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Abstract

We study two well-known Ramsey-type problems for (vertex-)ordered complete
graphs. Two independent edges in ordered graphs can be nested, crossing or separated.
Apart from two trivial cases, these relations define six types of subgraphs, depending
on which one (or two) of these relations are forbidden.

Our first target is to refine a remark by Erdős and Rado that every 2-coloring of
the edges of a complete graph contains a monochromatic spanning tree. We show that
forbidding one relation we always have a monochromatic (non-nested, non-crossing,
non-separated) spanning tree in a 2-edge-colored ordered complete graph. On the other
hand, if two relations are forbidden, then it is possible that we have monochromatic
(nested, separated, crossing) subtrees of size only ∼ n/2 in a 2-colored ordered complete
graph on n vertices. Some of these results relate to drawings of complete graphs. For
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instance, the existence of a monochromatic non-nested spanning tree in 2-colorings of
ordered complete graphs verifies a more general conjecture for twisted drawings.

Our second subject is to refine the Ramsey number of matchings, i.e. pairwise
independent edges for ordered complete graphs. Cockayne and Lorimer proved that
for given positive integers t, n, m = (t − 1)(n − 1) + 2n is the smallest integer with
the following property: every t-coloring of the edges of a complete graph Km con-
tains a monochromatic matching with n edges. We conjecture that this result can be
strengthened: t-colored ordered complete graphs on m vertices contain monochromatic
non-nested and also non-separated matchings with n edges. We prove this conjecture
for some special cases including the following.

• (i) Every t-colored ordered complete graph on t+ 3 vertices contains a monochro-
matic non-nested matching of size two (n = 2 case). We prove it by showing
that the chromatic number of the subgraph of the Kneser graph induced by the
non-nested 2-matchings in an ordered complete graph on t+ 3 vertices is (t+1)-
chromatic.

• (ii) Every 2-colored ordered complete graph on 3n−1 vertices contains a monochro-
matic non-separated matching of size n (t = 2 case). This is the hypergraph ana-
logue of a result of Kaiser and Stehĺık who proved that the Kneser graph induced
by the non-separated 2-matchings in an ordered complete graph on t+3 vertices
is (t+ 1)-chromatic.

For nested, separated, and crossing matchings the situation is different. The small-
est m ensuring a monochromatic matching of size n in every t-coloring is 2(t(n−1))+1)
in the first two cases and one less in the third case.

Keywords— ordered graph, geometric Ramsey, spanning tree, matching, monochromatic,
twisted drawing, nested edges, crossing edges

1 Introduction

An ordered graph G is a simple graph with V (G) = [m] = {1, 2, . . . ,m}. The vertex set is considered
with the natural ordering and the edges are denoted by (i, j), where we always assume i < j. The
length of (i, j) is j−i. Turán- and Ramsey-type problems for ordered graphs have been extensively
studied, see surveys [4], [8], [17]. Independent edges in ordered graphs can be classified as follows
(see Figure 1).

• Edges (a, b) and (c, d) are crossing if either a < c < b < d or c < a < d < b.

• Edges (a, b) and (c, d) are nested if either a < c < d < b or c < a < b < d.

• Edges (a, b) and (c, d) are separated if either a < b < c < d or c < d < a < b.
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1 2 3 4 5 6

3 41 232 542

an ordered graph

5 63

Figure 1: Crossing, nested and separated edges in an ordered graph.

On the Based of the above, we call an ordered graph G non-crossing (resp. non-nested, non-
separated) if it does not contain crossing (resp. nested, separated) independent edges. Combi-
natorial objects arising from theses relations, for example overlap graphs, interval graphs, circle
graphs have been extensively studied [6], [9]. The complementary notions are the crossing, nested,
separated ordered graphs, where any two independent edges are crossing, nested or separated, re-
spectively.

A matching in a graph is a set of pairwise independent edges. A matching with n edges is
denoted by Mn. In an ordered graph (in accordance with the previous definition) a matching can
be crossing, nested or separated. A separated matching is equivalent to a set of pairwise disjoint
intervals. Crossing and nested matchings relate to drawings of graphs. If we consider the vertices of
an ordered graph G drawn on a convex curve in the natural order, and edges drawn as straight-line
segments, then two independent edges cross if and only if they form a crossing pair. On the other
hand, there is a drawing, called twisted drawing [12], where two independent edges cross if and only
if they form a nested pair, see Figure 2.

1 2 3 4 5 6

twisted drawing

1

2

3

4

5

6

convex drawing

Figure 2: An ordered graph and its twisted and convex drawing.

Here we are interested in possible extensions of two well-known Ramsey-type remarks from
complete graphs to ordered complete graphs. We use the shorthand t-coloring for t-edge-coloring.
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Remark 1.1. Every 2-colored complete graph has a monochromatic spanning tree.

Remark 1.2. Every 2-colored complete graph K3n−1 contains a monochromatic matching Mn and
this is not true for K3n−2.

Remark 1.1 is from Erdős and Rado. For many extensions, see the survey [11]. Károlyi, Pach
and Tóth [14] generalized both remarks to geometric graphs, that are graphs drawn in the plane
with straight-line segments as edges.

Theorem 1.3. ([14]) Every 2-colored complete geometric graph has a monochromatic plane span-
ning tree.

Theorem 1.4. ([14]) Every 2-colored complete geometric graph K3n−1 contains a monochromatic
plane matching Mn.

Here a plane subgraph is one, whose edges in the embedding do not have common internal
points.

Remark 1.2 is the easiest case (t = 2, r = 2) of the following theorem (conjectured by Erdős).

Theorem 1.5. (Alon, Frankl, Lovász [2]). Assume that t, k, r are positive integers and
n = (t− 1)(k − 1) + kr. In every t-coloring of the edges of the complete r-uniform hypergraph Kr

n

there is a monochromatic matching with k edges (and n is smallest possible for which the statement
holds).

The case r = 2 in Theorem 1.5 is due to Cockayne and Lorimer [7], the case t = 2 is in [1], [10].
The case k = 2 is the breakthrough of Lovász solving Kneser’s conjecture [15].

In this paper, we study how the statements of Remarks 1.1, 1.2 change if complete graphs are
replaced by ordered complete graphs. We consider all six cases (crossing, nested, separated and
their negations) for spanning trees and for matchings. In case of matchings, we address the t-color
case also. We present our results in Section 2 and in Section 3 we give the proofs.

