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Abstract

Given a set S ⊆ R2, define the Helly number of S, denoted by H(S), as
the smallest positive integer N , if it exists, for which the following statement
is true: for any finite family F of convex sets in R2 such that the intersection
of any N or fewer members of F contains at least one point of S, there is a
point of S common to all members of F .
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We prove that the Helly numbers of exponential lattices {αn : n ∈ N0}2
are finite for every α > 1 and we determine their exact values in some
instances. In particular, we obtain H({2n : n ∈ N0}2) = 5, solving a problem
posed by Dillon (2021).

For real numbers α, β > 1, we also fully characterize exponential lattices
L(α, β) = {αn : n ∈ N0} × {βn : n ∈ N0} with finite Helly numbers by
showing that H(L(α, β)) is finite if and only if logα(β) is rational.

1 Introduction

Helly’s theorem [11] is one of the most classical results in combinatorial geometry.
It states that, for each d ∈ N, if the intersection of any d+ 1 or fewer members of
a finite family F of convex sets in Rd is nonempty, then the entire family F has
nonempty intersection. There have been numerous variants and generalizations of
this famous result; see [1, 13] for example. One active direction of this research with
rich connections to the theory of optimization, in particular to integer programming
and LP-type problems [1, 4], is the study of variants of Helly’s theorem with
coordinate restrictions, which is captured by the following definition.

Let d be a positive integer. The Helly number of a set S ⊆ Rd, denoted by H(S),
is the smallest positive integer N , if it exists, such that the following statement is
true for every finite family F of convex sets in Rd: if the intersection of any N or
fewer members of F contains at least one point of S, then

⋂
F contains at least

one point of S. If no such number N exists, then we write H(S) = ∞. Helly’s
theorem in this language can be restated as H(Rd) = d+ 1.

A classical result of this sort is Doignon’s theorem [8] where the set S is the
integer lattice Zd. This result, which was also independently discovered by Bell [3]
and by Scarf [15], states that H(Zd) ≤ 2d. This is tight as for Q = {0, 1}d the
intersection of any 2d − 1 sets in the family {conv(Q \ {x}) : x ∈ Q} contains a
lattice point, but the intersection of all 2d sets does not.

The theory of Helly numbers of general sets is developing quickly and there are
many result of this kind [1, 13]. For example, De Loera, La Haye, Oliveros, and
Roldán-Pensado [5] and De Loera, La Haye, Rolnick, and Soberón [6] studied the
Helly numbers of differences of lattices and Garber [9] considered Hely numbers of
crystals or cut-and-project sets.

The Helly number of a set S is closely related to the maximum size of a set that
is empty in S. A subset X ⊆ S is intersect-empty if

(⋂
x∈X conv(X \ {x})

)
∩S = ∅.

A convex polytope P with vertices in S is empty in S if P does not contain any
points of S other than its vertices. In particular, an empty polytope does not
contain points of S in the interior of its edges. For a discrete set S, we use h(S)
to denote the maximum number of vertices of an empty polytope in S. If there
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are empty polytopes in S with arbitrarily large number of vertices, then we write
h(S) = ∞.

The following result by Hoffman [12] (which was essentially already proved by
Doignon [8]) shows the close connection between intersect-empty sets and empty
polygons in S and the Helly numbers of S; see also [2].

Proposition 1 ([12]). If S ⊆ Rd, then H(S) is equal to the maximum cardinality
of an intersect-empty set in S. If S is discrete, then H(S) = h(S).

Since all the sets S studied in this paper are discrete, we state all of our results
using h(α) but, due to Proposition 1, our results apply to H(α) as well.

Very recently, Dillon [7] proved that the Helly number of a set S is infinite if S
belongs to a certain collection of product sets, which are sets of the form S = Ad with
a certain kind of discrete set A ⊆ R. His result shows, for example, that whenever
p is a polynomial of degree at least 2 and d ≥ 2, then h({p(n) : n ∈ N0}d) = ∞.
However, there are sets for which Dillon’s method gives no information, for example
{2n : n ∈ N0}2. Thus, Dillon [7] posed the following question, which motivated our
research.

Problem 1 (Dillon, [7]). What is h({2n : n ∈ N0}2)?

In this paper, we study the Helly numbers of exponential lattices L(α) and
L(α, β) in the plane where L(α) = {αn : n ∈ N0}2 and L(α, β) = {αn : n ∈
N0} × {βn : n ∈ N0} for real numbers α, β > 1. In particular, we prove that Helly
numbers of exponential lattices L(α) are finite and we provide several estimates
that give exact values for α sufficiently large, solving Problem 1. We also show
that Helly numbers of exponential lattices L(α, β) are finite if and only if logα(β)
is rational. Finally, we introduce some new open problems, for example, it is not
even known whether the Helly numbers of the sets {αn : n ∈ N0}d with d > 2 are
finite.

2 Our results

For a real number α > 1 and the exponential lattice L(α) = {αn : n ∈ N0}2, we
abbreviate h(L(α)) by h(α).

As our first result, we provide finite bounds on the numbers h(α) for any α > 1.
The upper bounds are getting smaller as α increases and reach their minimum at
α = 2.

Theorem 2. For every real α > 1, the maximum number of vertices of an empty
polygon in L(α) is finite. More precisely, we have h(α) ≤ 5 for every α ≥ 2,
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h(α) ≤ 7 for every α ∈ [1+
√
5

2
, 2), and

h(α) ≤ 3

⌈
logα

(
α

α− 1

)⌉
+ 3

for every α ∈ (1, 1+
√
5

2
).

We note that if α = 1 + 1
x
for x ∈ (0,∞), then the bound from Theorem 2

becomes h(1 + 1
x
) ≤ O(x log2(x)). Moreover, we show that the breaking points

of α for our upper bounds are determined by certain polynomial equations; see
Section 3.

We also consider the lower bounds on h(α) and provide the following estimate.

Theorem 3. We have h(α) ≥ 5 for every α ≥ 2 and h(α) ≥ 7 for every α ∈[
1+

√
5

2
, 2
)
. For every α ∈

(
1, 1+

√
5

2

)
, we have

h(α) ≥

⌊√
1

α− 1

⌋
.

If α = 1 + 1
x
where x ∈ (0,∞), then the lower bound from Theorem 3 becomes

h(1 + 1
x
) ≥ ⌊

√
x⌋. So with decreasing α, the parameter h(α) indeed grows to

infinity.
By combining Theorems 2 and 3, we get the precise value of the Helly numbers

of L(α) with α ≥ (1 +
√
5)/2. In particular, for α = 2, we obtain a solution to

Problem 1.

