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Abstract

The current state of art concerning the Lp-Minkowski problem as
a Monge-Ampére equation on the sphere and Lutwak’s Logarithmic
Minkowski conjecture about the uniqueness of even solution in the
p = 0 case are surveyed and connections to many related problems are
discussed.

MSC 2010 Primary: 35J96, Secondary: 52A40

1 Introduction

The Minkowski problem forms the core of various areas in fully nonlinear
partial differential equations and convex geometry (see Trudinger, Wang
[239] and Schneider [233]), which was extended to the Lp-Minkowski theory
by Lutwak [193, 194, 195] where p = 1 corresponds to the classical case. The
classical Minkowski’s existence theorem due to Minkowski and Aleksandrov
characterizes the surface area measure SK of a convex body K in R

n, more
precisely, it solves the Monge-Ampére equation

det(∇2h+ h Id) = f

on the sphere Sn−1 where a convex body K with C2
+ boundary provides

a solution if h = hK |Sn−1 for the support function hK of K, and in this
case, 1/f(u) is the Gaussian curvature at the x ∈ ∂K where u is an exterior
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normal for u ∈ Sn−1. The so-called log-Minkowski problem (short hand for
logarithmic Minkowski problem)

hdet(∇2h+ h Id) = f (1)

or L0-Minkowski problem was posed by Firey in his seminal paper [111]. It
seeks to charaterize the cone volume measure dVK = 1

n hKdSK of a convex
body K containing the origin o, and to determine whether the even solution
is unique if f is even. The latter problem is the so-called Log-Minkowski
conjecture by Lutwak. However, the log-Minkowski problem has received
due attention only after finding its place as part of Lutwak’s Lp-Minkowski
problem

h1−p det(∇2h+ h Id) = f

in the 1990’s where the cases p = 1 and p = 0 are the classical and the
logarithmic Minkowski problem.

The uniqueness of the solution of the classical Minkowski problem up to
translation is the consequence of the equality case of the Brunn-Minkowski
inequality (see Gardner [114] or Schneider [233])

V (αK + βC)
1

n ≥ αV (K)
1

n + βV (C)
1

n (2)

for convex bodies K and C and α, β ≥ 0. For p ≥ 0, the Lp-Minkowski
problem is intimately related to the Lp version of the Brunn-Minkowski
inequality/conjecture

V ((1 − λ)K +p λC)
p

n ≥ (1− λ)V (K)
p

n + λV (C)
p

n if p > 0;

V ((1− λ)K +0 λC) ≥ V (K)1−λV (C)λ if p = 0
(3)

for λ ∈ (0, 1) and convex bodies K,C containing the origin. Here (3) is
the classical Brunn-Minkowsi inequality if p = 1, a theorem of Firey [110] if
p > 1, and assuming that K and C are origin symmetric, a conjecture being
the central theme of this paper if p ∈ [0, 1). Actually, the conjecture has
been recently verified if p ∈ (0, 1) is close to 1; more precisely, combining
Kolesnikov, Milman [169] and Chen, Huang, Li, Liu [71] proves that the
Lp Brunn-Minkowski conjecture holds if p ∈ [pn, 1) and K,C are origin
symmetric convex bodies for an explicit pn ∈ (0, 1).

The main goal of this survey is to inspire the resolution of the Log-
Brunn-Minkowski conjecture (cf. (3) when p = 0), or Lutwak’s essentially
equivalent Log-Minkowski conjecture (the Monge-Ampére equation (1) on
Sn−1 has a unique even solution if f is even, positive and C∞).
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Its versatility is an intriguing aspect of the log-Minkowski conjecture;
namely, uniqueness of the even solutions of a Monge-Ampére equation on the
sphere is equivalent to some strengthening of the Brunn-Minkowski inequal-
ity for origin symmetric convex bodies, to an inequality for the Gaussian
density, and to some spectral gap estimates for certain self-adjoint operators,
and in turn to displacement convexity of certain functional of probability
measures on the sphere in optimal transportation.

In this survey, we review some related aspects of the classical Brunn-
Minkowski Theory in Section 2, the state of art concerning the Log-Minkowski
problem and the Log-Minkowski conjecture in Section 3, Lutwak’s Lp-Minkowski
problem and the Lp-Minkowski conjecture in Section 4, and some variants
of the Lp-Minkowski problem in Section 5.

2 Classical Brunn-Minkowski Theory

This section serves as the introduction into the relevant aspects of Brunn-
Minkowski Theory on the one hand, but also introduces the basic ideas
and tools used in the upcoming sections. For a thorough discussion the
subject and related problems from various perpectives, see Artstein-Avidan,
Giannopoulos, Milman [11, 12], Gardner [114], Leichtweiß [174], Schneider
[233].

We call a compact convex set in R
n with non-empty interior a convex

body. The family of convex bodies in R
n is denoted by Kn, and we write

Kn
o (Kn

(o)) to denote the subfamily of K ∈ Kn with o ∈ K (o ∈ intK), and
write Kn

e to denote the family of origin symmetric convex bodies in R
n. The

support function of a compact convex set K is hK(u) = maxx∈K〈u, x〉 for
u ∈ R

n, and hence hK is convex and homogeneous (the latter property says
that hK(λu) = λhK(u) for λ ≥ 0). In turn, for any convex and homogeneous
function h on R

n, there exists a unique compact convex set K such that
h = hK . We note that differences of support functions are dense among
continous functions on the sphere; more precisely, functions of the form
(hK − hC)|Sn−1 for convex bodies K and C with C∞

+ boundary in R
n are

dense in C(Sn−1) with respect to the L∞ metric.
We say that convex bodies K and C are homothetic if K = γC + z

for γ > 0 and z ∈ R
n. We write V (X) to denote Lebesgue measure of a

measurable subset X of Rn (with V (∅) = 0), and H to denote the (n −
1)-Hausdorff measure normalized in a way such that it coincides with the
(n−1)-dimensional Lebesgue measure on n− 1-dimensional affine subspaces.
For X,Y ⊂ R

n and α, β ∈ R, the Minkowski linear combination is αX +
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βY = {αx + βy : x ∈ X, y ∈ Y }, which is convex compact if X and
Y are convex compact. We write Bn to denote the unit Euclidean ball
centered at the origin o, and equip the space of compact convex sets of Rn

with topology induced by the Hausdorff metric (sometimes called Hausdorff
distance); namely, ifK and C are compact convex sets, then their Haussdorff
distance is

δH(K,C) = min{r ≥ 0 : K ⊂ C + rBn and C ⊂ K + rBn}.

The Brunn-Minkowski inequality says that if α, β > 0 and K,C are
convex bodies in R

n, then

V (αK + βC)
1

n ≥ αV (K)
1

n + βV (C)
1

n , (4)

with equality if and only if K and C are homothetic. We note that the
Brunn-Minkowski inequality (4) also holds if K and C are bounded Borel
subsets of Rn (note that Minkowski linear combination of measurable subsets
may not be measurable; therefore, outer measure is used in that case). The
Brunn-Minkowski inequality famously yields the isoperimertric inequality;
namely, that the surface area of a bounded Borel set X of given volume is
minimized by balls. Naturally, one needs a suitable notion of surface area. It
is the Hausdorff measureH(∂X) ifX is a convex body, or more generally, ∂X
is the finite union of the images of Lipschitz functions defined on bounded
subsets of Rn−1 (see Schneider [233] or Ambrosio, Colesanti, Villa [6]), but
the right notion is finite perimeter (see Maggi [200]). Fusco, Maggi, Pratelli
[113] proved an optimal stability version of the isoperimetric inequality in
terms of the symmetric difference metric (whose result was extended to
the Brunn-Minkowski inequality by Figalli, Maggi, Pratelli [105, 106], see
Theorem 2.1 below).

Because of the homogeneity of the Lebesgue measure, an equivalent form
of the Brunn-Minkowski inequality (4) is that if K,C are convex bodies in
R
n and λ ∈ (0, 1), then

V ((1− λ)K + λC) ≥ V (K)1−λV (C)λ, (5)

with equality if and only if K and C are translates. A big advantage of
this product form of the Brunn-Minkowski inequality is that it is dimension
invariant.

The first stability forms of the Brunn-Minkowski inequality were due to
Minkowski himself (see Groemer [122]). If the distance of the convex bodies
K and C is measured in terms of the so-called Hausdorff distance, then
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Diskant [89] and Groemer [121] provided close to optimal stability versions
(see Groemer [122]). However, the natural distance is in terms of the volume
of the symmetric difference, and the optimal result is due to Figalli, Maggi,
Pratelli [105, 106]. To define the “homothetic distance” A(K,C) of convex

bodies K and C, let α = |K|
−1

n and β = V (C)
−1

n , and let

A(K,C) = min {V (αK∆(x+ βC)) : x ∈ R
n} .

In addition, let

σ(K,C) = max

{
V (C)

V (K)
,
V (K)

V (C)

}
.

THEOREM 2.1 (Figalli, Maggi, Pratelli) For γ∗(n) > 0 depending
on n and any convex bodies K and C in R

n,

V (K + C)
1

n ≥ (V (K)
1

n + V (C)
1

n )

[
1 +

γ∗(n)

σ(K,C)
1

n

·A(K,C)2

]
.

Here the exponent 2 of A(K,C)2 is optimal, see Figalli, Maggi, Pratelli
[106]. We note that prior to [106], the only known error term in the Brunn-
Minkowski inequality was of order A(K,C)η with η ≥ n, coming from the
estimates of Diskant [89] and Groemer [121] in terms of the Hausdorff dis-
tance.

Figalli, Maggi, Pratelli [106] proved a factor of the form γ∗(n) = cn−14

for some absolute constant c > 0, which was improved to cn−7 by Segal [232],
and subsequently to cn−5.5 by Kolesnikov, Milman [169], Theorem 12.12.
The current best known bound for γ∗(n) is cn−5(log n)−10, which follows by
combining the general estimate of Kolesnikov-Milman [169], Theorem 12.2,
with the polylogarithmic bound of Klartag, Lehec [164] on the Cheeger
constant of a convex body in isotropic position improving on Yuansi Chen’s
work [76] on the Kannan-Lovász-Simonovits conjecture. Harutyunyan [137]
conjectured that γ∗(n) = cn−2 is the optimal order of the constant, and
showed that it can’t be of smaller order. Actually, Segal [232] observed that
Dar’s conjecture in [88] would imply that we may choose γ∗(n) = cn−2 for
some absolute constant c > 0. Here Dar’s conjectured strengthening of the
Brunn-Minkowski inequality states in [88] that if K and C are convex bodies
in R

n, and M = maxx∈Rn V (K ∩ (x+ C)), then

V (K + C)
1

n ≥ M
1

n +

(
V (K)V (C)

M

) 1

n

. (6)
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Dar’s conjecture is only known to hold in the plane (see Xi, Leng [241]), and
in some very specific cases in higher dimension (see Dar [88]).

