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The disjointness graph of a set system is a graph whose 
vertices are the sets, two being connected by an edge if and 
only if they are disjoint. It is known that the disjointness graph 
G of any system of segments in the plane is χ-bounded, that 
is, its chromatic number χ(G) is upper bounded by a function 
of its clique number ω(G).
Here we show that this statement does not remain true for 
systems of polygonal chains of length 2. We also construct 
systems of polygonal chains of length 3 such that their 
disjointness graphs have arbitrarily large girth and chromatic 
number. In the opposite direction, we show that the class 
of disjointness graphs of (possibly self-intersecting) 2-way 
infinite polygonal chains of length 3 is χ-bounded: for every 
such graph G, we have χ(G) ≤ (ω(G))3 + ω(G).
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1. Introduction

Ramsey theory has many applications to other parts of mathematics and computer sci-
ence [29], including complexity theory [22], approximation algorithms, [23], coding [19], 
geometric data structures [21], graph drawing and representation [2]. Constructing nearly 
optimal Ramsey graphs is a notoriously difficult combinatorial problem [10]. The few ef-
ficient constructions that we have are far from optimal, but they can come in handy in 
those areas where we have interesting theorems, but lack nontrivial constructions. Here 
we provide two examples from combinatorial geometry, based on two classical construc-
tions of Erdős and Hajnal [8,9]. We close this paper with a result pointing in the opposite 
direction.

For any graph G, let χ(G) and ω(G) denote the chromatic number and the clique 
number of G, respectively. Clearly, we have χ(G) ≥ ω(G), and if equality holds for every 
induced subgraph of G, then G is called a perfect graph. Following Gyárfás and Lehel 
[15], [16], [13], [14], a class of graphs G is said to be χ-bounded if there is a function f
such that χ(G) ≤ f(ω(G)) for every G ∈ G.

Which classes of graphs are χ-bounded? Or, reversing the question, if a graph has 
small clique number, how can its chromatic number be large? These questions are related 
to the some of the deepest unsolved problems in graph theory. There are two different 
approaches that have yielded spectacular results in recent years.

One can investigate what kind of substructures must necessarily occur in graphs 
of high chromatic number. According to Hadwiger’s conjecture [17], if the chromatic 
number of a graph is at least t, then it must contain a Kt-minor. (We now know that 
it contains a Ks-minor with s = Ω(t/(log log t)); cf. [7].) Gyárfás [12] proved that if a 
graph has bounded clique number and its chromatic number is sufficiently large, then it 
must contain a long induced path; see also [11]. According to the (still open) Gyárfás-
Sumner conjecture [31], the same is true for any fixed tree instead of a path. Scott and 
Seymour proved that the class of graphs with no induced odd cycle of length at least 5
is χ-bounded. For many beautiful recent results of this kind, see the survey [30].

The second fruitful research direction was initiated by Asplund and Grünbaum [1]: 
Find geometrically defined classes of graphs that are χ-bounded. Given a set S of geomet-
ric objects, their intersection graph (resp., disjointness graph) is a graph on the vertex 
set S, in which two vertices are connected by an edge if and only if the corresponding 
objects have a nonempty intersection (resp., are disjoint). It was proved in [1] that the 
class of intersection graphs of axis-parallel rectangles in the plane is χ-bounded (see 
also [4]). The corresponding statement is false for boxes in 3 and higher dimensions [3], 
and even for segments in the plane [28].

For disjointness graphs G of systems of segments in the plane, we have χ(G) ≤ (ω(G))4
[20]. The same is true for systems of x-monotone curves, that is, for continuous curves in 
the plane with the property that every vertical line intersects them in at most one point. 
It was shown in [27] that, in this generality, the order of magnitude of this bound cannot 
be improved. On the other hand, we proved [26] that the class of disjointness graphs of 
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strings (continuous curves in the plane) is not χ-bounded. Improving our construction, 
Mütze, Walczak, and Wiechert [24] exhibited systems of polygonal curves consisting of 
three segments such that their disjointness graphs are triangle-free (ω = 2), yet their 
chromatic numbers can be arbitrarily large.

