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Abstract. The profile vector of a family \scrF of subsets of an n-element set is (f0, f1, . . . , fn), where
fi denotes the number of the i-element members of \scrF . In this paper we determine the extreme points
of the set of profile vectors for the class of nontrivial intersecting families.
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1. Introduction and preliminaries. Let [n] = \{ 1, . . . , n\} be our underlying
set. If F \subseteq [n], then F denotes the complement of F . Let \scrF be a family of subsets
of [n] (i.e., \scrF \subseteq 2[n]). Let \scrF := \{ F \subset [n] : F \in \scrF \} . A family is called intersecting
if any two members have a nonempty intersection. Intersecting families of sets have
attracted a lot of researchers; see, e.g., Chapter 2 of the book [9]. Let us start with a
well-known and trivial statement.

Proposition 1. The maximum size of an intersecting family is 2n - 1.

The maximum size is achieved, e.g., by the family of all subsets containing a given
fixed element. A family is called k-uniform if all its members have cardinality k. Let
\scrF k denote the subfamily of the k-element subsets in \scrF : \scrF k = \{ F : F \in \scrF , | F | = k\} .

Theorem 2 (Erd\H os, Ko, and Rado [2]). Let k\leq n/2. Then the maximum size of
a k-uniform intersecting family is

\bigl( 
n - 1
k - 1

\bigr) 
.

Let us call an intersecting family trivial if all its members contain a given fixed
element, and nontrivial otherwise. The maximum in the above theorem is again
achieved by the largest trivial intersecting family.

Theorem 3 (Hilton and Milner [10]). Let k\leq n/2. Then the maximum size of a
nontrivial k-uniform intersecting family is 1 +

\bigl( 
n - 1
k - 1

\bigr) 
 - 
\bigl( 
n - k - 1
k - 1

\bigr) 
.

The maximum is given by the Hilton--Milner type family HM(k), which we define
next. HM(k) contains A = \{ 2, . . . , k + 1\} and every k-element set which contains 1
and intersects A. Moreover, Hilton and Milner [10] also showed that HM(k) is the
unique maximum if 3 < k < n/2, up to isomorphism (i.e., in every maximum family
there is a fixed point contained in all but one of the members). If k= 3, then there is
another extremal family \{ F \in 

\bigl( 
[n]
3

\bigr) 
: | F \cap [3]| \geq 2\} .

We will also use the following generalized Hilton--Milner type families. Let B =
[m]. Then HM(k,m) = \{ F \subset [n] : | F | = k,n \in F, | F \cap B| \geq 1\} . This is a k-uniform,
trivial intersecting family, but if we add B, it becomes a nontrivial intersecting family.

We will use the following simple observation.
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2266 D\'ANIEL GERBNER

Lemma 4. Let m be the maximum cardinality of the members of a nontrivial
intersecting family \scrF , and let i <m and i\leq n/2. Then | \scrF i| \leq | HM(i,m)| . Moreover,
if i < n/2, equality holds if and only if \scrF i consists of all the sets containing a fixed
element x and intersecting an m-element set B\prime with x \not \in B\prime (i.e., \scrF i is isomorphic
to HM(i,m)) or i= 2, m= 3, and \scrF i = \{ \{ a, b\} ,\{ a, c\} ,\{ b, c\} \} .

Proof. If \scrF i is nontrivial, then | \scrF i| \leq | HM(i, i)| + 1\leq | HM(i,m)| . Here we have
equality only if i= 2 and m= 3, since HM(i,m) contains HM(i, i) and we obtain new
members by picking n, any element of [m]\setminus [i], and any further elements if i > 2. If \scrF i

is trivial, all its members contain a fixed element x. There is a set F in \scrF which does
not contain x because of the nontriviality, and the i-element sets of \scrF also intersect
F . One can easily see that \scrF i is a subset of a generalized Hilton--Milner type family
then, and HM(i,m) is the largest of those.

We will use the Kruskal--Katona theorem [11, 12]. Given a k-uniform family
\scrF \subset 2[n], its shadow is

\Delta \scrF := \{ G\subset [n] : | G| = k - 1, there exists F \in \scrF with G\subset F\} .

The shade of \scrF is \nabla \scrF := \{ G \subset [n] : | G| = k + 1, there exists F \in \scrF with G\supset F\} .
Given two sets F,G\subset 2[n], we say that F is before G in the colexicographical order or
colex order if the largest element of the symmetric difference of F and G is in G. Let
\scrC \ell 
k denote the family of the first \ell sets from

\bigl( 
[n]
k

\bigr) 
in the colex order.

Given two positive integers \ell and i, there is a unique way to write \ell in the form
\ell =

\bigl( 
ni

i

\bigr) 
+

\bigl( 
ni - 1

i - 1

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
nj

j

\bigr) 
with ni > ni - 1 > . . . > nj \geq j \geq 1. This form is called

the cascade form of \ell . The cascade form can be found in a greedy way: we pick the
largest ni such that

\bigl( 
ni

i

\bigr) 
\leq \ell , then the largest ni - 1 such that

\bigl( 
ni

i

\bigr) 
+
\bigl( 
ni - 1

i - 1

\bigr) 
\leq \ell , and so

on.
The Kruskal--Katona shadow theorem [11, 12] states that if \scrF is a k-uniform

family with | \scrF | = \ell , then | \Delta \scrF | \geq | \Delta \scrC \ell 
k| . It is not hard to calculate the cardinality of

| \Delta \scrC \ell 
k| : if \ell =

\bigl( 
nk

k

\bigr) 
+
\bigl( 
nk - 1

k - 1

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
nj

j

\bigr) 
, then | \Delta \scrC \ell 

k| =
\bigl( 

nk

k - 1

\bigr) 
+
\bigl( 
nk - 1

k - 2

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
nj

j - 1

\bigr) 
.