Corollary 4. We have h(α) = 5 for every α ≥ 2 and h(α) = 7 for every

α ∈ [1+
√
5

2
, 2).

We prove the following result which shows that even a slight perturbation of
S can affect the value h(S) drastically. We use the Fibonacci numbers (Fn)n∈N0 ,
which are defined as F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2 for every integer n ≥ 2.

Proposition 5. We have h({Fn : n ∈ N0}2) = ∞.

We recall that Fn = φn+1−ψn+1
√
5

for every n ∈ N0, where φ = 1+
√
5

2
is the golden

ratio and ψ = 1−
√
5

2
= 1− φ is its conjugate. Since ψ < 1, this formula shows that

the points of {Fn : n ∈ N0}2 are approaching the points of the scaled exponential
lattice φ√

5
· L(φ) = { φ√

5
· φn : n ∈ N0}2. Thus, Proposition 5 is in sharp contrast

with the fact that h( φ√
5
· L(φ)) = h(φ) ≤ 7, which follows from Theorem 2 and

from the fact that affine transformations of any set S ⊆ Rd do not change h(S).
We also note Dillon’s method [7] does not imply h({Fn : n ∈ N0}2) = ∞.
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We also consider the more general case of exponential lattices where the rows
and the columns might use different bases. For real numbers α > 1 and β > 1, let
L(α, β) be the set {αn : n ∈ N0} × {βn : n ∈ N0}. Note that L(α) = L(α, α) for
every α > 1.

As our last main result, we fully characterize exponential lattices L(α, β) with
finite Helly numbers h(L(α, β)), settling the question of finiteness of Helly numbers
of planar exponential lattices completely.

Theorem 6. Let α > 1 and β > 1 be real numbers. Then, h(L(α, β)) is finite if
and only if logα(β) is a rational number.

Moreover, if logα(β) ∈ Q, that is, β = αp/q for some p, q ∈ N, then⌊
1

pq

⌊√
1

α1/q − 1

⌋⌋
≤ h(L(α, β)) ≤ pq · h(αp).

The proof of Theorem 6 is based on Theorem 2 and on the theory of continued
fractions and Diophantine approximations.

Open problems

First, it is natural to try to close the gap between the upper bound from Theorem 2
and the lower bound from Theorem 3 and potentially obtain new precise values of
h(α).

Second, we considered only the exponential lattice in the plane, but it would be
interesting to obtain some estimates on the Helly numbers of exponential lattices
{αn : n ∈ N0}d in dimension d > 2. In particular, are these numbers finite?

We also mention the following conjecture of De Loera, La Haye, Oliveros, and
Roldán-Pensado [5], which inspired the research of Dillon [7].

Conjecture 1 ([5]). If P is the set of prime numbers, then h(P2) = ∞.

Using computer search, Summers [16] showed that h(P2) ≥ 14.

3 Proof of Theorem 2

Here, we prove Theorem 2 by showing that the number h(α) is finite for every
α > 1. This follows from the upper bounds h(α) ≤ 5 for α ≥ 2, h(α) ≤ 7 for every

α ≥ [1+
√
5

2
, 2), and

h(α) ≤ 3

⌈
logα

(
α

α− 1

)⌉
+ 3

for any α ∈ (1, 1+
√
5

2
).
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We start by introducing some auxiliary definitions and notation. Let α > 1
be a real number and consider the exponential lattice L(α). For i ∈ N0, the ith
column of L(α) is the set {(αi, αn) : n ∈ N0}. Analogously, the ith row of L(α) is
the set {(αn, αi) : n ∈ N0}.

For a point p in the plane, we write x(p) and y(p) for the x- and y-coordinates
of p, respectively. Let P be an empty convex polygon in L(α). Let e be an edge
of P connecting vertices u and v where x(u) < x(v) or y(u) < y(v) if x(u) = x(v).
We use e to denote the line determined by e and oriented from u to v. The slope
of e with x(u) < x(v) is the slope of e, that is, y(v)−y(u)

x(v)−x(u) .

We distinguish four types of edges of P ; see part (a) of Figure 1. Roughly
speaking, the type of an edge is exactly the quadrant where the normal vector
to this edge points to (up to the boundaries of the quadrants). First, assume
x(u) ̸= x(v) and y(u) ̸= y(v). We say that e is of type I if the slope of e is negative
and P lies to the right of e. Similarly, e is of type II if the slope of e is positive
and P lies to the right of e. An edge e has type III if the slope of e is negative
and P lies to the left of e. Finally, type IV is for e with positive slope and with
P lying to the left of e. It remains to deal with horizontal and vertical edges of
P . A horizontal edge e is of type II if P lies below e and is of type III otherwise.
Similarly, a vertical edge e is of type IV if P lies to the left of e and is of type III
otherwise.

(a) (b)

I
II

III IV

0

u = (αk, α`)

v = (αk+m, α`−n)

(αk+m+r, 0)︸ ︷︷ ︸
≤ r − 1

Figure 1: (a) The four types of edges of a convex polygon. (b) An illustration of
the proof of Lemma 7.

Note that each edge of P has exactly one type and that the types partition the
edges of P into four convex chains. We first provide an upper bound on the number
of edges of those chains of P and then derive the bound on the total number of
edges of P by summing the four bounds. We start by estimating the number of
edges of P of type I.

Lemma 7. The polygon P has at most
⌈
logα

(
α
α−1

)⌉
edges of type I.

Proof. First, let r =
⌈
logα

(
α
α−1

)⌉
and note that r ≥ 1 as α > 1. Let e be the

left-most edge of P of type I and let u and v be the vertices of e. Since e is of type
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I, we have u = (αk, αℓ) and v = (αk+m, αℓ−n) for some positive integers k, ℓ, m,
and n.

We will show that the point (αk+m+r, 0) lies above the line e. Since there are at
most r − 1 columns of L(α) between the vertical line containing v and the vertical
line containing (αk+m+r, 0) and the point (αk+m+r, 0) is below the lowest row of
L(α), it then follows that there are at most r edges of P of type I; see part (b) of
Figure 1.

Since the line e contains u and v, we see that

e = {(x, y) ∈ R2 : (αℓ − αℓ−n)x+ (αk+m − αk)y = αk+ℓ+m − αk+ℓ−n}.

It suffices to check that by substituting the coordinates of the point (αk+m+r, 0)
into the equation of the line e gives a left side that is at least αk+ℓ+m − αk+ℓ−n.
The left side equals αk+ℓ+m+r − αk+ℓ+m−n+r and thus we want

αk+ℓ+m+r − αk+ℓ+m−n+r ≥ αk+ℓ+m − αk+ℓ−n.

By dividing both sides by αk+ℓ and by rearranging the terms, we can rewrite this
expression as

α−n(1− αm+r) ≥ αm − αm+r.