The above results leave open the case of polygonal curves consisting of two segments. 
Our first result settles this case. A polygonal curve consisting of k segments is called a 
polygonal k-chain.

Theorem 1. There exist arrangements of polygonal 2-chains in the plane whose disjoint-
ness graphs are triangle-free and have arbitrarily large chromatic numbers.

We do not know if Theorem 1 can be strengthened by requiring that the disjointness 
graph of the curves has large girth.

Problem 2. Do there exist arrangements of polygonal 2-chains in the plane whose dis-
jointness graphs have arbitrarily large girth and chromatic number?

Our next result shows that the answer to the above question is in the affirmative if, 
instead of 2-chains, we are allowed to use polygonal 3-chains.

Theorem 3. For any integers g and k, there is an arrangement of non-selfintersecting 
polygonal 3-chains in the plane whose disjointness graph has girth at least g and chro-
matic number at least k.

Pach and Tomon [33] proved that disjointness graphs of planar curves can have arbi-
trary large girth and chromatic number. (See also [32].) Theorem 3 is a strengthening of 
this result.

A 1-way infinite polygonal 2-chain is the union of a half-line and a segment that 
share an endpoint. In our proof of Theorem 1, we actually construct arrangements of 
1-way infinite polygonal 2-chains whose disjointness graphs are triangle free and have 
arbitrarily large chromatic number. Doubly tracing these 1-way infinite 2-chains and 
slightly perturbing the resulting curve, we obtain an arrangement of 2-way infinite 4-
chains, i.e., 4-chains whose first and last pieces are half-lines. Hence, we obtain the 
following

Corollary 4. There exist arrangements of non-selfintersecting 2-way infinite polygonal 4-
chains in the plane whose disjointness graphs are triangle-free and have arbitrarily large 
chromatic numbers.

Our next theorem shows that Corollary 4 is optimal: the class of disjointness graphs 
of (possibly self-intersecting) 2-way infinite polygonal 3-chains is χ-bounded.
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Theorem 5. Let G be the disjointness graph of an arrangement of 2-way infinite polygonal 
3-chains in the plane. Then we have χ(G) ≤ (ω(G))3 + ω(G).

In fact, we will establish Theorem 5 in a somewhat stronger setting: for arrangements 
of 2-way infinite curves that consist of three x-monotone pieces; see Theorem 7. With 
more work, the bound in Theorem 5 and Theorem 7 can be improved to χ(G) ≤ (ω(G))3.

In the polygonal case, our proof is algorithmic. There is a polynomial time algorithm 
in the number of the polygonal chains, which, for every k, either finds k pairwise disjoint 
chains or produces a coloring of their disjointness graph with at most k3 colors.

In Sections 2 and 3, we establish Theorems 1 and 3, respectively. Section 4 contains 
the proof of Theorem 5. We end this note with a few remarks and open problems.

In what follows, we informally call a polygonal 2-chain a V-shape and a polygonal 
3-chain a Z-shape.

2. Shift graphs—Proof of Theorem 1

For every n > 1, Erdős and Hajnal [9] defined the shift graph Sn, as follows. The 
vertex set of Sn consist of all pairs (a, b) with 1 ≤ a < b ≤ n, where two vertices, (a, b)
and (a′, b′), are connected by an edge if and only if b = a′ or b′ = a. It is easy to see that 
Sn is triangle-free and that χ(Sn) = �log2 n�.

Order the vertices (a, b) of Sn according to the co-lexicographic order, that is, let 
(a, b) ≺ (a′, b′) if b < b′, or if b = b′ and a < a′. Let v1, . . . , v(n2) denote the vertices of 
Sn, listed in this order.

Let vi = (a, b) be a vertex. Its neighbors having a smaller index are (a′, b′) with b′ = a. 
No such neighbor exists if and only if a = 1. Notice that, for any i,

1. either vi has no neighbor vj with a smaller index j < i,
2. or there exist integers c(i), d(i) with 1 ≤ c(i) ≤ d(i) < i such that for every j < i,

vjvi ∈ E(Sn) ⇐⇒ c(i) ≤ j ≤ d(i).