The paper Eldan, Klartag [94] discusses ”isomorphic” stability versions
of the Brunn-Minkowski inequality under condition of the type |12 K+ 1

2 C| ≤

5
√

|K| · |C|, and considers, for example, the L2 Wasserstein distance of the
uniform measures on suitable affine images of K and C.

We note that stability versions of the Brunn-Minkowski inequality have
been verified even ifK or C are not convex. The essentially optimal estimate
Theorem 2.1 (with much worse factor γ∗(n)) is verified if K is bounded
measurable and C a convex body by Barchiesi, Julin [19] (improving on the
estimate in Carlen, Maggi [67]), if n ≥ 2 and K = C is bounded Borel set
by Hintum, Spink, Tiba [142], and if n = 2 and K and C are bounded Borel
sets by Hintum, Spink, Tiba [143]. If n ≥ 3 and K and C are bounded
Borel sets, then only a much weaker estimate in terms of A(K,C) is known,
proved by Figalli, Jerison [103, 104]. On the other hand, a better error term
of order A(X,Y ) holds if n = 1 according to Freiman and Christ (see Christ
[79]).

It was proved by Minkowski that if K and C are convex bodies and
α, β ≥ 0, then

V (αK + β C) =

n∑

i=0

(
n

i

)
V (K,C; i)αn−iβi (7)

where V (K,C; i) are the so-called mixed volumes. For fixed i, V (K,C; i) is
positive, continuous in both variables, and satisfies V (αK, βC; i) = αn−iβiV (K,C; i)
for α, β > 0, V (K,C; i) = V (C,K;n − i) and V (ΦK + x,ΦC + y; i) =
V (K,C; i) for x, y ∈ R

n and Φ ∈ SL(n). Many mixed volumes have geo-
metric meaning, like V (K,K; i) = V (K,C; 0) = V (K) and 1

n V (K,Bn; 1) =
H(∂K) is the surface area of K. In addition, if i = 1, . . . , n − 1, then
V (K,Bn;n − i) is proportional with the mean i-dimensional projection of
K according to the Kubota formula (see Leichtweiß [174], Schneider [233]).

It follows from the Brunn-Minkowski inequality (4) that the function

f(λ) = V ((1 − λ)K + λC)
1

n is concave on [0, 1]. Combining f ′(0) ≥ f(1)−
f(0) and (7) leads to the famous Minkowski inequality

V (K,C; 1)n ≥ V (K)n−1V (C), (8)

with equality if and only if K and C are homothetic. The Minkowski in-
equality is actually equivalent to the Brunn-Minkowski inequality because
it implies that the function f(λ) = V ((1− λ)K + λC)

1

n is concave on [0, 1],
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which in turn yields (4). Considering the second derivative f”(λ) leads to
Minkowski’s second inequality

V (K,C; 1)2 ≥ V (K)V (K,C; 2), (9)

that is in turn also equivalent to the Brunn-Minkowski inequality (4). The
rather involved equality case of (9) has been only recently clarified by van
Handel, Shenfeld [135].

Actually, Minkowski defined the mixed volume V (C1, . . . , Cn) of n con-
vex bodies via the identity

V (λ1K1 + . . .+ λmKm) =
m∑

i1,...,in=1

V (Ki1 , . . . ,Kin) · λi1 · . . . · λin (10)

for K1, . . . ,Km ∈ Kn and λ1, . . . , λm ≥ 0 where V (C1, . . . , Cn) ≥ 0 is sym-
metric and continuous in its variables (see [233]), and V (K,C; i) means
i copies of C and n − i copies of K. A far reaching generalization of
Minkowski’s first and second inequalities is the Alexandrov-Fenchel inequal-
ity

V (K1,K2,K3, . . . ,Kn)
2 ≥ V (K1,K1,K3, . . . ,Kn)V (K2,K2,K3, . . . ,Kn)

(see Alexandrov [1, 5] and Schneider [233]). Equality in the Alexander-
Fenchel inequality has been much better understood now due to van Handel,
Shenfeld [135, 136] where [136] clarifies the case of polytopes.

Let us summarize some equivalent formulations of the Brunn-Minkowski
inequality that holds for all convex bodies K and C in R

n:

• V (αK + βC)
1

n ≥ αV (K)
1

n + βV (C)
1

n ((cf. (4));

• V ((1− λ)K + λC) ≥ V (K)1−λV (C)λ ((cf. (5));

• f(λ) = V ((1− λ)K + λC)
1

n is concave on [0, 1];

• Minkowski inequality V (K,C; 1)n ≥ V (K)n−1V (C) (cf. (8));

• Minkowski’s second inequality V (K,C; 1)2 ≥ V (K)V (K,C; 2) (cf. (9)).

The classical Minkowski problem is concerned with the characterization
of the so-called surface area measure SK of a convex body K. Let ∂′K
denote the subset of the boundary of K such that there exists a unique
exterior unit normal vector νK(x) at any point x ∈ ∂′K. It is well-known
that H(∂K \ ∂′K) = 0 and ∂′K is a Borel set (see Schneider [233]). The
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function νK : ∂′K → Sn−1 is the spherical Gauss map that is continuous
on ∂′K. The surface area measure SK of K is a Borel measure on Sn−1

satisfying that SK(η) = H(ν−1
K (η)) for any Borel set η ⊂ Sn−1. The surface

area measure is the first variation of the volume; namely, if C is any convex
body in R

n, then

nV (K,C; 1) = lim
ε→0+

V (K + εC)− V (K)

ε
=

∫

Sn−1

hC dSK . (11)

It also follows that the Minkowski inequality (8) can be written in the fol-
lowing form: If V (K) = V (C) holds for K,C ∈ Kn, then

∫

Sn−1

hC dSK ≥

∫

Sn−1

hK dSK , (12)

with equality if and only if K and C are translates.
To consider some examples for the surface area measure, if P is a poly-

tope with facets F1, . . . , Fk and exterior unit normals u1, . . . , uk, then SP

is concentrated onto {u1, . . . , uk} and SP (ui) = H(Fi) for i = 1, . . . , k. On
the other hand, if ∂K is C2

+, namely, C2 with positive Gaussian curvature,
and the Gaussian curvature at the point of ∂K with exterior unit normal
u ∈ Sn−1 is κ(u) = κ(K,u), then

dSK = κ−1 dH = det(∇2h+ h Id) dH (13)

on Sn−1 where h = hK |Sn−1 and ∇h and ∇2h are the gradient and the
Hessian of h with respect to a moving orthonormal frame. In particular, SK

is absolute continuous in this case.
We note that if ∂K is C2

+ for K ∈ Kn and h = hK |Sn−1 , then for any
u ∈ Sn−1, the differential operator

D2h(u) = ∇2h(u) + h(u) Id (14)

is the restriction of the Hessian of hK (in R
n) at λu to an operator u⊥ 7→ u⊥

for any λ > 0, and the eigenvalues of D2h(u) are the radii of curvature
at x ∈ ∂K where u the exterior unit normal is. In turn, for any given
h ∈ Cm(Sn−1) with m ≥ 2, h = hK |Sn−1 for K ∈ Kn with Cm (Cm

+ )
boundary if and only if D2h(u) is positive semi-definit (positive definit) for
u ∈ Sn−1.

Now the Minkowski problem asks for necessary and sufficient conditions
for a Borel measure µ on Sn−1 such that

µ = SK (15)

8



for a convex body K. The solution, together with its uniqueness was pro-
vided by Minkowski [207, 208] if the measure µ is discrete (and hence the
convex body is a polytope) or absolutely continuous. Minkowski’s solution
was extended to any general measure µ by Alexandrov [2, 3, 5]; namely,
there exists a convex body K with µ = SK if and only if

µ(L ∩ Sn−1) < µ(Sn−1) for any linear (n− 1)-subspace L ⊂ R
n;(16)∫

Sn−1

u dSK(u) = o; (17)

moreover, SK = SC holds for convex bodies K and C if and only if K
and C are translates. Essentially complete solutions were published also by
Fenchel, Jensen [99] and Lewy [176] about the same time. In particular, the
Monge-Ampère equation on the sphere Sn−1 corresponding to the Minkowski
problem is

det(∇2h+ h Id) = f (18)

where f is a given non-negative function with positive integral. If the given
Borel measure µ on Sn−1 is not absolutely continuous with respect to the
Lebesgue measure, then h = hK |Sn−1 is a solution of (18) in the Alexandrov
sense if (15) holds. We note that the surface area measure SK is actually
the Monge-Ampère measure corresponding to h (see Trudinger, Wang [239]
and Böröczky, Fodor [43], Section 7).

The regularity of the solution of the Minkowski problem (18) is well in-
vestigated by Nirenberg [214], Cheng and Yau [77], Pogorelov [217], showing
eventually that if f is positive and Ck for k ≥ 1, then h is Ck+2. Finally,
Caffarelli [62, 63] proves that if f is positive and Cα for α ∈ (0, 1) (namely,
|f(x) − f(y)| ≤ C‖x − y‖α for x, y ∈ Sn−1 and constant C > 0), then the
solution h is C2,α (see also Böröczky, Fodor [43], Section 7 on how to connect
results on Monge-Ampère equations on R

n to Monge-Ampère equations on
Sn−1, and Chen, Liu, Wang [75] for an extension of [62, 63]).

Turning to proofs, one of the elegant arguments proving the Brunn-
Minkowski inequality (4) is due to Hilbert, and is based on a spectral gap
estimate for a differential operator (see (42) and Bonnesen, Fenchel [36]).
This approach was further developed by Alexandrov [1, 5] leading to the
Alexandrov-Fenchel inequality, by van Handel, Shenfeld [135, 136] to char-
acterize equality in the Alexandrov-Fenchel inequality in certain case, and
by Milman, Kolesnikov [169] leading to the Lp-Minkowski inequlity The-
orem 4.4 improving the Brunn-Minkowski inequality for origin symmetric
convex bodies (see the end of Section 4). Another fundamental approach
proving the Brunn-Minkowski inequality is initiated by Gromov’s influential

9



appendix to Milman, Schechtman [206] using ideas by Knothe [171] provided
a proof of the isoperimetric inequality using optimal (mass) transport, and
the argument can be readily extended to the Brunn-Minkowski inequality
(4) and the Prékopa-Leindler inequality (19) below. This approach lead even
to the stability version Theorem 2.1 by Figalli, Maggi, Pratelli [105, 106].
We note that the original argument of Brunn and Minkowski for (4) (see
Bonnesen, Fenchel [36]) can be also considered as a version of the mass
transportation approach.