Since m, r > 0 and α > 1, we get (1−αm+r) < 0 and thus the left side is increasing
as n increases, so we can assume n = 1, leading to

α−1 − αm+r−1 ≥ αm − αm+r.

We can again rearrange the inequality as

αr − αr−1 − 1 ≥ −α−1−m,

where the right side is negative and approaches 0 as m tends to infinity, so we can
replace it by 0, obtaining

αr − αr−1 ≥ 1.

This inequality is satisfied by our choice of r.

We now estimate the number of edges of P that are of type III.

Lemma 8. The polygon P has at most 2⌈logα
(
α+1
α

)
⌉ + 1 edges of type III for

1 < α < 2 and at most 2 such edges for α ≥ 2.

Proof. Let t = ⌈logα
(
α+1
α

)
⌉ and s = t+ 1 for α ∈ (1, 2) and t = 1 = s for α ≥ 2.

Suppose for contradiction that there are s + t + 1 edges of P of type III. Let
v1, . . . , vs+t+2 be the vertices of the convex chain that is formed by edges of P of
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type III. We use Q to denote the convex polygon with vertices v1, . . . , vs+t+2. Note
that Q is empty in L(α) as P is empty and Q ⊆ P .

Let v′ be the point (x(vs+2), α · y(vs+2)), that is, v
′ is the point of L(α) that

lies just above vs+2; see part (a) of Figure 2. We will show that the point v′ lies
below the line v1vs+t+2. Since v

′ lies in the same column of L(α) as vs+2, this then
implies that v′ lies in the interior of Q, contradicting the fact that Q is empty in
L(α).

(b)

o

u
v v′

W

(a)

o x(vs+t+2)
αt

v′ vs+t+2

v1

v2

v3

y(v1)
αs

Q

v′′

Figure 2: (a) An illustration of the proof of Lemma 8 for s = 1 = t. (b) An
illustration of Lemma 9.

Note that x(v′) ≤ x(vs+t+2)
αt and y(v′) ≤ y(v1)

αs as all edges vivi+1 are of type III
and thus the x- and y-coordinates decrease by a multiplicative factor at least α for
each such edge. Since the only vertical edge might be v1v2 and the only horizontal
edge might be vs+t+1vs+t+2, the x- or y-coordinates indeed decrease by the factor
at least α at each step.

Let v1 = (αk, αℓ) and vs+t+2 = (αk+m, αℓ−n) for some positive integers k, ℓ,m, n.
Note that m,n ≥ s+ t. The line determined by v1 and vs+t+2 is then

{(x, y) ∈ R2 : (αℓ − αℓ−n)x+ (αk+m − αk)y = αk+ℓ+m − αk+ℓ−n}.

Since x(v′) ≤ x(vs+t+2)
αt and y(v′) ≤ y(v1)

αs , it suffices to check

(αℓ − αℓ−n)
αk+m

αt
+ (αk+m − αk)

αℓ

αs
< αk+ℓ+m − αk+ℓ−n.

After dividing by αk+ℓ+m, this can be rewritten as

α−t + α−s < 1− α−m−n + α−t−n + α−s−m.

Since m,n ≥ s+ t, the right hand side is decreasing with increasing m and n and
thus we only need to prove

α−s + α−t ≤ 1.

8



If α ≥ 2, then s = 1 = t and this inequality becomes 2/α ≤ 1, which is true. If
α ∈ (1, 2), then s = t+ 1 and the inequality becomes 1 + 1/α ≤ αt, which is also
true by our choice of t.

It remains to bound the number of edges of P that are of types II and IV.
Observe that if we switch the x- and y- coordinates of P , then edges of type II
become edges of type IV and vice versa. Since the exponential lattice L(α) is
symmetric with respect to the line x = y, we see that it suffices to estimate the
number of edges of type II. To do so, we use the following auxiliary result.

Lemma 9. Let u be a point of L(α) and let v and v′ be two points of L(α) that are
consecutive in a row R of L(α) that lies above the row containing u; see part (b)
of Figure 2. If v and v′ lie to the right of u, then all points of L(α) that lie above
R in the interior of the angle W spanned by the rays uv and uv′ lie on at most⌈
logα(

α
α−1

)
⌉
lines containing the origin.

Proof. Similarly as in Lemma 7, we set r =
⌈
logα

(
α
α−1

)⌉
and note that r ≥ 1. We

can assume without loss of generality that u = (1, 1) as otherwise it suffices to scale
the points of L(α) with an affine transformation. Since v and v′ are consecutive
on R, they both lie in the same closed halfplane determined by the line x = y. We
first assume that the point v lies below or on the line x = y.

Let o be the origin and consider the lines ov and ov′. Then, the part of the line
ov above the row R is (not necessarily strictly) above uv; see part (b) of Figure 2.
Similarly, the part of the line ov′ above R is above uv′. It follows that only points
of L(α) that lie on a line ow, where w is a point of L(α) to the right of v on R,
can lie in the interior of W .

Let v′′ be the point (αr · x(v′), y(v′)), that is, v′′ is the point of L(α) that lies r
columns to the right of v′ on R, We will show that the part of the line ov′′ above R
lies below uv′. This will conclude the proof as all points of L(α) that lie in the
interior ofW above R have to then lie on one of the r lines ow with w lying between
v and v′′ on R.

It suffices to compare the slopes of the lines ov′′ and uv′. Let v′ = (αm, αn) for
some positive integers m and n. Then, the slope of ov′′ is

y(v′′)− y(o)

x(v′′)− x(o)
=

y(v′)

αr · x(v′)
=

αn

αm+r

and the slope of uv′ equals

y(v′)− y(u)

x(v′)− x(u)
=
y(v′)− 1

x(v′)− 1
=
αn − 1

αm − 1
.

Thus, we want
αn − 1

αm − 1
≥ αn

αm+r
.
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We can rewrite this inequality as

αm+n+r − αm+r ≥ αn+m − αn,

which can be further rewritten by dividing both sides with αn as

αm+r(1− α−n) ≥ αm − 1.

The left side is increasing with increasing n, so we can assume n = 1 and, by
dividing both sides with αm, we obtain

αr(1− α−1) ≥ 1− α−m.

Now, the term α−m on the right side approaches 0 from above with increasing m,
so we can replace it by 0 obtaining

αr − αr−1 ≥ 1.

