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a b s t r a c t

In an orientation O of the graph G, an arc e is deletable if and
only if O−e is strongly connected. For a 3-edge-connected graph
G, the Frank number is the minimum k for which G admits k
strongly connected orientations such that for every edge e of
G the corresponding arc is deletable in at least one of the k
orientations. Hörsch and Szigeti conjectured the Frank number
is at most 3 for every 3-edge-connected graph G. We prove an
upper bound of 5, which improves the previous bound of 7.
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access article under the CC BY license
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1. Introduction

The graphs in this paper are finite and without loops or multiple edges. We recommend the
xcellent book by Bondy and Murty [2] for the concepts and notations used here.
A graph G is defined by its vertex set V and edge set E. An orientation of G is a directed graph

D = (V , A) such that each edge uv ∈ E is replaced by exactly one of the arcs (u, v) or (v, u). A circuit

E-mail addresses: barat@renyi.hu (J. Barát), blazsik@renyi.hu (Z.L. Blázsik).
1 Research supported by ERC Advanced Grant ‘‘GeoScape’’, Hungary and the National Research, Development and

Innovation Office, Hungary, grant K-131529.

2 The author was supported by the ÚNKP-22-4-SZTE-480 New National Excellence
Program of the Ministry for Culture and Innovation, Hungary from the source of the National Research, Development
and Innovation Fund. The research was supported by the Hungarian National Research, Development and Innovation
Office, OTKA grant no. SNN 132625.
https://doi.org/10.1016/j.ejc.2023.103913
0195-6698/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ejc.2023.103913
https://www.elsevier.com/locate/ejc
https://www.sciencedirect.com/journal/european-journal-of-combinatorics
https://www.sciencedirect.com/journal/european-journal-of-combinatorics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejc.2023.103913&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:barat@renyi.hu
mailto:blazsik@renyi.hu
https://doi.org/10.1016/j.ejc.2023.103913
http://creativecommons.org/licenses/by/4.0/


J. Barát and Z.L. Blázsik European Journal of Combinatorics 118 (2024) 103913

G
g

i
a

T
c

T
c

4
c
v
T

3
k
i
a
c
c
b
o
3

t
g
2
t

T

a

v

e
k
o
e

is a directed cycle. A graph is cubic if every vertex has degree 3. A graph is k-edge-connected if and
only if the removal of any k − 1 edges leaves a connected graph. The edge-connectivity of a graph
, denoted by κ ′(G), is the smallest k for which the graph is k-edge-connected. A 2-edge-connected
raph is often called bridgeless.
A directed graph is strongly connected if and only if selecting two arbitrary vertices x and y, there

s a directed (x, y)-path. An orientation of G is k-arc-connected if and only if the removal of any k−1
rcs leaves a strongly connected directed graph.

heorem 1.1 (Robbins). A graph has a strongly connected orientation if and only if it is 2-edge-
onnected.

The following theorem is a fundamental result in the theory of directed graphs [6].

heorem 1.2 (Nash-Williams). A graph has a k-arc-connected orientation if and only if it is 2k-edge-
onnected.

This theorem has the following consequence: If we fix a 2-arc connected orientation of a
-edge-connected graph, then any arc can be removed and the remaining digraph is still strongly
onnected. This situation changes for 3-edge-connected graphs and their orientations. This moti-
ated András Frank to raise some questions on 3-edge-connected graphs and their orientations.
hese concepts and Frank’s question appeared first in the paper by Hörsch and Szigeti [5].
In an orientation O of G, the arc e is deletable if and only if O−e is strongly connected. For a

