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Abstract

Very recently, Alon and Frankl initiated the study of the maximum number of

edges in n-vertex F -free graphs with matching number at most s. For fixed F and s,

we determine this number apart from a constant additive term. We also obtain several

exact results.

1 Introduction

A basic problem in extremal graph theory is the following. Given a positive integer n and a
graph F , how many edges can an n-vertex graph have if it does not contain F as a subgraph?
More generally, given n and a family F of graphs, how many edges can an n-vertex graph
have if it does not contain any member of F as a subgraph? We denote the largest number
of edges by ex(n,F). In the case F contains only one graph, we write ex(n, F ) instead of
ex(n, {F}).

One of the earliest results concerning these numbers is due to Turán [8], who showed
that ex(n,Kk+1) = |E(T (n, k))|, where the Turán graph T (n, k) is the complete k-partite
n-vertex graph with each part of order ⌊n/k⌋ or ⌈n/k⌉. Another fundamental result is due
to Erdős and Gallai [5], who showed that ex(n,Ms+1) = max{|E(G(n, s))|,

(

2s+1
2

)

}, where
the matching Ms+1 consists of s + 1 independent edges and G(n, s) has s vertices of degree
n− 1 and n− s vertices of degree s. Chvátal and Hanson [3] determined ex(n,K1,k+1,Ms+1)
(the case s = k was solved earlier in [1]).

Very recently, Alon and Frankl [2] combined the above results and considered forbidding
a graph F and Ms+1 at the same time. Let G(n, k, s) denote the complete k-partite n-vertex
graph with one part of order n − s and each other part of order ⌊s/k⌋ or ⌈s/k⌉. Alon and
Frankl [2] showed that ex(n, {Kk+1,Ms+1}) = max{|E(G(n, k, s))|, |E(T (2s + 1, k))|}, in
particular for n sufficiently large we have ex(n, {Kk+1,Ms+1}) = |E(G(n, k, s))|. Moreover,
for any F with chromatic number k + 1 and a color-critical edge (an edge whose deletion
decreases the chromatic number), they showed that ex(n, {F,Ms+1}) = |E(G(n, k, s))|, pro-
vided s > s0(F ) and n > n0(F ).

First we prove a generalization of this second result.
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Theorem 1.1. If χ(F ) > 2 and n is large enough, then ex(n, {F,Ms+1}) = ex(s,F)+ s(n−
s), where F is the family of graphs obtained by deleting a color class from F .

We remark that isolated vertices of members of F are important here. For example, if F
is an odd cycle C2ℓ+1 (or more generally, if F is 3-chromatic with a color-critical edge), then
F contains the graph consisting of an edge and 2ℓ− 1 isolated vertices. If s ≥ 2ℓ + 1, then
ex(s,F) = 0, while if s ≤ 2ℓ+ 1, then ex(s,F) =

(

s

2

)

.
Observe that if F has a color-critical edge, then F contains a graph F ′ with chromatic

number k := χ(F − 1)k and a color-critical edge. By a result of Simonovits [7], we have
that ex(s,F) = |E(T (s, k − 1))| if s is large enough. Therefore, the above theorem indeed
generalizes the second result of Alon and Frankl [2]. We also have the following.

Corollary 1.2. If χ(F ) > 2, then ex(n, {F,Ms+1}) = s(n− s) +O(1).

In the case F is bipartite, we can also determine ex(n, {F,Ms+1}) apart an additive
constant term. Let F be a bipartite graph and let p = p(F ) denote the smallest possible
order of a color class in a proper two-coloring of F . If p > s, then G(n, s) and K2s+1 are
both F -free, thus the Erdős-Gallai theorem [5] gives the exact value of ex(n, {F,Ms+1}).

Proposition 1.3. If F is bipartite and p = p(F ) ≤ s, then ex(n, {F,Ms+1}) = (p − 1)n +
O(1). Moreover, there is a K = K(F, s) such that for any n, there is an n-vertex {F,Ms+1}-
free graph with |E(G)|= ex(n, {F,Ms+1}) that has vertices v1, . . . , vp−1 and at least n − K
vertices u such that the neighborhood of u is {v1, . . . , vp−1}. Furthermore, the vertices with

neighborhood different from {v1, . . . , vp−1} each have degree at last p.