2 Results

2.1 Monochromatic spanning trees

Theorem 2.1. In every 2-coloring of the ordered complete graph, there exists
(i) a monochromatic non-crossing spanning tree.
(ii) a monochromatic non-nested spanning tree.
(iii) a monochromatic non-separated spanning tree.

Part (i) is a consequence of Theorem 1.3 and it was already observed by Bialostocki and Dierker
[5]. We give a very short direct proof. Part (ii) implies that every 2-coloring of the twisted drawing
of the complete graph has a monochromatic plane spanning tree. This verifies a special case of the
conjecture in [3], that in every 2-coloring of any simple drawing of the complete graph, there is a
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monochromatic plane spanning tree. Apart from geometric graphs (Theorem 1.3) the conjecture is
verified for cylindrical drawings [3].

We show that parts (i) and (ii) in Theorem 2.1 cannot be improved.

Proposition 2.2. (i) There is a 2-coloring of the ordered complete graph on [n], which does not
contain a non-crossing monochromatic subgraph with n edges.

(ii) There is a 2-coloring of the ordered complete graph on [n], which does not contain a non-
nested monochromatic subgraph with n edges.

The situation is different in the non-separated case.

Proposition 2.3. In any 2-coloring of the ordered complete graph on [n], there is a non-separated
monochromatic subgraph of ⌊n2/8⌋ edges.

When two of the relations are forbidden, the analogue of Theorem 2.1 is the following.

Theorem 2.4. Let G be an ordered complete graph on [n].
(i) There exists a 2-coloring of G, which does not contain a monochromatic separated subtree with
more than ⌈n2 ⌉+ 1 vertices, where n ≥ 4.
(ii) There exists a 2-coloring of G, which does not contain a monochromatic nested subtree with
more than n+4

2 vertices.
(iii) there exists a 2-coloring of G, which does not contain a monochromatic crossing subtree with
more than n+3

2 vertices.

Theorem 2.4 is close to optimal since a monochromatic star on at least ⌈n−1
2 ⌉+1 vertices always

exists in a 2-coloring (by the pigeonhole principle).

2.2 Non-nested matchings

Remark 1.2 probably remains true for non-nested matchings.

Conjecture 2.5. Every 2-colored ordered complete graph on [3n − 1] contains a monochromatic
non-nested matching of size n.

The statement of Conjecture 2.5 trivially holds if 3n−1 is replaced by 4n−2. Indeed, there are
2n−1 independent separated edges and by the pigeonhole principle in any 2-coloring of these edges,
we find a monochromatic Mn. We can improve this only by one. Theorem 2.18 below guarantees
even a monochromatic crossing Mn in [4n− 3].

There are two different types of extremal graphs containing no Mn. The first is the complete
graph K2n−1 and the second is a graph where all edges are incident to a set of n − 1 vertices.
The extremal configuration for Remark 1.2 combines them to obtain a matching lower bound: a
2-coloring of K3n−2 is obtained from a red K2n−1 and n− 1 further vertices incident to blue edges.
As a support of Conjecture 2.5, we show in the next result that there is no better way to combine
these colorings in ordered complete graphs if we allow nested pairs.
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Theorem 2.6. If an ordered complete graph on [3n−1] contains either (i) a red K2n−1 or
(ii) a blue Kn−1,2n as a subgraph, then there is a monochromatic non-nested Mn.

Somewhat surprisingly we found that the proof of Theorem 2.6 is not easy at all (this may raise
some doubt whether Conjecture 2.5 is true). In spite of that we extend it further.

Theorem 2.7. (Cockayne and Lorimer, [7]) Assume that 1 ≤ n1 ≤ · · · ≤ nt and m =
∑t

i=1(ni−1)+
nt+1. Then every t-colored complete graph Km contains a matching of size ni for some 1 ≤ i ≤ t,
monochromatic in color i.

We conjecture that Theorem 2.7 remains true for non-nested matchings as well, extending
Conjecture 2.5.

Conjecture 2.8. Assume that 1 ≤ n1 ≤ · · · ≤ nt and m =
∑t

i=1(ni − 1) + nt + 1. Then every t-
colored ordered complete graph on [m] contains a non-nested matching of size ni for some 1 ≤ i ≤ t,
monochromatic in color i.

Let R∗(k, l) denote the minimum positive integer n such that in any 2-coloring of the ordered
complete graph on [n], there is either a red non-nested Mk or a blue non-nested Ml. We support
Conjecture 2.8 with the following three results.

Theorem 2.9. For n ≥ 2, we have R∗(2, n) = 2n+ 1.

Theorem 2.10. For n ≥ 3, we have R∗(3, n) = 2n + 2.

Theorem 2.11. Every t-colored ordered complete graph on [t+3] contains a monochromatic non-
nested M2.

Note that Theorem 2.11 extends the k = r = 2 case of Theorem 1.5. We prove the statement by
showing that the chromatic number of the subgraph of the Kneser graph induced by the non-nested
2-matchings in an ordered complete graph on [t+ 3] is t-chromatic. This is a result parallel to the
one of Kaiser and Stehĺık [13], who proved this for non-separated 2-matchings of a t-colored ordered
complete graph on [t+ 3].

2.3 Non-crossing and non-separated matchings

The analogue of Conjecture 2.5 for non-crossing matchings is true. This follows from a more general
theorem by Károlyi, Pach and Tóth [14]. We give a very simple direct proof in our special case.

Theorem 2.12. Every 2-colored ordered complete graph on [3n−1] contains a monochromatic non-
crossing Mn.

The analogue of Theorem 2.11 is not true for non-crossing matchings.

Proposition 2.13. For t ≥ 3 there is a t-coloring of the ordered complete graph on [t+3] containing
crossing monochromatic matchings only.
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The analogue of Theorem 2.11 is true for non-separated matchings. In fact this follows from
a result of Kaiser and Stehĺık [13] who found an edge-critical subgraph of the Schrijver graph.
The vertices of their graph Gt are (cyclically non-consecutive) pairs of [t+ 3] and all of the edges
are between crossing or nested pairs. They show that Gt is t + 1-chromatic and this implies the
following.

Corollary 2.14. ([13]) Every t-coloring of the ordered complete graph on [t + 3] contains a non-
separated monochromatic matching M2.

Corollary 2.14 proves that Conjecture 2.8 is true for non-separated matchings as well in the
n = 2 case. It is also true in the t = 2, n1 = n2 = n case.

Theorem 2.15. Every 2-colored ordered complete graph on [3n − 1] contains a monochromatic
non-separated Mn.