This inequality is satisfied by our choice of r.
Now, assume that the point v lies above the line x = y. Then, the proof

proceeds analogously as in the previous case. The part of the line ov above the row
R is (not necessarily strictly) below uv. Similarly, the part of the line ov′ above R
is below uv′. Then, only points of L(α) that lie on a line ow, where w is a point of
L(α) to the left of v on R, can lie in the interior of W above R. Considering the
point (α−r · x(v′), y(v′)) of L(α) that lies r columns to the left of v′ on R, we can
show with analogous computations as before that the part of the line ov′′ above R
lies above uv′. This concludes the proof.

Now, we can apply Lemma 9 to obtain an upper bound on the number of edges
of P of type II.

Lemma 10. The polygon P has at most
⌈
logα

(
α
α−1

)⌉
+ 1 edges of type II.

Proof. Again, let r =
⌈
logα

(
α
α−1

)⌉
. Let u be the leftmost vertex of the convex

chain C determined by the edges of P of type II. Similarly, let v be the second
leftmost vertex of C. Note that since the edge uv is of type II, the vertex v lies in
a row R of L(α) above the row containing u and v is also to the right of u. Let
v′ be the point (α · x(v), y(v)), that is, the point of L(α) that is to the right of v
on R. Then, by Lemma 9, all points of L(α) that lie above R and in the interior of
the angle W spanned by the rays uv and uv′ lie on at most r lines containing the
origin.

Since P is empty in L(α), all vertices of C besides u, v, and possibly v′ lie in
W above R. Since all edges of C are of type II, every line determined by the origin
and by a point of L(α) from the interior of W contains at most one vertex of C.
Note that if v′ is a vertex of C, then the only vertices of C are u, v, v′. Thus, in
total C has at most r + 2 vertices and therefore at most r + 1 edges.
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We recall that, by symmetry, the same bound applies for edges of type IV and
thus we get the following result.

Corollary 11. The polygon P has at most
⌈
logα

(
α
α−1

)⌉
+ 1 edges of type IV.

Since each edge of P is of one of the types I–IV, it immediately follows from
Lemmas 7, 8, 10, and from Corollary 11 that the number of edges of P is at most

3

⌈
logα

(
α

α− 1

)⌉
+ 2 + 2

⌈
logα

(
α + 1

α

)⌉
+ 1 ≤ 5

⌈
logα

(
α

α− 1

)⌉
+ 3,

as logx
(

x
x−1

)
≥ logx

(
x+1
x

)
for every x > 1. In particular, this gives h(2) ≤ 8 and

h
(

1+
√
5

2

)
≤ 13. To obtain better bounds that are tight for α ≥ 1+

√
5

2
, we observe

that not all types can appear simultaneously. To show this, we will use one last
auxiliary result.

Let p and q be points lying on the same row R of L(α), each contained in an
edge of P . We note that p and q do not need to be distinct and that they can also
be interior points of an edge of P . Let L and L′ be two lines containing p and q,
respectively. If the slopes of L and L′ are negative, then we call the part of the
plane between L and L′ below R a slice of negative slope; see part (a) of Figure 3
Analogously, a slice of positive slope is the part of the plane between L and L′

above R if L and L′ have positive slope.

(a) (b)

0

P

q
p

L′

L

R

0

P

q
p

L′

L

R

vw

u

Figure 3: (a) An example of a slice of negative slope. The slice is denoted by dark
gray stripes. (b) An illustration of the proof of Lemma 12 for negative slopes.

Lemma 12. If the empty polygon P is contained in a slice of negative slope, then
there is no non-vertical edge of P of type IV. Similarly, if P is contained in a slice
of positive slope, then there is no edge of type I.

Proof. It suffices to prove the statement for slices of negative slope as the proof of
the statement for the positive slope is analogous. Suppose for contradiction that

11



there is a non-vertical edge uv of type IV in a slice of negative slope determined by
lines L and L′ and points p and q as in the definition of a slice. Without loss of
generality, we assume x(u) < x(v).

Consider the point w = (x(u), y(v)) of L(α). Since uv is non-vertical, we have
w /∈ {u, v}. We claim that w is in the interior of P , contradicting the assumption
that P is empty in L(α). Since uv is of type IV, the point u lies below the row
containing w. However, since p is contained in an edge of P and P is in the slice,
the boundary of P intersects this row to the left of w. Analogously, v is to the right
of the column containing w and thus the boundary of P intersects this column
above w. Then, however, w lies in the interior of P .

Finally, we can now finish the proof of Theorem 2.

Proof of Theorem 2. First, we observe that if all vertices of P lie on two columns
of L(α), then P can have at most four vertices. So we assume that this is not the
case. Let u be the leftmost vertex of P with the highest y-coordinate among all
leftmost vertices of P . Let e1 and e2 be the edges of P incident to u. We denote
the other edge of P adjacent to e1 as e and the other edge of P adjacent to e2 as
e′. We also use tI , tII , tIII , and tIV to denote the number of edges of P of type I,
II, III, and IV, respectively.

First, assume that e1 is vertical. If e2 is horizontal, then, since u is the top vertex
of e1 and P is not contained in two columns of L(α), the point (α · x(u), y(u)/α)
of L(α) lies in the interior of P , which is impossible as P is empty in L(α).

(a) (b) (c) (d)

e1

u

R

e2

e

e1

u R
e2

e

e1

u R

e2

e2

u

e1

u R
e′

Figure 4: An illustration of the proof of Theorem 2. A slice is denoted by grey
strips and its points p and q by empty circles. For example, in part (a), the slice is
formed by the region between lines containing the edges e and e2.

If e1 is vertical and the slope of e2 is negative, then there is no edge of type II.
Thus, the edge e intersects the row R of L(α) containing the other vertex of e1
and e has negative slope. Then, the part of P below R is contained in the slice
of negative slope determined by e2 and e; see part (a) of Figure 4. By Lemma 12,
there is no non-vertical edge of type IV in P . By Lemmas 7 and 8, the total number

12



of edges of P is thus at most

tI + tIII + 1 ≤
⌈
logα

(
α

α− 1

)⌉
+ 2

⌈
logα

(
α + 1

α

)⌉
+ 2

for α ∈ (1, 2). Moreover, for α ≥ 2 this bound may be reduced by one.
If e1 is vertical and the slope of e2 is positive, then, since P is empty, there is

no edge of type III besides e1 as otherwise the point (α · x(u), y(u)) of L(α) is in
the interior of P . The edge e intersects the row R of L(α) containing u and e has
positive slope. Thus, the part of P above R is contained in the slice of positive
slope determined by e2 and e; see part (b) of Figure 4. By Lemma 12, there is no
edge of type I in P . By Lemma 10 and Corollary 11, the total number of edges
of P is then at most

tII + 1 + tIV ≤ 2

⌈
logα

(
α

α− 1

)⌉
+ 3.