There is a simpler version of the shadow theorem due to Lov\'asz [13]. It states that
if \scrF is a k-uniform family with | \scrF | =

\bigl( 
x
k

\bigr) 
, then | \Delta \scrF | \geq 

\bigl( 
x

k - 1

\bigr) 
. Here x is not necessarily

an integer and
\bigl( 
x
k

\bigr) 
is defined to be x(x - 1)...(x - k+1)

k! . This is a weaker bound, but easier
to use. We will use both versions of the shadow theorem later.

1.1. Profile polytopes. The profile polytopes were introduced by Erd\H os, Frankl,
and Katona in [3]. Recall that \scrF i denotes the subfamily of the i-element subsets in
\scrF . Its size | \scrF i| is denoted by fi. The vector p(\scrF ) = (f0, f1, . . . , fn) in the (n+ 1)-
dimensional Euclidian space \BbbR n+1 is called the profile or profile vector of \scrF .

If \Lambda is a finite set in \BbbR d, its convex hull conv(\Lambda ) is the set of all convex combi-
nations of the elements of \Lambda . A point of \Lambda is an extreme point if it is not a convex
combination of other points of \Lambda . It is easy to see that the convex hull of a set is
equal to the convex hull of the extreme points of the set.

Let A be a class of families of subsets of [n]. We denote by \Lambda (A) the set of profiles
of the families belonging to A:

\Lambda (A) = \{ p(\scrF ) :\scrF \in A\} .

The profile polytope of A is conv(\Lambda (A)). We are interested in the extreme points
of \Lambda (A). We simply call them the extreme points of A.

Suppose we are given a weight function w : \{ 0, . . . , n\} \rightarrow \BbbR , and the weight of a
family \scrF is defined to be

\sum 
F\in \scrF w(| F | ), which is equal to

\sum n
i=0w(i)fi. Usually we are
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PROFILES OF NONTRIVIAL INTERSECTING FAMILIES 2267

interested in the maximum of the weight of the families in a class A. So we want to
maximize this sum, i.e., find a family \scrF 0 \in A and an inequality

\sum n
i=0w(i)fi =w(\scrF )\leq 

w(\scrF 0) = c. This is a linear inequality, and it is always maximized in an extreme point.
Given a class (or property) of families, the first natural question in extremal com-

binatorics is the maximum cardinality such a family can have. When it is answered,
often some simple weight functions are considered and the maximum weight of such a
family is studied. Determining the extreme points answers these questions for every
(linear) weight function.

Erd\H os, Frankl, and Katona [3] determined the extreme points of the intersecting
Sperner families. In their next paper [4], the extreme points of the profile polytope of
the intersecting families were determined. Now we define these. Let coordinate i of
a be 0 if i < n/2,

\bigl( 
n - 1
i - 1

\bigr) 
if i= n/2 and

\bigl( 
n
i

\bigr) 
if i > n/2. Let k\leq n/2. Coordinate i of ak

is 0 if i < k,
\bigl( 
n - 1
i - 1

\bigr) 
if k \leq i\leq n - k, and

\bigl( 
n
i

\bigr) 
if i > n - k. Let \Gamma a be the set of vectors

that we can get from any of the vectors ak and a, if we replace an arbitrary set of
coordinates by 0. Note that if n is even, then a= an/2.

Theorem 5 (Erd\H os, Frankl, and Katona [4]). The set of extreme points of the
intersecting families is \Gamma a.

The corresponding intersecting families are the following. \scrA k consists of the sets
which have sizes at least k and contain the element n, and of every other set which
has size greater than n - k. \scrA consists of all the sets with size greater than n/2 and
the sets which have sizes n/2 and contain n. These families are obviously intersecting
and their profile vectors are ak and a. We can delete full levels and the families are
still intersecting; in the corresponding vectors some coordinates are changed to 0.

Since then several other classes of families have been considered (see, e.g., [1, 5]),
generalizations have been studied [7, 8], and profile polytopes were applied for count-
ing subposets [6]. Note that most of the classes of families where the profile polytope
has been studied are hereditary, i.e., if we remove some members of a family in the
class, the resulting family still belongs to the class. It makes determining the extreme
points easier, as we do not have to deal with negative weights, and all extreme points
can be achieved by changing some coordinates of a few essential ones to 0. However,
in this paper we determine the extreme points of the nontrivial intersecting families,
which is not a hereditary property.

In the next section we define what is needed to state our main theorem. We
prove an important special case in section 3, and finish the proof by a case analysis
in section 4.

2. The main theorem. Let us start with some simple observations. A nontriv-
ial intersecting family cannot contain the empty set or a singleton. It might contain
the full set, but that does not change the intersecting property, nor the nontrivial
property. It means that for a weight function w if w(n) > 0, the maximum family
contains the full set, and if w(n)< 0, it does not. Moreover, changing only w(n) does
not change the other parts of the maximum family, and hence we can basically forget
about n. More precisely, (p0, p1, . . . , pn - 2, pn - 1,0) is an extreme point if and only if
(p0, p1, . . . , pn - 2, pn - 1,1) is an extreme point.

