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ABSTRACT. We study the (n − 1)-dimensional volume of central hyperplane sections of the
n-dimensional cube Qn . Our main goal is two-fold: first, we provide an alternative, simpler
argument for proving that the volume of the section perpendicular to the main diagonal of the
cube is strictly locally maximal for every n ≥ 4, which was shown before by L. Pournin [27].
Then, we prove that non-diagonal critical central sections of Qn exist in all dimensions at
least 4. The crux of both proofs is an estimate on the rate of decay of the Laplace-Pólya inte-
gral Jn(r ) = ∫ ∞

−∞ sincn t · cos(r t )dt that is achieved by combinatorial means. This also yields
improved bounds for Eulerian numbers of the first kind.

1. INTRODUCTION

Let Qn = [− 1
2 , 1

2

]n denote the centered n-dimensional unit cube. This paper is devoted
to the study of the (n −1)-dimensional volume of central hyperplane sections of Qn (that is,
sections of the form Qn ∩v⊥). Accordingly, for a given non-zero vector v ∈ Rn , we introduce
the central section function

(1.1) σ(v) = Voln−1

(
Qn ∩v⊥

)
.

Note that the quantity above is invariant under scalings of v by a non-zero factor, and by
embeddings of v into Rm with m ≥ n and replacing Qn by Qm .

The function σ(v) has been studied intensively in the last 50 years. According to a natural
conjecture, which had been popularized by Good [4], minimal central sections are parallel
to a facet of Qn . This was proved by Hadwiger [14] in 1972, while Hensley [16] gave an al-
ternative proof a few years later. He also provided an upper bound on the volume of central
hyperplane sections. Completing the characterization of global extrema, Ball [3] proved that
the maximal central sections are orthogonal to the main diagonal of a 2-dimensional face
of Qn .

Our main goal is to study critical points of the functional σ(v) on the unit sphere Sn−1

– these will be referred to as critical directions, and the corresponding sections as critical
sections. The latter were recently characterized by Ivanov and Tsiutsiurupa [17] and, inde-
pendently, the first named author [2]. Locally extremal sections are also defined via the anal-
ogous property of their unit normal on Sn−1.

A central section is called k-diagonal if its normal vector is parallel to the main diagonal
of a k-dimensional face of Qn , where 1 ≤ k ≤ n. Let 1n denote the n-dimensional vector
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(1, . . . ,1). The standard k-diagonal unit direction is given by

(1.2) dn,k := 1p
k
· (1k ,0n−k

)
for k = 1, . . . ,n, where, naturally, 0n−k is the zero vector ofRn−k . Up to permuting coordinates
and changing signs, all k-diagonal directions are of the above form. Such normal vectors and
the corresponding central sections of Qn will simply be called diagonal. For special values of
k, we simplify the notation by writing

dn,1 =: e1 and dn,n =: dn .

In particular, dn = 1p
n

1n .

As a special case of a more general result, Pournin [27] proved by local optimization tech-
niques that all the diagonal sections of Qn are strictly locally extremal whenever n ≥ 4. Our
first result provides an alternative proof for this fact for main diagonal sections.

Theorem 1.1. The main diagonal section Qn ∩1⊥
n has strictly locally maximal volume among

central sections of Qn for each n ≥ 4.

It has been widely believed that all critical central sections of Qn need to be diagonal. This
was verified for n = 2,3 but disproved for n = 4 in [2]. Note that appending 0’s to a lower
dimensional critical direction yields critical directions for Qn . Thus, it is only of interest to
ask for the existence of non-diagonal critical sections whose normal vector does not have
any 0 coordinates – equivalently, sections which are not parallel to any of the coordinate
axes.

We prove the existence of such non-diagonal critical central sections in all dimensions
exceeding 3.

Theorem 1.2. For all n ≥ 4 there exist non-diagonal critical central sections of Qn whose nor-
mal vector has only non-zero coordinates.

Furthermore, in Section 6 we demonstrate that the critical directions constructed for the
proof of Theorem 1.2 are saddle points ofσ(v) on Sd−1. This leaves open the question of exis-
tence of non-diagonal critical sections which are locally extremal with respect to the central
section function σ(v). Based on numerical evidence, we suspect that there are no such ex-
amples.

Conjecture 1.3. All locally extremal central sections of Qn are diagonal for each n ≥ 2.

The protagonist of the subsequent arguments is the Laplace-Pólya integral

(1.3) Jn(r ) := 1

π

∫ ∞

−∞
sincn t ·cos(r t )dt ,

where n is a positive integer, r ∈ R, and sinc denotes the unnormalized sine cardinal func-
tion, that is

sinc x :=


sin x

x
if x ̸= 0,

1 if x = 0.

The integral (1.3) appears in a number of diverse problems. In particular, Laplace [21] stud-
ied it in connection with probability theory, while Pólya [29] focused on its importance in
statistical mechanics.
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For n ≥ 2, or n = 1 and r ̸= ±1, Jn(r ) may also be expressed as the density of the following
Irwin-Hall distribution:

(1.4) Jn(r ) = 2 · f∑n
i=1 Xi

(r )

where X1, . . . , Xn are independent random variables uniformly distributed on [−1,1], and
fX (.) denotes the probability density function of a continuous random variable X . This sto-
chastic interpretation, which is discussed in detail in Section 2, also implies that Jn(r ) = 0 for
|r | ≥ n when n ≥ 2.

The crux of the subsequent arguments is a precise estimate on the rate of decay of Jn(r ),
which will be proved by entirely combinatorial means in Section 3.

Theorem 1.4. Let n ≥ 4 and r be integers satisfying −1 ≤ r ≤ n −2. Then

(1.5)
Jn(r +2)

Jn(r )
≤ cn,r ,

where

(1.6) cn,r = (n − r −2)(n − r )(n − r +2)

(n + r )(n + r +2)(n + r +4)
.

As an immediate corollary we derive the following bound.

Corollary 1.5. For each n ≥ 2,

(1.7) (n +3)Jn+2(0) < (n +2)Jn(0).

We note that for even values of n, Lesieur and Nicolas [22] proved the slightly stronger
estimate1

(1.8) (n +2)Jn+2(0) < (n +1)Jn(0)

(also see (3.11)) by an intricate argument involving fine estimates for the power series expan-
sion of Eulerian numbers of the first kind.

Further history of the problem and related results, in particular, the study of non-central
and lower dimensional sections, are excellently surveyed in [25].

