 we could construct which is different from the integers is

as follows.

THEOREM 6. There exists a set 𝐺 of irrational numbers such that

𝐺(𝑥) = |{𝑔 ∈ 𝐺, 𝑔 ≤ 𝑥}| > 𝑐𝑥/ log 𝑥

and 𝑏𝑖+1 − 𝑏𝑖 ≥ 1.

2. PROOF OF THEOREM 1
Let 𝐸 be the set of primes missing from 𝑃 , and 𝑅 the set of integers composed only of primes from

𝑃 . We show that for every 𝛿 > 0 there are integers 𝑥, 𝑦 ∈ 𝑅 such that

|𝛼𝑚𝑥 − 𝑦| < 𝛿.

CASE 1. 𝛼 is rational, say 𝛼 = 𝑎/𝑏. We want to find 𝑥, 𝑦 ∈ 𝑅 with

|𝑎𝑚𝑥 − 𝑏𝑚𝑦| < 𝛿𝑏𝑚.

Fix 𝑘 so that 𝛿𝑏𝑚 > 2. Let 𝑑 = 2 if 𝑎𝑏 is odd, 𝑑 = 1 otherwise. Fix odd numbers 𝑢, 𝑣 with

𝑎𝑚𝑢 − 𝑏𝑚𝑣 = 𝑑. We will find 𝑥, 𝑦 in the form

𝑥 = 𝑢 + 2𝑧𝑏𝑚, 𝑦 = 𝑣 + 2𝑧𝑎𝑚.

With such a choice we have 𝑎𝑚𝑥 − 𝑏𝑚𝑦 = 𝑑 < 𝛿𝑏𝑚. We need that 𝑥, 𝑦 be free of primes from 𝐸. We

shall estimate the number of integers 𝑧 < 𝑍 with this property.

For a prime 𝑝 ∈ 𝐸, the divisibility 𝑝|𝑢+2𝑧𝑏𝑚 excludes at most one residue class modulo 𝑝. (Exactly
one if 𝑝 ∤ 𝑏 and none if 𝑝|𝑏, since the assumption 𝑎𝑚𝑢 − 𝑏𝑚𝑣 = 𝑑 excludes 𝑝|(𝑢, 𝑏).) For 𝑝 = 2 this
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divisibility cannot hold. Similarly the divisibility 𝑝|𝑣 + 2𝑧𝑎𝑚 may exclude a residue class, hence at

least 𝑝 − 2 remain.

Write

𝜂 = ∏
𝑝∈𝐸,𝑝>2(

1 −
2
𝑝)

and select 𝑇 so that

∑
𝑝∈𝐸,𝑝>𝑇

1/𝑝 < 𝜂/3.

Let 𝑞 = ∏𝑝∈𝐸,2<𝑝≤𝑇 𝑝. In each interval of length 𝑞 there are at least

∏
𝑝∈𝐸,2<𝑝≤𝑇

(𝑝 − 2) ≥ 𝜂𝑞

integers that avoid the excluded residue classes for every 𝑝 ≤ 𝑇 . Up to 𝑍 this is at least 𝜂𝑍 integers

if 𝑞|𝑍 .
Any prime divisor 𝑝|𝑥𝑦, with 𝑝 ∈ 𝐸 and 𝑝 > 𝑇 must be less than

max(𝑢 + 2𝑧𝑏𝑚, 𝑣 + 2𝑧𝑎𝑚) < 𝐶𝑍

with 𝐶 = max(𝑢 + 2𝑏𝑘 , 𝑣 + 2𝑎𝑘), and excludes 2 residue classes which means at most 2(1 + 𝑍/𝑝)
integers. There remain at least

𝜂𝑍 − ∑
𝑝∈𝐸,𝑇<𝑝<𝑐𝑍

2(1 + 𝑧/𝑝) > 𝜂𝑍/3 − 2𝜋(𝐶𝑍) > 0

for large 𝑍 .
CASE 2. 𝛼 is irrational. Consider two convergents from the continued fraction development of 𝛼, say

𝑎𝑘
𝑟𝑘

< 𝛼 <
𝑎𝑘+1
𝑟𝑘+1

.