For the Minkowski problem (15), the variational method seeks the mini-
mum of

∫
Sn−1 hC dµ over all convex bodies C with V (C) = 1 where µ satisfies

(16) and (17). It follows from (17) that the integral is invariant under trans-
lating C, hence the existence of a minimizer C0 can be established. The fact
that SC0

is proprotional to µ follows via Alexandrov’s Lemma 2.2 extending
(11) (see Theorem 7.5.3 in Schneider [233]).

LEMMA 2.2 (Alexandrov) Given a convex body K in R
n and continous

functions ht, g : Sn−1 → R, let us assume that the Wulff shape Kt = {x ∈

R
n : 〈x, u〉 ≤ ht(u) ∀u ∈ Sn−1} is a convex body and limt→0

ht(u)−hK(u)
t =

g(u) uniformly in u ∈ Sn−1. Then

lim
t→0

V (Kt)− V (K)

t
=

∫

Sn−1

g dSK .

The classical functional form of the Brunn-Minkowski inequality is the
Prékopa-Leindler due to Prékopa [218] and Leindler [175] in dimension one,
was generalized in Prékopa [219, 220] and Borell [37] (cf. also Marsigli-
etti [202], Bueno, Pivovarov [61]), Brascamp, Lieb [56], Kolesnikov, Werner
[170], Bobkov, Colesanti, Fragalà [33]). Various applications are provided
and surveyed in Ball [13], Barthe [21], Fradelizi, Meyer [112] and Gardner
[114]. The following multiplicative version from [13] is often more useful and
is more convenient for geometric applications.

THEOREM 2.3 (Prékopa-Leindler) If λ ∈ (0, 1) and h, f, g are non-
negative integrable functions on R

n satisfying h((1−λ)x+λy) ≥ f(x)1−λg(y)λ

for x, y ∈ R
n, then

∫

Rn

h ≥

(∫

Rn

f

)1−λ

·

(∫

Rn

g

)λ

. (19)

For a convex function W : Rn → (−∞,∞], we say that the function
ϕ = e−W is log-concave where e−∞ = 0 (in other words, logϕ is concave
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for ϕ : Rn → [0,∞)). According to Dubuc [91], if equality holds in (2.3)
assuming

∫
Rn h > 0, then h is log-concave, and there exist a > 0 and z ∈ R

n

such that f(x) = aλ h(x−λz) and g(x) = a−(1−λ)h(x+(1−λ)z) for almost
all x ∈ R

n. Stability versions of the Prékopa-Leindler inequality in terms
of the L1 distance have been established by Böröczky, De [39] in the log-
concave case, and by Böröczky, Figalli, Ramos [42] for any functions where
the case of log-concave functions in one variable have been dealt with ealier
by Ball, Böröczky [16]. A stability version of the Prékopa-Leindler inequality
of somewhat different nature is due to Bucur, Fragalà [60].

An ”isomorphic” stability result for the Prékopa-Leindler inequality, in
terms of the transportation distance is obtained in Eldan [92], Lemma 5.2.
By rather standard considerations, one can show that non-isomorphic sta-
bility results in terms of transportation distance imply stability in terms of
L1 distance (e.g., such implication is attained by combining Proposition 2.9
in Bubeck, Eldan, Lehec [59] and Proposition 10 in Eldan, Klartag [94]).
However, the current result in [92], due to its isomorphic nature, falls short
of being able to obtain a meaningful bound in terms of the L1 distance.

Brascamp, Lieb [56] proved a local version of the Prékopa-Leindler in-
equality for log-concave functions (Theorem 4.2 in [56]), which is equivalent
to a Poincare-type so called Brascamp-Lieb inequality Theorem 4.1 in [56].
The paper Livshyts [187] provides a stability version of this Brascamp-Lieb
inequality, and Bolley, Cordero-Erausquin, Fujita, Gentil, Guillin [34] proves
a more general inequality.

Our final topic in this section is the Blasshke-Sataló inequality (20). For
K ∈ Kn

(o) and u ∈ Sn−1, the radial function ̺K(u) > 0 satisfies ̺K(u)u ∈

∂K, and the polar (dual) K∗ ∈ Kn
(o) of K is defined by ̺K∗(u) = hK(u)

for u ∈ Sn−1. Next, the centroid of a convex body K in R
n is σK =

1
V (K)

∫
K x dx, which is invariant under affine transformations. For K ∈ Kn,

we call it centered if σK = o, and Kannan, Lovász, Simonovits [162] prove
that there exists a centered ellipsoid E such that E ⊂ K ⊂ nE in this case.

According to the Blashke-Santaló inequality (see Santaló [227], Luwak
[193] or Schneider [233]), ifK ∈ Kn is centered, then V (K∗)V (K) ≤ V (Bn)2,
or equivalently, ∫

Sn−1

h−n
K dH ≤

nV (Bn)2

V (K)
, (20)

with equality if and only if K is a centered ellipsoid.
The Blaschke-Santaló inequality can be proved for example via the Brunn-

Minkowski inequality (see Ball [13] in the origin symmetric case, and Meyer,
Pajor [203] in general). Various equivalent formulations are discussed in the
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beautiful survey Lutwak [193] (see also Böröczky [38] and Schneider [233]).
Stability versions of the Blaschke-Santaló inequality are verified in Böröczky
[38] and Ball, Böröczky [17]. Following Ball [13], functional versions of
the Blaschke-Santaló inequality have been obtained by Artstein-Avidan,
Klartag, Milman [10], Fradelizi, Meyer [112], Lehec [172, 173], Kolesnikov,
Werner [170], Kalantzopoulos, Saroglou [161].

Recently, various breakthrough stability results about geometric func-
tional inequalities have been obtained. Stonger versions of the functional
Blaschke-Santaló inequality is provided by Barthe, Böröczky, Fradelizi [23],
of the Borell-Brascamp-Lieb inequality is provided by Ghilli, Salani [119],
Rossi, Salani [222, 223] and Balogh, Kristály [18] (later even on Rieman-
nian manifolds), of the Sobolev inequality by Figalli, Zhang [108] (extending
Bianchi, Egnell [32] and Figalli, Neumayer [107]), Nguyen [213] and Wang
[247], of the log-Sobolev inequality by Gozlan [120], and of some related
inequalities by Caglar, Werner [65], Cordero-Erausquin [83], Kolesnikov,
Kosov [166]. Another functional version of the Brunn-Minkowski inequality
is provided by Artstein-Avidan, Florentin, Segal [9].

3 Cone volume measure, log-Minkowski problem,

log-Brunn-Minkowski conjecture

Given a convex body K containing the origin, the cone volume measure is
defined as dVK = 1

n hK dSK , and hence the total measure is VK(Sn−1) =
V (K). The name originates from the fact that if P is a polytope with facets
F1, . . . , Fk and exterior unit normals u1, . . . , uk, then VP is concentrated
onto {u1, . . . , uk} and VP (ui) = hP (ui)

n · H(Fi) is the volume of the cone
conv{o, Fi} for i = 1, . . . , k. We note that the Monge-Ampère equation on
the sphere Sn−1 corresponding to the logarithmic Minkowski problem is

hdet(∇2h+ h Id) = nf (21)

for a non-negative measurable function f on Sn−1 with 0 <
∫
Sn−1 f dH < ∞.

It follows via Caffarelli [62, 63] that if f is positive and Cα for α ∈ (0, 1),
then the solution h is C2,α, and if f is positive and Ck for integer k ≥ 1, then
the solution h is Ck+2. For a finite non-trivial Borel measure µ on Sn−1,
a non negative function h on Sn−1 that is the restriction of the support
function hK for a convex body K is the solution of (21) in the Alexandrov
sense if

dµ = dVK = 1
n hK dSK . (22)

12



A characteristic feature of the cone volume measure is that it intertwines
with linear transformations; more precisely, VΦK = |detΦ| · (Φ−t)∗VK for
any K ∈ Kn

o and Φ ∈ GL(n,R). We note that if u ∈ Sn−1 is an exterior
normal at an x ∈ ∂K, then Φ−tu is an exterior normal at Φx ∈ ∂(ΦK), and
the push forward measure Ψ∗µ on Sn−1 for a Borel measure µ on Sn−1 and
Ψ ∈ GL(n) is defined (with a slight abuse of notation) in a way such that if
ω ⊂ Sn−1 is Borel, then

Ψ∗µ(ω) = µ

({
Ψ−1(u)

‖Ψ−1(u)‖
: u ∈ ω

})
.

Cone volume measure was introduced by Firey [111], and has been a
widely used tool since the paper Gromov, Milman [123], see for example
Barthe, Guédon, Mendelson, Naor [26], Naor [210], Paouris, Werner [216].
The still open logarithmic Minkowski problem (22) or (21) was posed by
Firey [111] in 1974, who showed that if f is a positive constant function,
then (21) has a unique even solution coming from the suitable centered ball.
For a positive constant function f , the general uniqueness result without
the evenness condition is due to Andrews [7] if n = 2, 3, and Brendle, Choi,
Daskalopoulos [57] if n ≥ 4. It is known that uniqueness of the solution
may not hold if f is not a constant function (see, for example, Chen, Li,
Zhu [74]). However, the celebrated ”Logarithmic Minkowski conjecture” by
Lutwak [194] from 1993 states that (21) has a unique even solution if f is
even and positive (Conjecture 3.1 is a more restricted version).

CONJECTURE 3.1 (Log-Minkowski conjecture #1) If f is a posi-
tive even C∞ function in (21), then (21) has a unique even solution.

As we explain below, the following logarithmic analogue of Minkowski’s
inequality (12) is an intimately related form of the Log-Minkowski conjecture
(see Böröczky, Lutwak, Yang, Zhang [49] for origin symmetric bodies, and
by Böröczky, Kalantzopoulos [48] for centered convex bodies).

CONJECTURE 3.2 (Log-Minkowski conjecture #2) If K and C are
convex bodies in R

n whose centroid is the origin, then

∫

Sn−1

log
hC
hK

dVK ≥
V (K)

n
log

V (C)

V (K)
(23)

with equality if and only if K = K1 + . . . + Km and C = C1 + . . . + Cm

for compact convex sets K1, . . . ,Km, C1, . . . , Cm of dimension at least one
where

∑m
i=1 dimKi = n and Ki and Ci are dilates, i = 1, . . . ,m.
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In particular, the more precise form of the Logarithmic Minkowski Con-
jecture 3.1 is that if K,C ∈ Kn are centered, then VK = VC implies the
equality conditions in Conjecture 3.2.