2. PRELIMINARIES

In this section we review some of the necessary tools along the lines of the articles [2, 3, 19].
Pólya [29] proved that the central section function σ(v) of a unit vector v = (v1, . . . , vn) ∈ Sn−1

may be evaluated by the classical integral formula

(2.1) σ(v) = 1

π

∫ ∞

−∞

n∏
i=1

sinc(vi t )dt .

One can shortly derive an extension for arbitrary non-zero normal vectors, and non-central
sections, via the probabilistic interpretation as follows.

Let now v ∈Rn \ {0n} be an arbitrary non-zero vector, and define S(v,r ) as the intersection
of Qn and a hyperplane orthogonal to v at distance r

|v| from the origin, that is

(2.2) S(v,r ) := {
q ∈Qn :

〈
q,v

〉= r
}
.

Introduce the parallel section function

(2.3) s(v,r ) := Voln−1
(
S(v,r )

)
;

1We note that this bound and further esimates on the Laplace-Pólya integral can also be obtained by a com-
binatorial method similar to the present proofs, which is to be published in a subsequent paper.
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then σ(v) = s(v,0).
For a continuous random variable X , let ϕX (.) denote its characteristic function. Let now

X1, . . . , Xn be independent random variables distributed uniformly on [−1,1]. The joint dis-
tribution of (X1, . . . , Xn) induces the normalized Lebesgue measure on 2Qn = [−1,1]n . Ac-
cordingly, for arbitrary v = (v1, . . . , vn) ∈Rn and r ∈R

P

(∣∣∣∣∣ n∑
i=1

vi Xi − r

∣∣∣∣∣≤ ε
)
= 1

2n
Voln

(
q ∈ 2Qn :

∣∣∣〈q,v
〉− r

∣∣∣≤ ε)= ε

|v| s
(
v,

r

2

)
+o(ε)

provided that S
(
v, r

2

)
is not a facet of Qn . Dividing by ε and letting ε→ 0 leads to

(2.4) 2 f∑n
i=1 vi Xi

(r ) = 1

|v| s
(
v,

r

2

)
which holds whenever the left hand side exists. As is well known, the characteristic function
of

∑n
i=1 vi Xi is

(2.5) ϕ∑n
i=1 vi Xi

(t ) =
n∏

i=1
sinc(vi t ),

hence by taking the inverse Fourier transform one derives that

(2.6) f∑n
i=1 vi Xi

(r ) = 1

2π

∫ ∞

−∞

n∏
i=1

sinc(vi t ) ·cos(r t )dt .

Therefore by (2.4) and (2.6) we obtain the following integral formula for s(v,r ):

(2.7) s
(
v,

r

2

)
= |v|
π

∫ ∞

−∞

n∏
i=1

sinc(vi t ) ·cos(r t )dt .

In particular,2

(2.8) σ(v) = |v|
π

∫ ∞

−∞

n∏
i=1

sinc(vi t )dt

which implies (2.1).
As a special case of (2.7) one also obtains that the volume of sections orthogonal to the

main diagonal can be expressed as

(2.9) s
(
1n ,

r

2

)
=p

n Jn(r ).

In particular, central main diagonal sections are given by

(2.10) σ(1n) =p
n Jn(0).

Returning to (2.1), we derive that for unit vectors v

(2.11)
∂

∂vk
σ(v) = 1

π

∫ ∞

−∞

∏
i ̸=k

sinc(vi t ) · cos(vk t )− sinc(vk t )

vk
dt

(the differentiability property of the function σ(v) is rigorously proven in the works of L.
Pournin [28, 27]). Based on the Lagrange multiplier method, the following characterization
was given in [2] for critical points of σ(v) on Sn−1 (note that in the present article we normal-
ize σ(v) differently):

2Note that the factor |v| is missing in [2, formula (2.8)].
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Proposition 2.1 ([2], Formula (2.12)). The unit vector v = (v1, . . . , vn) ∈ Sn−1 is a critical direc-
tion with respect to the central section functionσ(v) if and only if up to permuting coordinates
and changing signs3 v = e1, or

(2.12) σ(v) = 1

π(1− v2
j )

∫ ∞

−∞

∏
i ̸= j

sinc(vi t ) ·cos(v j t )dt

holds for each j = 1, . . . ,n.

The argument also yields that at critical directions v ∈ Sn−1,

(2.13)
∂

σvi
σ(v) =−σ(v) · vi ,

see [2, Proof of Theorem 1]. Accordingly, the Lagrange function

(2.14) Λ(v) =σ(v)+ λ̃ · (|v|2 −1)

defined on Rn has a stationary point at v with the Lagrange multiplier

(2.15) λ̃= σ(v)

2
.

We remark that, introducing the notation ṽ j = (v1, . . . , v j−1, v j+1, . . . , vn) ∈ Rn−1 and using
(2.7), equation (2.12) translates to

(2.16) σ(v) = 1

(1− v2
j )

3
2

s
(
ṽ j ,

v j

2

)
.

3. PROPERTIES OF THE LAPLACE-PÓLYA INTEGRAL

In this section we study the integral formula Jn(r ) defined in (1.2) which is connected to
various mathematical topics, see [6, 15, 23, 29, 31]. To us, its most prominent feature is the
connection to diagonal sections provided by (2.10).

The following explicit formula for Jn(r ) is well known, see [21, pp. 165-170]:

(3.1) Jn(r ) = 1

2n−1(n −1)!

⌊ n+r
2 ⌋∑

i=0
(−1)i

(
n

i

)
(n + r −2i )n−1

which holds for |r | < n. Moreover, Jn(r ) can be expressed by the recursion

(3.2) Jn(r ) = n + r

2(n −1)
Jn−1(r +1)+ n − r

2(n −1)
Jn−1(r −1)

which was proved by Thompson [32]. Though this formula is valid for all r ∈ R, we will only
use it for integer values of r . Since Jn(r ) is even in r , we specifically derive that

(3.3) Jn(0) = n

n −1
Jn−1(1)

for n ≥ 3. Combined with (3.2) this provides a simple way for computing the central values
Jn(0) for small n’s, see Table 1.