Now we define several vectors, which are going to be the extreme points of the
nontrivial intersecting families. Then we state our main theorem, and after that we
show that these vectors indeed correspond to nontrivial intersecting families and are
extreme points (note that for most classes of families where profile polytopes have been
studied, these statements are trivial, but not for the nontrivial intersecting families).
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2268 D\'ANIEL GERBNER

That part also makes it easier to understand where these definitions come from. All
these vectors are in the (n+1)-dimensional Euclidean space, but coordinates 0,1, and
n are always 0. Let H \subset \{ 2,3, . . . , n - 2, n - 1\} be a nonempty set of indices, h be its
smallest element, and h\prime be its largest element.

Let bH = (b0, . . . , bn) with

bi =

\left\{   0 if i \not \in H,
| HM(i, h\prime )| if i\in H and i < h\prime ,
| HM(i, h\prime )| + 1 if i= h\prime .

Let \Gamma b = \{ bH : h+ h\prime \leq n\} .
Let cH = (c0, . . . , cn) with

ci =

\left\{   
0 if i \not \in H,\bigl( 
n - 1
i - 1

\bigr) 
if i\in H and i\leq n - h,\bigl( 

n
i

\bigr) 
otherwise.

Let \Gamma c = \{ cH : h+ h\prime >n\} .
Let dH = (d0, . . . , dn) with

di =

\left\{   0 if i \not \in H,
| HM(i, h\prime )| if i\in H and i < h\prime ,
1 if i= h\prime .

Let d= (0,0,3,1,0, . . . ,0) and \Gamma d = \{ dH : | H| > 1, h+ h\prime \prime \leq n\} \setminus \{ d\} , where h\prime \prime is the
second largest element of H.

Let us consider the set P of vectors (e0, . . . , en) satisfying the following properties:
1. Every ei is a nonnegative integer, e0 = e1 = en = 0.
2. x :=

\sum n - 1
i=2 ei \geq 3.

3.
\sum n - 1

i=2 iei \leq (x - 1)n.
Now we show the connection between P and nontrivial intersecting families. For

two vectors p = (p0, . . . , pn) and p\prime = (p\prime 0, . . . , p
\prime 
n), we say that p\prime \leq p if p\prime i \leq pi for

every 0\leq i\leq n.

Lemma 6. (i) If a nontrivial intersecting family does not contain [n], its profile
is in P .

(ii) If p \in P and there is no p\prime \in P different from p with p\prime \leq p, then p is the
profile of a nontrivial intersecting family.

Proof. To show (i), observe that for the profile of a nontrivial intersecting family
obviously e0 = e1 = 0 holds, and also we need at least three members in the family,
as any two members trivially intersect. The third property is needed; otherwise an
element of the underlying set would be covered x times, i.e., by every set, contradicting
the nontriviality.

Let us prove now (ii). We are given a vector p and we are going to construct
a nontrivial intersecting family \scrF with profile p. Observe that p shows how many
k-element sets must be in the family for every k. Let us denote the sizes of the sets
by a1, . . . , a\ell in decreasing order. We choose the first (the largest) set F1 of size a1
arbitrarily. Let Bi be the set of vertices which are not covered by each of the first i
sets F1, . . . , Fi (only by at most i - 1 of them), and then B1 = F1 and Bi \supset Bi - 1 for
every i > 1. We choose the second set F2 of size a2 in such a way that F2 intersects
F1 and also F2 contains B1, if possible.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PROFILES OF NONTRIVIAL INTERSECTING FAMILIES 2269

If it is not possible, then we claim that we have x = 3. Indeed, in that case we
have a1 + a2 \leq n, and thus they together with the next set F3 of size a3 have their
profile in P , which means no other set can be in the family because of our assumption
on the minimality of p. Then we pick F2 of size a2 such that it intersects F1 in a
single element, and then we pick F3 of size a3 such that it contains an element of
F1 \setminus F2 and an element of F2 \setminus F1 and does not contain any element in F1 \cap F2. This
is doable as a3 \geq 2. The resulting family is clearly nontrivial intersecting.

If x > 3, we choose every Fi of size ai in such a way that it contains Bi - 1,
if possible. Note that in this case it automatically intersects F1, . . . , Fi - 1. Indeed,
Fi contains B1, which is also contained in F2, . . . , Fi - 1. Fi also contains B2, which
intersects F1 (we also use that B1 and B2 are not empty).

Now assume that when we add a set Fi, it is just enough or too small to cover
every vertex in Bi - 1, i.e., ai \leq | Bi - 1| . Then i = \ell , i.e., Fi is the last set (as the
resulting profile vector is in P ). We have to choose Fi in such a way that it intersects
the other sets. As every vertex is covered at least i - 2 times, all we have to do is to
put an arbitrary vertex of Bi - 1 in Fi, and then the new set intersects all but one of
the earlier sets, say, Fj . We have to choose a vertex in Bi - 1 contained in Fj , and then
other vertices from Bi - 1 arbitrarily. As only vertices in Bi - 1 are used, no vertex is
covered i times, and hence the family is nontrivial.

Let \Gamma e be the set of the extreme points of P . Now we can state our main theorem.

Theorem 7. The extreme points of the profile polytope of the nontrivial inter-
secting families are the elements of \Gamma b \cup \Gamma c \cup \Gamma d \cup \Gamma e, and additionally the vectors we
get from these if we change the last coordinate from 0 to 1.