The lower bound is given by Kp−1,n−p+1. It is clearly not the extremal graph though.
Now we describe two candidates.

Construction 1. Let F0 denote the family of graphs obtained by deleting p − 1 vertices
from F and let F1 = F0 ∪ {Ms−p+2}. Then we can add an F1-free graph to the larger class
of Kp−1,n−p+1 and all edges to the smaller class. The resulting graph is clearly {F,Ms+1-free
and has (p−1)(n−p+1)+

(

p−1
2

)

+ex(n−p+1,F1) edges. Note that F1 contains K1,|V (F )|−p,
thus ex(n− p+ 1,F1) = O(1).

Construction 2. Assume that F is connected. We take Kp−1,n+p−2s, and on the remaining
2s− 2p+ 1 vertices, we take an F -free graph with ex(2s− 1, F ) edges. Clearly, none of the
components of this graph contains F , and the largest matchings have size at most p−1+s−p.

We remark that the second construction can easily be improved for some specific F . For
example, if F is a path P4 on 4 vertices, we can take Kp−1,n−3s+2p−1 and s− p triangles. We
claim that if F contains a cycle and s is large enough, then the second construction contains
more edges. Indeed, compared to the first construction, we lose O(s) edges and gain ω(s)
edges.

Assume now that F is a forest and observe that F1 contains a matching of order at
most |V (F )|−p + 1. Indeed, if F has v non-isolated vertices, then there are at most v − 1
edges between the two parts, thus at most p− 1 vertices of the part of order |V (F )|−p have
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degree more than 1. If we delete those vertices, we obtain a matching. This implies that
ex(n− p+ 1,F1) does not depend on s.

Now assume that F is a tree with parts of different order, i.e., |V (F )|> 2p. Assume
furthermore that s and n are sufficiently large, and for simplicity assume that 2s − 1 is
divisible by |V (F )|−1. In this case s/(|V (F )|−1) copies of K|V (F )|−1 forms an F -free graph,
thus ex(2s− 1, F ) ≥ (|V (F )|−2)(2s− 1)/2. Now, compared to Construction 1, the second
construction loses (2s−1)(p−1)+c edges, where c does not depend on s. On the other hand,
Construction 2 gains at least (2s− 1)(|V (F )|−2)/2 > (2s− 1)(p− 1/2), thus Construction
2 is better. Note that essentially the same argument also works if 2s− 1 is not divisible by
|V (F )|−1.

We believe that for other trees Construction 1 is better than Construction 2 for every s,
moreover, Construction 1 is extremal. The Erdős-Sós conjecture [4] states that for any tree
F , we have ex(n, F ) ≤ (|V (F )|−2)n/2. It is known for several classes of trees. In particular,
it was shown for paths by Erdős and Gallai [5].

Proposition 1.4. Let F be a balanced tree, i.e., |V (F )|= 2p(F ) and let p(F ) ≤ s. As-

sume that the Erdős-Sós conjecture holds for F . Then for sufficiently large n, we have

ex(n, {F,Ms+1}) = (p− 1)(n− p+ 1) +
(

p−1
2

)

.

The above proposition determines ex(n, {P2ℓ,Ms+1}) for sufficiently large n. We can also
deal with odd paths.

Proposition 1.5. Let 2 ≤ ℓ ≤ s. If ℓ divides s − ℓ + 1, then for sufficiently large n we

have that ex(n, {P2ℓ+1,Ms+1}) = (ℓ − 1)(n − 2s + ℓ − 1) +
(

p−1
2

)

+ (s − ℓ + 1)(2ℓ− 1). If ℓ
does not divide s− ℓ+ 1, then let t := ⌊(s− ℓ+ 1)/ℓ⌋. For sufficiently large n, we have that

ex(n, {P2ℓ+1,Ms+1}) = (ℓ− 1)(n− ℓ+ 1− 2ℓt) + 1 +
(

p−1
2

)

+ t
(

2ℓ
2

)

.