The sequence (Jn(0))∞n=1 possesses several monotonicity properties. Ball [3, Lemma 3]
proved that Jn(0) is monotone decreasing and converges to zero as n → ∞. On the other
hand, Aliev [1] showed that n Jn(0) is monotone increasing. According to (2.10), the value

3In [2], the trivial case v = e1 was erroneously omitted.
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n 1 2 3 4 5 6 7 8 9 10

Jn(0) 1 1 3
4

2
3

115
192

11
20

5887
11520

151
315

259723
573440

15619
36288

TABLE 1. The value of Jn(0) in the cases 1 ≤ n ≤ 10.

p
n Jn(0) is equal to the volume of the main diagonal section of Qn . Therefore, it is essential

that

lim
n→∞

p
n Jn(0) =p

6π,

see [21, 29]. Based on Laplace’s method for calculating the asymptotic expansion for Jn(0),
Bartha, Fodor and González Merino [5] proved that the convergence is strictly monotone
increasing for n ≥ 3, and noted that their method also implies that the sequence

p
n Jn(0) is

eventually concave. The asymptotic expansion up to order 3 reads as

(3.4) Jn(0) =
√

6

πn

(
1− 3

20n
− 13

1120n2
+ 27

3200n3
+O

( 1

n4

))
where the correct coefficients had been found (and subsequently corrected) in a series of
papers [31, 9, 13, 12, 26, 23]). Even finer estimates were proved in [18, 30].

A combinatorial interpretation of Jn(r ) stems from the connection with Eulerian numbers
of the first kind A(m, l ) (which will simply be referred to as Eulerian numbers). These are
recursively defined [11, pp. 240-243] for integers m, l ≥ 0 by

A(0,0) := 1, A(m,0) := 0 for m > 0, A(0, l ) := 0 for l > 0,

A(m, l ) = (m − l +1)A(m −1, l −1)+ l A(m −1, l ) for m > 0, l > 0.
(3.5)

Moreover they may be evaluated explicitly as

(3.6) A(m, l ) =
l∑

i=0
(−1)i

(
m +1

i

)
(l − i )m ,

see e.g. [10, 22]. Eulerian numbers can also be defined combinatorially [11] as the number
of permutations of {1, . . . ,n} in which exactly l − 1 elements are greater than the previous
element. This also shows the symmetry property

(3.7) A(m, l ) = A(m,m − l +1).

According to formulae (3.1) and (3.6), the following connection holds between the Laplace-
Pólya integral and the Eulerian numbers:

(3.8) Jn(r ) = 1

(n −1)!
A

(
n −1,

n + r

2

)
where n ≥ 2 and r is an integer s.t. n+r is even. Due to this relation, Theorem 1.4 leads to an
estimate on the ratio between consecutive Eulerian numbers.

Proposition 3.1. For integers l ≥ 2 and m ≥ 2l −1

(3.9) A(m, l −1) ≤ cm+1,m−2l+1 A(m, l ),

where cn,r is defined by formula (1.6).
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This strengthens the bound proved by Lesieur and Nicolas [22, Section 2.3, Theorem 3]
stating that for every l ≥ 2 and m ≥ 2l −1,

(3.10) A(m, l −1) <
( m − l

m − l +2

)m−2l+2
A(m, l ).

The authors also showed that [22, Section 3.5, Theorem 2]

(3.11)
m +1

m +2
< m!

(m +2)!
· max1≤l≤m+2 A(m +2, l )

max1≤l≤m A(m, l )
< m +2

m +3

for any odd m. Notice that

1

m!
max

1≤l≤m
A(m, l ) = 1

m!
A

(
m,

⌊m

2

⌋
+1

)
=

Jm+1(1), if m is even

Jm+1(0), if m is odd.

Therefore, by introducing n = m +1 and using (3.3), inequality (3.11) takes the form

(3.12)
n(n −2)

(n +2)2
< Jn(2)

Jn(0)
< n(n2 −2)

(n +2)3

which holds for any even n greater than 3. Based on numerical calculations we do believe
that these estimates are valid for every n ≥ 3. Note that the upper bound is slightly stronger
than (1.5) for r = 0 and n even — yet, (3.12) provides no estimate for odd values of n, or r ̸= 0,
in contrast with Theorem 1.4.

Next, we establish the bound on the rate of decay of Jn(r ).

Proof of Theorem 1.4. Suppose that r is an integer satisfying r ≥ −1. We will proceed by in-
duction on n, with n = 4 being the base case.

The values of J4(r ) for r =−1, . . . ,4 can be calculated by formula (3.1). Based on these, the
n = 4 case of (1.5) is easy to check, see Table 2.

r −1 0 1 2

J4(r+2)
J4(r ) 1 1

4
1

23 0

c4,r 1 1
4

1
21 0

TABLE 2. Two sides of the inequality (1.5) for n = 4 and r =−1, . . . ,2.

Suppose now that for some n ≥ 4, (1.5) holds for each −1 ≤ r ≤ n−2. We need to show that

(3.13) Jn+1(r +2) ≤ cn+1,r Jn+1(r )

for each r with −1 ≤ r ≤ n −1.
For r =−1 or r = n−1, equality holds above: in the former case cn+1,−1 = 1 and Jn+1(−1) =

Jn+1(1), while in the latter cn+1,n−1 = 0 and Jn+1(n +1) = 0.
Assume that 0 ≤ r ≤ n −3. By (3.2),

Jn+1(r +2) = n + r +3

2n
Jn(r +3)+ n − r −1

2n
Jn(r +1),(3.14)

Jn+1(r ) = n + r +1

2n
Jn(r +1)+ n − r +1

2n
Jn(r −1).
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Applying the induction hypothesis for the pairs (n,r +1) and (n,r −1) shows that

Jn(r +3) ≤ cn,r+1 Jn(r +1),

1

cn,r−1
Jn(r +1) ≤ Jn(r −1).

Thus, (3.13) follows from the inequality

n + r +3

2n
cn,r+1 + n − r −1

2n
≤ cn+1,r

(n + r +1

2n
+ n − r +1

2n
· 1

cn,r−1

)
.

Using (1.6), this simplifies to

(n − r −3)(n − r −1)(n − r +1)

(n + r +5)(n + r +1)
+ (n − r −1) ≤

≤ (n − r −1)(n − r +1)(n − r +3)

(n + r +5)(n + r +3)
+ (n − r +1)(n + r −1)

(n + r +5)
.

After combining the fractions, this takes the form

0 ≤ 16r 3 +48r 2 +32r

which clearly holds.
Finally, when r = n −2, then due to Jn(r +3) being 0, (3.14) reduces to

Jn+1(n) = 1

2n
Jn(n −1).