Any median

𝜇 =
𝑥𝑎𝑘 + 𝑦𝑎𝑘+1
𝑥𝑟𝑘 + 𝑦𝑟𝑘+1

, 𝑥, 𝑦 > 0

satisfies 𝑎𝑘
𝑟𝑘

< 𝜇 <
𝑎𝑘+1
𝑟𝑘+1

,

hence

|𝛼 − 𝜇| <
𝑎𝑘+1
𝑟𝑘+1

−
𝑎𝑘
𝑟𝑘

=
1

𝑟𝑘𝑟𝑘+1
.

We try to find 𝑥, 𝑦 so that the numerator and denominator of 𝜇 be free of primes from 𝐸 and

|𝛼(𝑥𝑟𝑘 + 𝑦𝑟𝑘+1) − (𝑥𝑎𝑘 + 𝑦𝑎𝑘+1)| <
𝑥𝑟𝑘 + 𝑦𝑟𝑘+1

𝑟𝑘𝑟𝑘+1
< 𝛿. (2.1)

For the last inequality to hold we require

𝑥 < 𝑋 = 𝛿𝑟𝑘+1/2, 𝑦 < 𝑌 = 𝛿𝑟𝑘/2. (2.2)

First we fix the parity of 𝑥 and 𝑦 to make the numerator and denominator of 𝜇 odd. If 𝑎𝑘𝑟𝑘 is odd,
we set 2|𝑦, 2 ∤ 𝑥 . If 𝑎𝑘+1𝑟𝑘+1 is odd, we set 2 ∤ 𝑦, 2|𝑥 . If neither happens, then we set 2 ∤ 𝑦 and 2 ∤ 𝑥 .
The fact that 𝑎𝑘+1𝑟𝑘 − 𝑎𝑘𝑟𝑘+1 = 1 ensures that this works.

Given 𝑦, for a prime 𝑝 > 2 the divisibility 𝑝|𝑥𝑎𝑘 + 𝑦𝑎𝑘+1 means a single residue class modulo 𝑝
if 𝑝 ∤ 𝑎𝑘 . It is impossible if 𝑝|𝑎𝑘 and 𝑝 ∤ 𝑦, and it always holds if 𝑝|(𝑦, 𝑎𝑘). Similarly, the divisibility

𝑝|𝑥𝑟𝑘 + 𝑦𝑟𝑘+1 means a single residue class modulo 𝑝 if 𝑝 ∤ 𝑟𝑘 , it is impossible if 𝑝|𝑟𝑘 and 𝑝 ∤ 𝑦, and it

always holds if 𝑝|(𝑦, 𝑟𝑘). That is, at most two residue classes are excluded modulo 𝑝 unless 𝑝|(𝑦, 𝑎𝑘)
or 𝑝|(𝑦, 𝑟𝑘). As we have little control over prime divisors of 𝑎𝑘 and 𝑟𝑘 , we will require that 𝑦 be free

of prime divisors from 𝐸 up to a limit.

Write

𝜂 =
1
2

∏
𝑝∈𝐸,𝑝>2(

1 −
2
𝑝)

, 𝜂′ =
1
2

∏
𝑝∈𝐸,𝑝>2(

1 −
1
𝑝)
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and select 𝑇 so that

∑
𝑝∈𝐸,𝑝>𝑇

1/𝑝 < 𝛿𝜂𝜂′/10.

