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Abstract
It was recently proved that for finitely determined germs � : (C2, 0) → (C3, 0)
the number C(�) of Whitney umbrella points and the number T (�) of triple values
of a stable deformation are topological invariants. The proof uses the fact that the
combination C(�) − 3T (�) is topological since it equals the linking invariant of the
associated immersion S3 � S5 introduced by Ekholm and Szűcs. We provide a new,
direct proof for this equality. We also clarify the relation between various definitions
of the linking invariant.

Keywords Hypersurface singularities · Non-isolated singularities · Links of
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1 Introduction

1.1 Overview

Let� : (C2, 0) → (C3, 0) be a finitely determined (also calledA-finite) holomorphic
germ. In this case A-finiteness means that � is a stable immersion off the origin [15,
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22]. For these germs the number of the complex Whitney umbrella (cross cap) points
C(�) and the triple values T (�) of a stable holomorphic deformation are well-defined
analytic invariants [12, 13]. Recently in [1] J. Fernández de Bobadilla, G. Peñafort,
and J. E. Sampaio proved that these invariants are topological, moreover they are
determined by the embedded topological type of the image of �. One of the main
ingredients of their proof is the formula

L(�|S) = C(�) − 3T (�) (1.1.1)

from [17], which expresses the naturally topological Ekholm–Szűcs invariant (also
called triple point invariant or linking invariant) L(�|S) of the associated stable
immersion �|S : S � S3 � S5 in terms of C and T . However, the formula (1.1.1)
is proved in [17] in a rather complicated way, by using two Smale invariant formulas.
The main purpose of this article is to provide a new direct proof for this formula.

TheEkholm–Szűcs invariant L( f )of a stable immersion f : S3 � R
5 measures the

linking of the image with a copy of the double values, shifted slightly along a suitable
chosen normal vector field. In the literature different versions of the definition of L
can be found (see [2–4, 20]), whose relation is not completely clarified. We verify
their equivalence, i.e. L1( f ) = −L2( f ), based on their opposite behavior through
regular homotopies.

Although our proof of the main theorem (1.1.1) is self-contained, an independent
secondary goal of this article is to clarify the enigmatic relation between several
variants of the linking invariant L and other related invariants, used in the study of
generic C∞ real maps and immersions.

1.2 Structure of the article

In the Preliminaries (Sect. 2), we summarise the properties of finitely determined
holomorphic germs we will use. We outline the definitions of C and T and their
invariance for analytic, C∞ and topological left-right equivalence. We introduce the
associated immersion and we describe the double point structure of �.

In Sect. 3, we collect the different definitions of the Ekholm–Szűcs invariant L of
stable immersions S3 � S5 from the literature. We show that they agree up to sign
and we clarify that sign. Then we define an invariant for finitely determined germs
by applying L to the associated immersions, and we prove its topological left-right
invariance.

In Sect. 4, we provide a new, direct proof for the correspondence L = C − 3T . We
use local calculations near complex cross cap points and triple values.

Finally, Appendix 1 is a brief summary of the applications of L and another similar
linking invariant in the study of generic real maps and immersion theory. We collect
the most relevant results and clear up the context of this article, including the main
steps of the original proof of (1.1.1). Then we compare the new local calculation for
the complex cross cap points with an older one in [17], and clarify its consequences
for the Ekholm–Szűcs Smale invariant formula.
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2 Preliminaries

2.1 Invariants of a stabilization

A holomorphic germ � : (C2, 0) → (C3, 0) is finitely A-determined (briefly, finitely
determined), if there is an integer k such that the k-th Taylor polynomial of � deter-
mines it up to left-right equivalence, or equivalently, theA-codimension of� is finite.
ByMather–Gaffney criterion [15, 22],� is finitely determined if and only if its restric-
tion �|C2\{0} is stable. This means that a sufficiently small representative of �|C2\{0}
has only (1) regular simple points and (2) double values with transverse intersection
of the regular branches.

The only possible multigerms of a stabilization (stable deformation) of a holomor-
phic germ� : (C2, 0) → (C3, 0) are (1) regular simple points, (2) double values with
transverse intersection of the regular branches, (3) triple values with regular inter-
section of the regular branches and (4) simple Whitney umbrella (cross cap) points.
The Whitney umbrellas and the triple values are isolated points, up to analytic A-
equivalence they have local normal forms

Whitney umbrella (cross cap): (s, t) �→ (s2, st, t) (2.1.1)

Triple value:

⎧
⎨

⎩

(s1, t1) �→ (0, s1, t1)
(s2, t2) �→ (t2, 0, s2)
(s3, t3) �→ (s3, t3, 0)

(2.1.2)

The numbers C(�) of the cross caps and T (�) of the triple values are independent
of the stabilization, they are analytic invariants of the finitely determined germs �.
Both invariants were introduced by Mond [12, 13], they can be defined in algebraic
way as well, without referring to a stabilization, as follows.

Let Calg(�) be the codimension of the ramification ideal, which is the ideal in the
local ring O(C2,0) generated by the determinants of the 2 × 2 minors of the Jacobian
matrix of � : (C2, 0) → (C3, 0). Talg(�) is the codimension of the second Fitting
ideal associated with � inO(C3,0) [16]. If � is finitely determined, then both Calg(�)

and Talg(�) are finite, and any stabilization of � has C(�) = Calg(�) number of
cross caps and T (�) = Talg(�) number of triple values. The invariants T and C
appear in several different contexts, see for example [9–11, 14, 15, 19].

