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A k-book in a hypergraph consists of k Berge triangles sharing a common edge. In this 
paper we prove that the number of the hyperedges in a k-book-free 3-uniform hypergraph 
on n vertices is at most n2

8 (1 + o(1)).
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 

CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Let G be a graph. The vertex and the edge set of G are denoted by V (G) and E(G). If there are two triangles sitting 
on an edge in a graph, we call this a diamond. Whereas k triangles sitting on an edge is called a k-book, denoted by a Bk . 
Similarly, let H be a hypergraph and the vertex and the edge set of H be denoted by V (H) and E(H). A hypergraph is 
called r-uniform if each member of E has size r. A hypergraph H = (V , E) is called linear if every two hyperedges have at 
most one vertex in common. A Berge cycle of length k, denoted by Berge-Ck , is an alternating sequence of distinct vertices 
and distinct hyperedges of the form v1, h1, v2, h2, . . . , vk, hk where vi, vi+1 ∈ hi for each i ∈ {1, 2, . . . , k − 1} and vk v1 ∈ hk . 
The hypergraph equivalent of k-books is defined similarly with k Berge triangles sharing a common edge. We say that this 
common edge is the base of the k-book.

The maximum number of edges in a triangle-free graph is one of the classical results in extremal graph theory and 
proved by Mantel in 1907 [13]. The extremal problem for diamond-free graphs follows from this. Given a graph G on n

vertices and having 
⌊

n2

4

⌋
+ 1 edges. Mantel showed that G contains a triangle. Rademacher (unpublished, and simplified 

later by Erdős in [6]) proved in the 1940s that the number of triangles in G is at least 
⌊ n

2

⌋
. Erdős conjectured in 1962 

[7] that the size of the largest book in G is at least n
6 and this was proved soon after by Edwards (unpublished, see also 

Khadźiivanov and Nikiforov [11] for an independent proof).

Theorem 1 (Edwards [4], Khadźiivanov and Nikiforov [11]). Every n-vertex graph with more than n2

4 edges contains an edge that is in 
at least n

6 triangles.
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Fig. 1. Replacing every edge xi yi in the bipartite graph with two hyperedges xi y j y′
j and y j y′

j x
′
i .

Both Rademacher’s and Edwards’ results are sharp. In the former, the addition of an edge to one part in the complete 
balanced bipartite graph (note that in G there is an edge contained in 

⌊ n
2

⌋
triangles) achieves the maximum. In the latter, 

every known extremal construction of G has �(n3) triangles. For more details on book-free graphs we refer the reader to 
the following articles [2], [14] and [16]. We look into the equivalent problem in the case of hypergraphs.

Given a family of hypergraphs F , we say that a hypergraph H is F -free if for every F ∈ F , the hypergraph H does not 
contain a F as a sub-hypergraph.

The systematic study of the Turán number of Berge cycles started with Lazebnik and Verstraëte [12], who studied the 
maximum number of hyperedges in an r-uniform hypergraph containing no Berge cycle of length less than five. Another 
result was the study of Berge triangles by Győri [8]. He proved that:

Theorem 2 (Győri [8]). The maximum number of hyperedges in a Berge triangle-free 3-uniform hypergraphs on n vertices is at most 
n2

8 .

It continued with the study of Berge five cycles by Bollobás and Győri [3]. In [9], Győri, Katona, and Lemons proved 
the following analog of the Erdős-Gallai Theorem [5] for Berge paths. For other results see [1,10]. The particular case of 
determining the maximum number of the hyperedges of a triangle-free linear hypergraph on n vertices is equivalent to the 
famous (6, 3)-problem, which is a special case of a general problem of Brown, Erdős, and Sós. The following theorem of 
Ruzsa and Szemerédi plays important role in our paper:

Theorem 3 (Ruzsa and Szemerédi [15]). For any ε > 0 there exists n0(ε) such that if n > n0(ε) then a Berge-triangle-free 3-uniform 
linear hypergraph on n vertices has at most εn2 hyperedges.