Let 𝑞 = 2∏𝑝∈𝐸,2<𝑝≤𝑇 𝑝.
In each interval of length 𝑞 there are at least

∏
𝑝∈𝐸,2<𝑝≤𝑇

(𝑝 − 1) ≥ 𝜂′𝑞

integers free of prime divisors 𝑝 ∈ 𝐸, 𝑝 ≤ 𝑇 and satisfying the parity restriction prescribed for 𝑦. Up
to 𝑌 this is at least 𝜂′𝑌 − 𝑞 integers. For each such 𝑦, in each interval of length 𝑞 there are at least

∏
𝑝∈𝐸,2<𝑝≤𝑇

(𝑝 − 2) ≥ 𝜂𝑞

integers that avoid the excluded residue classes for every 𝑝 ≤ 𝑇 and satisfying the parity restriction

prescribed for 𝑥 . Up to 𝑋 this is at least 𝜂𝑋 − 𝑞 integers. This leaves us with at least

(𝜂𝑋 − 𝑞)(𝜂′𝑌 − 𝑞) > 𝛿2𝜂𝜂′𝑟𝑘𝑟𝑘+1/5

possible pairs (𝑥, 𝑦).
Consider prime divisors 𝑝 > 𝑇 . The integers, which should not be divisible by these primes, are

all less than

𝑋𝑎𝑘 + 𝑌 𝑎𝑘+1 < (𝛿/2)(𝑎𝑘𝑟𝑘+1 + 𝑟𝑘𝑎𝑘+1) < 𝑈 = 2𝛿𝛼𝑟𝑘𝑟𝑘+1;
hence this is also a bound for 𝑝. The numbers 𝑥𝑎𝑘 +𝑦𝑎𝑘+1 are all distinct by the coprimality of 𝑎𝑘 and
𝑎𝑘+1. (We need that 𝑋 < 𝑎𝑘+1 and 𝑋 < 𝑎𝑘 , which holds if 𝛿 < 1/(2𝛼).) So are the numbes 𝑥𝑟𝑘 + 𝑦𝑟𝑘+1,
but we cannot exclude that the two kinds overlap. Hence an upper estimate for the number of pairs

𝑥, 𝑦 with an illegal divisibility is 2(𝑈/𝑝 + 1). Summing this for all 𝑝 < 𝑈 we obtain

∑
𝑇<𝑝<𝑈

2(𝑈/𝑝 + 1) < 2𝑈 ∑
𝑝∈𝐸,𝑝>𝑇

1/𝑝 + 2𝜋(𝑈) < 𝛿2𝜂𝜂′𝑟𝑘𝑟𝑘+1/5

if 𝑟𝑘 is large enough.

3. PROOF OF THEOREMS 3 AND 2
We need to find numbers 𝛼 such that

||𝛼
𝑘𝑚 − 𝛼𝑗𝑛|| ≥ 𝛿 for all 𝑚, 𝑛 ∈ 𝐺′

and positive integers 𝑗 < 𝑘.
Since for 𝑗 ≤ 𝑘 we have

||𝛼
𝑘𝑚 − 𝛼𝑗𝑛|| = 𝛼𝑗 ||𝛼

𝑘−𝑗𝑚 − 𝑛|| ≥ ||𝛼
𝑘−𝑗𝑚 − 𝑛|| ,

it is sufficient to consider the case 𝑗 = 0.
We will show that the measure of such 𝛼 in the interval [𝑒𝑡 , 𝑒2𝑡] is positive for sufficiently large 𝑡.
The event we want to avoid is

||𝛼
𝑘𝑚 − 𝑛|| < 𝛿, which can be rewritten as

𝛼𝑘𝑚
𝑛

∈ (1 −
𝛿
𝑛
, 1 +

𝛿
𝑛)

.

Note that
||𝛼

𝑘𝑚 − 𝑛|| < 𝛿 implies 𝑛 > 𝛼𝑚 − 𝛿, whence 𝑛 > 2𝛿 and 𝑛 > 𝛼𝑚/2 > 𝑚, assuming that

𝛼 > 3𝛿 which holds for 𝑡 > log 3𝛿.
We take logarithms to infer, with the notation 𝛽 = log 𝛼, that

𝑘𝛽 + log𝑚 − log 𝑛 ∈ (−2𝛿/𝑛, 𝛿/𝑛),

that is,

𝛽 ∈
log 𝑛 − log𝑚

𝑘
+ (

−2𝛿
𝑘𝑛

,
𝛿
𝑘𝑛)

.