The analytic invariance of C and T means the following. Let �1 and �2 be finitely
determined germs, analytic A-equivalent to each other. That is, there exist germs of
biholomorphisms φ : (C2, 0) → (C2, 0) and ψ : (C3, 0) → (C3, 0) such that

�2 = ψ ◦ �1 ◦ φ (2.1.3)

holds, i.e. the diagram below commutes.

(C2, 0) (C3, 0)

(C2, 0) (C3, 0)

�1

ψ

�2

φ (2.1.4)
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Then

C(�1) = C(�2) and T (�1) = T (�2). (2.1.5)

In [17] it is proved thatC and T are C∞-invariants as well. That is, (2.1.5) holds also
for C∞ left-right equivalent germs, i.e. for two holomorphic finitely determined germs
for which (2.1.4) holds with some germs of C∞-diffeomorphisms φ : (R4, 0) →
(R4, 0) and ψ : (R6, 0) → (R6, 0). (Here, Cn and R

2n are naturally identified.)
The topological invariance of C and T would mean that (2.1.5) holds also for

topologically left-right equivalent germs, that is when we only require φ and ψ to be
germs of homeomorphisms. This invariance was an open question for a long time. In
[17] A. Némethi and the first author proved that the linear combination C − 3T is a
topological invariant. This follows from L = C−3T (formula (1.1.1))which expresses
a topological invariant (the Ekholm–Szűcs invariant) of the associated immersion,
see the next sections. In this article, we present a new direct proof of formula L =
C −3T . (We also prove the topological invariance of the Ekholm–Szűcs invariant, see
Proposition 3.2.2. This fact is very natural and has been implicitly used previously,
but according to the authors’ knowledge, it has not been published yet.)

In [1] J. Fernández deBobadilla, G. Peñafort, and J. E. Sampaio proved thatC and T
are topological invariants, moreover they are determined by the embedded topological
type of the image of �. A key ingredient of their proof is the topological invariance
of C − 3T , which follows from the formula L = C − 3T .

2.2 The associated immersion

Let � : (C2, 0) → (C3, 0) be a finitely determined germ. Such a germ, on the
level of links of the spacegerms (C2, 0) and (C3, 0), provides a stable immersion
�|S3 : S3 � S5 as follows. The preimage S := �−1(S5ε ) of the 5-sphere S5ε ⊂ C

3

around the origin, with a sufficiently small radius ε, is diffeomorphic to S3. The
restriction �|S : S � S5ε is the immersion associated with �. The regular homotopy
class of �|S is independent of all the choices. The immersions obtained by different
choices are regular homotopic to each other through stable immersions. See [17, 2.1.]
or [19, Subsection 1.1.2.].

2.3 The image and the double points

Write (X , 0) for (im(�), 0) and let f : (C3, 0) → (C, 0) be the reduced equation of
(X , 0). Note that (X , 0) is a non-isolated hypersurface singularity, except when � is
a regular map (see [17]). We denote by (�, 0) = (∂x1 f , ∂x2 f , ∂x3 f )

−1(0) ⊂ (C3, 0)
the reduced singular locus of (X , 0)—that is the closure of the set of double values
of �. Also, we denote by (D, 0) the reduced double point curve �−1(�) ⊂ (C2, 0).
The reduced equation of D is d : (C2, 0) → (C, 0). (In fact, the finite determinacy of
the germ � is equivalent with the fact that the double point curve D is reduced; see
e.g. [11].)
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Fig. 1 Notations of the various parts of the space germs

Let ϒ ⊂ S5ε be the link of �. It is exactly the set of double values of �|S. Let
γ = �−1(ϒ) ⊂ S3 denote the set of double points of �|S, that is, γ ⊂ S is the link
of D. All link components are considered with their natural orientations (Fig. 1).

(C2, 0) → (C3, 0)
∪ ∪

(D, 0) → (�, 0)
∪ ∪

γ = D ∩ S3 → ϒ = � ∩ S5ε

(2.3.1)

3 The Ekholm–Szűcs linking invariant

3.1 The Ekholm–Szucs invariant of stable immersions

The invariant L( f ) of a stable immersion f : S3 � R
5 measures the linking of a

shifted copy of the double values with the whole image of f . Different versions of the
definition can be found in the literature, for references see below. In this paragraph, we
review these definitions and prove their equivalence via their behavior along regular
homotopies. We present the whole argument in the simplest case, for immersions
S3 � R

5, although originally they were introduced for different levels of generality
(for other manifolds, higher dimensions) in [2–4, 20]. This discussion is an extended
version of the summery in [19, 2.2.2.].

A stable immersion f : S3 � R
5 has only simple values and double values with

transverse intersection of the two branches. Let γ ⊂ S3 be the double point locus
of f , that is γ = {p ∈ S3 | ∃p′ ∈ S3 : p 
= p′ and f (p) = f (p′)}. The locus
γ is a closed 1-manifold, i.e. a link in S3 with possibly more components. The map
f |γ : γ → f (γ ) is a 2-fold covering. γ is endowed with an involution ι : γ → γ

such that ι(p) 
= p and f (p) = f (ι(p)) hold for all p ∈ γ .
The first definition of L( f ) is from [2, 6.2.]. Let v be a vector field along γ tangent to