Recall that we write V-shape for a polygonal 2-chain. Similarly, we will refer to 1-way 
infinite polygonal 2-chains as long V-shapes.

Our goal is to assign a long V-shape to each vertex of Sn so that two V-shapes are 
disjoint if and only if the corresponding vertices are adjacent in Sn. This will prove 
Theorem 1, because in any finite collection of long V-shapes, we can cut the half-lines 
short so that the resulting (bounded) V-shapes have the same intersection structure. 
Hence, we obtain a collection of V-shapes with Sn as its disjointness graph, and the 
graphs Sn are triangle-free and their chromatic numbers tend to infinity, as n → ∞.

We assign the long V-shape Vi to the vertex vi of Sn recursively starting at V1. Let hi

and si denote the half-line and the straight-line segment, respectively, comprising Vi and 
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Fig. 1. Inserting Vi.

let us denote their common endpoint by pi = (xi, yi). We write qi for the other endpoint 
of si.

During the recursive process, we will maintain the following properties:
(i) pi is the left end point of both hi and si;
(ii) both hi and si have positive slopes;
(iii) si is above hi, i.e., the slope of si is larger than the slope of hi;
(iv) for any i > j, the slope of hi will be smaller than the slope of hj ;
(v) for any i > j, we have xi < xj and yi < yj .
Let V1 be any long V-shape satisfying the above conditions. Let i > 1, and assume 

recursively that we have already constructed the long V-shapes V1, . . . , Vi−1 satisfying 
the above requirements. Next, we define Vi. We distinguish two case;

Case A: The vertex vi = (a, b) has no neighbor with a smaller index, i.e., we have 
a = 1.

Let � be a horizontal line passing above p1. It will intersect every Vj with 1 ≤ j < i. 
Slightly rotate � about any fixed point of the plane so that the resulting line �′ has a very 
small positive slope, smaller than the slope of hi−1 and it still intersects all Vj for j < i. 
Choose a point pi = (xi, yi) ∈ �, very far to the left, so that xi < xi−1 and yi < yi−1. 
Let hi be the part of �′ to the right of pi, and let qi be a point to the right of pi which 
lies above hi. One can choose qi such that the segment si = piqi does not intersect any 
of the earlier Vj .

Case B: The vertex vi = (a, b) has at least one neighbor of smaller index, i.e., a > 1.
Let c(i) and d(i) be the constants satisfying property (2) above and let � be a horizontal 

line that passes below pd(i) and above pd(i)+1. In case d(i) +1 = i we could simply choose 
� to be an arbitrary horizontal line below pd(i), but the careful reader may notice that 
this case never occurs as no vertex vi in Sn is adjacent to vi−1.
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The line � intersects every Vj with d(i) < j < i and is disjoint from all Vj with 
j ≤ d(i). Slightly rotate � about any fixed point in the plane so that the resulting line �′

has a very small positive slope, smaller than that of hi−1 and it still intersects the same 
previously defined long V-shapes Vj . Select a slope α which is larger than the slope of 
hc(i), but smaller than the slope of hc(i)−1, if hc(i)−1 exists, that is, if c(i) > 1.

For any j < i, let �j and �′j denote the lines of slope α through pj and qj , respectively. 
Choose a point pi = (xi, yi) ∈ �′ so far to the left that we have xi < xi−1, yi < yi−1 and 
pi lies above the lines �j and �′j , for all j ≤ i.

Let hi be the part of �′ to the right of pi. Let f be the half-line of slope α, whose 
left endpoint is pi. Then f goes strictly above all sj for j < i and also of all hj with 
c(i) ≤ j < i, but will intersect all hj with 1 ≤ j < c(i). Choose qi on f to the right of these 
intersection points, then the segment si = piqi also intersects all hj with 1 ≤ j < c(i).