-edge-connected graph G, the Frank number, denoted by F (G), is the minimum k for which G admits
strongly connected orientations such that for every edge e of G the corresponding arc is deletable

n at least one of the k orientations. Why 3-edge-connected graphs? Suppose G has a cut of size
t most 2. In any orientation of G, the removal of any of these edges results in either a directed
ut or a directed graph that is not even connected. Hence no set of orientations can satisfy the
onditions. On the other hand, if G is 4-edge-connected, then G admits a 2-arc-connected orientation
y Theorem 1.2. This orientation yields that F (G) = 1 by definition. Consequently, F (G) = 1 if and
nly if G is 4-edge-connected. Thus the problem is interesting only if the edge-connectivity of G is
, i.e. κ ′(G) = 3. In the sequel, we consider only graphs with edge-connectivity 3.
Hörsch and Szigeti [5] showed that any 3-edge-connected graph G satisfies F (G) ≤ 7. Prior to

hat, DeVos et al. proved a more general result with a weaker bound [3]: For every 3-edge-connected
raph G, there exists a partition of E(G) into at most nine sets {X1, X2, . . . , Xm} so that G \ Xi is
-edge-connected for every 1 ≤ i ≤ m. Our main result improves the best known upper bound on
he Frank number.

heorem 1.3. For every 3-edge-connected graph the Frank number is at most 5.

Independently, Goedgebeur et al. [4] proved for every 3-edge-connected graph the Frank number
is at most 4.

The paper is organized as follows. In the second section, we introduce the main tools and results,
which we use in our proof. The third section is dedicated to the proof of our main result. We
conclude by discussing the limits of our proof technique.

2. Preliminaries

For some integer k, a k-flow (o, v) on a graph G consists of an orientation o of the edges of G and
valuation v : E(G) ↦→ {0, ±1, ±2, . . . ,±(k−1)} such that at every vertex the sum of the values on

incoming edges equals the sum on the outgoing edges. A k-flow (o, v) is nowhere-zero if the value of
is not 0 for any edge of G. A nowhere-zero k-flow on G is all-positive if the value v(e) is positive for
very edge e of G. Every nowhere-zero k-flow can be transformed to an all-positive nowhere-zero
-flow by changing the orientation of the edges with negative v(e) and changing negative values
f v(e) to −v(e). Inspired by their ideas and approach, we use the following result by Goedgebeur

t al. [4].
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Lemma 2.1. Let G be a 3-edge-connected graph, and let (o, v) be an all-positive nowhere-zero k-flow
n G. Any edge of G, which receives value 1 in (o, v) is deletable in o.

Indeed, an orientation arising from a flow is always strongly connected, and the removal of any
rc of value 1 cannot create a directed cut since the flow is nowhere-zero. Using a slightly stronger
emma, Goedgebeur et al. [4] proved the following result, which we state without proof.

heorem 2.2. If a graph G admits a nowhere-zero 4-flow, then F (G) ≤ 2.

It is well-known that every 3-edge-colorable cubic graph admits a nowhere-zero 4-flow. Tutte
osed the following stronger claim, which inspired a vast amount of research.

onjecture 2.3 (Tutte’s 4-Flow Conjecture). Every bridgeless graph without a Petersen-minor has a
owhere-zero 4-flow.

Everyone believes the validity of this conjecture. This partly explains why the only known
xamples of graphs with Frank number 3 are created from the Petersen graph using certain
perations [1]. Each of the constructed graphs contains the Petersen graph as a minor.
Since we consider 3-edge-connected graphs only, we can use the following result by Jaeger [7],

hich was later improved by Seymour [9].

heorem 2.4 (Jaeger). Every bridgeless graph has a nowhere-zero 8-flow.

heorem 2.5 (Seymour). Every bridgeless graph has a nowhere-zero 6-flow.

Let H denote an Abelian group. An H-flow on an oriented graph D is an assignment of values of
to the arcs of D such that for each vertex v, the sum of the values on the incoming arcs is the

ame as the sum of the values on the outgoing arcs. For a graph G, an H-flow is defined using any
rientation D of G since H is Abelian. A nowhere-zero H-flow on G is an H-flow, where 0 ∈ H is not
ssigned to any edge. The following is a useful corollary of a theorem by Tutte [8,10]:

act 2.6. If H and H ′ are two finite Abelian groups of the same order, then the graph G has an H-flow
f and only if G has an H ′-flow.