S3 and nowhere tangent toγ , i.e. v represents a section of the normal bundle T S3|γ /T γ
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of γ ⊂ S3. We also require that [γ̃ ] is 0 in H1(S3\γ, Z), where γ̃ ⊂ S3 is the result
of pushing γ slightly along v. Such a vector field v is unique up to homotopy, and for
instance each of the two vectors of a Seifert framing provides such a vector field. If v

is such a vector field, then the linking number lkS3(γ, γ̃ ) equals to 0, but the reverse
is not true, since lkS3(γ, γ̃ ) is the sum of the components of [γ̃ ] ∈ H1(S3\γ, Z). (All
the linking numbers appearing are considered with respect to the natural orientation
of the curves and submanifolds involved.) Let q = f (p) = f (ι(p)) be a double value
of f . Then w(q) = d f p(v(p)) + d fι(p)(v(ι(p)) defines a vector field w along f (γ )

that is nowhere tangent to the branches of f . In this sense w is a normal vector field
of f along f (γ ). Let f̃ (γ ) ⊂ R

5 be the result of pushing f (γ ) slightly along w, then
f̃ (γ ) and f (S3) are disjoint. The first invariant is the linking number

L1( f ) := lkR5( f̃ (γ ), f (S3)) (3.1.1)

(or equivalently, L1( f ) = [ f̃ (γ )] ∈ H1(R
5\ f (S3), Z) ∼= Z). Note that Ekholm

used an other notation: in [2, 2.2., 6.2.] our L1( f ) is denoted by lk( f ), and L( f ) is
defined as �lk( f )/3�.

The second definition is [4, Definition 11.], [20, Definition 2.2.]. It works only with
further assumptions, see Remark 3.1.3 below. The normal bundle ν( f ) of f is trivial,
since the oriented rank–2 vector bundles over S3 are classified by π2(SO(2)) = 0.
Any two trivializations are homotopic, since their difference represents an element in
π3(SO(2)) = 0. Let (v1, v2) be the homotopically unique normal framing of f , and
at a double value q = f (p) = f (ι(p)) define u(q) = v1(p)+ v1(ι(p)). u is a normal
vector field along f (γ ), and let f (γ ) ⊂ R

5 be the result of pushing f (γ ) slightly
along u. Then f (γ ) and f (S3) are disjoint. The invariant is the linking number (or
equivalently, the homology class)

L2( f ) := lkR5( f (γ ), f (S3)) = [ f (γ )] ∈ H1(R
5 \ f (S3), Z) ∼= Z. (3.1.2)

Note that the framing (v1, v2) can be replaced by an arbitrary nonzero normal vector
field v of f , since it can be extended to a framing whose first component is v.

Remark 3.1.3 Without further assumptions it is possible that u(q) is tangent to one of
the branches of f , hence it can happen that f (γ )∩ f (S3) 
= ∅. To avoid this problem
one has to choose a unit normal vector field v or has to assume that the intersection
of the branches is orthogonal, which can be reached by a regular homotopy through
stable immersions. In this paper all the calculations uses L1 and not L2.

The third definition is in [4, Definition 4.], see also [3, 4.5., 4.6.]. Let v be a
nonzero normal vector field of f along γ , that is, a nowhere zero section of ν( f )|γ .
Let [v] be the homology class represented by v in H1(E0(ν( f )), Z) ∼= Z, where
E0(ν( f )) denotes the total space of the bundle of nonzero normal vectors of f . Let
uv(q) = v(p) + v(ι(p)) be the value of the vector field uv along f (γ ) at the point

q = f (p) = f (ι(p)). Let f (γ )
(v)

be the result of pushing f (γ ) slightly along uv ,

then f (γ )
(v)

and f (S3) are disjoint. The invariant is
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Lv( f ) := lkR5( f (γ )
(v)

, f (S3)) − [v] = [ f (γ )
(v)] − [v], (3.1.4)

where [ f (γ )
(v)] ∈ H1(R

5\ f (S3), Z) ∼= Z.
By [3, Lemma 4.15.] Lv( f ) is well-defined, that is, Lv( f ) does not depend on

the choice of the normal field v. Moreover, if v is the restriction of a (global) normal
vector field of f to γ , then [v] = 0. Indeed, the restriction of the normal field of f
to a Seifert surface H of γ results a surface H ⊂ E0(ν( f )), whose boundary is the
image of v : γ → E0(ν( f )). Hence Lv( f ) = L2( f ).

The invariants L1, L2 are equal to each other with opposite sign. This follows from
the fact that they behave in an inverse way along regular homotopies, i.e. they change
with the samenumberwith opposite signwhen a stable regular homotopy steps through
first order instabilities: immersions with (1) one triple value (“triple point moves”) or
(2) a self-tangency (“self-tangency moves”). For definitions we refer to [2, 3]. The
proof of Proposition 3.1.5 is a result of a discussion with Tamás Terpai and András
Szűcs.

Proposition 3.1.5 (a) L1( f ) and L2( f ) are invariants of stable immersions. They
change by ±3 under triple point moves and do not change under self tangency
moves. In other words: if f and g are regular homotopic stable immersions, h :
S3 × [0, 1] → R

5 is a stable regular homotopy between them, then ±(Li ( f ) −
Li (g)) is equal to three times the algebraic number of the triple values of the map
H : S3 × [0, 1] → R

5 × [0, 1], H(x, t) = (h(x, t), t).
(b) In the above setup L1( f ) − L1(g) = −(L2( f ) − L2(g)).
(c) The three definitions are equivalent:

L1( f ) = −L2( f ) = −Lv( f ).

Proof Part (a) is proved for L1 in [2, Lemma 6.2.1.] and for L2 = Lv in [3, Theorem
1.].