In the rest of the proof, we can now assume that none of the edges e1 and e2 is
vertical. We can label them so that the slope of e1 is larger than the slope of e2.

First, assume that the slope of e1 is positive and the slope of e2 is negative. Then,
since the vertices of P do not lie on two columns of L(α), the point (α · x(u), y(u))
is contained in the interior of P , which is impossible as P is empty in L(α).

If the slopes of e1 and e2 are both non-positive, then there is no edge of type
II besides the possibly horizontal edge e1 as u is the leftmost vertex of P . By
Lemma 12, there is also no non-vertical edge of type IV as P is contained in the
slice of negative slopes determined by e1 and e2 or by e and e2 if e1 is horizontal;
see part (c) of Figure 4. Thus, by Lemmas 7 and 8, the number of edges of P is at
most

tI + 1 + tIII + 1 ≤
⌈
logα

(
α

α− 1

)⌉
+ 2

⌈
logα

(
α + 1

α

)⌉
+ 3

for α ∈ (1, 2). Moreover, for α ≥ 2 this bound may be reduced by one.
If the slopes of e1 and e2 are both non-negative, then there is no edge of type

III besides the possibly horizontal edge e2 (note that a vertical edge of type III
would have u as its bottom vertex, which is impossible by the choice of u). Then,
P is contained in the slice of positive slope determined by e1 and e2 or, if e2 is
horizontal, by e1 and e′; see part (d) of Figure 4. Lemma 12 then implies that
there is also no edge of type I. We thus have at most

tII + 1 + tIV ≤ 2

⌈
logα

(
α

α− 1

)⌉
+ 3

edges of P by Lemma 10 and Corollary 11.
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Altogether, the upper bound on the number of edges of P is

max

{⌈
logα

(
α

α− 1

)⌉
+ 2

⌈
logα

(
α + 1

α

)⌉
+ 3, 2

⌈
logα

(
α

α− 1

)⌉
+ 3

}
for α ∈ (1, 2). Moreover, the first term may be reduced by one for α ≥ 2. This

becomes 5 for α ≥ 2, h(α) ≤ 7 for α ≥ [1+
√
5

2
, 2), and at most 3

⌈
logα

(
α
α−1

)⌉
+ 3

otherwise, since
⌈
logα

(
α+1
α

)⌉
≤

⌈
logα

(
α
α−1

)⌉
for every α ∈ (1, 1+

√
5

2
).

4 Proof of Theorem 3

We prove the lower bounds on h(α) through the following three propositions.

Proposition 13. For every α ≥ 2, we have h(α) ≥ 5.

Proof. It is easy to check that conv{(1, α2), (α, α), (α2, 1), (α2, α), (α, α2)} is an
empty polygon in L(α) with 5 vertices for any α; see Figure 5.

Proposition 14. For every α ∈ [1+
√
5

2
, 2), we have h(α) ≥ 7.

Proof. Let k = k(α) be a sufficiently large integer, and let

Q(α) = {(1, αk), (αk−2, αk−1), (αk−1, αk−2), (αk, 1), (αk, α), (αk−1, αk−1), (α, αk)};

see Figure 5. We will show that conv(Q(α)) is an empty polygon in L(α) with 7
vertices.

Q(α)

(a) (b)

Q(α)

Figure 5: (a) An illustration of the proof of Proposition 13. (b) An illustration of
the proof of Proposition 14.
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First, we show that Q(α) \ {(αk−1, αk−1)} is in convex position. For this, by
symmetry, it is enough to check that {(αk−1, αk−2), (αk, 1), (1, αk)} is oriented
counterclockwise. This is the case exactly if αk−1 − αk + αk−2 − 1 < 0. By
rearranging we get αk−2(α+1−α2) < 1, which holds for any k, since α+1−α2 ≤ 0
as α ≥ (1 +

√
5)/2.

Now, to show that the set Q(α) is in convex position, it is sufficient to check
that {(1, αk), (αk, α), (αk−1, αk−1)} is oriented counterclockwise. This holds exactly
if αk−1 − αk + αk−1 − α ≥ 0. By rearranging we get 2αk−2(2 − α) ≥ 1. Since
1 < α < 2, this holds if k is sufficiently large.

Thus, conv(Q(α)) has 7 vertices. To show that conv(Q(α)) is empty in L(α),
we remark that points of the exponential lattice L(α) with both coordinates smaller
than αk−1 are below the line through (αk−1, αk−2) and (αk−2, αk−1). Further, points
with at least one coordinate larger than αk−1 are either above the line through
(1, αk) and (α, αk) or to the right of the line through (αk, 1) and (αk, α).

Proposition 15. For every α > 1, we have h(α) ≥
⌊√

1
α−1

⌋
.

Proof. For a positive integer k, let P (k) = {(αi, αk−i) : 1 ≤ i ≤ k}. Since P (k)
is contained in the hyperbola h = {(x, y) ∈ R2 : x, y > 0, xy = αk}, the points of
P (k) are in convex position, and conv(P (k)) has k vertices. We will show that if

k ≤
√

1
α−1

, then conv(P (k)) is empty.

For points (x, y) of L(α) above h, we have xy ≥ αk+1. Further, points (x, y)
of L(α) with xy ≥ αk+2 are separated from h by the hyperbola h′ = {(x, y) ∈
R2 : x, y > 0, xy = αk+1}. Thus, it is sufficient to check that h′ is above the line ℓ
connecting (1, αk) with (αk, 1). The closest point of h′ to ℓ is (α(k+1)/2, α(k+1)/2), thus
it is sufficient to check that this point is above ℓ. This holds if 2α(k+1)/2−αk−1 ≥ 0

and we show that this inequality is satisfied for k ≤
√

1
α−1

.

Let α = 1 + s2 with some s ∈ (0, 1). In this notation, k ≤ 1/s and we need to
prove that 2(1 + s2)(k+1)/2 ≥ (1 + s2)k + 1. Since (1 + s2)(k+1)/2 ≥ 1 + s2 k+1

2
by

the Bernoulli inequality, and (1 + s2)k ≤ es
2k, it is sufficient to prove the stronger

inequality 2(1 + s2 k+1
2
) ≥ es

2k + 1. By taking the derivative of both sides with

respect to k we have s2 ≤ s2es
2k, thus it is enough to check the inequality when k

is maximal. If k = 1/s, it is equivalent to 1 + s+ s2 ≥ es, which holds for s ∈ (0, 1)
as es = 1 + s+

∑∞
n=2

sn

n!
≤ 1 + s+ s2

∑∞
n=2

1
n!

= 1 + s+ s2(e− 2) < 1 + s+ s2.