2 Proofs

Let us start with the proof of Theorem 1.1 that we restate here for convenience.

Theorem. If χ(F ) > 2 and n is large enough, then ex(n, {F,Ms+1}) = ex(s,F) + s(n− s),
where F is the family of graphs obtained by deleting a color class from F .

Proof. Let G0 be an s-vertex F -free graph with ex(s,F) edges. Let us add n−s new vertices
and connect each of them to each vertex of G0. The resulting graph is clearly Ms+1-free,
since s vertices are incident to all the edges, and F -free by the definition of F . This gives
the lower bound.

To show the upper bound, consider an {F,Ms+1}-free n-vertex graph G. Let v1, . . . , vn
be the vertices of G in decreasing order of their degrees. Observe that d(vs+1) ≤ 2s. Indeed,
otherwise we can pick greedily a matching Ms+1 the following way. In step i, we pick vi
and a neighbor of vi we have not picked earlier. This way we have at most 2i− 2 forbidden
neighbors, thus we can pick a new one even at step s+ 1, a contradiction.
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Observe also that G has at most
∑2s

i=1 d(vi) ≤ sums
i=1d(vi) + 2s2 edges. Indeed, the

at most 2s vertices of a largest matching are incident to every edge, and 2s vertices are
incident to at most

∑2s
i=1 d(vi) edges. The upper bound on this quantity follows from

d(vs+1, . . . , d(v2s) ≤ 2s.
We claim that d(vs) ≥ n− 3s2. Indeed, otherwise sums

i=1d(vi) + 2s2 ≤ (s− 1)(n− 1) +
n − s2 ≤ s(n − s) and we are done. This implies that v1, . . . , vs have at least n − s − 3s3

common neighbors. Let U = {v1, . . . , vs}. Observe that G[U ] is F -free, otherwise we would
find an F by picking at most |V (F )| of their common neighbors as the missing color class.

We claim that there is no edge outside U . Indeed, otherwise we could find Ms+1 greedily
as earlier: first we pick the edge outside U , and then in step i+1, we pick vi and a neighbor
of vi we have not picked earlier. This is doable since vi has at least n− 3s2 ≥ 2i neighbors.
The number of edges is at most ex(s,F) + s(n− s), where the first term is an upper bound
on the number of edges inside U , while the second term is an upper bound on the number
of edges with one endpoint inside U and the other endpoint outside U . This completes the
proof. �

Let us continue with the proof of Proposition 1.3 that we restate here for convenience.

Proposition. If F is bipartite and p = p(F ) ≤ s, then ex(n, {F,Ms+1}) = (p− 1)n+O(1).
Moreover, there is a K = K(F, s) such that for any n, there is an n-vertex {F,Ms+1}-
free graph with |E(G)|= ex(n, {F,Ms+1}) that has vertices v1, . . . , vp−1 and at least n − K
vertices u such that the neighborhood of u is {v1, . . . , vp−1}. Furthermore, the vertices with

neighborhood different from {v1, . . . , vp−1} each have degree at last p.

Proof. The lower bound is given by Kp−1,n−p+1, or by Construction 1 or Construction 2.
Let G be an n-vertex {F,Ms+1}-free graph. Let U denote the set of at most 2s vertices

of a largest matching, then every edge of G is incident to at least one vertex of U . Every
p-set in U has less than q := |V (F )|−p common neighbors. As there are at most

(

2s
p

)

p-sets

in U , there are at most
(

2s
p

)

vertices outside U that are adjacent to at least p sets.

Let W denote the set of the other at least n −
(

2s
p

)

(|V (F )|−p) − 2s vertices outside U .
Then vertices of W have degree at most p− 1. Note that by choosing K sufficiently large,
we can assume that n is sufficiently large. In particular, if at most

(

2s
p−1

)

max{|V (F )|, 2s}

vertices in W with degree p−1, then the number of edges is at most (p−2)n+O(1) and we
are done. Otherwise, at least max{|V (F )|, 2s} vertices of W have the same p− 1 neighbors
v1, . . . , vp−1.