To prove this statement, we have to show that the points listed are indeed extreme
points and that there are no other extreme points. The first part is the easier task,
and we will deal with it in the rest of this section. We give an example nontrivial
intersecting family for each of the vectors v = vH \in \Gamma b \cup \Gamma c \cup \Gamma d \cup \Gamma e and also show
that v is an extreme point, by showing a weight function such that v is the unique
maximum.

Let us describe first the general approach to find such a weight function. We
start by assuming that if i \not \in H, then w(i) is negative, and, moreover, w(i) is so small
compared to the other weights w(j) that if a family contains even one i-element set,
its total weight is negative. On the other hand, there is a 1< j < n with w(j)> 0, and
thus there is a family of positive weight. This shows that no i-element sets can be in
the family of maximum weight. Similarly, we can say that for some i \in H its weight
is very large compared to the other weights. It implies that the family of maximum
weight contains as many i-element sets as possible, i.e., | HM(i, j)| , where j is the
largest nonzero coordinate of vH . We describe these ideas in more detail in the proof
of the following lemma.

Lemma 8. The elements of \Gamma b are extreme points of the nontrivial intersecting
families.

Proof. For bH \in \Gamma b we have to show a family \scrB H which has bH as its profile,
and a weight w which is maximized at bH . Let \scrB H = [h\prime ] \cup 

\bigl( \bigcup 
i\in H HM(i, h\prime )

\bigr) 
, i.e.,

the union of HM(i, h\prime ) for every i \in H, and additionally [h\prime ]. This family is obvi-
ously nontrivial intersecting, as each of its members except for [h\prime ] contains n and
intersects [h\prime ].
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2270 D\'ANIEL GERBNER

Now we are going to show a weight function that is maximized only by families
with profile bH . Let w be a weight such that if i \not \in H, then w(i) =  - 22n. It is
going to be so small compared to the other weights that no i-element sets can be
in the maximum family \scrF . All other sets have weight at most 2n, and there are
less than 2n sets in \scrF , and hence positive weight can only be achieved without these
negative sets. Let w(h) = 2n; it is very large compared to the other positive weights
(but still very small compared to the absolute value of the negative weights), and
all other weights are 1. Then a single h-element set has larger weight than all the
other sets with positive weight, and thus the maximum family \scrF contains as many
h-element sets as possible. If h < n/2 and h \not = h\prime , then by Lemma 4 the maximum
number of h-element sets is | HM(h,h\prime )| , and the largest family of h-element sets is
isomorphic to HM(h,h\prime ), with one exceptional case where h = 2 and h\prime = 3 and the
three h-element sets form a triangle.

It is easy to see that in this case, if n = 5, then we can add seven three-element
sets to obtain a nontrivial intersecting family with profile (0,0,3,7,0,0) = bH . If
n \geq 6, then the added three-element sets form a nontrivial intersecting family, thus
there are at most | HM(3,3)| + 1 of them, and hence the profile of the family is at
most bH in every coordinate.

Let us return to the nonexceptional cases. Without loss of generality we can
assume that \scrF h is equal to HM(h,h\prime ). If h = h\prime , then by Theorem 3 the largest
family of h-element sets has cardinality | HM(h,h)| + 1. In the other cases, observe
that the only set of size at most h\prime that does not contain n and intersects every
member of HM(h,h\prime ) is [h\prime ]. Therefore, every other member of \scrF should contain the
fixed point n except for [h\prime ]. Also, every member of \scrF should intersect [h\prime ], and hence
\scrF is a subfamily of \scrB H . Then \scrB H is the unique maximum.

Finally, if h= n/2, then the only nonzero coordinate is
\bigl( 

n - 1
n/2 - 1

\bigr) 
at coordinate n/2.

This vector is an extreme point of the class of intersecting families, and thus it is an
extreme point of this smaller family as well.

Lemma 9. The elements of \Gamma c are extreme points of the nontrivial intersecting
families.

Proof. These are the elements of \Gamma a which correspond to nontrivial intersecting
families. They are extreme points of the larger set (of all intersecting families), and
thus they are extreme points of the smaller set as well.

Lemma 10. The elements of \Gamma d are extreme points of the nontrivial intersecting
families.

Proof. For dH \in \Gamma d we define the family

\scrD H =\cup i\in H, i\not =h\prime HM(i, h\prime )\cup \{ [h\prime ]\} .

It is the same as \scrB H , except we removed most of the h\prime -element sets. Let w be the
weight function described in the proof of Lemma 8. We use almost the same weight
here, and we set w\prime (h\prime ) = - 1 and w\prime (i) =w(i) for every i \not = h\prime . Just as in Lemma 8, we
need to have the largest number of h-element sets in the family \scrF of maximum weight,
that is, | HM(h,h\prime )| . Then we need an h\prime -element set in \scrF , with the exception of one
case as in Lemma 4. Without loss of generality, \scrF h = HM(h,h\prime ) and \scrF h\prime \supset \{ [h\prime ]\} .
However, there is no point in having more h\prime -element sets in \scrF . For every other
i \in H, there are at most | HM(i, h\prime )| sets of size i in \scrF , completing the proof. This
proof does not work for d because of the exceptional case of Lemma 4. Indeed d is
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PROFILES OF NONTRIVIAL INTERSECTING FAMILIES 2271

not an extreme point (unless n = 3, in which case d \in \Gamma c), as (0,0,3,0, . . . ,0) and
(0,0,3, | HM(3,3)| + 1,0, . . . ,0) are both profile vectors.