5 Proof of Proposition 5

Let us denote F = {Fn : n ∈ N0}2. For every positive integer k, we show that
h(F) ≥ k+ 1. We will show that the points (Fi+2, Fi) with odd i ∈ {1, . . . , 2k+ 1}
are vertices of an empty convex polygon P in F .
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First, we show that the points (Fi+2, Fi) with odd i ∈ {1, . . . , 2k + 1} are in
convex position. To show that, it suffices to show that the slopes of lines determined
by three consecutive such points are decreasing. That is, we want to prove

Fi − Fi−2

Fi+2 − Fi
>

Fi+2 − Fi
Fi+4 − Fi+2

for every odd i ∈ {1, . . . , 2k − 3}. Since Fk = Fk−1 + Fk−2 for every k ≥ 2, this
inequality can be rewritten as

Fi−1

Fi+1

>
Fi+1

Fi+3

.

Thus, we want to show that Fi−1 · Fi+3 > F 2
i+1 for odd i. This is indeed true, as

Fi−1 · Fi+3 − F 2
i+1 = (−1)i+1−2F 2

2 > 0 by the Catalan identity of the Fibonacci
numbers.

To show that the polygon P is empty in F , consider the line L = {(x, y) ∈
R2 : y = x/φ2}. Any point (Fi+2, Fi) with odd i lies below L because

Fi+2

φ2
=

1

φ2
· φ

i+3 − ψi+3

√
5

>
φi+1 − ψi+1

√
5

= Fi

since φ2 > ψ2 and i+ 3, i+ 1 are both even implying ψi+3, ψi+1 > 0. Analogously,
all points (Fi+2, Fi) with even i lie above L. For any i, every point (Fj, Fi) with
j ≤ i+ 1 lies above L, because Fi ≥ Fj−1 > Fj/φ

2. Each point (Fi+2, Fi) with odd
i lies at vertical distance less than 1/2 from L as

Fi+2

φ2
=

1

φ2
· φ

i+3 − ψi+3

√
5

=
φi+1 − ψi+1

√
5

+
φ2ψi+1 − ψi+3

φ2
√
5

≤ Fi +
φ2ψ2 − ψ4

√
5

< Fi +
1

2
.

Any point (Fi+2, Fj) with j ≤ i−1 lies below L at vertical distance at least 1/2 since
the distance is either at least Fi−Fj ≥ 1 if i is odd or it is at least Fi−Fj− 1

2
≥ 1

2
if

i is even. Thus the only points of F lying between the parallel lines y = x/φ2− 1/2
and L are the points (Fi+2, Fi) with i odd. It follows that P is an empty convex
polygon in F and h(F) ≥ k + 1.

6 Proof of Theorem 6

Let α, β > 1 be two real numbers. We prove that h(L(α, β)) is finite if and only if
logα(β) is a rational number.
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6.1 Finite upper bound

First, assume that logα(β) ∈ Q. We will use Theorem 2 to show that the number
h(L(α, β)) is finite. Since logα(β) ∈ Q and α, β > 1, there are positive integers
p and q such that β = αp/q. Suppose for contradiction that there is an empty
polygon P in L(α, β) with at least pq · h(αp) + 1 vertices. Note that this number
of vertices is finite by Theorem 2. For k ∈ {0, . . . , q − 1}, we call a row of L(α, β)
congruent to k if it is of the form {αn : n ∈ N0}× βm for some integer m congruent
to k modulo q. Analogously, a column of L(α, β) is congruent to ℓ ∈ {0, . . . , p− 1}
if it is of the form αm × {βn : n ∈ N0} for some m congruent to ℓ modulo p.

Now, since P contains at least pq · h(αp) + 1 vertices, the pigeonhole principle
implies that there are integers k ∈ {0, . . . , q − 1} and ℓ ∈ {0, . . . , p− 1} such that
at least h(αp) + 1 vertices of P that all lie in rows congruent to k and in columns
congruent to ℓ. Let P ′ be the convex polygon that is spanned by these vertices.
We claim that the polygon P ′ is not empty in L(α, β). Since P ′ ⊆ P , we get that
P is also not empty in L(α, β), which contradicts our assumption about P .

To show that P ′ is not empty in L(α, β), consider the subset L of L(α, β) that
contains only points of L(α, β) that lie in rows congruent to k and in columns
congruent to ℓ. Clearly, vertices of P ′ lie in L and L is an affine image of L(αp), which
is scaled by the factors αℓ and βk = αkp/q in the x- and y-direction, respectively.
Since affine mappings preserve incidences and P ′ has at least h(αp) + 1 vertices, it
follows that P ′ is not empty in L. Since L ⊆ L(α, β), P ′ is not empty in L(α, β)
either.

6.2 Finite lower bound

Let logα(β) ∈ Q and β = αp/q for some relative prime positive integers p and q.
Observe that in this case L(α, β) ⊂ L(α1/q). Thus, if an empty polygon in L(α1/q)
is a subset of L(α, β), then it is an empty polygon in L(α, β).

Let k =
⌊√

1/(α1/q − 1)
⌋
and consider the set P = {(αi/q, α(k−i)/q) : 1 ≤ i ≤ k}.

It is an empty polygon in L(α1/q), as it is shown in the proof of Proposition 15.
Since its subset P ′ = {(αi/q, α(k−i)/q) : 1 ≤ i ≤ k with q|i and p|k − i} is a subset
of L(α, β) and an empty polygon in L(α1/q), it is an empty polygon in L(α, β) with
⌊k/pq⌋ vertices.

6.3 Infinite lower bound

Now, assume that logα(β) /∈ Q. We will find a subset of L(α, β) forming empty
convex polygon in L(α, β) with arbitrarily many vertices. To do so, we use the
theory of continued fractions, so we first introduce some definitions and notation.
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6.3.1 Continued fractions

Here, we recall mostly basic facts about continued fractions, which we use in the
proof. Most of the results that we state can be found, for example, in the book by
Khinchin [14].

For a positive real number r, the (simple) continued fraction of r is an expression
of the form

r = a0 +
1

a1 +
1

a2+
1

a3+···

,

where a0 ∈ N0 and a1, a2, . . . are positive integers. The simple continued fraction
of r can be written in a compact notation as

[a0; a1, a2, a3, . . . ].

For every n ∈ N0, if we denote pn
qn

= [a0; a1, a2, . . . , an] and set p−1 = 1, p0 = a0,
q−1 = 0, q0 = 1, then the numbers pn and qn satisfy the recurrence

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2 (1)

for each n ∈ N. Observe that if r is irrational, then its continued fraction has
infinitely many coefficients. Also, it follows from (1) that pn

qn
< r for n even and

pn
qn
> r for n odd.