Therefore, using (3.2) for the term Jn+1(n −2), (3.13) is seen to be equivalent to

(3.15)
1

2n
Jn(n −1) ≤ cn+1,n−2

(2n −1

2n
Jn(n −1)+ 3

2n
Jn(n −3)

)
.

The induction hypothesis for the pair (n,n −3) implies that

1

cn,n−3
Jn(n −1) ≤ Jn(n −3).

Therefore, (3.15) follows from the inequality

1 ≤ cn+1,n−2

(
2n −1+ 3

cn,n−3

)
,

which, after substituting (1.6), simplifies to

0 ≤ 8n2 −20n +3.

As this holds for every n ≥ 3, the proof is complete. □

Proof of Corollary 1.5. The inequality can be easily confirmed in the cases of n = 2, 3 based
on Table 1. Henceforth we suppose that n ≥ 4. Due to (3.3), (3.2) and (1.5) we have

Jn+2(0) = n +2

n +1
Jn+1(1) =

= (n +2)2

2n(n +1)
Jn(2)+ n +2

2(n +1)
Jn(0) ≤

≤
(

(n +2)2

2n(n +1)
· cn,0 + n +2

2(n +1)

)
Jn(0) =

= (n +2)(n2 +2n −2)

n(n +1)(n +4)
Jn(0).

(3.16)
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Therefore, (1.7) is implied by the inequality

(n +2)(n2 +2n −2)

n(n +1)(n +4)
< n +2

n +3

which holds for every n ≥ 1. □

Finally, we prove the corresponding estimate for Eulerian numbers.

Proof of Proposition 3.1. Suppose that r is an integer s.t. r ≥−1 and n + r is even. According
to equation (3.8) and Theorem 1.4 we have

A
(
n −1,

n + r

2
+1

)
≤ cn,r A

(
n −1,

n + r

2

)
.

The symmetry property (3.7) leads to the inequality

A
(
n −1,

n − r

2
−1

)
≤ cn,r A

(
n −1,

n − r

2

)
.

Letting m = n −1 and l = n − r

2
implies (3.9). □

In order to demonstrate that (3.9) is indeed stronger than (3.10) one has to prove that

(l −1)l (l +1)

(m − l +1)(m − l +2)(m − l +3)
<

( m − l

m − l +2

)m−2l+2

holds for each l ≥ 2 and m ≥ 2l − 1. By introducing µ = m − l + 2 (note that µ ≥ l + 1), this
transforms to

(3.17)
(l −1)l (l +1)

(µ−1)µ(µ+1)
·
(µ−2

µ

)l <
(µ−2

µ

)µ
.

Note that the right hand side is strictly monotone increasing in µ.
We will prove that for any fixed l ≥ 2, the left hand side of (3.17) is strictly monotone de-

creasing in µ for µ≥ l +2. Indeed, its derivative in µ is given by

− (l −1)l (l +1)

(µ−2)(µ−1)2µ2(µ+1)2
·
(µ−2

µ

)l · (3µ3 −2lµ2 −6µ2 −µ+2l +2)

which is easily checked to be negative in the specified domain.
Therefore, it suffices to verify (3.17) for the cases µ = l +1, l +2. These lead to the trivial

inequalities l−1
l+2 < l−1

l+1 and l−1
l+3 < l

l+2 , respectively.

4. MAIN DIAGONAL SECTIONS ARE STRICTLY LOCALLY MAXIMAL

By utilizing our combinatorial estimate on Jn(r ) stated in Theorem 1.4, we prove one of
the core results of the paper stating that main diagonal sections of Qn are strictly locally
maximal, except for the 3-dimensional case.

Proof of Theorem 1.1. To start with, note that Proposition 2.1 and (3.3) imply that dn is a crit-
ical direction, hence we may apply the properties listed after Proposition 2.1.

We will show that the function σ(v) has a strict local maximum at v = dn subject to the
constraint |v| = 1. This is a constrained local optimization problem which can be solved by
studying the bordered Hessian matrix, i.e. the Hessian of the Lagrange functionΛ(v) defined
by (2.14).
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SinceΛ(v) =σ(v)+ σ(v)
2 · (|v|2−1) because of (2.14) and (2.15), the bordered Hessian matrix

is given by

(4.1) H(Λ(v)) =



0 2v1 2v2 . . . 2vn

2v1

2v2

...
2vn

∂2σ

∂v j∂vk
(v)+σ(v) ·

0, if j ̸= k

1, if j = k



Based on (2.11), the entries of H(Λ(v)) apart from the first row and column may be calculated
by

(4.2) βk (v) = 1

π

∫ ∞

−∞

∏
i ̸=k

sinc(vi t )·
(

2

v2
k

(
sinc(vk t )−cos(vk t )

)
− (vk t )2

v2
k

sinc(vk t )+sinc(vk t )

)
dt

along the diagonal j = k, and

(4.3) γ j ,k (v) = 1

π

∫ ∞

−∞

∏
i ̸= j ,k

sinc(vi t ) · cos(v j t )− sinc(v j t )

v j
· cos(vk t )− sinc(vk t )

vk
dt

for the off-diagonal entries, i.e. j ̸= k.
Consider now the main diagonal direction dn = 1p

n
1n , and let Hm denote the princi-

pal minor of H(Λ(dn)) of order m for m = 3, . . . ,n. According to [24, Theorem 3.9.14.]), if
(−1)m−1Hm > 0 for all m = 3, . . . ,n, then σ(.) has a strict local maximum on the constraint set
Sn−1 at dn .