Notice that the long V-shape Vi consisting of hi and si constructed above satisfies the 
conditions (i)–(v) listed above, further it intersects exactly those other long V-shapes 
Vj (j < i) for which vj and vi are not adjacent in Sn. See Fig. 1. This means that the 
disjointness graph of the collection of the 

(
n
2
)

long V-shapes constructed above is exactly 
Sn. This completes the proof of Theorem 1. �

In the above proof, we have constructed a collection of 1-way infinite V-shapes in which 
each pair intersects at most twice. With a little additional care (namely, by insisting 
that each qi is higher than p1), we can achieve the following. For 1 ≤ i < j ≤

(
n
2
)
, with 

vi = (a, b) and vj = (a′, b′), we have

• if a′ < b, then Vi and Vj intersect once;
• if a′ = b, then Vi and Vj are disjoint;
• if a′ > b, then Vi and Vj intersect twice.

3. Hypergraphs of large girth—Proof of Theorem 3

A hypergraph H is a pair (V, E), where V is a finite vertex set, E is the set of 
hyperedges, that is, a collection of subsets of V . It is called n-uniform if each of its 
hyperedges has n vertices. In a proper coloring of H, every vertex is assigned a color 
in such a way that none of the hyperedges is monochromatic. The chromatic number of 
H is the smallest number of colors used in a proper coloring of H. A Berge-cycle in H
consists of a sequence of distinct vertices v1, . . . , vk and a sequence of distinct hyperedges 
e1, . . . , ek ∈ E with vi, vi+1 ∈ ei for 1 ≤ i < k and vk, v1 ∈ ek. Here k is the length of the 
Berge-cycle and it is assumed to be at least 2. The girth of a hypergraph is the length 
of its shortest Berge-cycle (or infinite if it has no Berge-cycle).

For the proof, we need the following classical result.

Erdős-Hajnal Theorem [8] (Corollary 13.4). For any integers n ≥ 2, g ≥ 3, and k ≥ 2, 
there exists an n-uniform hypergraph with girth at least g and chromatic number at least 
k.
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Fig. 2. The case k = 2.

Theorem 3 is a direct consequence of part (5) of the following statement.

Lemma 6. For any integers g ≥ 3, k ≥ 2, there is a natural number n = n(g, k) such 
that for every set P of n points on the x-axis in R2 and for every real c > 0, there is an 
arrangement Z = Z(P ) of n Z-shapes satisfying the following conditions.

(1) Each point in P is the endpoint of exactly one Z-shape in Z.
(2) Apart from a single endpoint in P , every Z-shape in Z lies strictly above the x-axis.
(3) No Z-shape in Z is self-intersecting and any two cross at most twice.
(4) For any Z-shape z = pqrs ∈ Z whose vertices p, q, r, s have x-coordinates xp, xq, 

xr, xs, and p ∈ P , we have xq + c < xp < xs < xr − c.
(5) The disjointness graph of the Z-shapes in Z has girth at least g and chromatic 

number at least k.

Proof. For each g, we prove the lemma by induction on k. We fix g ≥ 3. For k = 2, 
n(g, 2) = 2 is a good choice. For any two points on the x-axis and any c > 0, we can 
take two disjoint Z-shapes satisfying the requirements. Their disjointness graph is K2, 
its chromatic number 2 and it has infinite girth. See Fig. 2.

Suppose now that k ≥ 2 and that we have already proved the statement for k. Now 
we prove it for k + 1. Let n = n(g, k).

By the Erdős-Hajnal Theorem stated above, there exists an n-uniform hypergraph H
whose girth is at least g and chromatic number at least k + 1. Let v1, v2, . . . , vm denote 
the vertices of H and e1, e2, . . . , eM the hyperedges of H. Let N = nM + m. We show 
that n(g, k + 1) = N satisfies the requirements of the lemma.

Let P be an arbitrary set of N points on the x-axis and let c > 0. For any vi ∈ V (H), 
let di denote the degree of vi, that is, the number of hyperedges that contain vi. Obviously, 
we have

m∑

i=1
(di + 1) = nM + m = N.