For example, if r = log2(3), we get the continued fraction [1; 1, 1, 2, 2, 3, 1, 5, 2, 23, . . . ]

and the sequence
(
pn
qn

)
n∈N0

=
(
1
1
, 2
1
, 3
2
, 8
5
, 19
12
, 65
41
, 84
53
, 485
306
, . . .

)
. For r = 1+

√
5

2
, we have

[1; 1, 1, 1, . . . ] and
(
pn
qn

)
n∈N0

=
(
1
1
, 2
1
, 3
2
, 5
3
, 8
5
, 13

8
, 21
13
, 34
21
, . . .

)
.

We will call the fractions pn
qn

the convergents of r. A semi-convergent of r is a

number pn−1+ipn
qn−1+iqn

where i ∈ {0, 1, . . . , an+1}. Note that each convergent of r is also
a semi-convergent of r. The names are motivated by the use of convergents and
semi-convergents as rational approximations of an irrational number r.

A rational number p
q
is a best approximation of an irrational number r, if any

fraction p′

q′
̸= p

q
with q′ < q satisfies∣∣∣∣q′(r − p′

q′

)∣∣∣∣ > ∣∣∣∣q(r − p

q

)∣∣∣∣ .
A rational number p

q
is a best lower approximation of r if

q′
(
r − p′

q′

)
> q

(
r − p

q

)
≥ 0
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for all rational numbers p′

q′
with p′

q′
≤ r, p

q
̸= p′

q′
, and 0 < q′ ≤ q. Similarly, p

q
is a

best upper approximation of r if

q′
(
r − p′

q′

)
< q

(
r − p

q

)
≤ 0

for all rational numbers p′

q′
with p′

q′
≥ r, p

q
̸= p′

q′
, and 0 < q′ ≤ q.

It is a well known fact that convergents are best approximations of r [14]. The
following lemma about best lower and best upper approximations is a recent result
of Hančl and Turek [10]. Our definitions of best lower or upper approximations
correspond to their definitions of best lower or upper approximations of the second
kind. The lemma follows from Theorem 4.5 of [10].

Lemma 16 ([10]). Let r be a real number with r = [a0; a1, a2, . . . ] and let pn
qn

be
the nth convergent of r for each n ∈ N0. Then, the following two statements hold.

1. The set of best lower approximations of r consists of semi-convergents pn−1+ipn
qn−1+iqn

of r with n odd and 0 ≤ i < an+1.

2. The set of best upper approximations of r consists of semi-convergents pn−1+ipn
qn−1+iqn

of r with n even and 0 ≤ i < an+1, except for the pair (n, i) = (0, 0).

Finally, a real number r is restricted if there is a positive integer M such that
all the partial denominators ai from the continued fraction of r are at most M .
The restricted numbers are exactly those numbers r that are badly approximable
by rationals [14], that is, there is a constant c > 0 such that for every p

q
∈ Q we

have
∣∣∣r − p

q

∣∣∣ > c
q2
.

We divide the rest of the proof of Theorem 6 into two cases, depending on
whether logα(β) is restricted or not.

6.3.2 Unrestricted case

First, we assume that logα(β) is not restricted. Let [a0; a1, a2, a3, . . . ] be the
continued fraction of logα(β) with

pn
qn

= [a0; a1, . . . , an] for every n ∈ N0. Then, for

every positive integer m, there is a positive integer n(m) such that an(m)+1 ≥ m.
We use this assumption to construct, for every positive integer m, a convex polygon
with at least m vertices from L(α, β) that is empty in L(α, β).

For a given m, consider the integer n(m) and let W be the set of points

wi = (αpn(m)−1+ipn(m) , βqn(m)−1+iqn(m))

where i ∈ {0, 1, . . . , an(m)+1}. That is, we consider points where the exponents form
semi-convergents

pn(m)−1+ipn(m)

qn(m)−1+iqn(m)
to logα(β). We abbreviate pn,i = pn(m)−1 + ipn(m)
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and qn,i = qn(m)−1 + iqn(m). Observe that |W | ≥ m. We will show that W is the
vertex set of an empty convex polygon in L(α, β). To do so, we assume without

loss of generality that n(m) is even so that β
qn(m)

α
pn(m) > 1. The other case when n(m)

is odd is analogous.
First, we show that W is in convex position. In fact, we prove that all triples

(wi1 , wi2 , wi3) with i1 < i2 < i3 are oriented counterclockwise. It suffices to show
this for every triple (wi, wi+1, wi+2). To do so, we need to prove the inequality

y(wi+2)− y(wi+1)

x(wi+2)− x(wi+1)
=
βqn,i+2 − βqn,i+1

αpn,i+2 − αpn,i+1
>
βqn,i+1 − βqn,i

αpn,i+1 − αpn,i
=
y(wi+1)− y(wi)

x(wi+1)− x(wi)
.

After dividing by β
qn(m)−1

α
pn(m)−1 , this can be written as

β(i+2)qn(m) − β(i+1)qn(m)

α(i+2)pn(m) − α(i+1)pn(m)
>
β(i+1)qn(m) − βiq

n(m)

α(i+1)pn(m) − αipn(m)
.

If divide both sides by β
(i+1)qn(m)−βiqn(m)

α
(i+1)pn(m)−αipn(m)

, then the above inequality becomes

βqn(m)

αpn(m)
> 1.

This is true as n(m) is even.
It remains to prove that the polygon Q with the vertex set W is empty in

L(α, β). Suppose for contradiction that there is a point (αp, βq) of L(α, β) lying
in the interior of Q. Let i be the minimum positive integer from {1, . . . , an(m)+1}
such that q < qn,i. Such an i exists as (αp, βq) is in the interior of Q. We then have
qn,i−1 < q < qn,i. Since (αp, βq) is in the interior of Q and W lies below the line
x = y, we have p

q
> logα(β). So it is enough to prove that (αp, βq) does not lie

above the line wi−1wi.
We have pn,i− logα(β)qn,i < pn,i−1− logα(β)qn,i−1 as

pn,i

qn,i
is a best upper approx-

imation of logα(β) and qn,i−1 < qn,i. This implies βqn,i−1

αpn,i−1 <
βqn,i

αpn,i , or equivalently
that wi lies above the line determined by wi−1 and the origin.