For any other vertex of W , we change its neighborhood to v1, . . . , vp−1 to obtain G′. If
G′ contained F or Ms+1, that would contain some of the vertices whose neighborhood was
changed. But the could be replaced by vertices with the same neighborhood already in G,
to obtain F or Ms+1 in G. Therefore, G′ is {F,Ms+1}-free. Clearly |E(G′)|≥ |E(G)|, hence
if G has ex(n, {F,Ms+1}) edges, then so does G′. It is easy to see that G′ has (p−1)n+O(1)
edges and the desired additional property. �

Let us continue with the proof of Proposition 1.4 that we restate here for convenience.
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Proposition. Let F be a balanced tree, i.e., |V (F )|= 2p(F ) and let p(F ) ≤ s. Assume that

the Erdős-Sós conjecture holds for F . Then for sufficiently large n, we have ex(n, {F,Ms+1}) =
(p− 1)(n− p+ 1) +

(

p−1
2

)

.

Proof. The lower bound is given by Construction 1, which is G(n, p−1) in this case. Indeed,
if we delete p−1 vertices in one of the parts of F and leave only a leaf, then the resulting graph
is a single edge and some isolated vertices. As F1 contains this graph, ex(n− p+1,F1) = 0.

For the upper bound, let G be a graph ensured by Proposition 1.3. Thus, G has n
vertices, ex(n, {F,Ms+1}) edges, G is {F,Ms+1}-free, andG contains a set U = {v1, . . . , vp−1}
such that all but K vertices have neighborhood U . Let W denote the set of vertices with
neighborhood U and U ′ := V (G) \ (U ∪W ).

Observe that there is no edge inside W since ex(n− p+ 1,F1) = 0.

Claim 2.1. There is no edge between U and U ′.

Proof. First we show that if F 6= K2, then F has a vertex x that is adjacent to at least one,
but at most p− 1 leaves and exactly one neighbor of degree greater than 1. Indeed, let F ′

be the graph we obtain by deleting the leaves of F , then F ′ has at least two leaves. Those
vertices in F have one neighbor of degree greater than 1 and at least 1 leaf neighbor. As
there are at most 2p − 2 leaves in F , at least one of these two vertices have at most p − 1
leaf neighbors.

Assume that viu is an edge between U and U ′ and let u′ be a neighbor of u outside U
(this exists otherwise u ∈ W ). Now we map x to u its non-leaf neighbor to vi, and we map
the leaf neighbors of x to u′ and p− 2 other neighbors of u. We map the remaining vertices
of the part of F containing these leaves to arbitrary vertices in U , and the remaining vertices
of the other part of F to arbitrary vertices in W . This way we find a copy of F in G, a
contradiction. �

Let us return to the proof of the proposition. Since the Erdős-Sós conjecture holds for F ,
we have ex(|U ′|, F ) ≤ (p − 1)|U ′|, thus there are at most (p− 1)|U ′| edges inside U ′. Then
|E(G)|≤

(

p−1
2

)

+(p−1)(n−p+1−|U ′|)+ex(|U ′|, F ) ≤
(

p−1
2

)

+(p−1)(n−p+1), completing
the proof. �

We finish the paper with the proof of Proposition 1.5 that we restate here for convenience.

Proposition. Let 2 ≤ ℓ ≤ s. If ℓ divides s − ℓ + 1, then for sufficiently large n we have

that ex(n, {P2ℓ+1,Ms+1}) = (ℓ − 1)(n − 2s + ℓ − 1) +
(

p−1
2

)

+ (s − ℓ + 1)(2ℓ − 1). If ℓ does

not divide s − ℓ + 1, then let t := ⌊(s − ℓ + 1)/ℓ⌋. For sufficiently large n, we have that

ex(n, {P2ℓ+1,Ms+1}) = (ℓ− 1)(n− ℓ+ 1− 2ℓt) + 1 +
(

p−1
2

)

+ t
(

2ℓ
2

)

.

Proof. The lower bounds are given by the following graphs. If ℓ divides s− ℓ + 1, then we
take G(n−2s+2ℓ−2, ℓ−1), and on the remaining 2s−2ℓ+2 vertices, we take (s− ℓ+1)/ℓ
copies of K2ℓ. Each component is P2ℓ+1-free, and the largest matching is of size ℓ− 1 in the
large component, and of size s− ℓ + 1 in the clique components.