In what follows, we particularly use a Z2 × Z2 × Z2-flow on a 3-edge-connected graph G. We
use 0/1 vectors with three coordinates to denote elements of Z2 ×Z2 ×Z2. The flow condition at a
vertex v implies the following property: in each coordinate, the sum of values on edges incident to
v is 0. Hence for a fixed vertex v, in each coordinate, there exist an even number of edges incident
to v that have value 1.

3. Improvement of the upper bound

Surprisingly, the weaker flow result of the two, Theorem 2.4 of Jaeger is the one, that is useful
for our purposes. The main idea of the proof is the following. We fix a nowhere-zero 8-flow of a
3-edge-connected graph G, which exists by Theorem 2.4. We create five other nowhere-zero k-flows
of G in such a way that we control the set of edges with value 1, and we apply Lemma 2.1. Since
every edge of G receives value 1 in at least one of the flows, we are done. Let us recall our main
theorem.

Theorem 1.3 For every 3-edge-connected graph the Frank number is at most 5.

Proof. Combining Theorem 2.4 and Fact 2.6, we consider a nowhere-zero Z2 × Z2 × Z2-flow on G.
For i ∈ {1, 2, 3}, let Gi denote the subgraph of G induced by those edges of E, which have value 1 at
the ith coordinate. Note that these subgraphs might have some edges in common, more precisely
the number of nonzero coordinates of each edge is the same as the number of subgraphs to which it
belongs. By the nowhere-zero property, every edge is contained in at least one of these subgraphs.

By the flow condition, the subgraphs G1,G2,G3 are Eulerian. We can think of an Eulerian trail as
a directed graph. Thus we can partition each edge set E(G ) into edge-disjoint circuits. We may use
i
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Table 1
The possible orientations and values of e in (O1, f1).

Value of e
in the original

Z2 × Z2 × Z2-flow
Final orientation and value of e in (O1, f1)

(1, 0, 0) row 1 same as in o1 , 1

(0, 1, 0) row 2 same as in o2 , 2

(0, 0, 1) row 3 same as in o3 , 4

(1, 1, 0) row 4
row 5

{
same as in o2 , 3 if e has the same orientation in o1 and o2 ,
same as in o2 , 1 if e has different orientations in o1 and o2 .

(1, 0, 1) row 6
row 7

{
same as in o3 , 5 if e has the same orientation in o1 and o3 ,
same as in o3 , 3 if e has different orientations in o1 and o3 .

(0, 1, 1) row 8
row 9

{
same as in o3 , 6 if e has the same orientation in o2 and o3 ,
same as in o3 , 2 if e has different orientations in o2 and o3 .

(1, 1, 1)

row 10

row 11

row 12

row 13

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

same as in o3 , 7
if e has the same orientation

in all three of o1, o2, o3 ,

same as in o3 , 5
if the orientation of e in o1 is different

from that in o2 and o3 ,

same as in o3 , 3
if the orientation of e in o2 is different

from that in o1 and o3 ,

same as in o3 , 1
if the orientation of e in o3 is different

from that in o1 and o2 .

a vertex in different Eulerian trails. For i = 1, 2, 3, let us fix an orientation oi defined by the edge-
isjoint circuits of E(Gi). At this point, it might occur that an edge of G has different orientations in
ifferent subgraphs Gi. The next aim is to select, for each i ∈ {1, 2, 3}, an appropriate positive value
i to send along oi.
Let us emphasize that after fixing the pair (oi, vi) for each Gi, we define another flow (O1, f1) in