For part (b), we compare the change of L1 and L2 through a triple point move. In
the proof of [2, Lemma 6.2.1.] Ekholm defines a local model of the triple point move
where L1 increases by 3. On the other hand, in the discussion preceding [3, Definition
6.3] he provides a convention tomeasure the change of L2. If we check this convention
on the previous local model, we obtain that L2 decreases by 3 through that triple point
move. Hence L1 and L2 changes in opposite ways at each triple point move.

Using part (a) and part (b), we prove part (c) as follows. Since L1 and L2 changes
in opposite way along a regular homotopy, L1 + L2 is a regular homotopy invariant.
Moreover L1 and L2 are additive under connected sum, see [3,Lemma5.2., Proposition
5.4.], [2, 6.5.]. It follows that L1 + L2 defines a homomorphism from Imm(S3, R

5) to
Z. If f : S3 ↪→ R

5 is an embedding, then L1( f ) = L2( f ) = 0, hence L1 + L2 is 0
on the 24-index subgroup Emb(S3, R

5) of Imm(S3, R
5) ∼= Z. It follows that L1 + L2

is 0 for every stable immersion, hence L1 = −L2. ��

We fix the following convention.
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Notation 3.1.6 L( f ) := L1( f ).

In the continuation of this article, L will be studied thoroughly, and a new direct
proof of L2( f ) = −L1( f ) will be provided.

3.2 Ekholm–Szucs invariant for finitely determined germs

The definition of L1( f ) and L2( f ) of immersions f : S3 � R
5 cannot be applied

directly for �|S : S � S5. In fact, the shifted copy of υ ∈ S5 by a normal vector
field is a curve in C

3 = R
6, but not exatly in S5. To solve this technical difficulty we

recall one of the definitions of the linking number.

Definition 3.2.1 Let Nn, Mm ⊂ Sk = ∂Bk+1 be two closed oriented submanifolds
with dimensions n + m + 1 = k. Choose any oriented homological membranes
M̃, Ñ ⊂ Bk+1 for them, that is, M̃ and Ñ are singular chains in Bk+1 of dimensions
n + 1, respectively m + 1, with coefficients in Z, whose boundaries are ∂ Ñ = N ,
∂ M̃ = M . Then the linking number lkSk (N , M) of N and M in Sk is defined as the
intersection number intBk+1(M̃, Ñ ) of M̃ and Ñ in Bk+1.

For the definition of L1(�|S) consider grad(d), the conjugate of the gradient vector
field of d defined on D. Its restriction to γ ⊂ S is a representative of the homotopi-
cally unique Seifert framing of γ . Then the sum of the two copies of d�(grad(d))

is a nonzero normal vector field along � \ {0}, which extends to the origin with
0. Let �̃ be a copy of � shifted along this vector field. Define ϒ̃ := �̃ ∩ S5 and
L1(�|S) = lkS5(ϒ̃,�(S)). The invariant L1(�|S) is equal to the intersection num-
ber of any pair of membranes in B6 with boundaries ϒ̃ and�|S. Especially, L1(�|S)

is the intersection number of �̃ and X . Unfortunately, however, they intersect each
other only at the origin, which is a singular point of possibly both membranes, hence
the intersection number cannot be calculated directly. Instead, we will repeat the
whole procedure with the analytic stabilization of �, and that will lead to the formula
L1(�|S) = C(�) − 3T (�).

L2(�|S) can be defined in a similar way, by using ∂s� × ∂t� as a representative of
the homotopically unique global normal field of �|S. We can define the shifted copy
�̃(2) of�, and ϒ̃(2) := �̃(2)∩S5. However, byRemark 3.1.3, we cannot guarantee that
ϒ̃(2) and�(S) are disjoint. Although the formula L2(�|S) = 3T (�)−C(�) can be
supported by local calculation, the precise proof in this way is technically complicated.
On the other hand, L2 can be computed directly for the Whitney umbrella to support
that L1 = −L2 holds, see Appendix A.

The topological invariance of L(�|S) = L1(�|S) is almost trivial, since the
linking number is a topological (homological) invariant. However, its proof has been
nowhere explained in detail.

Proposition 3.2.2 L(�|S) is a topological invariant of �. That is if �1 and �2 are
finitely determined germs topologically A-equivalent to each other (see Sect. 2.1),
then

L(�1|S1) = L(�2|S2). (3.2.3)
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Proof The topological equivalence of the germs means that there exist germs of
homeomorphisms φ : (C2, 0) → (C2, 0) and ψ : (C3, 0) → (C3, 0) such that
�2 = ψ ◦ �1 ◦ φ holds. The double point curves (D1, 0) = (d−1

1 (0), 0) of �1 and
(D2, 0) = (d−1

2 (0), 0) of �2 are topologically equivalent germs of curves, in fact,
D1 = φ(D2). Their links γ1, γ2 are of the same type as links in S1 ∼= S2 ∼= S3.

Although the normal vector field grad(d2) along γ2 cannot be pushed forward by
φ since it is not necessarily differentiable, the slightly pushed out copy γ̃2 can be. The
imageφ(γ̃2) determines a normal vector field denoted byφ∗(grad(d2)) along γ1, which
is homotopic to grad(d1) since both vector field represent theSeifert framing.Hence the
sumof the two copies of d�1(grad(d1)) and d�1(φ∗(grad(d2))) are homotopic normal
fields alongϒ1, thus the pushed out copies ϒ̃1 and ϒ̃

(2)
1 ofϒ1 along these vector fields

are homotopic in S5\�1(S1) = S5\�1(φ(S2)). Therefore, lkS5(�1(S1), ϒ̃1) =
lkS5(�1(S1), ϒ̃

(2)
1 ). Finally, applying ψ to the whole configuration does not change

the linking numbers, and ψ(�1(S1)) = �2(S2), ψ(ϒ1) = ϒ2, ψ(ϒ̃
(2)
1 ) = ϒ̃2. ��

Remark 3.2.4 L( f ) can be defined for stable immersions f : M3 � R
5 of closed

oriented 3-manifolds M3, with trivial normal bundle, see [20, Definition 2.5.]. Espe-
cially M3 can be a disjoint union of some copies of S3. In this way for multigerms
� = (�i ) : �(C2, 0)i → (C3, 0) the invariant L(�|M3) is defined, where M3 = �Si

with Si = �−1
i (S5ε ). We will use this extension of L for ordinary triple values.