Substituting v = dn in (4.2) and (4.3), integrating by substitution for vk t , applying the iden-
tity sin2 t = 1−cos(2t )

2 and employing (3.2) repeatedly results in the formulae

βk (dn) =
p

n

π
·
∫ ∞

−∞

(
sincn−1 t

)
·
(
2n(sinc t −cos t )−nt 2 sinc t + sinc t

)
dt =

=p
n ·

(
(2n +1)Jn(0)−2n Jn−1(1)− n

2
Jn−2(0)+ n

2
Jn−2(2)

)
=

=p
n ·

(
Jn−2(0) ·

( (2n +1)n

2(n −1)
−n − n

2

)
+ Jn−2(2) ·

( (2n +1)n2

2(n −2)(n −1)
− n2

(n −2)
+ n

2

))
=

= n
3
2

2(n −1)
·
(
(4−n)Jn−2(0)+ n2 +2

n −2
Jn−2(2)

)
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for any k = 1, . . . ,n, and

γ j ,k (dn) = n
3
2

π
·
∫ ∞

−∞

(
sincn−2 t

)
·
(

cos2 t −2sinc t ·cos t + sinc2 t
)

dt =

= n
3
2 ·

(
Jn(0)−2Jn−1(1)+ 1

2
Jn−2(0)+ 1

2
Jn−2(2)

)
=

= n
3
2 ·

(
Jn−2(2) ·

( n2

2(n −2)(n −1)
− n

n −2
+ 1

2

)
+ Jn−2(0) ·

( n

2(n −1)
−1+ 1

2

))
=

= n
3
2

2(n −1)
· (Jn−2(0)− Jn−2(2)

)
for j ̸= k, 1 ≤ j ,k ≤ n. Therefore, (4.1) yields that H(Λ(dn)) is of the form

H(Λ(dn)) =


0 α α α

α β γ γ

α γ β γ

α γ γ β


(n+1)×(n+1)

where

(4.4)
α= 2p

n
, β=

( n
3
2

2(n −1)

)n−1 ·
(
(4−n)Jn−2(0)+ n2 +2

n −2
Jn−2(2)

)
,

and γ=
( n

3
2

2(n −1)

)n−1 ·
(

Jn−2(0)− Jn−2(2)
)
.

Thus, all principal minors Hm of H(Λ(dn)) have the same form, namely

(4.5) Hm =

∣∣∣∣∣∣∣∣∣∣∣∣

0 α α α

α β γ γ

α γ β γ

α γ γ β

∣∣∣∣∣∣∣∣∣∣∣∣
m×m

.

Subtracting the second row from the ones below, expanding the resulting determinant along
the first column, and finally adding the sum of all other columns of the remaining determi-
nant to the first one results in an upper triangular matrix, hence

Hm = (−α) ·

∣∣∣∣∣∣∣∣∣∣∣∣

(m −1)α α α α

0 δ 0 0
0 0 δ 0

0 0 0 δ

∣∣∣∣∣∣∣∣∣∣∣∣
(m−1)×(m−1)

=−(m −1)α2δm−2

with δ=β−γ. Therefore it suffices to show that δ< 0. For n = 4 and n = 5, a direct calculation
based on (4.4) yields that δ = −1 and δ = −1

4 , respectively (we also remark that in the n = 3
case one obtains δ= 0). For n ≥ 6, note that according to Theorem 1.4,

Jn−2(2) ≤ n −4

n +2
Jn−2(0),
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hence, by (4.4),

δ=β−γ=

=
( n

3
2

2(n −1)

)n−1 ·
(
(3−n)Jn−2(0)+ n(n +1)

n −2
Jn−2(2)

)
≤

≤
( n

3
2

2(n −1)

)n−1 ·
(
− 12

n2 −4
Jn−2(0)

)
< 0. □

5. EXISTENCE OF NON-DIAGONAL CRITICAL SECTIONS

This section is devoted to the proof of Theorem 1.2, for which we present two approaches.
The first one is only sketched below.

Consider the function σ(v) on Sn−1. Theorem 1.1 states that σ(v) has a strict local maxi-
mum at v = dn . On the other hand, the result of Ball [3] shows that σ(v) has a strict global
maximum at v = dn,2 with σ(dn,2) >σ(dn). Let Γ be the shorter great arc of Sn−1 connecting
dn and dn,2 – then Γ consists of vectors of the form

(5.1) vn,2(a) := (a, a,b, . . . ,b) ∈ Sn−1

where a ∈ [ 1p
n

, 1p
2

]
. Let

(5.2) σ̂(a) :=σ(
vn,2(a)

)
be the restriction of σ onto Γ. On the interval

[ 1p
n

, 1p
2

]
, the function σ̂(a) has a strict maxi-

mum at 1p
2

, while at 1p
n

it has a strict local maximum. Because of (2.11), σ̂(a) is differentiable

on the interval, hence it must have a local minimum at some ξn ∈ ( 1p
n

, 1p
2

)
. Using that Qn is

symmetric with respect to the reflection over the line spanned by dn,2 in Rn , one may show
that v(ξn) is a critical point of σ on Sn−1.

We decided to present the second proof below as it provides information about a wider
class of normal vectors, it allows for the numerical calculation of the value of ξn , moreover,
it is independent of the proof of maximality of 2-diagonal sections by Ball [3]. The approach
is based on the characterization result of [2], see Proposition 2.1.

Proof of Theorem 1.2. As a generalization of (5.1), we are going to study a special class of unit
vectors which may be written in the form

vn,k (a) :=
(
a, a, b, b

)︸ ︷︷ ︸
k

︸ ︷︷ ︸
n −k

∈ Sn−1

where 2 ≤ k ≤ n −2 and a ∈ Ik := [ 1p
n

, 1p
k

]
, furthermore b is defined by

(5.3) b := bn,k (a) =
√

1−ka2

n −k
.

Here and later on we will always interpret b as a function of a, n and k, unless stated other-
wise.
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Since vn,k (a) has at most two different coordinates, Proposition 2.1. implies that vn,k (a) is
a critical direction if and only if Fn,k (a) = 0, where

Fn,k (a) : = 1

π(1−a2)

∫ ∞

−∞
sincn−k (bt ) · sinck−1 (at ) ·cos(at )dt−

− 1

π(1−b2)

∫ ∞

−∞
sincn−k−1 (bt ) · sinck (at ) ·cos(bt )dt ,

(5.4)

defined on Ik . We will show the existence of ξn ∈ ( 1p
n

, 1p
2

)
for which Fn,2(ξn) = 0. This suffices

as vn,2(ξn) cannot be diagonal, neither can it have any 0 coordinates.
The argument is divided to the following three lemmata whose proof is postponed to the

end of the section.

Lemma 5.1. For each 2 ≤ k ≤ n −2,
1p
k

and
1p
n

are both zeros of Fn,k .

In the next lemma we will consider the right-hand derivative of Fn,k (.) at 1p
n

. In order to

ease notation, this will be denoted by F ′
n,k

(
1p
n

)
. We note that there is no difficulty in extend-

ing the domain of Fn,k (.) hence this simplification is well justified.

Lemma 5.2. For each 4 ≤ k ≤ n − 2, Fn,k is differentiable on the interval Ik . In the case of
k = 2,3, Fn,k is differentiable on every compact subinterval of Ik \

{ 1p
k

}
. Moreover in both cases

F ′
n,k

( 1p
n

)
< 0.