Lemma 11. The elements of \Gamma e are extreme points of the nontrivial intersecting
families.

Proof. Observe first that if v = (e0, . . . , en) \in P and we increase ei, the resulting
vector is in P , as we cannot violate any of the properties. It means that the ex-
treme points of P are minimal. More precisely, if e is an extreme point and e\prime \geq e
(with e\prime \not = e), then e\prime cannot be an extreme point, as it is a convex combination of
the following two elements of P : e and 2e\prime  - e. By Lemma 6, e is the profile vector
of a nontrivial intersecting family.

We need to show that the extreme points of P are extreme points of the nontrivial
intersecting families as well. Let P \prime be the set of the profile vectors of those nontrivial
intersecting families which do not contain [n]. Then P \prime \subset P by Lemma 6.

An extreme point p of the larger set P which also belongs to the smaller set P \prime 

must be an obviously extreme point of P \prime as well. Thus there exists a weight function
w where it gives the maximum in P \prime . One can easily see that if we change w(n)
to a negative number, then p has the largest weight among every profile vector of
nontrivial intersecting families.

3. The main lemma. Our most important special case is when there are only
two nonempty levels 1 < i < m < n with m > n/2 and i+m \leq n. For other values
of i and m, it is going to be easy to see that Theorem 7 holds (we do it inside the
proof of the main theorem in section 4). Thus, the lemma below contains the most
complicated part of the proof.

Lemma 12. Let (f0, f1, f2, . . . , fn) be the profile vector of a nontrivial intersect-
ing family \scrF . Let us assume that m is the maximum cardinality in \scrF , m > n/2,
and i + m \leq n. Then there is a 0 \leq \lambda \leq 1 such that (fi, fm) \leq \lambda (0,

\bigl( 
n
m

\bigr) 
) + (1  - 

\lambda )(| HM(i,m)| , | HM(m,m)| + 1).

We will use the following simple observations.

Proposition 13. (i) If x\leq y, then
\bigl( 

x
k - 1

\bigr) 
/
\bigl( 
x
k

\bigr) 
\geq 
\bigl( 

y
k - 1

\bigr) 
/
\bigl( 
y
k

\bigr) 
.

(ii) Let 0\leq c\prime , 0<\alpha ,a, b, c, b\prime with bc\prime \leq cb\prime , b/c\leq \alpha , and c\geq c\prime . Then

\alpha a+ b

a+ c
\leq \alpha a+ b\prime 

a+ c\prime 
.

Proof. The first statement easily follows from the definition of
\bigl( 
x
k

\bigr) 
.

By rearranging the desired inequality of (ii), we obtain the equivalent form \alpha ac\prime +
ab + bc\prime \leq \alpha ac + ab\prime + cb\prime . Recall that we have bc\prime \leq cb\prime . The other terms can be
rewritten as b - b\prime 

c - c\prime \leq \alpha . We have b - b\prime 

c - c\prime \leq 
b - bc\prime /c
c - c\prime = b(c - c\prime )/c

c - c\prime = b/c\leq \alpha .

Now we are ready to prove Lemma 12.

Proof of Lemma 12. We use induction on n  - m  - i. Recall that HM(m) =
HM(m,m)\cup \{ [m]\} ; for simplicity we will use this notation in the proof. Observe that
for the base case i+m= n we have that HM(i,m)\cup HM(m) consists of all the i-sets
and m-sets containing n, except that it contains [m] instead of its complement. Thus
HM(i,m)\cup HM(m) has

\bigl( 
n
i

\bigr) 
members, just like any maximal nontrivially intersecting

family on these two levels. Let us choose \lambda = | HM(i,m)|  - fi
| HM(i,m)| , then by definition fi \leq 

(1 - \lambda )| HM(i,m)| , and we need
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2272 D\'ANIEL GERBNER

fm \leq \lambda 

\biggl( 
n

m

\biggr) 
+ (1 - \lambda )| HM(m)| =

\biggl( 
n

m

\biggr) 
 - 

fi
\bigl( 
n
m

\bigr) 
| HM(i,m)| 

+
fi| HM(m)| 
| HM(i,m)| 

=

\biggl( 
n

m

\biggr) 
 - fi.

This holds for every intersecting family, even the trivial one. For nontrivial inter-
secting families, we have fi \leq | HM(i,m)| by Lemma 4, and thus we have \lambda \geq 0,
completing the proof of the base step.

Let us continue with the induction step. Let us consider \nabla \scrF i, which is the shade
of \scrF i, and let gi+1 = | \nabla \scrF i| . Then \nabla \scrF i\cup \scrF m is obviously nontrivially intersecting, and
thus by the induction hypothesis there is a 0\leq \lambda \leq 1 such that (gi+1, fm)\leq \lambda (0,

\bigl( 
n
m

\bigr) 
)+

(1 - \lambda )(| HM(i+ 1,m)| , | HM(m)| ). We will show that the same \lambda works for fi, i.e.,
(fi, fm) \leq \lambda (0,

\bigl( 
n
m

\bigr) 
) + (1  - \lambda )(| HM(i,m)| , | HM(m)| ). As the values in coordinate

m do not change, all we need to prove is that fi \leq (1  - \lambda )| HM(i,m)| if gi+1 \leq 
(1 - \lambda )| HM(i+1,m)| . It is enough to show that fi/| HM(i,m)| \leq gi+1/| HM(i+1,m)| ,
or equivalently gi+1/fi \geq | HM(i+1,m)| /| HM(i,m)| . AsHM(i+1,m) =\nabla HM(i,m),
the last of the above inequalities means that the size of the shade of \scrF i is proportionally
the smallest if \scrF i is HM(i,m).