Remark 3.2.5 Recall Remark 2.2.7 from [19]. L can be defined also for nonstable
immersions which do not have triple values, by the following argument. Any immer-
sion f admits a small perturbation by regular homotopy to a stable immersion f̃ , and
if f does not have triple values, then any two stable perturbations can be joined with a
regular homotopy without stepping through a triple point. Thus L( f ) can be defined

as L( f̃ ) of any small stable perturbation f̃ of f .
Consequently L(�|S) can be defined not only for finitely determined germs but

for germs with finite C and T , since for these germs �|S is not a stable immersion,
but it does not have triple points. Moreover the equation (1.1.1) holds for these germs
too, since the proof uses an analytic stabilization of�, not� itself. See also Corollary
3.6.3., Remark 3.6.4. in [19] or [17]. An interesting example is �(s, t) = (s2, t2, st),
which is the double cover of the A1 singularity. See Sect. 3.7.2. of [19].

However it is not clear for these germs, how can L(�|S) be computed directly
from the topology of �, without stabilizing it.

4 Main theorem

4.1 Proof of themain theorem

Theorem 4.1.1 For a finitely determined holomorphic germ � : (C2, 0) → (C3, 0)

L(�|S) = C(�) − 3T (�).
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308 G. Pintér, A. Sándor

Proof Let �λ : Bλ → B6
ε be an analytic stabilization of �0 = �. Here, Bλ =

�−1
λ (B6

ε ) with boundary ∂Bλ = Sλ = �−1
λ (S5ε ).

Decreasing λ to 0 induces a diffeomorphismBλ � B, respectivelySλ � S, and a
regular homotopy through stable immersions between�λ|Sλ

and�|S. It implies—as
recognised in [17, Section 9]—that

L(�|S) = L(�λ|Sλ
). (4.1.2)

We denote the corresponding double point sets respectively by Dλ, �λ, γλ, ϒλ, as
defined in Sect. 3.2. The reduced equation of Dλ is dλ : Bλ → C.

We are going to count L(�λ) = L1(�λ). According to Definitions 3.1.1 and 3.2.1,
we want to construct membranes bounding �λ(Sλ) and ϒ̃λ, and count their intersec-
tion number. The first membrane is simply the whole image �λ(Bλ).

For the second membrane, consider the normal vector field w = grad(dλ) on
Dλ ⊂ B, its restriction represents the Seifert framing on γλ ⊂ Sλ. The pushforward
d�λ(w) gives a double valued vector field at each point of �λ. We add up the two
vectors pointwise and pushout �λ slightly along the obtained vector field v to get �̃λ.
(Notice that at triple points the vector field v has three values, but they are all zeroes.)

By the construction in Sect. 3.2, the boundary is ∂�̃λ = ϒ̃λ and

L(�λ|Sλ
) = int(�λ(Bλ), �̃λ). (4.1.3)

As the two components of v are tangent to the two branches of the image at a double
point, the pushout �̃λ has no intersection point with the whole image near an ordinary
double point.

Besides double points, the only two types of singular points that may occur in
the stabilized map �λ are Whitney umbrella points and triple points. With the above
remark, it means that we only have to count the intersection points near these points.

Umbrella points and triple points are left-right equivalent to the standard copies of
them, see (2.1.1) and (2.1.2). In the following two lemmas,we calculate the intersection
numbers for these normal forms—which are, in fact, the Ekholm–Szűcs invariants of
these (multi)-germs. After stating the lemmas we will deduce the global invariant by
gluing these pieces together to complete the proof. ��

Lemma 4.1.4 The Ekholm–Szűcs invariant of the standard Whitney umbrella

�(s, t) = (s2, st, t)

is

L(�|S) = 1

where S = �−1(S5ε ).
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Lemma 4.1.5 The standard triple value is the regular intersection of three branches.
We parametrize it the following way

�

⎧
⎨

⎩

�1 : (s1, t1) �→ (0, s1, t1)
�2 : (s2, t2) �→ (t2, 0, s2)
�3 : (s3, t3) �→ (s3, t3, 0)

(The pairs (si , ti ) are local coordinates around the three preimages of the triple point.)
The Ekholm–Szűcs invariant of this multigerm is

L(�|S) = −3.

The above results suggest that each umbrella point and triple point contributes 1
and respectively −3 to the global Ekholm–Szűcs invariant. This is, in fact, the case
and the brief argument is the following. The (multi)germs at the umbrella and triple
points of �λ are left-right equivalent of their standard form, hence, by the left-right
invariance of L (see 3.2.2), the membrane of �λ shall be replaced locally by the one
coming from the standard forms.