Lemma 5.3. For each n ≥ 4, Fn,2(a) ≥ 0 for every a ∈ [
γn , 1p

2

]
where γn =

√
n−2

2n−3 .

Note that the first two statements hold for arbitrary k, while the third is proven only for k =
2. This is not merely a technical issue; based on numerical evidence we conjecture that there
are no non-diagonal critical directions of the form vn,k (a) with 3 ≤ k ≤ n −2, see Figure 1.

0.45 0.50 0.55 0.60 0.65 0.70
a

-0.04

-0.02

0.02

0.04

0.45 0.50 0.55
a

-0.04

-0.02

0.02

0.04

FIGURE 1. Difference between the behavior of F6,2(a) and F6,3(a)

Once the above lemmata are established, the proof is immediate: Take γn provided by
Lemma 5.3. Then Fn,2(γn) ≥ 0, and γn > 1p

n
as n ≥ 4. Moreover, acccording to Lemma 5.2,

Fn,2 is differentiable on the interval
[ 1p

n
,γn

]
and for its right-hand derivative, F ′

n,2

( 1p
n

) < 0

holds. Lemma 5.1 yields that Fn,2
( 1p

n

)= 0, thus there exists some ε> 0 with Fn,2
( 1p

n
+ε)< 0

and 1p
n
+ε< γn . Applying the mean value theorem [8] on the interval

[ 1p
n
+ε,γn

]
yields the

existence of ξn with the prescribed property Fn,2(ξn) = 0. □
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Our proof only assures the existence of a nontrivial zero ξn . Based on numerical calcula-
tions we suspect that there is only one suitable zero in the prescribed interval for each n ≥ 4.

Table 3 summarizes the numerical value of ξn for small dimensions. For n = 4, ξ4 =
√

2
5 ,

which yields a non-diagonal critical direction parallel to (1,1,2,2) [2]; for larger dimensions,
these values do not seem to follow such a nice pattern anymore.

n 4 5 6 7 8 9 10

ξn 0.632455 0.634265 0.636071 0.636935 0.637520 0.637921 0.638219

TABLE 3. Numerical value of the zero ξn in the dimensions 4 ≤ n ≤ 10.

Proof of Lemma 5.1. The statement follows from the fact that all diagonal sections are crit-
ical, which is implied by Proposition 2.1, formula (3.3), and the remark preceding Theo-
rem 1.2. □

Proof of Lemma 5.2. For the integrand of Fn,k (a) we introduce the notation
(5.5)

fn,k (a, t ) := 1

1−a2
·sincn−k (bt )·sinck−1 (at )·cos(at )− 1

1−b2
·sincn−k−1 (bt )·sinck (at )·cos(bt )

which is defined on Ik ×R. Due to the properties of the sinc function, fn,k (a, t ) is continuous
in both of its variables. Furthermore the function

(5.6) ψn,k (t ) :=
2 if |t | ≤ 1,

2
t n−1 if |t | ≥ 1

is an integrable majorant of fn,k (a, t ) for all a ∈ Ik . We need to show that
∂ fn,k (a,t )

∂a is also
continuous and it has an integrable majorant. In order to calculate the derivative of fn,k (a, t )
with respect to a on Ik we will apply the differentiation rules

(sinc x)′ = 1

x
(cos x − sinc x) and b′ =− kab

1−ka2
.
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These yield that

∂ fn,k (a, t )

∂a
= 2a

(1−a2)2
· sincn−k (bt ) · sinck−1 (at ) ·cos(at )+

+ ka

1−a2
· sincn−k−1 (bt ) · sinc(bt )−cos(bt )

b2
· sinck−1 (at ) ·cos(at )+

+ k −1

1−a2
· sincn−k (bt ) · sinck−2 (at ) · cos(at )− sinc(at )

a
·cos(at )−

− 1

a(1−a2)
· sincn−k (bt ) · sinck−2 (at ) · sin2 (at )+

+ 2ka

(n −k)(1−b2)2
· sincn−k−1 (bt ) · sinck (at ) ·cos(bt )−

− (n −k −1)ka

(n −k)(1−b2)
· sincn−k−2 (bt ) · sinc(bt )−cos(bt )

b2
· sinck (at ) ·cos(bt )−

− k

1−b2
· sincn−k−1 (bt ) · sinck−1 (at ) · sinc(at )−cos(at )

a
·cos(bt )−

− k

(n −k)(1−b2)a
· sincn−k−2 (bt ) · sinck−2 (at ) · sin2 (at ).

Clearly
∂ fn,k (a,t )

∂a is continuous on Ik ×R since

lim
a→1/

p
k

sinc(bt )−cos(bt )

b2
= t 2

3
.

When 4 ≤ k ≤ n − 2, for each term above an integrable majorant may be given similarly to

(5.6), which yields that
∂ fn,k (a,t )

∂a has an integrable majorant on the whole Ik . However, for
k = 2,3, this property only holds on any compact subinterval of Ik \

{ 1p
k

}= [ 1p
n

, 1p
k

)
, since in

these cases the term

lim
a→1/

p
k

ka

1−a2
· sincn−k−1(bt ) · sinc(bt )−cos(bt )

b2
· sinck−1(at ) ·cos(at ) =

= k
3
2

3(k −1)
t 2 · sinck−1 tp

k
·cos

tp
k

is not integrable, neither is eliminated by the other summands.
The Leibniz integral rule (see [20, Theorem 3.2.]) implies that Fn,k (.) is differentiable on Ik

if k ≥ 4, and on every compact subinterval of Ik \
{ 1p

k

}
if k = 2,3. The derivative is given by

(5.7) F ′
n,k (a) = 1

π
· ∂
∂a

∫ ∞

−∞
fn,k (a, t )dt = 1

π

∫ ∞

−∞
∂ fn,k (a, t )

∂a
dt .