We note that the choice of the right translates of K and C are important
in Conjecture 3.2 according to the examples by Nayar, Tkocz [211], and
that Conjecture 3.2 is invariant under applying the same non-singular linear
transformation to C and K. An equivalent form of Conjecture 3.2 is that if
V (C) = V (K) for centered C and K, then

∫

Sn−1

log hC dVK ≥

∫

Sn−1

log hK dVK (24)

where the case of equality is like in Conjecture 3.2.
Let me explain why Conjecture 3.1 is equivalent to the case of Conjec-

ture 3.2 when K ∈ Kn
e has C∞

+ boundary. Since VK satisfies the strict sub-
space concentration condition (see below), Böröczky, Lutwak, Yang, Zhang
[50] prove that the function C 7→

∫
Sn−1 log hC dVK of origin symmetric con-

vex bodies C with V (C) = V (K) attains its minimum; moreover, whenever
it attains its minimum at some C = C̃, then VC̃ = VK . In turn, the stated
equivalence follows. In addition, it follows by approximation that Conjec-
ture 3.1 yields the inequality (23) for any pair of origin symmetric convex
bodies K and C without the case of equality.

In R
2, Conjecture 3.2 is verified in Böröczky, Lutwak, Yang, Zhang [49]

for origin symmetric convex bodies, but it is still open in general even in the
plane. In higher dimensions, Conjecture 3.2 is proved for complex bodies
(cf. Rotem [224]), and if there exist n independent linear reflections that
are common symmetries of K and C (cf. Böröczky, Kalantzopoulos [48],
and even a stability version is verified by Böröczky and De [41]). The latter
type of bodies include unconditional convex bodies, which case was handled
earlier by Saroglou [228]. In addition, Conjecture 3.2 is verified if C is
origin symmetric and K is a zonoid by van Handel [133] (with equality case
only clarified when K has C2

+ boundary), or if C is a centered convex body
and K is a centered ellipsoid by Guan, Ni [125]. The latter case directly
follows from the Jensen inequality and the Blaschke-Santaló inequality (20),
as assuming that K = Bn and V (C) = V (Bn), we have

exp

(∫

Sn−1

log hC ·
1

V (Bn)
dVK

)
= exp

(∫

Sn−1

log hC ·
1

nV (Bn)
dH

)

≥

(∫

Sn−1

h−n
C ·

1

nV (Bn)
dH

)−1

n

≥ 1.
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For origin symmetric K and C, Conjecture 3.2 is proved when K is
close to be an ellipsoid (with equality case only clarified when K has C2

+

boundary) by a combination of the local estimates by Kolesnikov, Milman
[169], and the use of the continuity method in PDE by Chen, Huang, Li,
Liu [71]. Here closeness to an ellipsoid means that there exist some cn > 0
depending only on n and an origin symmetric ellipsoid E such that E ⊂
K ⊂ (1 + cn)E. Another even more recent proof of this result is due to
Putterman [221]. We note that an analogues result holds for linear images
of Hausdorff neighbourhoods of lq balls for q > 2 if the dimension n is high
enough according to [169] and the method of [71]. Actually, Milman [205]
provides rather generous explicit curvature pinching bounds for ∂K in order
to Conjecture 3.2 to hold, and proves that for any origin symmetric convex
bodyM there exists an origin symmetric convex bodyK with C∞

+ boundary
and M ⊂ K ⊂ 8M such that Conjecture 3.2 holds for any origin symmetric
convex body C. Additional local versions of Conjecture 3.2 are due to
Colesanti, Livshyts, Marsiglietti [81], Kolesnikov, Livshyts [168] and Hosle,
Kolesnikov, Livshyts [144]. We review Kolesnikov and Milman’s approach in
[169] based on the Hilbert-Brunn-Minkowski operator at the end of Section 4.

Xi, Leng [241] considered a version of Conjecture 3.2 where the convex
bodies K and C in R

n are translated by vectors depending in both K and C.
We set r(K,C) = max{t > 0 : ∃x, x+ tC ⊂ K} and R(K,C) = min{t > 0 :
∃x, K ⊂ x+ tC}, and say that K and C are in dilated position if o ∈ K ∩C
and

r(K,C)C ⊂ K ⊂ R(K,C)C. (25)

We observe that r(C,K)K ⊂ C ⊂ R(C,K)K in this case. Now for any
convex bodies K and C there exist z ∈ K and w ∈ C such that K − z and
C−w are in dilated position. If n = 2 and K and C are in dilated position,
then Xi, Leng [241] proved (24) including the characterization of equality.
Actually, [241] even verified Dar’s conjecture (6) for convex planar bodies
in dilated position (no need for translation in this case).

Let us discuss the existence of the solution of the logaritmic Minkowski
problem (21) or (22). Following partial and related results by Andrews [7],
Chou, Wang [78], He, Leng, Li [138], Henk, Schürman, Wills [141], Stancu
[234], Xiong [246], the paper Böröczky, Lutwak, Yang, Zhang [50] charac-
terized even cone volume measures by the so-called subspace concentration
condition (i) and (ii) in Theorem 3.3.

THEOREM 3.3 There exists an origin symmetric convex body K ∈ Kn
e

with µ = VK for a non-trival finite even Borel measure µ on Sn−1 if and
only if
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(i) µ(L ∩ Sn−1) ≤ dimL
n · µ(Sn−1) for any proper linear subspace L ⊂ R

n;

(ii) µ(L ∩ Sn−1) = dimL
n · µ(Sn−1) in (i) is equivalent with the existence of

a complementary linear subspace L′ ⊂ R
n with suppµ ⊂ L ∪ L′.

We observe that VK satisfies (ii) if and only if K = C+C ′ where C ⊂ L⊥

and C ′ ⊂ L′⊥ compact convex sets. A finite Borel measure µ on Sn−1

satisfies the strict subspace concentration condition if µ(L∩Sn−1) < dimL
n ·

µ(Sn−1) for any proper linear subspace L ⊂ R
n.

Given a non-trival finite even Borel measure µ on Sn−1 that is invariant
under n reflections Φ1, . . . ,Φn through n independent linear hyperplanes,
Böröczky, Kalantzopoulos [48] proved that µ = VK for a convex body K in
R
n invariant under Φ1, . . . ,Φn if and only if µ satisfies the subspace concen-

tration condition (i) and (ii) for any proper linear subspace L ⊂ R
n invariant

under Φ1, . . . ,Φn. Actually, the statement also holds if Φ1, . . . ,Φn are lin-
ear reflections (see [48] for details). For a centered convex body K ∈ Kn,
Böröczky, Henk [46] (see Henk and Linke [139] for the case of polytopes)
verified that VK satisfies the subspace concentration condition (i) and (ii),
but VK satifies some additional conditions, as well. On the other hand, if
VK(L ∩ Sn−1) ≥ (1 − ε) · dimL

n · V (K) holds for K ∈ Kn, a proper linear
subspace L ⊂ R

n and a small ε > 0, then K is close to the sum of two com-
plementary lower dimensional compact convex sets according to Böröczky,
Henk [47]. We note that Freyer, Henk, Kipp [109] even verified certain
so-called Affine Subspace Concentration Conditions for the cone volume
measure of centered polytopes.

Much less is known, not even a conjecture about the characteristic prop-
erties of a cone volume measure on Sn−1, not even in the plane. Chen, Li,
Zhu [74] proved that if a non-trival finite Borel measure µ on Sn−1 satisfies
the subspace concentration condition (i) and (ii), then µ is a cone volume
measure. On the other hand, Böröczky, Hegedűs [44] characterized the re-
striction of a cone volume measure to a pair of antipodal points.

As Lutwak, Yang, Zhang [197] conjectured, a Borel probability mea-
sure µ on Sn−1 satisfies the subspace concentration condition (i) and (ii)
if and only if there exists an isotropic linear image Φ∗µ for a Φ ∈ GL(n)
according to Böröczky, Lutwak, Yang, Zhang [51] (extending the work by
Carlen, Cordero-Erausquin [66] in the discrete case and Klartag [163] in the
strict subspace concentration condition case). Here the probability mea-
sure µ on Sn−1 is isotropic if n

∫
Sn−1 u⊗ u dµ(u) = Idn; or in other words,

‖x‖ = n
∫
Sn−1〈x, u〉2 dµ(u) for any x ∈ R

n.
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Next we turn to the logarithmic Brunn-Minkowski conjecture/inequality.
For λ ∈ (0, 1) and K,C ∈ Kn

o , we define their logarithmic or L0 linear
combination by the formula

(1− λ)K +0 λC = {x ∈ R
n : 〈x, u〉 ≤ hK(u)1−λhC(u)

λ ∀u ∈ Sn−1}.

The L0 linear combination is linear invariant; namely, if Φ ∈ GL(n), then

Φ
(
(1 − λ)K +0 λC

)
= (1 − λ)Φ(K) +0 λΦ(C). Moreover, the L0 linear

combination is a convex body if {hK = 0} = {hC = 0} (for example, when

K,C ∈ Kn
(o)). We note that (1−λ)(αK)+0λ(βC) = α1−λβλ

(
(1−λ)K+0λC

)

for α, β > 0. The L0 linear combination of polytopes is always a polytope,
but the boundary of the L0 linear combination of convex bodies with C2

+

boundaries may contain segments, and hence may not be C2
+. A functional

analogue of the L0-addition is presented by Crasta, Fragalà [87].
We observe that (1 − λ)K +0 λC ⊂ (1 − λ)K + λC for any convex

bodies K and C containing the origin interior, but (1 − λ)K +0 λC might
be much smaller than (1− λ)K + λC. For example, if a > 0 is large, n = 2,
K = [−1

a , 1a ]× [−a, a] and C = [−a, a]× [−1
a , 1a ], then

1
2 K +0

1
2 C = [−1, 1]2

1
2 K + 1

2 C =
[
−1

2(a+ 1
a),

1
2(a+ 1

a)
]2

.
(26)

Böröczky, Lutwak, Yang, Zhang [49] conjectured the following for origin
symetric convex bodies, and Martin Henk proposed the version with centered
convex bodies (see also [48]).

CONJECTURE 3.4 (Log-Brunn-Minkowski conjecture) If λ ∈ (0, 1)
and K and C are centered convex bodies in R

n, then

V ((1− λ)K +0 λC) ≥ V (K)1−λV (C)λ (27)

with equality if and only if K = K1 + . . . + Km and C = C1 + . . . + Cm

for compact convex sets K1, . . . ,Km, C1, . . . , Cm of dimension at least one
where

∑m
i=1 dimKi = n and Ki and Ci are dilates, i = 1, . . . ,m.