More precisely, let us take an umbrella point or a triple value pi in C
3 and take a

small balls Ui ⊂ C
3 around pi and Vi ⊂ C

2 around �−1
λ (pi ) and biholomorphisms

φi : (Ui , pi ) → (C3, 0) and ψi : (C2
r , 0r ) → (Vi ,�

−1
λ (pi )) so that

φi ◦ �λ ◦ ψi : (C2
r , 0r ) → (C3, 0)

is a standard umbrella (respectively triple point) at 0r . (Here we use the notation for
multi germs: (C2

r , 0r ) = ⊔r
i=1(C

2, 0) with r = 1 for a Whitney umbrella point and
r = 3 for a triple value pi .)

We pull back the two membranes of the standard Whitney umbrella (resp. triple
value) via φi to define new membranes inside Ui . On one hand we obtain another
pushout of �λ instead of �̃λ, let us denote it by Mi ⊂ Ui . On the other hand, we get
back a piece of the other original membrane, �λ(Bλ) ∩Ui .

Taking a look at the boundary of Ui , we find that both �̃λ ∩ ∂Ui and Mi ∩ ∂Ui

have the same linking number with �λ(Bλ) ∩ ∂Ui : that is the L1 invariant of the
umbrella point or the triple point. Therefore we can construct a collar Ni that connects
�̃λ ∩ ∂Ui and Mi ∩ ∂Ui in ∂Ui , in a way that Ni has an intersection number 0 with
�λ(Bλ) ∩ ∂Ui .

Gluing all these pieces together, we obtain a membrane replacing �̃λ:

M = (�̃λ \
⋃

i

Ui ) ∪
⋃

i

(Ni ∪ Mi ). (4.1.6)

The intersection number int(�λ(Bλ), Mi ) equals 1 for an umbrella point and −3
for a triple value, int(�λ(Bλ), Ni ) = 0 and int(�λ(Bλ), (�̃λ\⋃

i Ui )) = 0, hence

L(�|S) = int(�λ(Bλ),M) = C(�) − 3T (�). (4.1.7)
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4.2 Proofs of the lemmas

Proof of Lemma 4.1.4 Consider the standard Whitney umbrella �(s, t) = (s2, st, t).
The closure of the set of double values of � is

� = {y = z = 0} = {(x, 0, 0) : x ∈ C}.

This is the image of the double point curve D = {t = 0} = {(s, 0) : s ∈ C}. The link
of D is γ and�(γ ) = ϒ . We compute the linking number lkS5(ϒ̃,�(S)) by defining
membranes bounded by ϒ̃ and �(S) and taking their intersection multiplicity.

Let the membrane of ϒ̃ be the shifted copy of the curve of double values �̃. More
precisely, we push� out from X = im(�) along the pushforward d�(v) of the vector
field v(s, 0) = grad(t)(s, 0) = (0, 1) that is normal to D. The differential of our germ
is

d�(s, t) =
⎛

⎝
2s 0
t s
0 1

⎞

⎠

making the pushforward of the normal vector field

d�(v(s, 0)) =
⎛

⎝
2s 0
0 s
0 1

⎞

⎠ ·
(
0
1

)

=
⎛

⎝
0
s
1

⎞

⎠ .

At any double point (x, 0, 0) ∈ �, we have two preimages

�−1{(x, 0, 0)} = {(√x, 0), (−√
x, 0)}.

The pushforward of the normal vectors at these points are d�(v(±√
x, 0)) =

(0,±√
x, 1), hence the sum of the two vectors provides the vector field

w(x, 0, 0) =
⎛

⎝
0√
x
1

⎞

⎠ +
⎛

⎝
0

−√
x

1

⎞

⎠ =
⎛

⎝
0
0
2

⎞

⎠

along � \ {0}. The vector field w can be extended continuously to the origin as it is
constant. Therefore, when we push the double point out by w, we obtain (x, 0, 0) +
δw(x, 0, 0) = (x, 0, 2δ) for a some δ � ε.

Thus the resulting membrane is

�̃ = {(x, 0, 2δ) : x ∈ C} ∩ Bε.

On the other hand, let the membrane of �(S) be simply the image of the ball
�(B) = X ∩ Bε . That is

{(x, y, z) : xz2 = y2} ∩ Bε.
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Fig. 2 Pushing out � with the sum of the two pushforward vector fields

The two membranes �̃ and X ∩ B intersect transversely at (0, 0, 2δ). The sign
of the intersection is positive as the two membranes have the complex orientations
(Fig. 2). ��

Proof of Lemma 4.1.5 Consider the standard triple value

�

⎧
⎨

⎩

�1 : (s1, t1) �→ (0, s1, t1)
�2 : (s2, t2) �→ (t2, 0, s2)
�3 : (s3, t3) �→ (s3, t3, 0)

In this case, the set of double values is

� = {(x, 0, 0)} ∪ {(0, y, 0)} ∪ {(0, 0, z)}

with x, y, z ∈ C. The curve � has three components meeting at the origin. Also, �
has preimages in each two-dimensional chart:

Di = {(si , 0)} ∪ {(0, ti )} = {si ti = 0}

for i ∈ {1, 2, 3}.
The membrane we pull over X ∩ S5 is again the whole of the image X ∩ B6. Note

that X ∩ S5 is diffeomorphic to the disjoint union of three copies of S3. Thus the
membrane consists of three components Xx = {x = 0} ∩ B, Xy = {y = 0} ∩ B, and
Xz = {z = 0} ∩ B, meeting at the origin.

Now, we describe the membrane for ϒ̃ . Let us see what happens if we push out the
double values using the sum of the normal vector fields in the preimage—as before.