Choose m disjoint open intervals, I1, . . . , Im, such that each Ii contains precisely di+1
points of P . For every i, 1 ≤ i ≤ m, we associate the interval Ii with vertex vi of H. Let 
pi denote the leftmost point in P ∩ Ii. For every i and j (1 ≤ i ≤ m, 1 ≤ j ≤ M) for 
which vi ∈ ej , assign a distinct point pji ∈ (P ∩ Ii) \ {pi} to the pair (vi, ej).

Next, we construct a set of N Z-shapes that satisfy conditions (1)–(5) of the lemma 
with parameters g, k+ 1, and c. We construct subsets Zj of our eventual set of Z-shapes 
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Fig. 3. Inserting z1.

for 1 ≤ j ≤ M . We construct these sets one by one starting at Z1 and using the inductive 
hypothesis for various subsets of P of size n and with a parameter c′ that we choose to 
be larger than c plus the diameter of P .

For j = 1, consider the n = n(g, k)-element point set P ′
1 = {p1

i : vi ∈ e1}. By the 
induction hypothesis, there is a set Z1 of Z-shapes such that one of their endpoints 
belongs to P ′, and they satisfy conditions (1)–(5) with parameter c′.

Suppose that j > 1 and that we have already constructed the sets of Z-shapes 
Z1, . . . , Zj−1. Now let P ′

j = {pji : vi ∈ ej}. By the induction hypothesis, there is a 
set Z ′

j of Z-shapes with one of their endpoints in P ′ which satisfy conditions (1)–(5) 
with parameter c′. Apply an affine transformation (x, y) → (x, y/Kj) to all Z-shapes 
in Z ′

j , where Kj is a very large constant to be specified later. The resulting family of 
Z-shapes, Zj , still satisfies all defining conditions and, by choosing Kj large enough, we 
can achieve that every element of Zj intersects every Z-shape in 

⋃
h<j Zh exactly once 

or twice.
The set 

⋃M
j=1 Zj contains exactly one Z-shape starting at each point pji . We still need 

to add one Z-shape zi = piqirisi starting at each point pi, 1 ≤ i ≤ m. We define them 
recursively for i = 1, . . . , m. We make sure that each zi = piqirisi satisfies the following 
properties.

(i) The segment qiri is horizontal and the y-coordinate of its points is larger than the 
y-coordinate of any point of any Z-shape in (

⋃M
j=1 Zj) ∪ {zh : 1 ≤ h < i}.

(ii) The slope of piqi is −εi, the slope of risi is εi, for a sufficiently small constant 
εi > 0, to be specified later.

(iii) The x-coordinate of si is equal to the x-coordinate of the right endpoint of Ii, and 
the y-coordinate of si is εi.

Clearly, if we choose εi > 0 sufficiently small, then zi is disjoint from all Z-shapes in ⋃M
j=1 Zj that start in Ii, but it intersects exactly once all other Z-shapes already defined. 

Also, zi satisfies conditions (2) and (3), and it satisfies condition (4), too, provided that 
εi is sufficiently small. See Fig. 3.

As we maintained conditions (1)–(4) throughout the construction, it remains only to 
prove that the disjointness graph G of Z satisfies condition (5) with k + 1 in place of k.
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To this end, let us explore the structure of G. The vertices of G can be partitioned 
into the sets Zj for 1 ≤ j ≤ M and the independent set W = {zi : 1 ≤ i ≤ m}. Further, 
there is no edge between two distinct sets Zj and Zj′ . There is a single edge from zi to 
Zj if vi ∈ ej , and there is no edge from zi to Zj otherwise. Finally, each vertex in Zj is 
adjacent to exactly one of the vertices zi, and it satisfies vi ∈ ej .