To estimate the measure of such numbers 𝛽 we add 3𝛿/(𝑘𝑛) for all triplets𝑚, 𝑛, 𝑘 such that the above
interval intersects the interval [𝑡, 2𝑡]. If 𝑡 > 4𝛿, this intersection implies

log 𝑛 − log𝑚
𝑘

∈ (𝑡/2, 3𝑡).
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Hence

log 𝑛 − log𝑚
3𝑡

< 𝑘 < 2
log 𝑛 − log𝑚

𝑡
.

The ratio of the upper and lower bounds is 6, hence the sum of 1/𝑘 in this interval is less than

𝑐 = 1 + log 6. Consequently the sum of 3𝛿/(𝑘𝑛) for all triplets 𝑚, 𝑛, 𝑘 is at most the sum of 3𝑐𝛿/𝑛 for
all possible pairs 𝑚, 𝑛. These pairs staisfy 𝑛 > 𝛼𝑚/2 > 𝑒𝑡𝑚/2, so

∑
𝑚,𝑛

1
𝑛
< 2𝑒−𝑡/2 ∑

𝑚,𝑛∈𝐵′

1
√
𝑚𝑛

= 2𝑒−𝑡/2
(
∑
𝑚∈𝐵′

1
√
𝑚)

2

.

This series is convergent, indeed

∑
𝑚∈𝐵′

1
√
𝑚

= ∏
𝑔∈𝐺′ (

1 +
1

√𝑔 − 1)
< ∞

by assumption (1.2).

The estimate we found for the measure of bad 𝛽 is

6𝑐𝛿𝑒−𝑡/2
(
∑
𝑚∈𝐵′

1
√
𝑚)

2

,

which is less than 𝑡, the length of the interval for large enough 𝑡.

4. PROOF OF THEOREM 4
Let 𝑞 be a squarefree integer, 𝑎, 𝑏 positive integers and

𝛼 = (𝑎
√𝑞 + 𝑏)

2.

We show that for these numbers 𝐵 has the lacunarity property.

The elements of 𝐵 are numbers of the form 𝛼𝑘𝑚2
, and we need to show that

||𝛼
𝑘𝑚2 − 𝛼𝑗𝑛2|| ≥ 1.

Since for 𝑗 ≤ 𝑘 we have
||𝛼

𝑘𝑚 − 𝛼𝑗𝑛|| = 𝛼𝑗 ||𝛼
𝑘−𝑗𝑚 − 𝑛|| ≥ ||𝛼

𝑘−𝑗𝑚 − 𝑛|| ,

it is sufficient to consider the case 𝑗 = 0.
Put 𝛽 = (𝑎

√𝑞 + 𝑏)
𝑘
. This number is of the form

𝛽 = 𝑢√𝑞 + 𝑣

with positive integers 𝑢, 𝑣. Now we have

𝛼𝑘𝑚2 − 𝑛2 = (𝛽𝑚)2 − 𝑛2 = (𝑣𝑚 + 𝑛 + 𝑢𝑚√𝑞)(𝑣𝑚 − 𝑛 + 𝑢𝑚√𝑞)

= (𝑣𝑚 + 𝑛 + 𝑢𝑚√𝑞)
(𝑣𝑚 − 𝑛 − 𝑢𝑚√𝑞)

((𝑣𝑚 − 𝑛)2 − (𝑢𝑚)2𝑞) .