The Log-Brunn-Minkowski Conjecture 3.4 is a significant strengthening
of the Brunn-Minkowski inequality for centered convex bodies (see (26)).
Given K,C ∈ Kn

o , if (27) holds for all λ ∈ (0, 1), then the Logarithmic
Minkowski inequality (23) follows by considering d

dλV ((1−λ)K+0λC)|λ=0+

and using Alexandrov’s Lemma 2.2 according to [49]. On the other hand, the
argument in [49] shows that if F is any family of convex bodies closed under
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L0 linear combination, then the Logarithmic Minkowski inequality (23) for
all K,C ∈ F is equivalent to the Logarithmic Brunn-Minkowski inequality
(27) for all K,C ∈ F and λ ∈ (0, 1). In particular, the equivalence holds
for the family of origin symmetric convex bodies. According to Kolesnikov,
Milman [169] and Putterman [221], taking the second derivative of λ 7→
V ((1−λ)K+0λC) for origin symmetric convex bodies K and C in R

n leads
to the conjectured inequality

V (K,C; 1)2

V (K)
≥

n− 1

n
V (K,C; 2) +

1

n

∫

Sn−1

h2C
h2K

dVK (28)

that is a strengthened from of Minkowski’s second inequality (9), and is
equivalent to the Log-Brunn-Minkowski conjecture without the characther-
ization of equality. More precisely, [169] proves that for a fixed K ∈ Kn

e

with C2
+ boundary, (28) for all smooth C ∈ Kn

e is equivalent to a local
form of the Log-Brunn-Minkowski around K, and [221] verifies the global
statement. Therefore, we have the following three equivalent forms of the
Log-Brunn-Minkowski conjecture for origin symmetric convex bodies K and
C in R

n (without the charactherization of equality in the case of the third
formulation):

• V ((1− λ)K +0 λC) ≥ V (K)1−λV (C)λ as in (27);

•

∫
Sn−1 log

hC

hK
dVK ≥ V (K)

n log V (C)
V (K) as in (23);

•
V (K,C;1)2

V (K) ≥ n−1
n V (K,C; 2) + 1

n

∫
Sn−1

h2
C

h2
K

dVK as in (28).

Another equivalent formulation using the Hilbert-Brunn-Minkowski op-
erator (42) is due to Kolesnikov, Milman [169], and is discussed at the
end of Section 4 (see (44)). In addition, Saroglou [228] verified that the
Log-Brunn-Minkowski inequality for any origin symmetric convex bodies is
equivalent with the so-called B-property: For any origin symmetric convex
body K in R

n and n × n positive definite diagonal matrix Φ, the function
s 7→ V ([−1, 1]n ∩ ΦsK) of s ∈ R is log-concave. Yet another equivalent
formulation of the Log-Brunn-Minkowski conjecture for origin symmetric
convex bodies in R

n using the ”strong B-property” is due to Nayar, Tkocz
[212]: For any N > n and n-dimensional linear subspace L of RN , the n-
volume of L ∩

∏N
i=1[−eti , eti ] is a log-concave function of (t1, . . . , tN ) ∈ R

N .
Actually, [212] proves an analogous property of the crosspolytopes.

Saroglou [229] proved that if the log-Brunn-Minkowski Conjecture (27)
holds for any origin symmetric convex bodies K and C and λ ∈ (0, 1), then
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it holds for any even log-concave measure µ on R
n; namely,

µ((1− λ)K +0 λC) ≥ µ(K)1−λµ(C)λ. (29)

In turn, the argument in [229] shows that (29) for the Gaussian meaure
µ = γn implies the log-Brunn-Minkowski Conjecture (27) for origin sym-
metric convex bodies. Finally, Kolesnikov [165] provides another equivalent
formulation of the log-Brunn-Minkowski Conjecture for origin symmetric
convex bodies in terms of displacement convexity of certain functional of
probability measures on the sphere in optimal transportation.

The Log-Brunn-Minkowski Conjecture 3.4 is still open but has been ver-
ified in various cases. In R

2, Conjecture 3.4 is verified by Böröczky, Lut-
wak, Yang, Zhang [49] for origin symmetric convex bodies, but it is still
open for general centered planar convex bodies. For unconditional con-
vex bodies, the L0 linear combination contains the so-called coordinatewise
product (see Saroglou [228]); therefore, the corresponding inequality for the
coordinatewise product by Uhrin [238], Bollobás, Leader [35] and Cordero-
Erausquin, Fradelizi, Maurey [84], following from the Prékopa-Leindler in-
equality Theorem 2.3 yields Conjecture 3.4. The equality case of the Log-
Brunn-Minkowski inequality for unconditional convex bodies was clarified
by Saroglou [228] (see also [48]). The Log-Brunn-Minkowski Conjecture 3.4
for convex bodies invariant under reflections through n independent linear
hyperplanes is due to Böröczky, Kalantzopoulos [48]. In addition, Conjec-
ture 3.4 is proved for complex bodies by Rotem [224].

Conjecture 3.4 holds for origin symmetric convex bodies in a neighbour-
hood of a fixed centered ellipsoid E; more precisely, for origin symmetric K
and C provided E ⊂ K,C ⊂ (1 + cn)E where cn > 0 depends only on n.
In this form, the statement is due to Chen, Huang, Li, Liu [71] extending
the local estimate by Kolesnikov, Milman [169] (an analogues result holds
for linear images of lq balls for q > 2 if the dimension n is high enough
according to [169] and the method of [71]). We note that the case when K
and C are in a C2 neighbourhood of E was handled earlier by Colesanti,
Livshyts, Marsiglietti [81].

In some cases when uniqueness of the solution of the Log-Minkowski
problem is known, even the stability of the solution has been established. For
example, Böröczky, De [40] established this among convex bodies invariant
under n given reflections through linear hyperplanes. Concerning Firey’s
classical result that the only origin symmetric solution of the Log-Minkowski
problem (21) with constant f is the centered ball, Ivaki [156] verified a
stability version. Next Böröczky, Saroglou [54] proved the uniqueness of the
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solution if the possibly non-even f in (21) is Cα close to a constant function
(the case n = 3 was handled earlier by Chen, Feng, Liu [69]).

If n = 2 and K and C are in dilated position (25), then Xi, Leng [241]
proved (27) for any λ ∈ (0, 1) including the characterization of equality
using the same method as in the case of the planar Dar conjecture. It is an
intriguing question what the relation between Dar’s conjecture (6) and the
Log-Brunn-Minkowski Conjecture 3.4 is, whether one of them implies the
other for origin symmetric convex bodies.

We note that there exist η2 > η1 > 0 depending on n such that if
λ ∈ (0, 1) and K and C are centered convex bodies in R

n, then

η1V (K)1−λV (C)λ ≤ V ((1− λ)K +0 λC) ≤ η2V (K)1−λV (C)λ, (30)

which estimates indicate why proving the Log-Brunn-Minkowski Conjec-
ture 3.4 is so notoriously difficult. Conjecture 3.4 states that η1 = 1, but
here we only verify that η1 = n−n and η2 = n3n/2 work. According to Kan-
nan, Lovász, Simonovits [162], there exist centered ellipsoids E′ ⊂ K and
E ⊂ C such that K ⊂ nE′ and C ⊂ nE. After a linear transform, we may
assume that E′ = Bn

2 and E is unconditional. Since Conjecture 3.4 holds for
the unconditional convex bodies Bn

2 and E, we deduce that η1 = n−n works
in (30). For the upper bound, let a1, . . . , an be the half axes of E, and hence
C ⊂ C̃ =

∏n
i=1[−nai, nai] and K ⊂ K̃ = [−n, n]n with V (C̃) ≤ n3n/2V (C)

and V (K̃) ≤ n3n/2V (K). Since V ((1 − λ)K̃ +0 λC̃) = V (K̃)1−λV (C̃)λ, it
follows that η2 = n3n/2 works in (30).

The validity of the Log-Minkowski (or Log-Brunn-Minkowski) Conjec-
ture is also supported by the fact that various consequences of it has been
verified. For example, the Lp-Minkowski Conjecture has been proved when
p ∈ (0, 1) is close to 1 (see Theorem 4.4). Nest we turn to results about
the canonical Gaussian probability measure γn on R

n. One possible conse-
quence of the Log-Brunn-Minkowski Conjecture 3.4 is the earlier celebrated
”B-inequality” by Cordero-Erausquin, Fradelizi, Maurey [84] stating that
γn(e

tK) is a log-concave function of t ∈ R for any origin symmetric K ∈ Kn.
Next, the Gardner-Zvavitch conjecture in [117] stated that if K and C are
origin symmetric convex bodies in R

n, then

γn((1 − λ)K + λC)
1

n ≥ (1− λ)γn(K)
1

n + λγn(C)
1

n . (31)

It was proved by Livshyts, Marsiglietti, Nayar, Zvavitch [189], that the log-
Brunn-Minkowski conjecture would imply the Gardner-Zvavitch conjecture.
After various attempts, the conjecture was finally verified by Eskenazis,
Moschidis [96] not much before that, Kolesnikov, Livshyts [167] verified
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that if the exponents 1
n in (31) are changed into 1

2n , then this modified
Gardner-Zvavitch conjecture holds for any pair of centered convex bodies K
and C.

We note that independently of the log-Brunn-Minkowski conjecture, var-
ious Brunn-Minkowski type inequalities have been proved and conjectured
for the Gaussian measure, the most famous ones being the Ehrhardt in-
equality and the Gaussian isoperimetric inequality (see Livshyts [187]).

Colesanti, Livshyts, Marsiglietti [81] conjectured the following gener-
alization of the Gardner-Zvavitch conjecture: If µ is an even log-concave
measure on R

n, then

µ((1− λ)K + λC)
1

n ≥ (1− λ)µ(K)
1

n + λµ(C)
1

n (32)

holds for any origin symmetric convex bodies K and C. According to
Livshyts, Marsiglietti, Nayar, Zvavitch [189], the Log-Brunn-Minkowski Con-
jecture 3.4 would imply the conjecture (32). Cordero-Erausquin, Rotem [86]
proved (32) if µ is a rotationally symmetric log-concave measure. In addi-
tion, Livshyts [188] verified that (32) holds for any even log-concave measure
on R

n and origin symmetric convex bodies K and C if the exponents 1
n in

(32) are changed into n−4−o(1).

4 Lutwak’s Lp-Minkowski theory

The rapidly developing new Lp-Brunn-Minkowski theory (where p = 1 is the
classical case and p = 0 corresponds to the cone-volume measure) initiated
by Lutwak [193, 194, 195], has become main research area in modern convex
geometry and geometric analysis. For p ∈ R and K ∈ Kn

o , the Lp-surface
area measure SK,p on Sn−1 is defined by

dSK,p = h1−p
K dSK (33)

where if p > 1 and o ∈ ∂K, then we assume that SK({hK = 0}) = 0. In
particular, SK,1 = SK and SK,0 = nVK . For p ∈ R, the Monge-Ampére
equation on Sn−1 corresponding to the Lp-Minkowski problem is

det(∇2h+ h Id) = hp−1f if p > 1

h1−p det(∇2h+ h Id) = f if p ≤ 1
(34)

where f ∈ L1(S
n−1) is non-negative with

∫
Sn−1 fdH > 0, and for a finite

non-trivial Borel measure µ on Sn−1, a convex body K ∈ Kn
o is an Alexan-
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drov solution of the Lp-Minkowski problem if

dSK = hp−1
K dµ if p > 1

h1−p
K dSK = dµ if p ≤ 1.