The structure above implies that each cycle C of G is either contained in a single 
set Zj , or it passes through several sets Zj and several vertices in W . In the former 
case, by our assumption on the disjointness graph of Zj, the length of C is at least g. 
In the latter case, let us record the vertices of W and the sets Zj as the cycle passes 
through them: zi1 , Zj1 , zi2 , Zj2 , . . . , zih , Zjh . Here, the vertices vi1 , . . . , vih are all distinct 
and, if the same is true for the hyperedges ej1 , . . . , ejh , then they form a Berge-cycle 
of length h in the hypergraph H. If the hyperedges are not all distinct, then an even 
shorter Berge-cycle is formed by any repetition-free interval between two occurrences of 
the same hyperedge. By our assumption on the girth of H, we have h ≥ g in both cases, 
so all cycles of G have length at least g, as required.

Suppose now that there is a proper k-coloring of G. Restricting it to the set W (and 
identifying each zi ∈ W with the vertex vi of H), we obtain a k-coloring of the vertices of 
the hypergraph H. By our assumption, this cannot be a proper coloring. Therefore, there 
is a monochromatic hyperedge ej. In this case, no vertex in Zj can receive the common 
color of the vertices of ej, so we have a proper (k − 1)-coloring of Zj . This contradicts 
our assumption on the disjointness graph of Zj and, thus, proves that G has no proper 
k-coloring. This concludes the proof of Lemma 6 and, hence, of Theorem 3. �

James Davies [5] used a very similar construction to show that there are intersection 
graphs of axis-parallel boxes and intersection graphs of lines in 3-space with arbitrarily 
large girths and chromatic numbers.

4. Two-way infinite polygonal chains—Proof of Theorem 5

As we pointed out at the end of Section 2, the class of disjointness graphs of 1-way 
infinite V-shapes is not χ-bounded. But if we require both ends of a V-shape to be long, 
the situation will change.

A 2-way infinite polygonal k-chain is a continuous curve in the plane consisting of 
two half-lines connected by an (ordinary) polygonal (k − 2)-chain. We can relax this 
definition by requiring only that each of the k pieces are x-monotone, and the first and 
the last pieces have unbounded projections to the x-axis. In this case, the curve is called 
a 2-way infinite k-monotone chain.

According to this definition, a 2-way infinite polygonal 2-chain (V-shape) whose half-
lines are not vertical is a 2-way infinite 2-monotone chain. It can also be regarded as a 
degenerate 2-way infinite 3-monotone chain. Note that by performing a suitable rotation, 
if necessary, we can always assume that none of the half-line pieces of a finite arrangement 
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Fig. 4. The three partial orders: A is to the left of B, below B, and above B.

of 2-way infinite polygonal k-chains is vertical. Therefore, the following theorem implies 
Theorem 5.

Theorem 7. The disjointness graph G of a finite arrangement of 2-way infinite 3-
monotone chains satisfies χ(G) ≤ (ω(G))3 + ω(G).

Proof. We call a (possibly self-intersecting) 2-way infinite k-monotone chain A wide if 
it intersects every vertical line. A chain A with this property divides the plane into 
(open) connected components, exactly one of which contains a vertical half-line pointing 
upwards. We call this component the upside of A. For any two wide 2-way infinite k-
monotone chains, A and B, we say that A is higher than B if A is contained in the 
upside of A. In this case, the upside of B is also contained in the upside of A. Therefore, 
the relation “higher” defines a partial order on any arrangement of wide k-monotone 
chains. According to this partial order, only disjoint pairs are comparable. Since any two 
disjoint wide 2-way infinite k-monotone chains are comparable, the disjointness graph of 
any collection of wide 2-way infinite k-monotone chains is a comparability graph.

Now we turn our attention to the non-wide case. The complement of a non-wide 2-way 
infinite k-monotone chain A has precisely one connected component which contains a 
vertical line. We call this component the large component. The chain A is said to be a 
right chain if A is to the right of the vertical lines in the large component, otherwise it 
is a left chain. If A is a right chain, we call its large component the left side of A. On 
the other hand, if A is a left chain, we call the union of all connected components of the 
complement of A, other than its large component, the left side of A.