Theorem 2.15 easily implies an extension to the non-symmetric case. .

Corollary 2.16. Assume that 1 ≤ n1 ≤ n2 and m = 2n2 + n1 − 1. Then every 2-colored ordered
complete graph on [m] contains either a non-separated matching of size n1 in color 1 or a non-
separated matching of size n2 in color 2.

2.4 Nested, crossing and separated matchings

In Sections 2.2 and 2.3 we investigated matchings in ordered graphs forbidding one of the three
possible mutual positions of independent edges. Here we look at the complementary case, where two
possibilities are forbidden. Let Rnest(t, n), Rcr(t, n), Rsep(t, n) be the smallest m such that every
t-coloring of the edges of the ordered complete graph on [m] there is a monochromatic nested,
crossing, separated matching, respectively, of size n. It turns out that in two cases the Ramsey
numbers are equal to their trivial upper bound and in one case it is one smaller.

Theorem 2.17. For t, n ≥ 2 we have Rnest(t, n) = 2(t(n − 1) + 1).

Theorem 2.18. For t, n ≥ 2 we have Rcr(t, n) = 2t(n − 1) + 1.

Theorem 2.19. For t, n ≥ 2 we have Rsep(t, n) = 2(t(n− 1) + 1).

3 Proofs

3.1 Spanning trees

Proof of Theorem 2.1. (i) As already mentioned in the introduction, this part is a direct
consequence of Theorem 1.3. Here we give a very easy direct proof, by induction on n, the number
of vertices. For n = 1, 2, the statement is trivial. Suppose that n > 2 and the statement holds for
smaller values. If all edges (i, i+1), i = 1, . . . , n−1 have the same color, then we are done, they form
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the desired spanning tree. Otherwise there is an i, 1 < i < n such that (i− 1, i) and (i, i+ 1) have
different colors. Delete vertex i. The remaining 2-colored complete graph has a monochromatic
non-crossing spanning tree. Now add vertex i together with edge (i− 1, i) or (i, i+ 1), and we are
done.

(ii) Again, the proof is by induction on n. The statement is trivial for n = 1, 2. Suppose n > 2,
and the statement holds for every value smaller than n. Consider the ordered complete graph on
[n] and any 2-coloring c of the edges. We may assume the edge (1, 2) is blue. If (1, i) is blue for
every i, 2 ≤ i ≤ n, then we are done, these edges form a blue, non-nested spanning star. Otherwise,
let s be the smallest number such that (1, s) is red. We now change the coloring c to c̃ as follows:
we recolor each edge induced by [s−1] blue, and keep c otherwise. Consider the coloring c̃ on [2, n]
and apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without nested edges. We can find a blue
non-nested spanning tree in the original 2-colored graph the following way. Delete the edges in B
induced by [2, s − 1]. The resulting graph can also be found in the original coloring c. Now add
the blue edges (1, 2), (1, 3), . . . , (1, s−1). The obtained graph is connected and spanning, so we can
remove some edges to get a spanning tree. It does not contain a nested pair either, since B was
non-nested, and the edges (1, 2), (1, 3), . . . , (1, s−1) can form a nested pair only with edges induced
by [2, s − 1], but they were deleted.

Suppose now that we found a red spanning tree R on 2, . . . , n. It cannot contain any edges
induced by [2, s− 1] since they are blue. So, R can also be found in the original coloring c. Simply
add edge (1, s), and we have a red non-nested spanning tree.

(iii) Again, the proof is by induction on n. The statement is trivial for n = 1, 2, suppose that
n > 2, and the statement holds for every value smaller than n. Consider the ordered complete
graph on [n] and any 2-coloring c of the edges. Assume the edge (1, n) is blue. If (1, i) is blue
for every i, 2 ≤ i ≤ n, then we are done, these edges form a blue, non-separated spanning star.
Otherwise, let s be the largest number such that (1, s) is red. We now change the coloring c to
c̃ as follows: we recolor each edge induced by [s + 1, n] blue, and keep c otherwise. Consider the
coloring c̃ on [2, n] and apply the induction hypothesis.

Suppose first that we find a blue spanning tree B without separated edges. Delete the edges of
B induced by [s+1, n]. Let B′ be the resulting graph. Just like in the previous case, B′ can also be
found in coloring c. Now add the blue edges (1, s+1), . . . , (1, n). The obtained graph is connected
and spanning, so we can remove some edges to get a blue spanning tree. We have to show that it
is non-separated. Since B was non-separated, B′ is also non-separated. So its edges, considered as
intervals, have a common vertex p. But for all edges (i, j) of B′, i ≤ s, therefore, we can assume
that p ≤ s. Now the edges (1, s + 1), . . . , (1, n) also contain p. Therefore, the blue spanning tree
we got is non-separated.

Suppose now that we found a red spanning tree R on 2, . . . , n. Now R does not contain any
edge induced by [s + 1, n], so it can also be found in coloring c. Now simply add edge (1, s), and
we get a non-separated red spanning tree. This concludes the proof of Theorem 2.1. �

Proof of Proposition 2.2 (i) Color all edges (i, i + 1) blue, for 1 ≤ i ≤ n − 1, all other edges
red. Obviously, the statement holds for the blue edges. Let H be a non-crossing subgraph with red
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edges. Consider the convex drawing of Kn, where the blue edges are on the outer cycle. Now H
becomes a plane subgraph on the convex drawing. Let us add all edges of the outer cycle (n − 1
blue and possibly one red) to H to get H ′. It is still an outerplanar graph. Therefore, H ′ has at
most 2n− 3 edges, n− 1 of them are blue. Thus H can have at most n− 2 edges.

(ii) Color the edge (i, j) blue if i + j is even and red, if i + j is odd. For the red edges, the
value of i + j can have at most n − 1 different values. So, among n red edges there are two with
i+ j = i′ + j′, therefore, these edges are nested. The argument is the same for the blue edges. �

Proof of Proposition 2.3 Consider all edges (i, j) with i ≤ ⌊n/2⌋ < j, these edges are pairwise
non-separated, and at least half of them have the same color. �

Proof of Theorem 2.4 (i) Color all edges (i, j) with i ≤ ⌊n/2⌋ < j red and all other edges
blue. Clearly a blue subtree has at most ⌈n2 ⌉ vertices. Since n ≥ 4, a red subtree must be a star.
Otherwise, we find a red path with 3 edges, and there are crossing or nested edges. However, a red
star can have at most ⌈n2 ⌉+ 1 vertices.