(35)

If p > 1 and p 6= n, then Hug, Lutwak, Yang, Zhang [152] (improving on
Chou, Wang [78] ) prove that (35) has an Alexandrov solution if and only
if the µ is not concentrated onto any closed hemisphere, and the solution
is unique. If in addition p > n, then the unique solution of (35) satifies
o ∈ intK, and hence SK,p = µ. However, examples in [152] show that if
1 < p < n, then it may happen that the density function f is a positive
continuous in (34) and o ∈ ∂K holds for the unique Alexandrov solution. If
p = n, then SK,n = SλK,n holds for λ > 0; therefore, all what is known (see
[152]) is that for any measure µ not concentrated onto any closed hemisphere,
there exists a convex body K ∈ Kn

o and c > 0 such that µ = c · SK,n.
The case p = 1 is the classical Minkowski problem (see Section 2), and

the case case p = 0 is the logarithmic Minkowski problem (see Section 3).
If p ∈ (0, 1) and the measure µ is not concentrated onto any great sub-

sphere, then Chen, Li, Zhu [73] prove that there exists an Alexandrov solu-
tion K ∈ Kn

o of (35) with SK,p = µ. For p ∈ (0, 1), complete characterization
of Lp surface area measures is only known if n = 2 by Böröczky, Trinh [55];
namely, a finite non-trivial Borel measure µ on S1 is an Lp surface area
measure if and only if suppµ does not consists of a pair of antipodal points.
Finally, let p ∈ (0, 1) and n ≥ 3, and let us assume that 1 ≤ dimL ≤ n− 1
where L is the linear hull of suppµ in R

n. If suppµ is contained in a closed
hemisphere centered at a point of L ∩ Sn−1, then µ is an Lp surface area
measure according to Bianchi, Böröczky, Colesanti, Yang [30]. On the other
hand, Saroglou [231] proved that if µ(ω) is the Lebesgue measure of ω ∩ L
for any Borel ω ⊂ Sn−1, then µ is not a Lp surface area measure.

If −n < p < 0 and f ∈ L n
n+p

(Sn−1) in (34), then (34) has a solution

according to Bianchi, Böröczky, Colesanti, Yang [30]. If p < 0 and the
µ in (35) is discrete satisfying that µ is not concentrated on any closed
hemisphere and any n unit vectors in the support of µ are independent,
then [252] manages to solve the Lp-Minkowski problem.

The p = −n case of the Lp-Minkowski problem is the critical case be-
cause its link with the SL(n) invariant centro-affine curvature. If K ∈
Kn

(o) has C2
+ boundary, then its centro-affine curvature at u ∈ Sn−1 is

κ0(K,u) = κ(K,u)
hK(u)n+1 where κ(K,u) is the Gaussian curvature at the point

with exterior normal u. It is well known to be SL(n) invariant in the
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sense that κ0(ΦK,u) = κ0(K, Φtu
‖Φtu‖) for Φ ∈ SL(n) (see Hug [153] or Lud-

wig [191]). It follows from (13) that if K ∈ Kn
(o) has C2

+ boundary, then

dSK,−n(u) = κ0(K,u)−1 dH(u); therefore, solving the Lp-Minkowski prob-
lem (34) for p = −n and positive Cα function f is equivalent to reconstruct-
ing a convex body K ∈ Kn

(o) from its centro-affine curvature function.

All in all, the centro-affine (L−n) Minkowki problem is wide open. If
p = −n and the f in (34) is unconditional and satisfies certain additional
technical conditions, then Jian, Lu, Zhu [160] verify the existence of a solu-
tion of (34). Moreover the paper Li, Guang, Wang [130] solves a variant of
the centro-affine Minkowki problem. On the other hand, Chou, Wang [78]
prove an implicit condition on possible functions f in (34) such that in f−1

is a centro affine curvature (see also [30]), and Du [90] construct an explicit
example of a positive Cα f such that (34) has no solution when p = −n.

In the super-critical case p < −n, Li, Guang, Wang [128] have recently
achieved a breakthrough by proving that for any positive C2 f , there exists
a C4 solution of (34). In addition, [128] verify that if p < −n and 1/c <
f < c for a constant c > 1 in (34), then there exists a C1,α Alexandrov
solution hK |Sn−1 satisfying (35) where dµ = f dH. In their paper, Guang,
Li, Wang [128] combine a flow argument with homology calculations. On the
other hand, Du [90] construct a non-negative Cα function f that is positive
everywhere but a fixed pair of antipodal points and (34) has no solution, not
even in Alexandrov sense. It is not surprising that the flow argument works
in the super-critical case, as Milman [204] points out the limitations of the
variational argument in this case. For a discrete measure µ satisfying that µ
is not concentrated on any closed hemisphere and any n unit vectors in the
support of µ are independent, Zhu [252] solves the Lp-Minkowski problem
(35) for p < 0.

If p > −n, then while flow arguments are also known (see e.g. Bryan,
Ivaki, Scheuer [58]), the most common argument to find a solution of (34)
is based on the variational method; namely, one considers the infimum of∫
Sn−1 h

p
Cf dH for a suitable family of convex bodies C ∈ Kn

(0) with V (C) =

1 when f is positive and continuous (see [30] or Chou, Wang [78]). The
existence of some minimizer C0 follows via the Blaschke-Santaló inequality
(20) as p > −n, and the fact that dSC0,p = λf dH for some constant factor
λ > 0 follows via the Alexandrov Lemma 2.2. The case of more general
measures than the ones with positive continuous density functions follows
by approximation. For the variational approach, it is also common to use
discrete measures on Sn−1 (corresponding to polytopes, see [152, 251, 45,
252]).
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Concerning the smoothness of the solution of the Lp-Minkowski problem
(34), if f is positive and Cα and h is positive (equivalently, o ∈ intK for
the corresponding convex body K), then h is C2,α by Cafarelli [62, 63] (see
[43], [29]). Assuming that f is positive and continuous, it is known that
o ∈ intK if p ≥ n (see [152]) or if p ≤ 2−n (see [29]). On the other hand, if
2−n < p < n, p 6= 1, then there there exists positive Cα function f on Sn−1

such that o ∈ ∂K holds for the Alexandrov solution of (35) with dµ = f dH,
see [152] if 1 < p < n and [29] if 2−n < p < 1. Additional results about the
smoothness of the solution are provided by [29] in the case 2− n < p < 1.

Now we discuss the uniqueness of the solution of the Lp-Minkowski prob-
lem (35). As we have seen, if p > 1 and p 6= n, then Hug, Lutwak, Yang,
Zhang [152] proved that the Alexandrov solution of the Lp-Minkowski prob-
lem (35) is unique. However, if p < 1, then the solution of the Lp-Minkowski
problem (34) may not be unique even if f is positive and continuous. Ex-
amples are provided by Chen, Li, Zhu [73, 74] if p ∈ [0, 1), and Milman [204]
shows that for any C ∈ K(0), one finds q ∈ [−n, 1) where q = −n exactly
when C is a centered ellipsoid such that if p < q, then there exist multi-
ple solutions of the Lp-Minkowski problem (35) with µ = SC,p; or in other
words, there exists K ∈ Kn

(0) with K 6= C and SK,p = SC,p. In addition,

Jian, Lu, Wang [159] and Li, Liu, Lu [179] prove that for any p < 0, there
exists positive even C∞ function f with rotational symmetry such that the
Lp-Minkowski problem (34) has multiple positive even C∞ solutions. We
note that in the case of the centro-affine Minkowski problem p = −n, Li [178]
even verified the possibility of existence of infinitely many solutions without
affine equivalence, and Stancu [236] proved that if an origin symmetric con-
vex body K with C∞

+ boundary is a unique solution to the Lp-Minkowski
problem (35) up to linear equivalence for p = −n with µ = SK,−n, then it is
a unique solution for p = 0 with µ = SK,0.

The case when f is a constant function in the Lp-Minkowski problem
(34) has received a special attention since Firey [111]. Through the work
of Lutwak [194], Andrews [7], Andrews, Guan, Ni [8] and Brendle, Choi,
Daskalopoulos [57], it has been clarified that the only solutions are centered
balls if p > −n, centered ellipsoids if p = −n, and there are several solutions
if p < −n. See Crasta, Fragalá [87], Ivaki, Milman [157] and Saroglou [230]
for novel approaches. Stability versions of these results have been obtained
by Ivaki [156], sometimes in the even case for certain ranges of p. Uniqueness
of the solution of (34) if f is Cα close to 1 (without the evenness assumption)
is proved if p ∈ [0, 1) by Böröczky, Saroglou [54].

In particular, concerning uniqueness, the a major question left open is
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the uniqueness of even solutions of the Lp-Minkowski problem (34) when f
is an positive even C∞ function and p ∈ [0, 1). In the case of p = 0, this is
Lutwak’s Log-Minkowski Conjecture 3.1. If p ∈ (0, 1), it is also conjectured
that the Lp-Minkowski problem (34) has a unique even solution for any
positive, C∞ and even f . More generally, we have the following conjecture
(see Böröczky, Lutwak, Yang, Zhang [49] for origin symmetric bodies).

CONJECTURE 4.1 (Lp-Minkowski Conjecture #1) If p ∈ (0, 1) and
K and C are centered convex bodies in R

n with SK,p = SC,p, then K = C.

Before presenting what is known about the Lp-Minkowski conjecture, let
us discuss its relation to the Lp-Brunn-Minkowski theory for p ≥ 0. More
precisely, the cases p = 0 and p = 1 have been discussed in Sections 2 and
3.

For p > 0, α, β > 0 and K,C ∈ Kn
o , we define the Lp linear combination

by the formula

(1− λ)K +p λC = {x ∈ R
n : 〈x, u〉p ≤ αhK(u)p + β hC(u)

p ∀u ∈ Sn−1}.