We continue the work on that and determine the maximum number of hyperedges for a k-book-free 3-uniform hyper-
graph. The main result is as follows:

Theorem 4. For a given k ≥ 2 and ε > 0 there exists n1(k, ε) such that if n > n1(k, ε) then a 3-uniform Bk-free hypergraph H on n

vertices can have at most 
n2

8
+ εn2 edges.

The following example shows that this result is asymptotically sharp. Take a complete bipartite graph with color classes 
of size 

⌈ n
4

⌉
and 

⌊ n
4

⌋
respectively. Denote the vertices in each class with xi and yi respectively. Construct a graph by doubling 

each vertex and replacing each edge with two hyperedges as shown below (Fig. 1). So essentially, we have replaced every 
graph edge with two hyperedges. The construction does not contain a Bk , as it does not contain a Berge triangle. With this, 
the number of hyperedges is 2 × n2

16 = n2

8 .

2. Proof of Theorem 4

Fix k ≥ 2, ε > 0 and set

n1(k, ε) = max

{
18k + 12,n0

(
ε

6k2 − 8k

)}

where n0(.) is from Theorem 3. Suppose that n > n1(k, ε). Let H be a Bk-free 3-uniform hypergraph on n vertices. We are 
interested in the 2-shadow, i.e., let G be a graph with vertex set V (H) and

E(G) = {ab | {a,b} ⊂ e ∈ E(H)}.
If an edge in G lies in more than one hyperedge in H , we color it blue. Otherwise, we color it red. We define hypergraphs 
Hr and Hb in the following way. V (Hr) = V (Hb) = V (H),

E(Hr) = {e ∈ E(H) | e contains two or three red edges of G}
and E(Hb) = E(H) \ E(Hr). Note that each hyperedge in Hb contains two or three blue edges of G .
2



D. Ghosh, E. Győri, J. Nagy-György et al. Discrete Mathematics 347 (2024) 113828
Claim 5. The number of hyperedges in Hr is at most n2

8 .

Proof. Denote the subgraph of G formed by the red colored edges by Gr . Suppose that |E(Gr)| ≥ n2

4 + 1. By Theorem 1 we 
have a book of size n

6 in Gr . Denote the vertices of the n
6 -book in Gr with u, v and xi , 1 ≤ i ≤ n

6 respectively where uv is 
the base of the book. Denote the third vertex of the hyperedge containing edge uv by w , set X = {xi | 1 ≤ i ≤ n

6 } and for 
each xi ∈ X denote the hyperedge containing uxi and vxi by uxi yi and vxi zi respectively.

Set E ′ := ∅ and X ′ := ∅. Go through the vertices of X and perform the following procedure for each of them. At the 
beginning of the process no vertex is marked.

If the current vertex xi = w then mark it.
If xi is unmarked then

• add xi to X ′ and hyperedges uxi yi and vxi zi to E ′ ,
• if there exists j > i such that yi = x j then mark x j ,
• if there exists � > i such that zi = x� then mark x� .

By definition of red edges and the procedure (i.e. it adds two new hyperedges to E ′ forming a Berge triangle with uv w at 
each step handling an unmarked vertex but at most one: when xi = w) the set of hyperedges E ′ ∪ {uv w} with vertex set 
X ′ ∪ {u, v} form a k′-book with base uv w , where k′ = |X ′|. Moreover at each step of the procedure whenever an unmarked 
vertex was added to X ′ then at most two more vertices became marked. Each unmarked vertex are in X ′ at the end of the 
procedure, therefore

k′ ≥ |X \ {w}|
3

≥ n/6 − 1

3

at the end of the procedure and it is at least k by the definition of n1(k, ε), but this is a contradiction.
Hence |E(Gr)| ≤ n2

4 and

|E(Hr)| ≤ |E(Gr)|
2

≤ n2

8

by the definition of red colored edges. �
Now let us work on the sub-hypergraph Hb .

Claim 6. Each pair of vertices is contained in at most 2k − 2 hyperedges of Hb.

Proof. Suppose that {u, v} is a pair of vertices which is contained in 2k − 1 hyperedges of Hb . Note that edge uv is colored 
blue. Denote the third vertices of hyperedges containing u and v by x1, . . . , x2k−1 and set X = {xi | 1 ≤ i ≤ 2k − 1}. Observe 
that for each i at least one of uxi and vxi is colored blue.