(ii) Color the edge (i, j) blue if i + j is even and red, if i + j is odd. Let X,Y denote the set
of odd and even vertices of G, respectively. The subgraph consisting of blue edges has two almost
equal components, thus any blue subtree in G has at most ⌈n2 ⌉ vertices. Let T be a red nested
subtree. Among all vertices of degree 1 in T , select a vertex i for which the edge e of T incident
to i is as short as possible. We assume that e = (i, j), i ∈ X, j ∈ Y , our arguments apply for the
other cases as well. Set

A1 = {v ∈ V (G) : v < i}, A2 = {v ∈ V (G) : i < v < j}, A3 = {v ∈ V (G) : j < v}.

Claim 3.1. For any ℓ ∈ A2 ∩Y we have ℓ /∈ V (T ). For any ℓ ∈ X, ℓ+1 ∈ A1 we have |{ℓ, ℓ+1}∩
V (T )| ≤ 1. Similarly, for any ℓ ∈ X, ℓ− 1 ∈ A3 we have |{ℓ− 1, ℓ} ∩ V (T )| ≤ 1.

To prove the first statement, suppose for some ℓ ∈ A2 ∩ Y that ℓ ∈ V (T ). There is a (nested)
path P = ℓ, k, . . . , j in T , that cannot contain i (because i has degree one). Since there is no edge
crossing (i, j), the path P must be completely in [i + 1, j]. Now consider the longest path Q in T
from ℓ, which is edge-disjoint from P . This is also in [i + 1, j]. Either ℓ or the other endpoint of
Q must be a degree 1 vertex of T , and the edge of T incident to it must be shorter than (i, j), a
contradiction.

To prove the second statement, suppose that ℓ, ℓ + 1 ∈ A1 are both in V (T ), where ℓ ∈ X.
Since no edge of T can cross or be separated from (i, j), any path of T from a vertex in A1 to j
must alternate between vertices of A1 and A3 before reaching j (a 1-edge path from A1 ∩X1 to j
is possible). However, the path P from ℓ to j is internally vertex-disjoint from any path Q from
ℓ+ 1 to j because ℓ+ 1 and j have the same parity. Since Q has at least two edges, some of them
must cross an edge of the path P .

The proof of the third statement is similar to the second. Here the path P from ℓ to j and the
path Q from ℓ− 1 to j leads to contradiction, proving Claim 3.1.

We make the calculations based on Claim 3.1.

|V (T )| ≤ 2 +

⌈

|A1|

2

⌉

+
|A2|

2
+

⌈

|A3|

2

⌉

≤
4 + |A1|+ 1 + |A2|+ |A3|+ 1

2
=

n+ 4

2
,
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finishing the proof of (ii).
(iii) We use the same coloring as in part (ii) and the same notations. As in (ii), any blue subtree

in G has at most ⌈n2 ⌉ vertices. Let T be a red crossing subtree of G. We distinguish two cases.
Case 1. There exists a red path in T with edges (a, i), (i, b). Fix i , we may assume i ∈ X.
Select the largest a < i and the smallest b > i such that (a, i), (i, b) are edges of T . Automatically
a, b ∈ Y . Let S be the star defined by the red edges of T incident to i. Set

A = {v ∈ V (G) : v < a}, B = {v ∈ V (G) : v > b}.

By the choice of a and b, all edges of S go from i to A ∪B ∪ {a} ∪ {b}.

Claim 3.2. For any z ∈ (A \ V (S)) ∪ (B \ V (S)) we have z /∈ V (T ). For any a < ℓ < i, ℓ ∈ X we
have |{ℓ, ℓ+ 1} ∩ V (T )| ≤ 1. Similarly, for any i < ℓ < b, ℓ ∈ X we have |{ℓ− 1, ℓ} ∩ V (T )| ≤ 1.

The first statement follows from the fact that no red edge can be incident to z because it would
be either separated or properly cover one of the red edges (a, i), (i, b).

To prove the second statement, suppose there is a (crossing) path P from ℓ to some vertex x of
V (S). Since the edges of P must cross both (a, i) and (i, b), the path P visits even vertices larger
than i and odd vertices smaller than i. It cannot jump to a vertex v larger than b, since that edge
would contain (i, b). Therefore, x = b. There is also a path Q from ℓ+ 1 to V (S) and by a similar
reasoning it must end in a. However, the first edge (ℓ+ 1, q1) of Q must cross the first edge (ℓ, p1)
of P , hence p1 < q1. Now the second edge (p2, p1) of P satisfies p2 < ℓ, otherwise the edge (p2, p1)
is contained in (ℓ+1, q1) forming a nested pair. If we continue this way, the last edge of P , the one
incident to b contains (ℓ+ 1, q1). This is a contradiction, proving the second statement. The third
statement follows the same way by symmetry, proving the claim. �

The claim implies that

|V (T )| ≤ |V (S)|+
b− a− 2

2
≤

|A|+ |B|

2
+ 3 +

b− a− 2

2
=

n+ 3

2
,

proving (iii) in Case 1.
Case 2. There is no red path in T with edges (a, i), (i, b), for any a < i < b.

It follows that for any fixed vertex i, all incident edges go to the same direction. More precisely,
for any i, there are two possibilities:
a. For all j, if j is adjacent to i in T , then j < i. In this case we say that i is of type R.
b. For all j, if j is adjacent to i in T , then j > i. In this case we say that i is of type L.

Clearly, the left end-vertex of every edge is of type L, the right end-vertex is of type R. On
the other hand, the edges of T are red, therefore one end-vertex is odd, the other one is even. We
may assume there is an odd vertex of type L. Since T is connected, it follows that every odd (resp.
even) vertex of T is of type L (resp. R).

On the other hand, each edge (i, j) corresponds naturally to the open interval (i, j). Since T was
crossing and for any fixed vertex, all incident edges go to the same direction, its edges correspond
to pairwise intersecting intervals. Hence all of them have a non-empty intersection. This common
intersection cannot be a vertex, so it contains an interval (j, j + 1) for some j. It follows that T
can contain only odd vertices of [1, j] and only even vertices of [j +1, n]. Therefore, T has at most
n
2 + 1 vertices. �
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3.2 Matchings

Proof of Theorem 2.6.
(i) There is a red K2n−1.

Let P = {p1 < p2 < · · · < p2n−1} be the set of vertices of a red K2n−1 and Q = {q1 < · · · < qn}
be the set of the remaining vertices in an ordered complete graph on [3n− 1].