he next step. The orientation and value of an arc in (O1, f1) is determined by the superposition of
he chosen (oi, vi) pairs or triples. We always assign a positive value. If the orientations go opposite,
hen we let the largest value determine the direction and subtract the values going in opposite
irection.
Let us construct an all-positive nowhere-zero 8-flow (O1, f1) by sending values v1 = 1, v2 = 2

and v3 = 4 along the fixed orientations oi of Gi, respectively. Indeed, this is a flow, and there can
be no arcs of value 0. The maximum value of an arc is 7, if this edge was of type (1, 1, 1) in the
original Z2 × Z2 × Z2-flow, and the edge received the same orientation in all three orientations oi.
Since in every edge-cut, the sum of the flow values in the two directions is the same, there are no
directed cuts if we take the superposition of the flows o1, o2, o3. Thus O1 is strongly connected.

In order to prove F (G) ≤ 5, we create a set of strongly-connected orientations O of G such that
O| = 5, and any edge of G is deletable in at least one of the orientations of O. Let O1 be the first
ember of O. By Lemma 2.1, the arcs of value 1 in (O1, f1) are deletable with respect to O1. What
re these arcs? We summarize the possible final orientations and values of the arcs in Table 1.
There are three types of arcs of value 1 in (O1, f1). We create four other flows such that the

arger valued arcs of O1 receive value 1 in at least one orientation. We refer to any edge of G as
ne which belongs to the corresponding row of Table 1 with respect to (O1, f1). The next goal is to
reate four other strongly connected orientations such that every type of edge defined by Table 1
ets flow value 1 in at least one of those orientations, and hence is deletable in those orientations by
emma 2.1. We achieve this by combining the following two things: we reverse the orientations oi in
i, denoted by −oi, for each i ∈ {1, 2, 3} if necessary, and we change the values vi appropriately. By
eversing the orientations, we can switch the role of a fixed edge with respect to its role described
n Table 1, and by changing the values we can change the final values of the edges.
4
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Table 2
Cross-table for clearing all cases referring to Table 1.
Original value (O1, f1) (O2, f2) (O3, f3) (O4, f4) (O5, f5)

(1, 0, 0) row 1 value 1
(0, 1, 0) row 2 value 1
(0, 0, 1) row 3 value 1
(1, 1, 0) row 4 value 1
(1, 1, 0) row 5 value 1
(1, 0, 1) row 6 value 1
(1, 0, 1) row 7 value 1 value 1
(0, 1, 1) row 8 value 1
(0, 1, 1) row 9 value 1
(1, 1, 1) row 10 value 1
(1, 1, 1) row 11 value 1 value 1
(1, 1, 1) row 12 value 1
(1, 1, 1) row 13 value 1

We define the following two 10-flows (O2, O3) and two 8-flows (O4, O5) based on the orientations
o1, o2, o3. Again, if an edge is present in several circuits, we superimpose the values as before3
to make the flow (Oi, fi) all-positive for all i ∈ {1, 2, 3, 4, 5}. We define O2 by keeping the same
orientations as in O1, but sending value 4 along o1, value 2 along o2, and value 3 along o3. The
only difference between O3 and O2 is that the orientations of the circuits in o3 are reversed, i.e. the
orientations are defined by the superposition of o1, o2 and −o3. The orientation O4 is defined by
the superposition of o1, −o2 and o3 and we send value 2 along o1, value 1 along −o2 and value 4
along o3. The only difference between O5 and O4 is that the values along −o2 and o3 are swapped.

e indicate in Table 2 which edges receive value 1 in the corresponding orientations.
By Lemma 2.1, it is clear that O = {O1,O2,O3,O4,O5} yields F (G) ≤ 5. □

Let us continue with some comments and observations on the proof.

emark 3.1. It does not really matter what kind of flow we use to construct an orientation of O.
owever, there are two key observations: since the orientation arises from flows, it cannot have
directed cut. Therefore, it is a strongly connected orientation, and by the nowhere-zero property
nd the 3-edge-connectivity of G an arc of value 1 cannot be the only arc going in the opposite
irection in any cut.