Now if (αp, βq) lies above the line wi−1wi, then it also lies above the line

determined by wi−1 and the origin. Thus, βqn,i−1

αpn,i−1 <
βq

αp , implying

p− logα(β)q < pn,i−1 − logα(β)qn,i−1,

which means that p
q
is a better upper approximation of logα(β) than

pn,i−1

qn,i−1
. Thus,

there exists a best upper approximation p∗

q∗
of logα(β) with qn,i−1 < q∗ < qn,i. This

contradicts part 2 of Lemma 16 as p∗

q∗
is not a semi-convergent of logα(β).
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6.3.3 Restricted case

Now, assume that the number logα(β) is restricted. Let [a0; a1, a2, a3, . . . ] be the
continued fraction of logα(β) with pn

qn
= [a0; a1, . . . , an] for every n ∈ N0. Let

M =M(α, β) be a number satisfying

an ≤M (2)

for every n ∈ N0 and let c = c(α, β) > 0 be a constant such that∣∣∣∣logα(β)− p

q

∣∣∣∣ > c

q2
(3)

holds for every p
q
∈ Q. Recall that αpn

βqn < 1 for even n and αpn

βqn > 1 for odd n. Note

also that the sequence
(
αpn

βqn

)
n∈N0

converges to 1 as
(
pn
qn

)
n∈N0

converges to logα(β).

Moreover, the terms of
(
pn
qn

)
n∈N0

with odd indices form a decreasing subsequence

and the terms with even indices determine an increasing subsequence.
Let n0 = n0(α, β) be a sufficiently large positive integer and let V be the set of

points vn = (αpn , βqn) for every odd n ≥ n0. Note that V is a subset of L(α, β).
We first show that V is in convex position. In fact, we prove a stronger claim

by showing that the orientation of every triple (vn1 , vn2 , vn3) with n1 < n2 < n3 is
counterclockwise. It suffices to show this for every triple (vn−4, vn−2, vn). To do so,
we prove that the slopes of the lines determined by consecutive points of V are
increasing, that is,

y(vn)− y(vn−2)

x(vn)− x(vn−2)
=
βqn − βqn−2

αpn − αpn−2
>
βqn−2 − βqn−4

αpn−2 − αpn−4
=
y(vn−2)− y(vn−4)

x(vn−2)− x(vn−4)

for every even n ≥ n0. By dividing both sides of the inequality with βqn−2

αpn−2 , we
rewrite this expression as

βqn−qn−2 − 1

αpn−pn−2 − 1
>

1− βqn−4−qn−2

1− αpn−4−pn−2
.

Using (1), this is the same as

βanqn−1 − 1

αanpn−1 − 1
>

1− β−an−2qn−3

1− α−an−2pn−3
.

The above inequality can be rewritten as

(βanqn−1 − 1)(1− α−an−2pn−3) > (αanpn−1 − 1)(1− β−an−2qn−3),

21



where βqn−1 > αpn−1 > 1 as n− 1 is even. Therefore, if the above inequality holds
for an = 1, then it holds for any an as this number is always at least 1. Thus, it
suffices to show

(βqn−1 − 1)(1− α−an−2pn−3) > (αpn−1 − 1)(1− β−an−2qn−3). (4)

We prove this using the following simple auxiliary lemma.

Lemma 17. Consider the function f : R+ × R+ → R given by f(x, y) = (x −
1)(1 − 1/y). Let x, y, x′, y′ > 1 be real numbers such that 1 − 1

y
− x

x′
> 0. Then,

f(x′, y) > f(x, y′).

Proof. We have

f(x′, y)− f(x, y′) = (x′ − 1)

(
1− 1

y

)
− (x− 1)

(
1− 1

y′

)
= x′ − x′ − 1

y
− x+

x− 1

y′
> x′ − x′

y
− x = x′

(
1− 1

y
− x

x′

)
> 0,

where the last inequality follows from 1− 1
y
− x

x′
> 0.

Now, by choosing x = αpn−1 , x′ = βqn−1 , y = αan−2pn−3 , and y′ = βan−2qn−3 , the
inequality (4) becomes f(x′, y) > f(x, y′). In order to prove it, we just need to
verify the assumptions of Lemma 17. We clearly have x, x′, y, y′ > 1. It now suffices
to show 1− 1

y
− x

x′
> 0. By (3), we obtain that qn−1 logα(β)− pn−1 ≥ c/qn−1, thus

x

x′
=
αpn−1

βqn−1
≤ α−c/qn−1 .

Now, to bound qn−1 in terms of pn−3, equation (1) gives

qn−1 = an−1qn−2 + qn−3 ≤ (M + 1)qn−2 = (M + 1)(an−2qn−3 + qn−4)

≤ (M + 1)2qn−3 ≤ 2 logβ(α)(M + 1)2pn−3,

where we used (2) and qn−4 ≤ qn−3 ≤ qn−2, qn−3 ≤ 2 logβ(α)pn−3 for n large enough.
It follows that qn−1 ≤M ′pn−3 for a suitable constant M ′ =M ′(α, β) > 0. Thus,

1− 1

y
− x

x′
≥ 1− α−an−2pn−3 − α−c/qn−1 ≥ 1− α−an−2pn−3 − α−c/(M ′pn−3),

which is at least
c lnα

2M ′pn−3

− 1

αan−2pn−3
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as 1−c lnα/(2M ′pn−3) ≥ e−2c lnα/(2M ′pn−3) = α−c/(M ′pn−3) if 0 < c lnα/(2M ′pn−3) <
1/2. The last expression is positive if n ≥ n0 and n0 is sufficiently large so that
pn−3 is large enough.

It remains to show that the convex polygon P with the vertex set V is empty
in L(α, β). We proceed analogously as in the unrestricted case. Suppose for
contradiction that there is a point (αp, βq) of L(α, β) lying in the interior of P .
Then, let vn = (αpn , βqn) be the lowest vertex of P that has (αp, βq) below. Such a
vertex vn exists, as V contains points with arbitrarily large y-coordinate. By the
choice of vn, we obtain qn−2 < q < qn. Since (αp, βq) is in the interior of P and V
lies below the line x = y, we have p

q
> logα(β) >

pn−1

qn−1
. Moreover, since all triples

from V are oriented counterclockwise, the point (αp, βq) lies above the line vn−2vn.
Let

wi = (αpn−2+ipn−1 , βqn−2+iqn−1)

where i ∈ {0, 1, . . . , an} similarly as in the proof of the unrestricted case. There, it
was shown that all the triples wi−1, wi, wi+1 are oriented counterclockwise, thus all
the points wi with i ∈ {1, . . . , an − 1} lie below the line vn−2vn. Thus, if (α

p, βq)
lies above the segment connecting vn−2 and vn, then there is an i such that (αp, βq)
lies above the segment connecting wi−1 and wi. As in the last two paragraphs of
the proof of the unrestricted case, the position of (αp, βq) implies the inequality
p− logα(β)q < pn,i−1 − logα(β)qn,i−1, and the contradiction follows from part 2 of
Lemma 16, as there can be no best upper approximation of logα(β) which is not a
semi-convergent of logα(β).
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