For an unordered pair {pi, qj}, 1 ≤ i ≤ 2n − 1, 1 ≤ j ≤ n, let π(pi, qj) denote the number of
vertices of P strictly between pi and qj.

We define a subgraph H of the (ordered) bipartite graph [P,Q] as follows. A pair {pi, qj} is an
edge in H if and only if 0 < |π(pi, qj)| ≤ n− 1 or |π(pi, qj)| = 0 and i is odd.

Claim 3.3. If an edge e of H is red, then there exists a non-nested red matching Mn in the ordered
complete graph on [3n− 1].

Proof of Claim 3.3. Let (p, q) be a red edge of H. The symmetric case for (q, p) is literally
the same. Let P1, P2, and P3 be the set of vertices of P smaller than p, between p and q, and
greater than q, respectively. Since |P2| ≤ n− 1, we have |P2| ≤ |P1|+ |P3|. It follows that there is
a decomposition P2 = P ′

2 ∪ P ′′
2 such that |P ′

2| ≤ |P1|, |P1| − |P ′
2| is even, |P

′′
2 | ≤ |P3|, |P3| − |P ′′

2 | is
even.

We can select a non-nested matching on the first |P1|−|P ′
2| vertices of P1, a non-nested matching

between the last |P ′
2| vertices of P1 and |P ′

2|, a non-nested matching between the first |P ′′
2 | vertices

of P3 and |P ′′
2 |, and a non-nested matching on the last |P3| − |P ′′

2 | vertices of P3. These red edges,
together with (p, q), form a red non-nested matching of G. This matching uses all vertices of P
and one vertex of Q for a total of 2n vertices and thus n edges. �

By the claim we can assume for the rest of the proof that all edges of H are blue. We find a non-
nested blueMn inH by the following algorithm. In what follows, j is an index depending on another
index i, therefore we use j(i). The output of the algorithm is the matching {{pi, qj(i)} : i ∈ [n]}.

Non-nested H-matching

Step 0. i := 0, j(0) := 0.

Step 1. If i = n, then go to Step 6.

Step 2. Let i := i+ 1.

Step 3. If {qi, pj(i−1)+1} ∈ E(H) then let j(i) = j(i − 1) + 1. Go to Step 1.

Step 4. If π(qi, pj(i−1)+1) = 0 and j(i − 1) + 1 is even, then let j(i) = j(i − 1) + 2. Go to
Step 1.

Step 5. If π(qi, pj(i−1)+1) ≥ n, then let j(i) be the smallest number j with j(i−1) < j ≤ 2n−1
and π(qi, pj) < n. (We shall prove in Claim 3.4 that qi > pj(i−1)+1 thus j(i) is well defined.) Go to
Step 1.

Step 6. The edge set Mn = {{qi, pj(i)} : 1 ≤ i ≤ n} is the output of the algorithm. The
algorithm ends here.
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We prove that Mn is a non-nested matching in H.
Assume first that Step 5 was never executed by the algorithm. This implies that j(1) = 1, and

|j(i) − i| ≤ |j(i − 1)− (i− 1)|+ 1, therefore, j(n) ≤ 2n− 1. Moreover, if {qi, pj(i−1)+1} /∈ E(H) in
Step 3, then Step 4 increases j(i − 1) + 1 by one, from even to odd, thus {qi, pj(i−1)+1} ∈ E(H)
upon returning to Step 3. Therefore all edges of Mn are in H. Since the algorithm ensures that
for i < i′ we have j(i) < j(i′), no two edges of Mn are nested.

Assume next that the algorithm executed Step 5 at some point. Let i = I at the first execution
of Step 5.

Claim 3.4. qI > pj(I−1)+1.

Proof of Claim 3.4. Suppose to the contrary that qI < pj(I−1)+1. Since π(qI , pj(I−1)+1) ≥ n,
we know qI < pj(I−1)−n+1. Let j(I − 1) − n + 1 < j ≤ j(I − 1), and suppose that we arrived
to pj at the stage i = i′. Then qi′ < qI < pj(I−1)−n+1 < pj, therefore, 1 ≤ π(qi′ , pj) ≤ n − 1
by the definition of I, so {qi′pj} ∈ E(H), consequently j(i′) = j. In other words, all vertices
pj, j(I − 1) − n + 1 < j ≤ j(I − 1), are paired to some qi in Mn. In particular, for some i′,
j(i′) = j(I − 1)−n+2. But j(1) = 1, so i′ > 1. So we have least n qi-s with i < I, a contradiction
since the algorithm stops for i = n. �

By Claim 3.4, Step 5 defines j(I) such that pj(I−1)+1 < pj(I) < qI and π(pj(I), qI)=n−1.
Observe that if pj(i) < qi and π(pj(i), qi) ≥ 2 for some i, then pj(i+1) < qi+1 and π(pj(i+1), qi+1) ≥
π(pj(i), qi)− 1. Therefore, the algorithm finds a pair for qI+1, . . . , qI′ where I ′ = min(n, I + n− 2).
This finishes the proof unless I = 1. In that case, we have π(pj(n−1), qn−1) ≥ 1. So, if j(n−1)+1 is
odd, then the algorithm sets j(n) = j(n− 1)+1. If j(n− 1)+1 is even, then j(n− 1)+1 ≤ 2n− 2,
so the algorithm sets j(n) = j(n − 1) + 2. This concludes the proof of part (i).
(ii) There is a blue K2n,n−1.

Lemma 3.5. If the vertices of an ordered graph G are colored black and white so that there are at
least m black and at least m white vertices, then G has a non-nested black-white matching of size
m.

Proof of Lemma 3.5. Let b1 < b2 < · · · < bm be m black and w1 < w2 < · · · < wm be m
white vertices in increasing order. Now the edges ei = wibi, i = 1, . . . ,m give the desired matching.
Indeed, if an interval defined by ei contains an interval defined by ej , then either wi < wj and
bi > bj or wi > wj and bi < bj , and both cases are impossible. �

Set P = {p1 < p2 < · · · < p2n} and Q = {q1 < · · · < qn−1} and let [P,Q] be the complete
bipartite blue subgraph in the ordered 2-colored complete graph on [3n − 1].

Claim 3.6. If the edge e = (pi, pi+n) is blue for some i ∈ [n], then there exists a non-nested blue
matching Mn.