The Lp linear combination is linear invariant; namely, if Φ ∈ GL(n), then

Φ
(
αK +p βC

)
= αΦ(K) +p βΦ(C). If p ∈ (0, 1), then the Lp linear

combination of polytopes is always a polytope, but the boundary of the
Lp linear combination of convex bodies with C2

+ boundaries may contain
segments, and hence may not be C2

+. On the other hand, if p > 1, then for
any α, β > 0, Minkowski’s inequality yields that hpαK+pβ C = αhpK+β hpC , as

the Lp linear combination was defined by Firey [110] in this case. According
to Firey [110], if p > 1 and K,C ∈ Kn

o , then the Brunn-Minkowski inequality
yields the Lp-Brunn-Minkowski inequality

V (αK +p β C)
p

n ≥ αV (K)
p

n + β V (C)
p

n (36)

for any α, β > 0 with equality if and only if K and C are dilates; or equiva-
lently,

V ((1− λ)K +p λC) ≥ V (K)1−λV (C)λ (37)

for λ ∈ (0, 1) with equality if and only if K = C.
For p > 0 and K,C ∈ Kn

(o), analogously to the classical mixed volumes,

Lutwak [193] introduced the Lp mixed volume

Vp(K,C) =
p

n
lim
t→0+

V (K +p t C)− V (K)

t
=

1

n

∫

Sn−1

hpC dSK,p =

∫

Sn−1

hpC
hpK

dVK ,
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and hence V1(K,C) = V (K,C; 1). Considering the first derivative of λ 7→
V ((1− λ)K +p λC)

p

n yields the Lp-Minkowski inequality

Vp(K,C) ≥ V (K)
n−p

n V (C)
p

n (38)

for p > 1 and K,C ∈ Kn
(o) with equality if and only if K and C are dilates.

An equivalent form is that
∫

Sn−1

hpC dSK,p ≥

∫

Sn−1

hpK dSK,p (39)

if p > 1, K,C ∈ Kn
(o) and V (K) = V (C) with equality if and only if K = C.

We recall that that the Brunn-Minkowski inequality (4) holds for bounded
Borel subsetsK and C of Rn, as well. When p > 1, the Lp-Brunn-Minkowski
inequality has been also extended to certain families of non-convex sets by
Zhang [248], Ludwig, Xiao, Zhang [192] and Lutwak, Yang, Zhang [198].

If p ∈ (0, 1), then translating a cube shows that neither Lp-Brunn-
Minkowski inequality, nor Lp-Minkowski inequality hold for general K,C ∈
Kn

(o). However, Böröczky, Lutwak, Yang, Zhang [49] conjecture that they

hold for at least origin symmetric convex bodies (see Böröczky, Kalantzopou-
los [48] for centered convex bodies).

CONJECTURE 4.2 (Lp-Minkowski conjecture #2) If p ∈ (0, 1), then
(38); or equivalently, (39) hold for centered K,C ∈ Kn.

CONJECTURE 4.3 (Lp-Brunn-Minkowski conjecture) If p ∈ (0, 1),
then (36); or equivalently, (37) hold for centered K,C ∈ Kn.

The fact that the forms Conjectures 4.1 and 4.2 (including the charac-
terization of equality) of the Lp-Minkowski conjecture are equivalent follows
from (39) and the variational method as described above.

According to the Jensen inequality, (1−λ)K +q λ ⊂ (1− λ)K +p λC for
p > q ≥ 0. It follows for example via (37) (or via (43)) that if 0 ≤ q < p < 1,
then the Lq-Brunn-Minkowski conjecture (or equivalently the Lq-Minkowski
conjecture) yields the Lp-Brunn-Minkowski conjecture (or equivalently the
Lq-Minkowski conjecture). In particular, the Lp-Brunn-Minkowski Conjec-
ture 4.3 for p ∈ (0, 1) is a strengthening of the Brunn-Minkowski inequality
for centered convex bodies on the one hand, and follows from the Log-
Brunn-Minkowski Conjecture 3.4 on the other hand. In addition Kolesnikov-
Milman [169] prove that knowing the Lp-Minkowski inequality (38) for some
p ∈ (0, 1) yields even the characterization of the equality case for the Lq-
Minkowski inequality when q ∈ (p, 1).
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Let p ∈ (0, 1). Given K,C ∈ Kn
o , if (36) holds for all α, β > 0, then

the Lp-Minkowski inequality (38) follows by considering d
dλV ((1 − λ)K +0

λC)|λ=0+ and using Alexandrov’s Lemma 2.2 according to [49]. On the other
hand, the argument in [49] shows that if F is any family of convex bodies
closed under Lp linear combination, then the Lp-Minkowski inequality (38)
for all K,C ∈ F is equivalent to the Lp Brunn-Minkowski inequality (36)
for all K,C ∈ F and α, β > 0. In particular, the equivalence holds for
the family of origin symmetric convex bodies. According to Kolesnikov,
Milman [169] and Putterman [221], taking the second derivative of λ 7→
V ((1 − λ)K +p λC)

p

n for origin symmetric convex bodies K and C in R
n

leads to the conjectured inequality

V (K,C; 1)2

V (K)
≥

n− 1

n− p
V (K,C; 2) +

1− p

n− p

∫

Sn−1

h2C
h2K

dVK (40)

that is again a strengthened from of Minkowski’s second inequality (9), and
is equivalent to the Lp Brunn-Minkowski conjecture without the characther-
ization of equality. More precisely, [169] proves that for a fixed K ∈ Kn

e with
C2
+ boundary, (28) for all smooth C ∈ Kn

e is equivalent to a local form of the
Lp Brunn-Minkowski around K, and [221] verifies the global statement. We
note that van Handel [133] presents an approach relating the equality case
of (40) to the equality case of (38) for a fixed K ∈ Kn

e with C2
+ boundary.

In summary, we have the following three equivalent forms of the Lp-
Brunn-Minkowski conjecture for p ∈ (0, 1) and origin symmetric convex
bodies K and C in R

n (without the charactherization of equality in the case
of the third formulation):

• V ((1− λ)K +p λC) ≥ V (K)1−λV (C)λ for λ ∈ (0, 1);

• Vp(K,C) ≥ V (K)
n−p

n V (C)
p

n ;

•
V (K,C;1)2

V (K) ≥ n−1
n−p V (K,C; 2) + 1−p

n−p

∫
Sn−1

h2
C

h2
K

dVK .

Let us dicuss the cases when Conjectures 4.1, 4.2 and 4.3 have been
verified. They have been verified in the planar n = 2 case by Böröczky,
Lutwak, Yang, Zhang [49]. The most spectacular result is due to the com-
bination of the local result by Kolesnikov, Milman [169] and the local to
global approach based on Schrauder estimates in PDE by Chen, Huang, Li,
Liu [71] (see Puttermann [221] for an Alexandrov-type argument for the lo-
cal to global approach) is that the Lp-Minkowski and Lp-Brunn-Minkowski
conjectures hold for origin symmetric convex bodies if p ∈ (0, 1) is close to
1.
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THEOREM 4.4 If n ≥ 3 and p ∈ (pn, 1) where 0 < pn < 1− c
n(logn)10

for

an absolute constant c > 0, then the Lp-Brunn-Minkowski and Lp-Minkowski
conjectures (36), (37), (38) and (39) hold for K,C ∈ Kn

e including the
characterization of the equality cases.

The paper Kolesnikov, Milman [169] provides an explicit estimate for pn,
depending on the Cheeger or Poincaré constants subject of the celebrated
Kannan, Lovász, Simonovits conjecture [162]. Our estimate for pn comes
from the upper bound c(log n)5 by Klartag, Lehec [164] for the Poincaré
constant where c > 0 is a absolute constant.

Otherwise, the known cases of the Lp-Minkowski and Lp-Brunn-Minkowski
conjectures for origin symmetric bodies follow from the known cases of the
Log-Minkowski and Log-Brunn-Minkowski conjectures. Let p ∈ (0, 1) and
n ≥ 3. Then (36), (37), (38) and (39) hold if K and C are invariant under
reflections through fixed n independent linear hyperplanes (cf. [48]) and if
K and C are origin symmetric complex bodies (cf. [224]). In addition, the
Lp-Minkowski conjecture (38) and (39) hold for K,C ∈ Kn

e (together with
characterization of equality if ∂K is C3

+) if either K is a zonoid according to
[133], or there exists a centered ellipsoid E with E ⊂ K ⊂ (1 + cn)E where
cn > 0 depends only on n according to [71] (an analogues result holds for
linear images of lq balls for q > 2 if the dimension n is high enough according
to [169]).

Concerning the Lp Brunn-Minkowski conjecture, Hosle, Kolesnikov, Livshyts
[144] and Kolesnikov, Livshyts [168] present certain natural generalizations
and approaches.

In the final part of Section 4, we discuss how David Hilbert’s elegant
operator theoretic proof of the Brunn-Minkowski inequality has lead to
recent new approaches initiated by Kolesnikov, Milman [169] towards the
Lp-Minkowski conjecture (see also Putterman [221] and van Handel [133]).
Here we present Kolesnikov and Milman’s version of the Hilbert-Brunn-
Minkowski operator based on [169] because this modified operator LK in-
tertwines with linear transformations (cf. Theorem 5.8 in [169]).

The mixed discriminat Dℓ(B1, . . . , Bℓ) of ℓ positive definite ℓ×ℓ matrices
can be defined via the identity

detℓ (λ1A1 + . . .+ λmAm) =

m∑

i1,...,iℓ=1

Dℓ(Ai1 , . . . , Aiℓ) · λi1 · . . . · λiℓ (41)

for λ1, . . . , λm ∈ R and positive definite ℓ × ℓ matrices A1, . . . , Am where
Dℓ(Ai1 , . . . , Aiℓ) > 0 is symmetric in its variables and Dℓ(A, . . . , A) = detA
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(see van Handel, Shenfeld [134, 136] or Kolesnikov, Milman [169]). The
similarity between (10) and (41) is not a coincidence as

V (K1, . . . ,Kn) =
1

n

∫

Sn−1

hKnDn−1

(
D2hK1

, . . . ,D2hKn−1

)
dH

for K1, . . . ,Kn ∈ Kn with C2
+ boundary.

For K ∈ Kn
(o) with C2

+ boundary, Kolesnikov, Milman [169] defines the

Hilbert-Brunn-Minkowski operator LK : C2(Sn−1) → C2(Sn−1) by the for-
mula

LKf =
Dn−1

(
D2(fhK),D2hK , . . . ,D2hK

)

Dn−1 (D2hK , . . . ,D2hK)
− f. (42)

Following Hilbert’s footsteps, [169] verifies that the operator LK is ellip-
tic, and hence admits a unique self-adjoint extension in L2(dVK), and has
discrete spectrum. The operator −LK is positive semi-definite, its smallest
eigenvalue is λ0(LK) = 0 whose eigenspace consists of the constant func-
tions. As Hilbert (see also van Handel, Shenfeld [134, 136] or Kolesnikov,
Milman [169]) proved, the next eigenvalue is λ1(−LK) = 1 corresponding
to the n-dimensional eigenspace spanned by the linear functions; moreover,
this fact is equivalent to the Brunn-Minkowski inequality for any convex
bodies.