emark 3.2. Note that we do not claim that these are the only deletable edges of Oi ∈ O. It may
appen that some arcs with higher values are also deletable. Hence our result is slightly stronger
han just proving F (G) ≤ 5 since we only relied on the arcs of value 1.

iscussion

We do not see how to use directly Theorem 2.5 to improve the Frank number of 3-edge-
onnected graphs. A natural question arises, can we use a similar proof technique to achieve an
ven better upper bound? Goedgebeur et al. [4] proved if G admits a nowhere-zero all-positive
-flow, then F (G) ≤ 2. On the other hand, if we start with an arbitrary all-positive k-flow for some
≥ 5, then we either need to have some control over the arcs with value 1 or need to know

ome underlying structure, which we can exploit. In this proof technique, it seems vital to have
hose Eulerian subgraphs. To find them, we had to use an equivalent H-flow for an appropriate
roup H . However, the even degrees within those subgraphs was guaranteed by the fact that the
orresponding coordinate was 0/1 valued. Hence it is unclear to us, what kind of H can be used
ere other than Zm

2 .

3 The larger value decides the direction except in O and O , where 2+3 decides the direction instead of 4.
2 3

5
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o

Suppose that H = Zm

2 for some m ≥ 2. Let us introduce the notation Ak for those arcs of the
riginal H-flow, which have exactly k non-zero coordinates (k ∈ {1, 2, . . . ,m}). Similarly to our

proof, an all-positive H-flow gives rise to m Eulerian subgraphs Gi (for i ∈ {1, 2, . . . ,m}) and we
can fix an orientation oi on each of them. How many different types of arcs can get value 1? We
carefully choose values vi and consider orientations (Oj, fj) as the superposition, while no arc gets
value 0 in the process.

The existence of the arcs of A2 ensures that the values vi must be pairwise different, otherwise
there is a possibility that an arc gets value 0 in the superposition. Thus at most one of the families
in A1 can get value 1 (the ones within Gi if and only if vi = 1) in each orientation. Hence with this
technique, we definitely need at least m orientations, consequently m ≤ F (G).

There are 2
(m
2

)
possible types of arcs corresponding to the arcs of A2. At most two of them can

have value 1 in a fixed orientation (O, f ). Indeed, if there were at least three types of such arcs,
then we would choose two such that the first one is non-zero at coordinates i1, i2, the second one
at coordinates j1, j2 such that vi1 − vi2 = 1 = vj1 − vj2 , and i1, i2, j1, j2 are pairwise different by
the fact that the values vi must be distinct. This could possibly lead to some arcs with final value
0, whenever an arc xy of A4 has 1’s at coordinates i1, i2, j1, j2. In particular, this happens when the
corresponding four orientations are chosen in such a way that xy is oriented in the same direction in
Gi1 and Gj2 , but in the opposite direction in the other two Eulerian subgraphs. That yields

(m
2

)
≤ F (G).

Thus if one would like to improve our result, then m should be at most 3. Since m = 2 corresponds
to the 4-flows, that circles back to Conjecture 2.3, the only possibility is m = 3.

From the previous observations, one can deduce that we need at least three orientations to deal
with the arcs of A1. In each of these orientations, there is an Eulerian subgraph Gi for i ∈ {1, 2, 3}
such that vi = 1. These orientations cannot have two types of arcs with value 1 from A2, since
that would be possible only if the three values were 1, 2 and 3. Again this contradicts the non-zero
property of our flow (1+2−3 = 0). Consequently, at least three types of arcs are missing after these
three orientations from the arcs of A2. Hence at least two other orientations are needed. Therefore
our upper bound of 5 is best if H = Z2 × Z2 × Z2.

We naturally asked ourselves whether using a different group H can help improving the upper
bound of 5. In the revised version of their paper, Goedgebeur, Máčajová and Renders [4] achieved
this feat.
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