Proof of Claim 3.6. Let A = {p1, . . . , pi−1} and B = {pi+n+1, . . . , p2n}. Observe that |A|+|B| =
|Q| = n− 1. Partition Q into three parts,

Q1 = Q ∩ [1, pi − 1], Q2 = Q ∩ [pi + 1, pi+n − 1], Q3 = Q ∩ [pi+n + 1, 3n − 1].
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We have (|Q1| + |Q2|) + (|Q2| + |Q3|) = |Q| + |Q2| ≥ n − 1 = |A| + |B|. Therefore, either
|Q1| + |Q2| ≥ |A| or |Q2| + |Q3| ≥ |B|. By symmetry we may assume the former. Let Q′ be the
first |A| elements of Q. There are two possibilities.

If pi < qi, then we apply Lemma 3.5 with the black-white set pairs A,Q′ (with m = |A| = |Q′|)
and B,Q \Q′ (with m = |B| = |Q \Q′|). We get two non-nested blue matchings M|A|,M|B|. The
edges of M|A| are separated from the edges of M|B|, so M|A| ∪MB is a non-nested blue matching
with n − 1 edges. The edges of M|A| are either completely to the left of e or crossing e from the
left. Similarly, the edges of M|B| are either completely to the right of e or crossing e from the right.
Therefore M|A| ∪MB ∪ e is a non-nested blue matching with n edges, proving the claim.

If qi < pi, then we apply Lemma 3.5 with the black-white set pairs A,Q′, (Q1 \ Q′), P ′ and
(Q \ Q1), B, where P ′ = {pi+1, . . . , pi+n−1}. (Note that |P ′| = n − 1.) We certainly get a blue
matching M of size |A| from the first pair. However, the size of the other two matchings can vary.
Since m = |Q1 \ Q′| ≤ |P ′|, Lemma 3.5 gives a blue matching M ′ from (Q1 \ Q′) to the first m
points of P ′. Lastly, observe that from the assumption qi < pi we have |Q1| ≥ i − 1, implying
m = |Q \Q1| = n− 1− |Q1| ≤ n− i = |B|, thus Lemma 3.5 gives a blue matching M ′′ from Q \Q1

to the first m points of B. (In a degenerate case, Q \Q1 might even be empty.)
The edges of M are completely to the left of e. The edges of M ′ are separated from M and

cross e from the left. The edges of M ′′ are separated from M . They are either separated from
the edges of M ′ or cross. Lastly, they cross e from the right. Therefore, M ∪ M ′ ∪ M ′′ ∪ e is a
non-nested blue matching of size n. �

Proof of Theorem 2.9. We prove the upper bound by induction on n. The edges (1, 3), (2, 5), (1, 4), (3, 5), (2, 4)
form a crossing 5-cycle in the ordered complete graph on [5]. Therefore any 2-coloring of this cycle
contains a monochromatic crossing pair, finishing the base step n = 2. For the inductive step,
assume we have a 2-coloring of the ordered complete graph on [2n+1] for some n > 2. We want to
find either a non-nested redM2 or a non-nested blueMn. If the edge (1, 2) or the edge (2n, 2n+1) is
blue, then we find the requested matching by induction using the ordered complete graph spanned
by either [3, 2n + 1] or [1, 2n − 1]. Otherwise (1, 2), (2n, 2n + 1) are both red edges, finishing the
proof.

For the lower bound, consider the ordered complete graph on [2n]. We color each edge spanned
by [2, 2n] blue and each edge incident to 1 red. This coloring does not contain two independent red
edges or a blue Mn. �

Proof of Theorem 2.10. We start with the upper bound. Assume there is a 2-coloring of
the ordered complete graph on [2n + 2] for n ≥ 3. We want to find either a non-nested red M3

or a non-nested blue Mn. Assuming n > 3, we show first the inductive step. As in the previous
proof, we can apply induction if the edge (1, 2) or the edge (2n + 1, 2n + 2) is blue. Thus suppose
that (1, 2), (2n + 1, 2n + 2) are both red edges. Consequently every edge of the ordered complete
graph K spanned by [3, 2n] is blue, otherwise we have the required non-nested red M3. Note that
|V (K)| = 2(n − 1) thus all maximal non-nested matchings in K have size n− 1.

Consider the crossing matching Q = (1, 3), (2, 4). If both edges of Q are red, we have the
non-nested red M3 (adding the red edge (2n + 1, 2n + 2)) finishing the proof. If both edges of Q
are blue, then we have a non-nested blue Mn by extending Q with any non-nested blue matching
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Mn−2 in K \ {3, 4}. Thus the edges of Q have different colors. Repeating the same argument with
the crossing matching Q′ = (2n− 1, 2n+1), (2n, 2n+2) we conclude that the edges of Q′ also have
different colors. Observe that using the (blue) edges of K, we can extend the blue edges of Q,Q′

to a non-nested blue Mn (we only leave out the endvertices of the red edges of Q,Q′) finishing
the proof for n > 3. However, note that this proof works for n = 3 too, provided that the edges
(1, 2), (2n + 1, 2n + 2) are both red (or by symmetry, both are blue).

Thus, in handling the case n = 3, we may assume that the edge (1, 2) is red and the edge
(7, 8) is blue. Moreover, if any edge of the triangle T spanned by {1, 2, 3} is blue, then we consider
the coloring of K8 restricted to the ordered complete graph on [4, 8]. By Theorem 2.9 there is a
monochromatic M2 and the red or the blue edge of T extends it to a non-nested monochromatic
M3. The same argument applies to the triangle T ′ spanned by {6, 7, 8} and we conclude that T is a
red triangle and T ′ is a blue triangle. If the matching (3, 4)(5, 6) is monochromatic, then extending
it with (1, 2) or (7, 8), and we get a non-nested monochromatic M3. Otherwise we consider two
cases.
Case (i) The edge (3, 4) is blue, and (5, 6) is red. Now either (2, 4) is blue or (1, 3), (2, 4), (5, 6)
is a non-nested red M3. Similarly, (5, 7) is red, otherwise we are done. If (3, 6) is red, then
(1, 2), (3, 6), (5, 7) is a non-nested red M3. Otherwise (2, 4), (3, 6), (7, 8) is a non-nested blue M3.
Case (ii) The edge (3, 4) is red, and (5, 6) is blue. In this case {1, 2, 3, 4} spans a red K4 and
{5, 6, 7, 8} spans a blueK4, otherwise we have a monochromaticM3. Consider the crossing matching
M = (2, 5), (3, 6), (4, 7). Two edges of M , say e, f have the same color. Set

x = [2, 4] \ (e ∪ f), y = [5, 7] \ (e ∪ f).