We will use the Kruskal--Katona theorem. To use it in the form we have stated
it, we will consider the complement family, as the shade of a family is the shadow of
its complement.

Observe that HM(i,m) is an initial segment of the colex ordering if we reorder
the elements of [n]. Indeed, members of HM(i,m) completely avoid a given element
z, and then we take all the (n - i)-sets but those that contain an m-element set B.
By reordering, we can assume that z = n and B = \{ n  - m, . . . , n  - 1\} . The sets
containing n are the last in the colex order, and a superset F of B cannot be before
a set G \in HM(i,m), as the largest element of F \setminus G is in B, while every element of
G \setminus F is less than n - m.

The cascade form of | HM(i,m)| is
\bigl( 
n - 2
n - i

\bigr) 
+
\bigl( 

n - 3
n - i - 1

\bigr) 
+
\bigl( 

n - 4
n - i - 2

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
n - m - 1

n - i - m+1

\bigr) 
=\sum m+1

j=2

\bigl( 
n - j

n - i - j+2

\bigr) 
. Let \scrG be a nonempty (n - i)-uniform family with | \scrG | < | HM(i,m)| 

and cascade form | \scrG | =
\sum m\prime 

j=2

\bigl( 
nj

n - i - j+2

\bigr) 
. Observe that n2 \leq n - 2. This implies that

for any h, nh \leq n - h.
We partition HM(i,m) into m parts: \scrH 2 consists of the first

\bigl( 
n - 2
n - i

\bigr) 
sets of

HM(i,m) in the colex order, \scrH 3 consists of the next
\bigl( 

n - 3
n - i - 1

\bigr) 
sets, and so on. \scrH j for

j \leq m+ 1 consists of
\bigl( 

n - j
n - i - j+2

\bigr) 
sets that come after \scrH 2, . . . ,\scrH j - 1, i.e., after the first\bigl( 

n - 2
n - i

\bigr) 
+
\bigl( 

n - 3
n - i - 1

\bigr) 
+
\bigl( 

n - 4
n - i - 2

\bigr) 
+ \cdot \cdot \cdot +

\bigl( 
n - j+1

n - i - j+3

\bigr) 
sets in the colex order. We also partition

\scrG into m parts: for 2 \leq j < m+ 1, \scrG j similarly consists of
\bigl( 

nj

n - i - j+2

\bigr) 
sets of \scrG that

come after \scrG 2, . . . ,\scrG j - 1 in the colex order. Then \scrG m+1 consists of all the remaining\sum m\prime 

j=m+1

\bigl( 
nj

n - i - j+2

\bigr) 
sets of \scrG . Let us note that \scrG j can be empty if j > 2.

Let us assume that n2 = n - 2, n3 = n - 3,. . .,nh = n - h, and nh+1 < n - h - 1.
Let \scrH \ast = \cup h

j=1\scrH j , \scrH \ast \ast = \cup m+1
j=h+1\scrH j , \scrG \ast = \cup h

j=1\scrG j , \scrG \ast \ast = \cup m+1
j=h+1\scrG j . Observe that

we have | \scrH \ast | = | \scrG \ast | and | \Delta \scrH \ast | \leq | \Delta \scrG \ast | since \scrH \ast is an initial segment of the colex
ordering. We also have | \scrH \ast \ast | \geq 

\bigl( 
n - h - 1

n - i - h+1

\bigr) 
and | \scrG \ast \ast | <

\bigl( 
n - h - 1

n - i - h+1

\bigr) 
.

Let a := | \scrH \ast | , c := | \scrH \ast \ast | , \alpha = | \Delta \scrH \ast | /| \scrH \ast | , b := | \Delta \scrH \ast \ast \setminus \Delta \scrH \ast | , b\prime = | \Delta \scrG |  - | \Delta \scrG \ast | ,
c\prime := | \scrG \ast \ast | , and \alpha \prime = | \Delta \scrG \ast | /| \scrG \ast | . Our goal is to apply (ii) of Proposition 13. By the
above, we have c > c\prime . Now we will show that the other conditions are satisfied as
well.

We let p\ell :=
\bigl( 

n - \ell 
n - i - \ell +1

\bigr) 
= | \Delta \scrH \ell \setminus \Delta (

\bigcup \ell  - 1
\ell \prime =2\scrH \ell \prime )| , i.e., the number of sets added to

the shadow of
\bigcup \ell 

\ell \prime =2\scrH \ell \prime by \scrH \ell . Observe first that p\ell /| \scrH \ell | = (n - i - \ell + 2)/(i - 1),
and thus p\ell /| \scrH \ell | decreases as \ell increases. This implies that p\ell /| \scrH \ell | \leq ph+1/| \scrH h+1| 
for every \ell > h+ 1. Therefore, we have that
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b

c
=

| \Delta \scrH \ast \ast \setminus \Delta \scrH \ast | 
| 
\bigcup m+1

\ell =h+1\scrH \ell | 
=

\sum m+1
\ell =h+1 p\ell 

| 
\bigcup m+1

\ell =h+1\scrH \ell | 
\leq 

ph+1

| \scrH h+1| | 
\bigcup m+1

\ell =h+1\scrH \ell | 

| 
\bigcup m+1

\ell =h+1\scrH \ell | 
=

ph+1

| \scrH h+1| 
.(3.1)