Set E ′ := ∅ and X ′ := ∅. Go through the vertices of X and perform the following procedure for each of them. At the 
beginning of the process no vertex is marked.

If the current vertex xi = x2k−1 and there is no marked vertex in X then do nothing.
Otherwise if xi is unmarked then

• add xi to X ′ and add uxi v to E ′ ,
• if uxi is colored blue denote a hyperedge containing it by uxi yi where yi 
= v and add uxi yi to E ′ ,
• otherwise vxi is colored blue, so denote a hyperedge containing it by vxi yi where yi 
= u and add vxi yi to E ′ ,
• if there exists j > i such that yi = x j then mark x j .

If at the end of the procedure there is no marked vertex in X then set w = x2k−1 otherwise let w be an arbitrary marked 
vertex.

By definition of blue edges and the procedure (i.e. it adds two new hyperedges to E ′ forming a Berge triangle with 
uv w at each step handling an unmarked vertex but at most the last one) the set of hyperedges E ′ ∪ {uv w} with vertex set 
X ′ ∪ {u, v} form a k′-book with base uv w where k′ = |X ′|. Moreover if there is no marked vertex in X at the end of the 
process then X ′ = X \ {x2k−1}, otherwise at each step of the procedure whenever an unmarked vertex was added to X ′ than 
at most one more vertex became marked and each unmarked vertex are in X ′ at the end of the procedure. Therefore k′ ≥ k, 
but it is a contradiction. �

We now give an upper bound on the number of hyperedges in Hb .

Claim 7. The number of hyperedges in Hb is at most εn2 .
3
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Proof. Take a hyperedge xyz in the sub-hypergraph Hb . By Claim 6 there are at most 2k − 2 hyperedges of Hb containing 
each of the pairs of vertices xy, yz, and xz. If we deleted all such hyperedges barring xyz we would delete at most 6k − 9
hyperedges. Therefore there is a linear 3-uniform subhypergraph H ′

b of Hb with V (H ′
b) = V (Hb) = V (H) and

|E(H ′
b)| ≥

|E(Hb)|
6k − 8

(i.e. a greedy algorithm can find an appropriate H ′
b).

Consider a hyperedge e in H ′
b . Observe that H ′

b is a Bk-free hypergraph, since it is a subhypergraph of H , therefore 
the number of Berge triangles sitting on the edge e is at most k − 1. Apply the following greedy procedure until all the 
hyperedges are marked. In a step pick an unmarked hyperedge, mark it and delete an unmarked hyperedge of each Berge 
triangle containing the current hyperedge. Observe that this marked edge is not an edge of a triangle anymore. Define H ′′

b
the following way. Let V (H ′′

b ) = V (H ′
b) = V (H) and E(H ′′

b ) contains the remaining hyperedges of H ′
b . Observe that at most 

k − 1 edges were deleted in each step and marked edges were never deleted. Therefore

|E(H ′′
b )| ≥ |E(H ′

b)|
k

.

Moreover H ′′
b is a Berge-triangle-free 3-uniform linear hypergraph therefore Theorem 3 can be applied with ε′ = ε

6k2−8k
. We 

get that

|E(Hb)|
6k2 − 8k

≤ |E(H ′′
b )| ≤ εn2

6k2 − 8k
. �

Proof of Theorem 4. By definition E(H) is a disjoint union of E(Hr) and E(Hb). By Claim 5 and Claim 7,

|E(H)| ≤ |E(Hr)| + |E(Hb)| ≤ n2

8
+ εn2. �

3. Conclusions

Recall that both Turán numbers of triangle-free graph and k-book-free graphs on n vertices are n2

4 , moreover Győri [8]
proved that the maximum number of hyperedges in a Berge triangle-free 3-uniform hypergraphs on n vertices is at most 
n2

8 . Given the similarities, we conjecture the following:

Conjecture 1. For a given k ≥ 2 every 3-uniform Bk-free hypergraph H on n vertices (n is large) has at most 
n2

8
hyperedges.
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