If e, f are red then (1, x), e, f is a non-nested red matching, otherwise e, f, (y, 8) is a non-nested
blue matching.

The lower bound is shown by the following 2-coloring of the ordered complete graph on [2n+1].
Each edge incident to 1 or 2 is red, and the edges induced by [3, 2n + 1] are blue. There is no red
M3 or blue Mn. �

Proof of Theorem 2.11. Consider a t-colored ordered complete graph K on [t+ 3]. We define
a graph Gt+3 as follows. The vertex set of Gt+3 is defined as a subset of edges of K:

V (Gt+3) = {(i, j) : 1 ≤ i < j − 1 ≤ t+ 2, (i, j) 6= (1, t+ 3)}.

Two vertices of Gt+3, (i, j), (k, l) form an edge if and only if they are crossing or separated.
In fact, the graph Gt+3 is a subgraph of the Schrijver-graph [16] whose chromatic number is

t+1. In the next lemma, we show that Gt+3 still has the same chromatic number. It is non-trivial,
since the largest clique size is ⌊t/2⌋. In fact we prove a bit more. We say that a vertex of a graph
is critical if its removal decreases the chromatic number.

Lemma 3.7. χ(Gt+3) = t+ 1 and the vertex (2, t+ 3) is critical.

Proof. We prove the lemma by induction on t, starting from t = 2, when G5 is the 5-cycle with
vertices (1, 3), (2, 4), (3, 5), (1, 4), (2, 5), thus the Lemma is true. For the inductive step, consider
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Gt+3 with t ≥ 3 and suppose to the contrary that it has a proper t-coloring C. We label the colors by
elements of [t]. By the inductive hypothesis, all colors have to be used on the vertices of the subgraph
Gt+2. Moreover, since (2, t+ 2) is critical in Gt+2 with set of neighbors N = {(1, 3), . . . , (1, t+ 1)}
(in Gt+2), the colors on the set N ∪ (2, t+ 2) are all different, we may assume C((1, i)) = i− 2 for
3 ≤ i ≤ t+ 1 and C((2, t+ 2)) = t.

Define S = {(3, t+3), . . . , (t+1, t+3)} and observe the following about the coloring C on Gt+3.

• (i) vertex (2, t+ 3) is adjacent to all vertices of N thus C((2, t+ 3)) = t

• (ii) vertex (2, t+ 2) is adjacent to all vertices of S thus color t is not used on S

• (iii) the bipartite subgraph [N,S] of Gt+3 is almost complete, only the edges from (1, i)
to (i, t + 3) are missing for 3 ≤ i ≤ t + 1. Using this and (ii), C is determined on S:
C((i, t+ 3)) = C((1, i)) = i− 2.

These observations lead to contradiction because the vertex (1, t+2) is adjacent to S∪{(2, t+3)},
that is colored by t distinct colors. This proves that χ(Gt+3) = t+ 1.

To show that the vertex v = (2, t + 3) is critical, remove v from Gt+3 and keep the coloring C
defined above on S. For 1 ≤ i < j ≤ t+2, we can color vertex (i, j) with color j− 2. This provides
a proper t-coloring for Gt+3 − v, proving the lemma (the criticality of any vertex of Gt+3 follows
also from [16]). �

Theorem 2.11 follows from Lemma 3.7, since the t-coloring of K gives a t-coloring of the vertices
of Gt+3. Since χ(Gt+3) = t+1 there are two adjacent vertices of the same color, which means that
we have a non-nested M2 as desired. �

Proof of Theorem 2.12. We prove by induction, the case n = 1 is obvious. Consider the
Hamiltonian path P = P3n−1 with edge set {(i, i + 1) : i ∈ [1, 3n − 2]} in a 2-colored ordered
complete graph on [3n−1]. If this path is monochromatic, then there is a monochromatic matching
of size ⌊3n−1

2 ⌋ ≥ n. Otherwise, we have a sub-path Q ⊂ P consisting of two edges of different colors.
Removing the vertices of Q, we can find by induction a monochromatic Mn−1 in the remaining
2-colored ordered complete graph on 3n − 4 vertices. Since no edge of Mn−1 can cross an edge of
Q, we can extend Mn−1 by one of the edges of Q to get a non-crossing matching as desired. �

Proof of Proposition 2.13. The proof is by induction on t. Let t = 3. It suffices to find a
3-coloring of the ordered K6, where independent edges of each color class are crossing. A solution
is the following:

• (1, 2)(1, 3), (2, 3), (2, 4), (2, 5)

• (1, 4), (3, 4), (3, 5), (4, 5)

• (1, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6)

�

The induction step is trivial, just add a new vertex t+ 4 and all edges adjacent to it get color
t+ 1. �
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Proof of Theorem 2.15. We prove by induction on n, the case n = 1 is obvious. For the
inductive step, assume there is a 2-colored ordered complete graph on [1, 3n − 1] for some n > 1.
Set A = [1, n], B = [2n, 3n − 1]. If the complete bipartite graph [A,B] is monochromatic, then we
have a crossing or nested monochromatic Mn. Otherwise there exists a path P3 with a red and
a blue edge in [A,B]. By the inductive hypothesis, the 2-colored ordered complete graph K on
[1, 3n − 1] \ V (P3) contains a monochromatic non-separated matching Mn−1. We claim that no
edge (x, y) ∈ Mn−1 can be separated from either edge of P3. Indeed, since both edges of P3 are
long, such an edge must satisfy x, y ∈ A or x, y ∈ B. This implies |x − y| < n − 1 in K since at
least one vertex is removed from both A and B. Therefore, at most n − 3 edges of Mn−1 can be
non-separated from the edge (x, y), contradicting the definition of Mn−1, proving the claim.

Thus Mn−1 can be extended by the suitable edge of P3 to a monochromatic non-separated
Mn. �

Proof of Corollary 2.16. Consider an arbitrary 2-coloring of the edges of an ordered complete
graph on V = [m] where m = 2n2 +n1 − 1. Extend V to V ′ = [m,m+n2 −n1] and color all edges
incident to V ′ with the second color. Applying Theorem 2.15 to the 2-colored ordered complete
graph on V ∪ V ′ (which has 3n2 − 1 vertices) we have a monochromatic non-separated M = Mn2

.
If it is in the second color, we are done. Otherwise we remove all edges of M incident to V ′ to get
a matching in the first color with size at least n1. �

Proof of Theorem 2.17. Here the upper bound is obvious: an ordered t-colored complete graph
on [2(t(n−1)+1)] contains t(n−1)+1 pairwise nested edges and the majority color on them gives
a monochromatic nested Mn.