The numerator exceeds the absolute value of the denominator, and the second factor is a nonzero

integer, so the absolute value of the expression is > 1.
Now we show that for such numbers

√
𝛼 are badly approximable. Assume that it is well approx-

imable, that is, for every 𝜀 > 0 there are integers 𝑎, 𝑏 such that

||||
√
𝛼 −

𝑎
𝑏
||||
<

𝜀
𝑏2
.

Clearly 𝑎 < 2
√
𝛼𝑏 and then

||𝛼𝑏
2 − 𝑎2|| = (

√
𝛼𝑏 − 𝑎)(

√
𝛼𝑏 + 𝑎) < 3𝜀

√
𝛼.

Badly approximable numbers have measure 0 by a theorem of Hinchin [2].
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5. PROOF OF THEOREM 5
Try to include a number 𝛼. Take integers 𝑎, 𝑏 such that

||||
𝛼1/𝑐 −

𝑎
𝑏
||||
<

1
𝑏2
.

From the mean value theorem we see that

𝛼𝑏𝑐 − 𝑎𝑐

𝛼1/𝑐𝑏 − 𝑎
= 𝑐𝑧𝑐−1

with some 𝑧 between 𝛼1/𝑐𝑏 and 𝑎, so 𝑧 = 𝑂(𝑏). Hence

𝛼𝑏𝑐 − 𝑎𝑐 = 𝑂(𝑏𝑐−2)

can be arbitrarily small.

6. PROOF OF THEOREM 6
We give two examples, one with quadratic irrationals and the other with transcendental numbers.

Both arise from a subset of primes through a transformation.

EXAMPLE 1: QUADRATIC. Take those odd primes that split in ℚ[
√
2]. They are the primes 𝑝 ≡ ±1

(mod 8) (about half of the primes). For such a prime there are positive integers 𝑥, 𝑦 such that

±𝑝 = 𝑥2 − 2𝑦2 = (𝑥 − 𝑦
√
2)(𝑥 + 𝑦

√
2).

Put 𝑓 (𝑝) = min(𝑥 + 𝑦
√
2) over all such representations. This satisfies 𝑓 (𝑝) < 𝐶√𝑝 with some

constant 𝐶. This can be seen by comparing the minimal representation with the one obtained by

𝑥′ = |𝑥 − 2𝑦|, 𝑦′ = |𝑦 − 𝑥| which corresponds to a multiplication by the unit 1 −
√
2 of ℚ[

√
2]. (It

is not difficult to calculate the best value of 𝐶, but not too important for this argument.) Extend 𝑓
multiplicatively to all integers composed exclusively of primes 𝑝 ≡ ±1 (mod 8). For every such

integer 𝑛 we have
𝑓 (𝑛) = 𝑥 + 𝑦

√
2, 𝑥, 𝑦 > 0, 𝑥2 − 2𝑦2 = ±𝑛.

Put 𝑔(𝑛) = 𝑓 (𝑛)2. Our generators will be the numbers 𝑔(𝑝) for 𝑝 prime, 𝐵 will be the set of

values of 𝑔(𝑛) for the above described special 𝑛. As 𝑔(𝑝) < 𝐶2𝑝 and half of the primes are used,

𝐺(𝑥) > 𝑐𝑥/ log 𝑥 holds for large 𝑥 with 𝑐 = 1/(2𝐶2).
Now we show that |𝑔(𝑚) − 𝑔(𝑛)| > 1 for 𝑚 ≠ 𝑛. Let

𝑓 (𝑚) = 𝑢 + 𝑣
√
2, 𝑓 (𝑛) = 𝑥 + 𝑦

√
2.

We have

𝑓 (𝑚)2 − 𝑓 (𝑛)2 = ((𝑢 + 𝑥) + (𝑣 + 𝑦)
√
2) ((𝑢 − 𝑥) + (𝑣 − 𝑦)

√
2)

=
(𝑢 + 𝑥) + (𝑣 + 𝑦)

√
2

(𝑢 − 𝑥) − (𝑣 − 𝑦)
√
2 ((𝑢 − 𝑥)2 − 2(𝑣 − 𝑦)2) .