For any two non-wide 2-way infinite k-monotone chains, A and B, we say that A is to 
the left of B if both A and its left side are contained in the left side of B. Obviously, this 
relation also defines a partial order, with respect to which only disjoint non-wide chains 
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are comparable. It is not true that any two disjoint non-wide 2-way infinite 3-monotone 
chains are comparable. Therefore, we need to introduce two further partial orders.

For any two subsets of the plane, A and B, we say that A is below B (A is above B, 
resp.), if the following two conditions are satisfied:

1. every vertical line that intersects A also intersects B;
2. if a ∈ A ∩ � and b ∈ B ∩ � for a vertical line �, then the y-coordinate of a is strictly 

lower (higher, resp.) than the y-coordinate of b.

Note that “above” and “below” are two separate partial orders and not the inverses of 
each other. It is clear that both of these relations are partial orders on arbitrary planar 
sets and that any two comparable sets are disjoint. See Fig. 4.

Lemma 8. Any two disjoint non-wide 2-way infinite 3-monotone chains, A and B, are 
comparable by one of the three relations “below”, “above”, or “to the left”.

To establish the lemma, note that non-wide 2-way infinite 3-monotone chains must 
be, in fact, 2-way infinite 2-monotone chains. A left chain with this property is the union 
of the graphs of two continuous functions f1, f2 : (−∞, a] → R, where f1(a) = f2(a). 
Let B be another left chain obtained as the union of the graphs of two continuous 
functions g1, g2 : (−∞, b] → R, and assume that A and B are disjoint. We can assume, 
by symmetry, that b ≤ a. Consider g1(b) = g2(b). It is easy to see that if it is below 
both f1(b) and f2(b), then B is below A. If it is above both f1(b) and f2(b), then B is 
above A. Finally, if g1(b) is between f1(b) and f2(b), then B is to the left of A. A similar 
argument applies if both A and B are right chains. Finally, if a left chain is disjoint from 
a right chain, then the left chain is always to the left of the right chain. This completes 
the proof of Lemma 8.

Now we return to the proof of Theorem 7. Fix a family F of 2-way infinite 3-monotone 
chains, and let G denote their disjointness graph. Let F1 and F2 consist of the wide 
and non-wide elements of F , respectively. We have seen that the disjointness graph 
G[F1] of F1 is a comparability graph. Comparability graphs are perfect, so we have 
χ(G[F1]) = ω(G[F1]). We also proved that the comparability graph G[F2] of F2 is the 
union of three comparability graphs. This implies that χ(G[F2]) ≤ (ω(G[F2]))3.

For the entire graph G, we have

χ(G) ≤ χ(G[F1]) + χ(G[F2]) ≤ ω(G[F1]) + (ω(G[F2]))3 ≤ ω(G) + (ω(G))3,

as required. This completes the proof of the theorem. �
In [27], for every k ≥ 2, we constructed arrangements of x-monotone curves such that 

their left endpoints lie on the y-axis and their disjointness graphs have clique number k
and chromatic number 

(
k+1). We can extend these curves to the left by adding horizontal 
2
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half-lines without changing their intersection structure. Traversing the resulting curves 
twice, we obtain families of 2-way infinite 2-monotone chains such that their disjointness 
graphs satisfy χ(G) =

(
ω(G)+1

2
)
. We do not know whether the order of magnitude of the 

bound in Theorem 7 is best possible.
We were unable to improve on the bound in Theorem 7 even for 2-way infinite polygo-

nal 3-chains. The best lower bound we have in this case is ω(G)(log 5/ log 2)−1 ≈ ω(G)1.32, 
and it follows from a construction in [20].

5. Concluding remarks

A. Given an arrangement C of curves in the plane and a line �, we say that C is grounded 
on � if every member c ∈ C lies in the same closed half-plane bounded by �, and c has 
precisely one point in common with �, which is one of its endpoints.

The chromatic number of intersection graphs of grounded curves has been extensively 
studied (see [6], for a survey), but less is known about the corresponding problem for 
disjointness graphs. In the proof of Theorem 1, we constructed arrangements of 1-way in-
finite V-shapes whose disjointness graphs are triangle-free and whose chromatic numbers 
are arbitrarily large. Applying a suitable projective transformation, these arrangements 
can be turned into arrangements of grounded V-shapes.