If K is origin symmetric, then −LK can be restricted to the space of even
functions in C2(Sn−1), and λ1,e(−LK) > 1 holds for the smallest positive
eigenvalue of this restricted operator because linear functions are odd. Here
the linear invariance yields that λ1,e (−LK) = λ1,e (−LΦK) for Φ ∈ GL(n). A
key result in Kolesnikov, Milman [169] improves the estimate λ1,e(−LK) > 1
uniformly; more precisely,

λ1,e (−LK) ≥
n− pn
n− 1

for any K ∈ Kn
e with C2

+ boundary where the explicit pn ∈ (0, 1− c
n(logn)10

) is

the same as in Theorem 4.4. The connection to the Lp-Minkowski conjecture
for fixed p ∈ [0, 1) is another key result in Kolesnikov, Milman [169], as
developed futher by Putterman [221]; namely,

λ1,e (−LK) ≥
n− p

n− 1
(43)

is equivalent saying that (40) holds for any C ∈ Kn
e . In particular, given

p ∈ [0, 1), the Lp-Minkowski conjecture follows if (43) holds for all K ∈ Kn
e
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with C∞
+ boundary, and the Logarithmic-Minkowski conjecture and (27) are

equivalent saying that

λ1,e (−LK) ≥
n

n− 1
(44)

for all K ∈ Kn
e with C∞

+ boundary. If Km ∈ Kn
e with C2

+ boundary tends
to a cube, then λ1,e (−LKm) tends to

n
n−1 according to [169]; therefore, the

Logarithmic-Minkowski conjecture states that cubes ”minimize” λ1,e (−LK).
On the other hand, [169] calculates that λ1,e (−LK) = 2n

n−1 if K is a centered
Euclidean ball, and Milman [204] verifies that centered ellipsoids maximize
λ1,e (−LK) among all K ∈ Kn

e with C2
+ boundary.

5 Some variants of the Lp-Minkowski problem

We note that Livshyts [186] considers a version of the Minkowski problem
with a given measure on R

n acting as a weigh on the surface of the convex
body.

Considering the variation of the ith intrinsic volume of a convex body K
(or equivalently, variation of V (Bn,K; i)) for i = 2, . . . , n− 1 instead of the
volume of K leads to the so-called Christoffel-Minkowski problem, which
asks to determine a convex body when its (i− 1)th area measure on Sn−1 is
prescribed (see Guan, Ma [125], Guan, Xia [126]). We note that for K ∈ Kn

with C2
+ boundary, SK is then (n− 1)th surface area measure, and the jth

area measure is defined using the jth symmetric function of the principle
radii of curvatures instead of the reciprocal of the Gaussian curvature. The
Lp Christoffel-Minkowski problem is discussed by Guan, Xia [126], Hu, Ma,
Shen [145] and Bryan, Ivaki, Scheuer [58] in the case p > 1, and by Bianchini,
Colesanti, Pagnini, Roncoroni [31] in the case p ∈ [0, 1) where again, p = 1
corresponds to the classical case.

The Minkowski problem on the sphere is solved by Guang, Li, Wang
[129] (see [129] for related references, as well), and in the hyperbolic space,
partial results, also about the hyperbolic Christoffel-Minkowski problem, are
obtained by Gerhardt [118].

The Gaussian surface area measure of a K ∈ Kn is defined by Huang, Xi
and Zhao [150], and [150] obtains significant results about the even Gaussian
Minkowski problem. These results are extended to the not necessarily even
case by Feng, Liu, Xu [102] and Shibing Chen, Shengnan Hu, Weiru Liu,
Yiming Zhao [70], and the Lp-Gaussian Minkowski problem is considered by
Liu [184] and Feng, Hu, Xu [101]. Uniqueness of the solution is discussed in
the works above and in Ivaki, Milman [157].
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Next we discuss the Lp dual Minkowski problem introduced by Lutwak,
Yang, Zhang [199] that is a common generalization of the Lp-Minkowski
problem and the Alexandrov problem. In order to define the dual curvature
measures, let K ∈ Kn

(o). Recall that the radial function ̺K(u) > 0 satisfies

̺K(u)u ∈ ∂K for any u ∈ Sn−1. For a Borel set ω ⊂ Sn−1, its H measurable
reverse radial Gauss image α∗(ω) is the set of u ∈ Sn−1 such that some v ∈ ω
is an exterior normal at ̺K(u)u (see Huang, Lutwak, Yang, Zhang [148]).
Now for any q ∈ R, [148] defines the qth dual curvature measure of the Borel
set ω ⊂ Sn−1 by

C̃K,q(ω) =
1

n

∫

α∗(ω)
̺nK dH.

In particular, C̃K,n = VK is the cone volume measure (discussed in Sec-

tion 3), and nC̃K,0 is the Alexandrov integral curvature measure of the polar
K∗. The Monge-Ampére equation corresponding to the qth dual Minkowski
problem is

(‖∇h‖2 + h2)
q−n

2 · hdet(∇2h+ h Id) = f. (45)

The Alexandrov problem; namely, the charaterization of C̃K,0 has been
solved by Aleksandrov [4, 5] (see also Oliker [215] and Bertrand [27] Böröczky,
Lutwak, Yang, Zhang, Zhao [53]). For the Lp version of the Alexandrov
problem posed by Huang, Lutwak, Yang, Zhang [149], see for example Zhao
[250], Li, Sheng, Ye, Yi [180] Mui [209] and Wu, Wu, Xiang [240]. If q 6= 0, n,
then the following results are known:

• If q < 0, then any Borel measure on Sn−1 not concentrated on a closed
hemisphere is a qth dual Minkowski curvature measure according to
Zhao [249] and Li, Sheng, Wang [181].

• If 0 < q < n, then an even Borel measure on Sn−1 is a qth dual
Minkowski curvature measure if and only if

µ(L ∩ Sn−1) < dimL
q · µ(Sn−1)

for any proper linear subspace L of of Rn according to Böröczky, Lut-
wak, Yang, Zhang, Zhao [52] where one needs to add that µ is not
concentrated onto a great subsphere if q < 1.

• If q ≥ n+1 and K ∈ Kn is origin symmetric, then Henk, Pollehn [140]
prove

C̃K,q(L ∩ Sn−1) < q−n+dimL
q · C̃K,q(S

n−1)
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• If q > 0 and n = 2, then (45) has a solution for any measurable f
provided 1

c < f < c for a c > 1 according to Chen, Li [72].

In particular, it is an intriguing open problem to characterize an even qth
dual Minkowski curvature measure on Sn−1 if q > n.

For p, q ∈ R, Lutwak, Yang, Zhang [199] defines the qth Lp dual Minkowski

curvature measure on Sn−1 by dC̃K,p,q = h−p
K dC̃K,q, and hence C̃K,0,q = C̃K,q

and C̃K,p,n = 1
n SK,p. Given a Borel measure µ on Sn−1, the simplest ver-

sion of the qth the Lp dual Minkowski problem asks for a K ∈ Kn
(o) with

µ = C̃K,p,q, and the correspong Monge-Ampére equation is

h1−p det(∇2h+ h Id) = (‖∇h‖2 + h2)
n−q

2 · f (46)

Improving on [43] and Huang, Zhao [151], Chen, Li [68] and Lu, Pu [190]
if p > 0 and q 6= p, then any Borel measure not concentrated on a closed
hemisphere is a qth Lp dual Minkowski curvature measure (more precisely,
if p ≤ q, then some modification of the Monge-Ampére equation might be
needed). Huang, Zhao [151] proved the same for p, q < 0 and p 6= q within
the category of even measures. See also Guang, Li, Wang [127] for a flow
approach when p < 0 and q > n under regularity assumptions.

Uniqueness of the solution of the qth Lp dual Minkowski problem (46)
is thouroughly investigated by Li, Liu, Lu [179]. The case when n = 2 and
f is a constant function has been completely clarified by Li, Wan [177].

Another important related variant of the dual Minkowski problem is the
so-called Chord Minkowski Problem (cf. Lutwak, Xi, Yang, Zhang [196])
and its Lp version by Xi, Yang, Zhang, Zhao [242] for p > 0, and by Li
[182, 183] for p < 0, see also Guo, Xi, Zhao [131] and Xi, Yang, Zhang, Zhao
[242]. In addition, the ”Affine dual Minkowski problem” is proposed by Cai,
Leng, Wu, Xi [64].

Cordero-Erausquin, Klartag [85] generalized and solved the classical
Minkowski problem to the space of log-concave functions on R

n. Recently,
Fang, Xing, Ye [97] considered the Lp-Minkowski problem for log-concave
functions, and Huang, Liu, Xi, Zhao [147] and Fang, Ye, Zhang, Zhao [98]
managed to extend the dual Minkowski problem to log-concave functions on
R
n for q > 0.
Starting with Haberl, Lutwak, Yang, Zhang [132], Orlicz versions of

the Lp-Minkowski problem have been intensively investigated; namely, the
function t 7→ t1−p in (34) is replaced by certain ϕ : (0,∞) → (0,∞), and
hence (34) is replaced by

ϕ(h) det(∇2h+ h Id) = f
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where f is a given non-negative function on Sn−1. Typically, the solution
is only up to a constant factor; namely, there exists some c > 0 such that
ϕ(h) det(∇2h + h Id) = c · f . The known existence results about the Lp-
Minkowski problem for p > −n have been generalized to the Orlicz Lp-
Minkowski problem where ϕ(t) replaces t1−p by Huang, He [146] if p > 1
(see also Xie [243]), by Jian, Lu [158] if p ∈ (0, 1), and by Bianchi, Böröczky,
Colesanti [28] if p ∈ (−n, 0).

Orlicz versions of these Monge-Ampère equations have been considered
by Li, Sheng, Ye, Yi [180] and Feng, Hu, Liu [100] in the case of the Alexan-
drov problem, by Xing, Ye [244] in the case of the dual Minkowski problem,
and Gardner, Hug, Weil, Xing, Ye [115, 116], Xing, Ye, Zhu [245] and Liu,
Lu [185] in the case of the Lp dual Minkowski problem in general.
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port des mesures, PhD thesis, Université de Marne-la-Vallée, Paris, 1997.
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[23] F. Barthe, K.J. Böröczky, M. Fradelizi: Stability of the functional forms
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[38] K.J. Böröczky: Stability of the Blaschke-Santaló and the affine isoperi-
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[55] K.J. Böröczky, Hai T. Trinh: The planar Lp-Minkowski problem for
0 < p < 1. Adv. Applied Mathematics, 87 (2017), 58-81.

[56] H.J. Brascamp, E.H. Lieb: On extensions of the Brunn-Minkowski and
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