The numerator exceeds the absolute value of the denominator, and the second factor is a nonzero

integer, so the absolute value of the expression is > 1.
The similarity to the proof of Theorem 4 hints that the two arguments could be combined,

and the above example can be extended by including squares of integers. However, this does not

substantially increase the size of 𝐵(𝑥) and 𝐺(𝑥).
EXAMPLE 2: TRANSCENDENTAL. Consider primes 𝑝 ≡ 1 (mod 4). Write 𝑝 = 𝑎2 + 𝑏2 with 0 < 𝑎 < 𝑏
and let

𝜌(𝑝) = 𝑖𝑎 + 𝑏 =
√
𝑝𝑒𝑖ℎ(𝑝), 0 < ℎ(𝑝) < 𝜋/4.

Here 𝜌(𝑝) is one of the Gaussian primes in the decomposition of 𝑝 in the ring of Gaussian integers.

Extend 𝜌 multiplicatively to the product of such primes, that is, odd integers that can be written as

a sum of two squares.

Since together with a Gaussian prime its conjugate is never selected, the numbers 𝜌(𝑛) for 𝑛 ≠ 1,
and 𝜌(𝑚)/𝜌(𝑛) for 𝑚 ≠ 𝑛 will never be real. Indeed, 𝜌(𝑚)/𝜌(𝑛) is a product of our selected primes
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with (positive and negative) exponents, and its conjugate can be obtained by taking the conjugate

primes, and by the unicity of prime factorization these are different numbers.

Given a prime 𝑝 let 𝑓 (𝑝) = ℎ(𝑝)+2𝑘𝜋 with the integer 𝑘 chosen so that log 𝑝 < 𝑓 (𝑝) < log 𝑝+2𝜋.
Extend 𝑓 additively. We will always have

𝑒𝑖𝑓 (𝑛) =
𝜌(𝑛)
√
𝑛
.

Finally we put

𝑔(𝑝) = 𝑒𝑓 (𝑝) < 𝑒2𝜋𝑝.
These numbers form the set 𝐺, and (since again half of the primes was used)

𝐺(𝑥) > 𝑐𝑥/ log 𝑥, 𝑐 = 𝑒−2𝜋/2

for large 𝑥 . 𝐵 is the set of values of the multiplicative extension of 𝑔 . Since 𝑔(𝑛) is one of the values
of (𝜌(𝑛)/

√
𝑛)−𝑖, it is transcendental by the Gelfond-Schneider theorem, see for instance [1].

We show the lacunarity property. For 𝑚 ≠ 𝑛 consider the triangle in the integer lattice with

vertices 0, 𝜌(𝑚), 𝜌(𝑛). Since it is a nondegenerate triangle, its area is at least 1/2, on the other hand

it is exactly

1
2
√
𝑚𝑛 |sin (𝑓 (𝑚) − 𝑓 (𝑛))| .

We infer that

|sin (𝑓 (𝑚) − 𝑓 (𝑛))| ≥
1

√
𝑚𝑛

.

Finally

𝑔(𝑚) − 𝑔(𝑛) = 𝑒𝑓 (𝑚) − 𝑒𝑓 (𝑛) = 𝑒
𝑓 (𝑚)+𝑓 (𝑛)

2 (𝑒
𝑓 (𝑚)−𝑓 (𝑛)

2 − 𝑒
𝑓 (𝑛)−𝑓 (𝑚)

2 ) .

The first factor is √
𝑔(𝑚)𝑔(𝑛) ≥

√
𝑚𝑛.

To estimate the second note that

|𝑒𝑥 − 𝑒−𝑥 | > 2|𝑥| > | sin(2𝑥)|,

so it exceeds |sin (𝑓 (𝑚) − 𝑓 (𝑛))| which was shown to exceed 1/
√
𝑚𝑛.
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