Similarly, we have that

\alpha =
| \Delta \scrH \ast | 
| \scrH \ast | 

=
| \Delta \cup h

j=1 \scrH j | 
| \cup h

j=1 \scrH j | 
=

\sum h
j=1 pj

| 
\bigcup h

j=1\scrH j | 
\geq 

ph+1

| \scrH h+1| | 
\bigcup h

j=1\scrH j | 

| 
\bigcup h

j=1\scrH j | 
=

ph+1

| \scrH h+1| 
\geq b

c
,

where the last inequality uses (3.1).
Let x < n  - h  - 1 be defined by

\bigl( 
x

n - i - h+1

\bigr) 
:=

\bigl( 
nh+1

n - i - h+1

\bigr) 
+

\bigl( 
nh+2

n - i - h

\bigr) 
+ \cdot \cdot \cdot +\bigl( 

nm\prime 
n - i - m\prime +2

\bigr) 
= | 

\bigcup m+1
\ell =h+1 \scrG \ell | . We have | \Delta \scrG | \geq | \Delta \scrH \ast | +

\bigl( 
nh+1

n - i - h

\bigr) 
+

\bigl( 
nh+2

n - i - h - 1

\bigr) 
+ \cdot \cdot \cdot +\bigl( 

nm\prime 
n - i - m\prime +1

\bigr) 
by the Kruskal--Katona theorem. We claim that\biggl( 
nh+1

n - i - h

\biggr) 
+

\biggl( 
nh+2

n - i - h - 1

\biggr) 
+ \cdot \cdot \cdot +

\biggl( 
nm\prime 

n - i - m\prime + 1

\biggr) 
\geq 
\biggl( 

x

n - i - h

\biggr) 
.(3.2)

Indeed, the left hand side is the sharp lower bound on the size of the shadow of
an (n - i - h+ 1)-uniform family of size

\bigl( 
x

n - i - h+1

\bigr) 
by the Kruskal--Katona theorem,

while the right hand side is the not necessarily sharp lower bound on the size of the
same family by Lov\'asz's version of the shadow theorem.

Consider now the number of sets added to the shadow of \cup \ell 
\ell \prime =2\scrG \ell \prime by \scrG \ell . Since

| \scrG \ell | =
\bigl( 

n\ell 

n - i - \ell +2

\bigr) 
, it gives at least an additional

\bigl( 
n\ell 

n - i - \ell +1

\bigr) 
to the shadow even if all

the sets that come before \scrG \ell in the colex order are in \cup \ell 
\ell \prime =2\scrG \ell \prime . Therefore, we have

b\prime 

c\prime \geq 
( nh+1
n - i - h)+(

nh+2
n - i - h - 1)+\cdot \cdot \cdot +(

n
m\prime 

n - i - m\prime +1
)

( x
n - i - h+1)

\geq ( x
n - i - h)

( x
n - i - h+1)

\geq (n - h - 1
n - i - h)

( n - h - 1
n - i - h+1)

= ph+1/| \scrH h+1| \geq b
c . In

the inequalities here we used the observation at the top of the paragraph, then (3.2),
then (i) of Proposition 13, and finally (3.1).

Now we can apply (ii) of Proposition 13 to show that \alpha a+b
a+c \leq \alpha a+b\prime 

a+c\prime \leq \alpha \prime a+b\prime 

a+c\prime .

This means | \Delta HM(i,m)| /| HM(i,m)| \leq | \Delta \scrG | /| \scrG | . By taking the complements, we
obtain that | \nabla HM(i,m)| /| HM(i,m)| \leq | \nabla \scrG \prime | /| \scrG \prime | for any i-uniform family \scrG \prime with
| \scrG \prime | \leq | HM(i,m)| . In particular, | \nabla HM(i,m)| /| HM(i,m)| \leq gi+1/fi, completing the
proof.

4. Proof of the main theorem. In this section we finish the proof of Theo-
rem 7. It is easy to see that we can consider only families not containing [n]. It is
enough to show that if a profile vector p of a nontrivial intersecting family \scrF gives
the unique maximum for a weight function w, then p\in \Gamma b \cup \Gamma c \cup \Gamma d \cup \Gamma e.

An important observation is that if F \in \scrF , F \subset G, and G has positive weight, then
G is in the maximum family (as adding it would not violate any of the properties). In
the proof we often start with fixing the maximum size m of members; it implies that
larger sets (except possibly [n]) do not have positive weight. Note that if w(m)> 0,
then \scrF m is nontrivial intersecting. Indeed, if \scrF m is trivial, then all its members
contain a given element x and there is a set F \in \scrF of smaller size not containing x.
But then all the m-element sets which contain F are in \scrF , even those which do not
contain x, a contradiction.

We continue the proof with a case analysis.
Case 1. w(i)\leq 0 for every 1< i< n.
Case 1a. w(i) < 0 for every 1 < i < n. Obviously p \in P , as in all the cases, by

Lemma 6. But in this special case we will show that p is also an extreme point of P ,
and thus it is in \Gamma e.
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2274 D\'ANIEL GERBNER

If p is not an extreme point of P , i.e., there is an element p\prime of P with larger
weight, then either p\prime also corresponds to a nontrivial intersecting family (a contra-
diction), or there is another p\prime \prime \in P with p\prime \prime \leq p\prime by Lemma 6. But then p\prime \prime has even
larger weight. As p\prime \prime cannot correspond to a nontrivial intersecting family, there is an
even smaller vector in P (with even larger weight). It cannot continue forever, as each
coordinate is a nonnegative integer. We arrive at a vector which does correspond to a
nontrivial intersecting family and hence has a larger weight than p, a contradiction.