The normal vector fields corresponding to Di = {si ti = 0} are vi (si , ti ) =
grad(si ti ) = (ti , si ). The differentials of the three map germs are

d�1(s1, t1) =
⎛

⎝
0 0
1 0
0 1

⎞

⎠ , d�2(s2, t2) =
⎛

⎝
0 1
0 0
1 0

⎞

⎠ , d�3(s3, t3) =
⎛

⎝
1 0
0 1
0 0

⎞

⎠ .
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Let us showhowour constructionworks on one component of�.We denote Xy∩Xz =
{(x, 0, 0) : x ∈ C} by �x . A point of �x has, again, two preimages: �−1

2 (x, 0, 0) =
(0, x) ∈ Cs2,t2 and �−1

3 (x, 0, 0) = (x, 0) ∈ Cs3,t3 . The corresponding normal vectors
are v2(0, x) = (x, 0) and v3(x, 0) = (0, x). When we push these vectors forward with
the respective differentials, we obtain

d�2(v2(0, x)) =
⎛

⎝
0 1
0 0
1 0

⎞

⎠ ·
(
x
0

)

=
⎛

⎝
0
0
x

⎞

⎠

and similarly d�3(v3(0, x)) = (0, x, 0)T . Hence, by pushing the initial point (x, 0, 0)
out with the sum of these, we reach (x, 0, 0)+ δ(0, 0, x)+ δ(0, x, 0) = (x, δx, δx) ∈
�̃x .

Because of the cyclic symmetry of the presentation, the other two components
behave similarly, resulting in the membrane

�̃ = {(x, δx, δx)} ∪ {(δy, y, δy)} ∪ {(δz, δz, z)} =: �̃x ∪ �̃y ∪ �̃z

for some x, y, z ∈ C with �̃ being in B. One problem with this membrane is that each
vector field vanishes at the origin hence in the end we have not moved the point of
� at the origin. Thus �̃ meets X only at the origin but with some multiplicity that is
somewhat difficult to count. Fortunately, each pair of components (Xα, �̃β) intersect
transversally. We only need to compute the sign of each such intersection and sum
them up.

Take �̃x = {(x, δx, δx)} first. It intersects Xx = {x = 0} with positive sign, and
the other two with negative—as the corresponding coordinate functions are antiholo-
morphic. The membranes �̃y and �̃z behave similarly. We can summerize this in the
formula

int0
(
�̃α, Xβ

) =
{+1 if α = β

−1 if α 
= β.

Therefore the total intersection number is

int0
(
�̃, X

) =
∑

α,β∈{x,y,z}
int0

(
�̃α, Xβ

) = 3 · 1 + 6 · (−1) = −3.

��
Remark 4.2.1 Note that we could alsomove the components of �̃ away from the origin
in order to see the nine points of intersection apart. A perturbation of the form

�′ = {(x − ε1, δ(x − ε2), δ(x − ε3))} ∪ ...

with |εi | � ε would do so. In turn, these modifications would not change the topology
of the membrane on the boundary of B.
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5 Final remark about future plans

This article has a continuation in progress, in which the relation of L( f ) with the
surgery coefficients of theMilnor fiber boundary of (Im(�), 0) ⊂ (C3, 0)—described
in [18]—will be explained. In that paper we will also provide a new direct proof for
part (c) of Proposition 3.1.5.
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Appendix A. Outline of related results

The aim of this section is to clarify the role of L and another related linking invariant
in the study of generic C∞ real maps and immersions, and clear up the context of our
result. We also clear up some sensitive sign ambiguities related to the Ekholm–Szűcs
Smale invariant formula.

The other linking invariant l is defined for real generic maps. While L measures
the linking of the double values of an immersion with the image of it, l measures the
linking of the set of singular points in the target of a generic map with the image of
the map.

The Ekholm–Szűcs formula for the Smale invariant of an immersion uses both link-
ing invariant, L of the immersion and l of a singular Seifert surface of the immersion.
The original proof of our main formula (1.1.1) is based on the Ekholm–Szűcs Smale
invariant formula and the ‘holomorphic Smale invariant formula’ of Némethi and the
first author.
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Fig. 3 Mindmap for the original proof of (1.1.1)

A.1 A linking invariant of real generic maps

TheZ2 or integer valued invariant l( f ) is defined for real genericmaps f : M2k → R
3k

of closed smooth manifolds M2k . It measures the linking of a pushout copy of the
singular values with the image of the map as follows. (See, for reference, [4, 5, 20].)

Such a map f has (1) regular simple points, (2) double values with transverse
intersection of the regular branches, (3) triple values with regular intersection of the
regular branches and (4) singular values. The dimension of the set of double values is
k, and the triple values are isolated. The set of singular values is a k − 1 dimensional
family of generalized real Whitney umbrella points, whose local form is

fwh : (R × R
k, 0) → (R × R

k × R
k, 0), (A.1.1)

fwh(s, t) = (s2, st, t). (A.1.2)

The closure �( f ) of the set of double values of f is an immersed manifold with
boundary. �( f ) has triple self intersection at the triple values of f and the boundary
of �( f ) is the set of the Whitney umbrella points (singular values) �( f ) = ∂�( f ).

The invariant l( f ) is defined as the linking number

l( f ) = lkR3k (�
′( f ), f (M3k)) (A.1.3)

of the copy �′( f ) of �( f ) shifted slightly along the outward normal field of �( f ) ⊂
�( f ) and the image f (M3k) of f .