Moreover F ′
n,k (.) is continuous from the right at 1p

n
for every k (see [20, Theorem 3.1.]). Ac-

cordingly, the value of the right-hand derivative F ′
n,k

(
1p
n

)
may be evaluated by the substitu-

tion a = 1p
n

. Note that this leads to b = a, hence products of the sinc terms may be combined
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together. Thus each term of the integral F ′
n,k

( 1p
n

)
is of the form

1

π

∫ ∞

−∞
αsincm tp

n
·cos

βp
n

dt =αpn Jm(β)

with some α,β ∈R and some positive integer m (recall that Jm(β) is defined by (1.3)). There-
fore, from (5.7) we obtain that

F ′
n,k

( 1p
n

)
= (k −2)n2

2(n −1)
Jn−2(0)+ k(n −k −2)n2

2(n −k)(n −1)
Jn−2(0)− kn2

n −1
Jn−2(0)+

+ n2(n +1)

(n −1)2
Jn−1(1)− kn2(n +1)

(n −1)2(n −k)
Jn−1(1)−

− kn2

n −1
Jn−2(2)− kn2

2(n −1)
Jn−2(2)+ kn2

2(n −1)
Jn−2(2).

This further simplifies to

F ′
n,k

( 1p
n

)
= n3

(n −k)(n −1)

(n +1

n −1
Jn−1(1)− Jn−2(0)

)
=

= n3

(n −k)(n −1)

(n +1

n
Jn(0)− Jn−2(0)

)
,

where (3.3) is used in the second step. Due to the estimate of Corollary 1.5, this is indeed
negative for every n ≥ 4 and 2 ≤ k ≤ n −2. □

Next, we will apply a geometric argument in order to show the positivity of Fn,2 in a left
neighborhood of 1p

2
. First we recall a standard useful volume formula. Let Hu and Hv be

hyperplanes with normal unit vectors u and v, and denote by .|Hu the orthogonal projection
onto Hu. Then

(5.8) Voln−1
(

A|Hu

)=∣∣〈u,v〉∣∣ ·Voln−1
(

A
)

for any measurable set A ⊂ Hv.

Proof of Lemma 5.3. Throughout the proof, we set k = 2. Accordingly, (5.3) simplifies to

(5.9) b = bn,2(a) =
√

1−2a2

n −2
.

The constraint a ≥
√

n−2
2n−3 thus yields that

(5.10)
a

b
≥ n −2.

According to (5.4) and (2.7)

(5.11) Fn,2(a) = 1

(1−a2)
3
2

s
(
u1(a),

a

2

)
− 1

(1−b2)
3
2

s
(
u2(a),

b

2

)
,

where u1(a) = (a,b, . . . ,b) and u2(a) = (a, a,b, . . . ,b) are (n−1)-dimensional non-unit vectors
obtained from vn,2(a) by deleting the first and third coordinate, respectively. Denote the
above parallel section functions by

(5.12) s1(a) = s
(
u1(a),

a

2

)
, s2(a) = s

(
u2(a),

b

2

)
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S1(a)
F

FIGURE 2. Section S1(a) and facet F of Qn−1.

which, by (2.2), express the (n −2)-dimensional volume of the intersection of Qn−1 with the
cross-sections

(5.13) S1(a) = S
(
u1(a),

a

2

)
, S2(a) = S

(
u2(a),

b

2

)
.

We may determine the functions s1(a), s2(a) exactly in an appropriate left neighbourhood of
a = 1p

2
by using suitably chosen orthogonal projections.

We first study s1(a), the volume of the section S1(a). Consider the facet F of Qn−1 defined
by

F =
{(1

2
,y

)
∈Qn−1 : y ∈Qn−2

}
.

We will determine S1(a)|F , see Figure 2.
Represent the points of Rn−1 in the form of (x,y), where x ∈R and y ∈Rn−2. Then, accord-

ing to (2.2) and (5.13), the equation of the hyperplane in Rn−1 corresponding to S1(a) can be
written as

x = 1

2
− b

a

〈
y,1n−2

〉
.

Note that on this hyperplane, S1(a) is described by the criteria x ∈ [−1
2 , 1

2 ] and y ∈Qn−2. The
first condition, by the equation above, transforms to 0 ≤ 〈

y,1n−2
〉 ≤ a

b . Since by (5.10), the
upper limit is at least n−2, while maxy∈Qn−2

〈
y,1n−2

〉= n−2
2 , the orthogonal projection of S1(a)

to F is specified by

S1(a)|F =
{(1

2
,y

)
∈ F :

〈
y,1n−2

〉≥ 0
}

.

Note that this constitutes half of the facet F , hence

(5.14) Voln−2
(
S1(a)|F

)= 1

2
·Voln−2

(
F

)= 1

2
.

On the other hand, according to (5.8),

(5.15) Voln−2
(
S1(a)|F

)=
∣∣∣∣∣∣
〈

u1(a)∣∣u1(a)
∣∣ ,e1

〉∣∣∣∣∣∣ ·Voln−2
(
S1(a)

)= ap
1−a2

·Voln−2
(
S1(a)

)
,

thus from equations (5.12), (5.14) and (5.15) we obtain that

(5.16) s1(a) =
p

1−a2

2a
.
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Next, consider the quantity s2(a). Now represent the points of Rn−1 in the form of (x,y),
where x ∈ R2 and y ∈ Rn−3. We will determine the orthogonal projection of S2(a) onto the
central diagonal section of Qn−1 given as

D = {
(x,y) ∈Qn−1 :

〈
x,12

〉= 0, y ∈Qn−3
}
.

The equation of the hyperplane corresponding to S2(a) is, by (2.2) and (5.13),

(5.17)
〈

x,12
〉= b

a

(1

2
−〈

y,1n−3
〉)

,

and S2(a) is described by x ∈Q2, y ∈Qn−3 in addition to the above equation.
Consider S2(a)|D . We can calculate its volume as follows. Let L1 be the 2-dimensional lin-

ear subspace of Rn−1 which consists of vectors of the form (x,0n−3) with x ∈R2. Furthermore
let L2 = L⊥

1 in Rn−1, an (n −3)-dimensional linear subspace. Then

(5.18) Voln−2
(
S2(a)|D

)= ∫
L2∩Qn−1

Vol1
(
S2(a)∩ (y+L1)

)
dy,

since during the projection of S2(a), the length of S2(a)∩ (y+L1) does not change, see Fig-
ure 3.

y + L1

S2(a)

S2(a) ∩ (y + L1)

D

L2 L2

D

S2(a) ∩ (y + L1)

S2(a)|D

FIGURE 3. Sections of S2(a) and y+L1 in Qn−1 and its diagonal section D .