Case 1b. w(i) = 0 for some 1 < i < n. Obviously w(p) \leq 0, and w(HM(i)) = 0.
The profile of HM(i) is in \Gamma b.

Case 2. w(i)> 0 for some 1< i < n. Let m be the maximum size in \scrF . We will
use Lemma 4 several times.

Case 2a. w(m)< 0. There is an m-element set F in \scrF . Obviously the only reason
it is in the family is that without it the family would be trivial, and hence every other
member of \scrF contains a fixed point. Then for every level i the maximum weight is
given either by the empty family (in case w(i)\leq 0) or HM(i,m). Then we take the
union of these uniform families (on every level i, the empty family of HM(i,m)),
and we add [m]. The resulting family is nontrivial intersecting, and its profile vector
is in \Gamma d.

Case 2b. w(m) \geq 0 and m \leq n/2. For every level below m, the maximum of
w(\scrF i) is either 0 or given by HM(i,m). In particular, on level m clearly HM(m) =
HM(m,m) \cup \{ [m]\} gives the maximum weight. This already makes sure the family
is nontrivial intersecting, and hence for every other level j with j <m we can choose
HM(j,m) or the empty family, depending on whether w(j) is positive or not. The
union of these uniform families is nontrivial intersecting and has the largest possible
weight on every level up to m. Its profile is in \Gamma b.

Case 2c. w(m)\geq 0 and m> n/2. Let m0 be the size of the smallest member of
the family \scrF .

Case 2c1. w(m) \geq 0, m > n/2, and m+m0 > n. Let us consider the following
modified weight function. Let w\prime (i) be the same as w(i) if m0 \leq i \leq m and negative
otherwise. Obviously the maximum nontrivial intersecting family for w\prime is also \scrF .
Let us examine the intersecting family \scrF \prime with maximum weight w\prime now. One can
easily see using Theorem 5 that the profile of \scrF \prime can be obtained from an a with
m0 \leq j \leq n/2 or from a by changing some coordinates to 0 (those with negative
weight w\prime ). If w(m) = 0, then \scrF \prime might contain no m-element sets, but even in this
case we can add everym-element set to \scrF \prime without decreasing the weight (and without
ruining the intersecting property). The resulting family \scrF \prime \prime is nontrivial intersecting,
and w\prime (\scrF \prime \prime ) =w\prime (\scrF \prime )\geq w\prime (\scrF ) =w(\scrF ), and thus \scrF \prime \prime must have the same profile as \scrF .
The profile of \scrF \prime \prime is in \Gamma c.

Case 2c2. w(m) \geq 0, m> n/2 and m+m0 \leq n. Let H be the set of nonempty
levels. Recall that coordinate i of a is 0 if i < n/2,

\bigl( 
n - 1
i - 1

\bigr) 
if i= n/2, and

\bigl( 
n
i

\bigr) 
if i > n/2.

Let a\prime be the vector we get from a when we change the coordinates not in H to 0. We
will show that p= bH , by showing that there is a \lambda such that \lambda bH + (1 - \lambda )a\prime \geq p.
We have that bH and a\prime are both 0 in the negative coordinates, and thus the weight
of either bH or a\prime is at least as large as the weight of p. But that was the unique
maximum, and thus p is equal to either bH or a\prime . As p has a nonzero coordinate
below n/2, p cannot be equal to a\prime .

Let i\leq n/2 be such that fi/| HM(i,m)| =: \lambda is maximal. Then \lambda bH has at least
fj in coordinate j for every j \leq n/2. Let us consider now a coordinate k > n/2 with
w(k)> 0.
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If the family \scrF i\cup \scrF k is trivially intersecting, then fk \leq | HM(k,m)| , while bH and
a\prime both have at least | HM(k,m)| in coordinate k, and thus so does \lambda bH + (1 - \lambda )a\prime ,
completing the proof.

If the family \scrF i\cup \scrF k is nontrivially intersecting, we can apply Lemma 12. It implies
that there is a \lambda \prime such that (fi, fk)\leq ((1 - \lambda \prime )| HM(i, k)| , \lambda \prime \bigl( n

k

\bigr) 
+(1 - \lambda \prime )(| HM(k, k)| +

1). Coordinate i shows that ((1 - \lambda \prime )| HM(i, k)| \geq \lambda | HM(i,m)| . Since | HM(i,m)| \geq 
| HM(i, k)| , this implies that \lambda \leq 1 - \lambda \prime . Consider now coordinate k. We have

fk \leq \lambda \prime 
\biggl( 
n

k

\biggr) 
+ (1 - \lambda \prime )(| HM(k, k)| + 1)\leq \lambda \prime 

\biggl( 
n

k

\biggr) 
+ (1 - \lambda \prime )| HM(k,m)| .( \star )

Since | HM(k,m)| \leq 
\bigl( 
n
k

\bigr) 
, increasing \lambda \prime increases the right hand side of ( \star ). Since

\lambda \prime \leq 1 - \lambda , the right hand side is at most (1 - \lambda )
\bigl( 
n
k

\bigr) 
+\lambda | HM(k,m)| , which is coordinate

k of \lambda bH + (1 - \lambda )a\prime , completing the proof.
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