If ℓ does not divide s−ℓ+1, then we similarly take copies ofK2ℓ on at most s−ℓ+1 vertices,
i.e., we take t copies. On the remaining n− 2ℓt vertices, we take G(n− 2ℓt, p− 1) and add
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another edge. Again each component is P2ℓ+1-free, but this time the largest matching is of size
ℓ in the large component. However, the remaining components have order t2ℓ < 2s− 2ℓ+2,
thus the largest matching in those components have size at most s− ℓ.

Let us continue with the upper bounds. We apply Proposition 1.3 to obtain an extremal
n-vertex graph G with vertices U = {v1, . . . , vp−1}, such that the set W of vertices with
neighborhood U contains all but at most K vertices. Moreover, the vertices of U ′ = V (G) \
(U ∪W ) have degree at least ℓ. We will use multiple times the following simple observation:
changing the neighborhood of a vertex u to U does not create F or Ms+1. Indeed, we could
replace the vertex u in any forbidden configuration to any other common neighbor of the
vertices of U to create another copy without containing any of the new edges,

It is easy to see that there is at most one edge inside W . We claim that there is an
extremal graph G′ satisfying the above properties without any edges between U and U ′.

Consider a component C of U ′. If C does not contain P2ℓ, then it contains at most
ex(|V (C)|, P2ℓ) = |V (C)|(ℓ− 1) edges. Then we can change the neighborhood of vertices in
C to U . The resulting graph is also {P2ℓ+1,Ms+1}-free and the number of edges does not
decrease. We apply these to all the P2ℓ-free components. In the resulting graph G′, every
vertex of U ′ is in a component containing a P2ℓ, in particular is the endvertex of a Pℓ+1 inside
U ′. As every vertex of U is the endvertex of a P2ℓ−1 outside U ′, an edge between U and U ′

would give a P2ℓ+1 in G′, a contradiction.
Consider now a component C of G′ in U ′ with v > 2ℓ vertices. A theorem of Kopylov [6]

gives an upper bound on the number of edges inside Pk-free connected graphs. It shows that
|E(G′[C])|≤ max{

(

2ℓ−1
2

)

+ v − 2ℓ + 1, |E(G(v, ℓ− 1))|+1} ≤ v(ℓ− 1). Therefore, again, we
can change the neighborhood of vertices in C to U without decreasing the number of edges.

Consider now a component C of G′ in U ′ with less than 2ℓ vertices. Then C has at
most |V (C)|(ℓ− 1) edges, thus again, we can change the neighborhood of vertices in C to U
without decreasing the number of edges.

Consider now a component C of G′ in U ′ with 2ℓ vertices that is Mℓ-free. By the Erdős-
Gallai theorem, we know that C contains at most

(

2ℓ
2

)

− ℓ+ 1 ≤ 2ℓ(ℓ− 1) edges, thus again,
we can change the neighborhood of vertices in C to U without decreasing the number of
edges.

We obtained that each component in U ′ has 2ℓ vertices and contains a matching Mℓ, thus
adding the missing edges inside that component would not increase the largest matching in
G′, nor it would create P2ℓ+1. Therefore, U ′ consists of copies of K2ℓ. Clearly there are at
most t copies. Clearly, 2ℓ vertices in a K2ℓ add ℓ(2ℓ− 1) edges, while 2ℓ vertices in W add
2ℓ(ℓ− 1) edges. Therefore, it is worth to pick the maximum number of 2ℓ-cliques.

If there is no edge inside W or ℓ does not divide s − ℓ + 1, then we are done. In the
remaining case, we can only add t−1 copies ofK2ℓ. Compared to this graph, we can delete 2ℓ
vertices from W including the endvertices of the extra edge from G′ and add one more copy
of K2ℓ. This way we removed 2ℓ(ℓ− 1)+1 edges and added ℓ(2ℓ− 1) edges without creating
F or Ms+1. The number of edges increases, a contradiction completing the proof. �
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