B. In Problem 2, we asked whether the disjointness graph of an arrangement of 
V-shapes can have simultaneously arbitrarily high chromatic number and girth. The 
following statement provides an affirmative answer to a relaxed version of this question. 
The odd-girth of a graph is the length of the shortest odd cycle in it (or infinite if the 
graph is bipartite).

Proposition 9. There exist arrangements of polygonal 2-chains in the plane whose dis-
jointness graphs have arbitrarily large odd-girths and chromatic numbers.

Proof. The proof is based on the same idea as the Proof of Theorem 1, where we repre-
sented the shift graph Sn as the disjointness graph of an arrangement of V-shapes. The 
vertices of Sn are pairs (a, b) of integers 1 ≤ a < b ≤ n, so they can be associated with 
the edges of the complete graph Kn. Thus, the vertices of Sn associated with the edges 
of a subgraph G ⊆ Kn induce a subgraph G∗ ⊆ Sn. For any G ⊆ Kn, we have

(1) χ(G∗) ≥ log(χ(G)) ([25], Theorem 5.6) and

(2) the odd-girth of G∗ is strictly larger than the odd-girth of G ([18], Lemma 6.6).

For any integers g and k, there exist n = n(g, k) and a subgraph G ⊂ Kn with girth 
(and, hence, odd-girth) at least g and chromatic number at least k [8]. By properties (1) 
and (2), the odd-girth of the corresponding induced subgraph G∗ of Sn will be larger 
than g, and its chromatic number will be at least log k. The graph G∗ inherits from Sn

a representation as a disjointness graph of V-shapes. �
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Unfortunately, getting rid of short even cycles, even 4-cycles, looks impossible by using 
this simple trick.

C. The arrangements of polygonal curves proving Theorems 1 and 3 have the property 
that any two of them have at most two points in common. It would be interesting to 
decide whether these theorems remain true if we insist that the curves are single-crossing, 
that is, any two curves have at most one point in common at which they properly cross.

Conjecture 10. The class of disjointness graphs of single-crossing polygonal 2-chains is 
χ-bounded.

Mütze et al. [24] proved that the same statement is false for polygonal 3-chains.
D. To prove Theorem 1, we established that the shift graph Sn, a triangle-free graph 

of unbounded chromatic number, can be obtained as the disjointness graph of V-shapes. 
However, the fractional chromatic number of Sn is bounded: it is smaller than 4 for 
every n. Do there exist triangle-free disjointness graphs of V-shapes with arbitrarily 
large fractional chromatic number?

Analogously, our construction for Theorem 3 gives disjointness graphs with bounded 
fractional chromatic number. Do there exist disjointness graphs of Z-shapes with arbi-
trarily large girth and fractional chromatic number?

E. It was shown in [26] that the class disjointness graphs of segments in the space is 
χ-bounded. On the other hand, it follows from Theorem 1, that the class of disjointness 
graphs of 2-chains (or k-chains, for k ≥ 2) in the space is not χ-bounded.

For 1-way infinite chains the situation is very similar: the class of disjointness graphs 
of half-lines in the space is χ-bounded and by Theorem 1, the class of disjointness graphs 
of 1-way infinite 2-chains (or k-chains, for k ≥ 2) in the space is not χ-bounded.

By Theorem 1, there is a system of 1-way infinite 2-chains in the plane whose disjoint-
ness graphs are triangle-free and have arbitrarily large chromatic number. In the space, 
we can extend each of them by a half-line which is disjoint from the other chains. This 
implies that the class of disjointness graphs of 2-way infinite 3-chains is not χ-bounded. 
The same holds for 2-way infinite k-chains for any k ≥ 3.

So, the only remaining case is the 2-way infinite 2-chains. We were unable to decide 
if their disjointness graphs are χ-bounded.

Data availability

No data was used for the research described in the article.
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