The lower bound comes from the following recursive construction of a t-colored ordered complete
graph Gm with m = 2t(n−1)+1, containing no monochromatic nested Mn. For n = 1 the ordered
complete graph K1 trivially works. Assume that Gm is already defined for some n ≥ 1. Define
V (Gm+1) as A ∪ V (Gm) ∪B, where

A = {a1, . . . , at}, B = {b1, . . . , bt}, a1 < · · · < at < V (Gm) < bt < · · · < b1.

The edges of Gm+1 within V (Gm) keep their color. For ap ∈ A, bq ∈ B,x ∈ V (G) let C be the
following coloring.

C((ap, aq)) = C((bq, bp)) = C((ap, bq)) = min{p, q}, C((ap, x)) = p,C((x, bq)) = q.

Note that Gm+1 does not have monochromatic nested Mn+1 because its edges incident to A∪B
do not contain a nested monochromatic M2, therefore the largest monochromatic nested matching
of Gm+1 must be an extension of a monochromatic nested matching of Gm which has size at most
n− 1 by the definition of Gm. �

Proof of Theorem 2.18. Set m = 2t(n − 1). The lower bound construction is based on the
following lemma.

Lemma 3.8. The edge set of the ordered complete graph on [2t] can be partitioned into t non-
crossing spanning trees.
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Proof. In fact, we partition the complete graph into non-crossing double stars. For i ∈ [t] we
define the spanning tree Ti as follows.

E(Ti) = {(i, i + 1), . . . , (i, t+ i), (t + i, t+ i+ 1) . . . , (t+ i, 2t), . . . , (t+ i, i− 1) (mod 2t)}.

Looking at the convex drawing, it is immediate that the double stars Ti are non-crossing, see
Figure 3 for the case t = 3. �

Figure 3: Decomposition into non-crossing double stars.

Consider the edges of Ti as edges of color i. Then “blow up” each vertex i, 1 ≤ i ≤ 2t by
replacing vertex i by a set Ai of n− 1 consecutive vertices in the convex drawing. This defines the
ordered graph G(t, n) with 2t(n− 1) vertices (with a convex drawing). The edge-coloring provided
by Ti is extended by adding all edges between Ap and Aq with the color used on (p, q) in Ti. The
edges within the sets Ai are colored arbitrarily (with colors from [t]).

Claim 3.9. The t-colored ordered Km defined above has no monochromatic crossing matching Mn.

To prove the claim, suppose that M is a red crossing matching in Km. If an edge of M is within
some Ai then it can be crossed by at most n − 3 other edges of M . Thus we may assume that
all edges of M are edges of the “blow up” of the red double star. Since no two edges of a double
star cross, for any two edges e, f ∈ M there exists Ai such that e ∩Ai, f ∩Ai are both non-empty.
Moreover, since the double stars have no triangles, any two edges of M must intersect the same Ai.
Since |Ai| = n− 1, M has at most n− 1 edges, proving the claim and the lower bound for Theorem
2.18.

For the upper bound consider a t-colored ordered complete graph K = Km+1 represented with
its convex drawing. Since m + 1 is odd, the longest diagonals of K form a Hamiltonian cycle H.
The majority color has at least ⌈m+1

t
⌉ = 2(n − 1) + 1 edges and among these edges there are at

least n which are pairwise non-consecutive on H thus they form a monochromatic crossing Mn. �

Proof of Theorem 2.19. The upper bound is obvious: in a t-coloring of an ordered complete
graph on [2(t(n− 1)+ 1)] there are t(n− 1) + 1 pairwise separated edges and the majority color on
them gives a monochromatic separated Mn.

The lower bound construction consists of t− 1 consecutive blocks A1, . . . , At−1 with size 2n− 2
and an end-block At with |At| = 2n− 1. An edge (i, j) is colored by k, where i ∈ Ak. There is no
Mn (of any type) in color t and there is no separated Mn in color i for 1 ≤ i < t either because at
least two edges of Mn intersect Ai in one vertex, forming a crossing or nested pair. �
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4 Conclusion, open problems

Here we concentrated on two Ramsey problems (connected subgraphs and matchings) in ordered
complete graphs. For connected graphs we got almost sharp results for 2-colorings. It would be
interesting to see what happens for more colors. The main open problem is whether the case
r = 2 in Theorem 1.5 (Cockayne - Lorimer [7]) remains true for non-nested and for non-separated
matchings of ordered graphs. (The positive answer for special cases are provided in Theorems 2.6,
2.9, 2.10, 2.11, 2.15 and Corollary 2.14.

Conjecture 4.1. Assume that t, n are positive integers and m = (t−1)(n−1)+2n. Then in every
t-coloring of the edges of the ordered complete graph Km there is

(i) a monochromatic non-nested matching with n edges
(ii) a monochromatic non-separated matching with n edges

It is interesting to observe that while case (ii) of Conjecture 4.1 for 2 colors is true (and the
proof is easy), case (i) seems difficult, even for n = 4. Also, in this case we could decrease the
trivial upper bound 4n− 2 only by one.

Acknowledgement. We thank a referee for useful remarks and for pointing to some inaccuracies
in our manuscript.
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[14] G. Károlyi, J. Pach, G. Tóth. Ramsey-Type Results for Geometric Graphs, I . Discrete Comput.
Geom. 18 (1997), 247–255.

19

https://arxiv.org/pdf/2203.06143.pdf


[15] L. Lovász, Kneser’s conjecture, chromatic numbers and homotopy, J. Comb. Theory A, 25
(1978), 319–324.

[16] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd., III 26 (1978),
454–461.

[17] G. Tardos, Extremal theory of vertex or edge ordered graphs, in: Surveys in Combinatorics
2019, Cambridge University Press, 2019, London Math. Soc. Lecture Note Series: 456. 221–236.

20



twisted drawing

1 2 3 4 5 6

1 2 3 4 5 6

6

ordered graph G


	Introduction
	Results
	Monochromatic spanning trees 
	Non-nested matchings
	Non-crossing and non-separated matchings
	Nested, crossing and separated matchings

	Proofs
	Spanning trees 
	Matchings

	Conclusion, open problems