Note that since by (5.10), b
a ≤ 1

n−2 , (5.17) yields that for n ≥ 3, S2(a)∩ (y+L1) is non-empty
for arbitrary y ∈ L2 ∩Qn−1. Moreover, the length of S2(a)∩ (y+L1) may be calculated from
equation (5.17) using elementary plane geometry, resulting in

Vol1
(
S2(a)∩ (y+L1)

)=p
2−p

2 · b

a

∣∣∣∣1

2
−〈

y,1n−3
〉∣∣∣∣ .

Substituting this back to (5.18), and considering the fact that L2 ∩Qn−1 =Qn−3, we obtain
that

(5.19) Voln−2
(
S2(a)|D

)= ∫
Qn−3

(p
2−p

2 · b

a
·
∣∣∣∣1

2
−〈

y,1n−3
〉∣∣∣∣)dy.

According to formula (5.8),

Voln−2
(
S2(a)|D

)=
∣∣∣∣∣∣
〈

u2(a)∣∣u2(a)
∣∣ ,dn−1,2

〉∣∣∣∣∣∣ ·Voln−2
(
S2(a)

)= p
2ap

1−b2
·Voln−2

(
S2(a)

)
,
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therefore, by (5.19),

(5.20) s2(a) =
p

1−b2

a
·
(
1− b

a
·
∫

Qn−3

∣∣∣∣1

2
−〈

y,1n−3
〉∣∣∣∣ dy

)
.

Thus, by substituting (5.16) and (5.20) back to (5.11), we derive that

Fn,2(a) = 1

2a(1−a2)
− 1

a(1−b2)
·
(
1− b

a
·
∫

Qn−3

∣∣∣∣1

2
−〈

y,1n−3
〉∣∣∣∣ dy

)
≥

≥ 1

2a(1−a2)
− 1

a(1−b2)
·
(
1− b

a
·
∫

Qn−3

(1

2
−〈

y,1n−3
〉)

dy
)
=

= 1

2a(1−a2)
− 1

a(1−b2)
·
(
1− b

a
· 1

2

)
=

=
p

1−2a2

2a2(1−a2)(n −3+2a2)
· (pn −2(1−a2)− (n −1)a

√
1−2a2

)
by (5.9). Since n ≥ 4 and a ≤ 1p

2
, this is guaranteed to be non-negative if

(n −2)
(
1−a2)2 ≥ (n −1)2a2(1−2a2)

which holds when a2 ≤ 1
n or a2 ≥ n−2

2n−3 = γ2
n . The latter condition implies that Fn,2(a) ≥ 0 for

every a ∈ [
γn , 1p

2

]
. □

6. ON THE QUESTION OF LOCAL EXTREMALITY

Supporting Conjecture 1.3, in the concluding section we demonstrate that for any n ≥ 4,
the critical direction constructed for the proof of Theorem 1.2 is not locally extremal on Sn−1

with respect to the central section function σ(v) on Sd−1. Magically, this will also prove to be
a consequence of Corollary 1.5.

More precisely, let ξn be the location of the first (and, as conjectured in Section 5, only)
local minimum of σ̂(a) defined by (5.2) on the interval

( 1p
n

, 1p
2

)
. According to the argument

at the beginning of Section 5, w = vn,2(ξn) is a non-diagonal critical direction, in fact, this is
a zero of Fn,2(.) defined by (5.4).

We will prove that w is not locally extremal. By the choice of w, we only have to exclude
the possibility of w being a local minimum. According to [7, Proposition 3.2.1], it suffices to
demonstrate that the Hessian H̃ of the Lagrange function (2.14) at w is not positive definite.
To that end, let q = (1,−1,0, . . . ,0) and consider the value qH̃qT . The proof of its negativity,
by (2.15), (4.1), (4.2) and (4.3), amounts to showing that

(6.1) q ·


β1(w) γ1,2(w) γ1,n(w)
γ2,1(w) β2(w) γ2,n(w)

γn,1(w) γn,2(w) βn(w)

 ·qT < 0,

equivalently, since β1(w) =β2(w) and γ1,2(w) = γ2,1(w),

(6.2) β1(w)+β2(w)−γ1,2(w)−γ2,1(w) = 2
(
β1(w)−γ1,2(w)

)< 0.
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Based on formulae (4.2) and (4.3),

β1(w) = 1

π

∫ ∞

−∞
sincn−2(ηn t ) · sinc(ξn t ) ·

( 2

ξ2
n

(sinc(ξn t )−cos(ξn t ))− t 2 sinc(ξn t )+ sinc(ξn t )
)

dt

γ1,2(w) = 1

π

∫ ∞

−∞
sincn−2(ηn t ) ·

(cos(ξn t )− sinc(ξn t )

ξn

)2
dt ,

where

ηn =
√

1−2ξ2
n

n −2
.

Hence on the left hand side of (6.2),

β1(w)−γ1,2(w) =
= 1

πξ2
n

∫ ∞

−∞
sincn−2(ηn t ) ·

(
(1+ξ2

n)sinc2(ξn t )−1
)

dt =

= 1

ξ2
n

(
(1+ξ2

n)σ(w)−
√

1

1−2ξ2
n
σ(dn−2)

)
.

(6.3)

By the choice of ξn , Theorem 1.1 implies that σ(w) < σ(dn). Hence (6.3) is bounded from
above by

1

ξ2
n

(
(1+ξ2

n)σ(w)−
√

1

1−2ξ2
n
σ(dn−2)

)
<

< 1

ξ2
n

(
(1+ξ2

n)σ(dn)−
√

1

1−2ξ2
n
σ(dn−2)

)
=

= 1

ξ2
n

(
(1+ξ2

n)
p

n Jn(0)−
√

n −2

1−2ξ2
n

Jn−2(0)
)
,

where (2.10) is used in the last step. Due to Corollary 1.5, this is bounded from above by

1

ξ2
n

(
(1+ξ2

n)
p

n · n

n +1
−

√
n −2

1−2ξ2
n

)
Jn−2(0) =

= 1

ξ2
n
· 1√

1−2ξ2
n

· n3/2

n +1
· Jn−2(0) ·

(√
1−2ξ2

n · (1+ξ2
n)−

p
n −2 · (n +1)

n3/2

)
.

(6.4)

Note that since ξn < 1p
2

, the first terms are positive, while the function
√

1−2ξ2 · (1+ ξ2) is

strictly monotone decreasing on the interval ξ ∈ [ 1p
n

, 1p
2

]
. Hence, (6.4) is maximal at ξ= 1p

n
,

where its value is precisely 0. As ξn > 1p
n

, this implies that (6.1) indeed holds.
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