In general l( f ) and the number of triple values is defined only modulo 2—because
the lack of orientation on �( f )—and these Z2 versions are denoted by l2( f ) and
t2( f ) respectively. If k is even and M2k is oriented, then l( f ) is a well defined as an
integer, [5]. In these cases each triple value can be given a sign, and the sum of these
signs is the integer t( f ).

Ekholm and Szűcs expressed some characteristic numbers of M2k in terms of l and
t . Namely, in [5] they proved the equality

l2( f ) + t2( f ) = w2
k[M] + wk−1wk+1[M] (A.1.4)
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inZ2,where the terms on the right hand side are products of the normal Stiefel-Whitney
classes of M2k evaluated on the fundamental class [M] of M2k .

For k = 2n and M2k oriented, the equation of integers

3t( f ) − 3l( f ) = pn[M] (A.1.5)

is proved in [4], where pn[M] is the n-th normal Pontryagin number of M4n . By using
Hirzebruch signature theorem, for k = 2 one can rewrite the formula (A.1.5) as

l( f ) − t( f ) = σ(M4), (A.1.6)

where σ(M4) is the signature of M4, see [4].
The proofs of these formulas use methods similar to that of our proof. Namely,

each of them considers a set of certain type singularities of a map, and deals with
the pushout copy of it along a suitably defined normal vector field, then counts the
intersection point, see for example [4, Lemma 3]. When proving the formula (A.1.4)
in [5, Theorem 1], the set of double values of the map f : M2k → R

3k is shifted
slightly along a vector field, which is defined as the sum of the two vectors coming
from a suitable normal vector field of the double point set in the source. At this rate it
is even more similar to the method we use to prove equation (1.1.1).

Despite the similarity inmethods, none of the equations (A.1.4), (A.1.5) and (A.1.6)
can be directly applied for the setup of this article, that is for holomorphic stabilizations
�λ of holomorphic germs� : (C2, 0) → (C3, 0), for the following reasons. First, the
domain of �λ is a 4-ball, which is not a closed manifold, moreover it is topologically
trivial. Second, the stabilization �λ is stable as a holomorphic map, but it is not stable
(not generic) in theC∞-sense, considered as amap fromR

4 toR
6. Indeed, each isolated

complex cross cap point can be further deformed to obtain a stable real C∞ map with
a circle of generalized real cross cap points, see [17]. Also, in contrast to the real
case, the complex cross cap points are not boundary points of the set of double values.
Third, one could try to relate the above results to the immersion on the boundary in our
case. Then, however, the dimensions do not match and these immersions do not have
triple points or singular points whatsoever. What is more, the Smale invariant formula
(A.2.3) hints that t( f ) and l( f ) should really be considered for the membranes and
not the boundary.

A.2 Smale invariant formulas

If M4 is an oriented 4-manifold with boundary, the ‘defect’ of the equation (A.1.6)
provides information about the restriction of the map to the boundary. In the simplest
case, the manifold M4, with boundary ∂M4 diffeomorphic with S3, is mapped to the
upper half space R

6+ = {(x1, . . . , x6) ∈ R
6 | x6 > 0} with a generic map

f̂ : M4 → R
6+, (A.2.1)
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whose restriction is assumed to be a stable immersion

f := f̂ |∂M4 : S3 � R
5. (A.2.2)

In this case f̂ is referred as a singular Seifert surface of the immersion f .
Recall that the immersions of S3 to R

5 are classified up to regular homotopy by
an integer valued invariant called Smale invariant and denoted by �. That is, two
immersions f1, f2 : S3 � R

5 are regular homotopic if and only if �( f1) = �( f2),
and for every integer n ∈ Z there is an immersion g : S3 � R

5 with Smale invariant
�(g) = n. The Smale invariant can be constructed in many different ways, see for
example [7, 17, 19, 21]. Eventually the Smale invariant �( f ) is constructed as an
element of the homotopy group π3(SO(5)), which is isomorphic with the infinite
cyclic group (Z,+).

Then by [4] the Smale invariant �( f ) of a stable immersion f : S3 � R
5 can be

expressed with the invariants of a singular Seifert surface f̂ : M4 → R
6+ and L as

�( f ) = 1

2
(3σ(M4) + 3t( f̂ ) − 3l( f̂ ) + L( f )). (A.2.3)

Several variants and generalizations of the Ekholm–Szűcs formula (A.2.3) appeared
in the literature, see [6–8, 20] or the brief summary of these results in [19, Ch.2].

For immersions �|S : S ∼= S3 � S5 associated with finitely determined holo-
morphic germs � : (C2, 0) → (C3, 0) Némethi and the first author [17] proved the
‘holomorphic Smale invariant formula’

�(�|S) = −C(�). (A.2.4)

The proof of this formula is self-contained in the sense that it is independent of the
above results.

A singular Seifert surface for �|S can be constructed from a holomorphic stabi-
lization �λ of � by a canonical C∞ stabilization of the complex Whitney umbrella
points. In this way the Ekholm–Szűcs formula (A.2.3) can be applied. By comparing
it with the equation (A.2.4) and using calculations on concrete examples, [17] proves
the main theorem (1.1.1) of this article, namely

L(�|S) = C(�) − 3T (�). (A.2.5)

The evolution of these results is summed up by Fig. 3.
However, the proof of each Smale invariant formula is rather complicated, and the

identification of the signs of the terms are widely nontrivial (see the next paragraph).
Furthermore the correspondence (1.1.1) becomes important in the proof of the topo-
logical invariance of C and T . This was the motivation to publish a new direct proof
for (1.1.1), which does not use any of the above results—although the techniques
are similar to those ones used in their proofs. An additional benefit of our proof is
the simple identification of the sign: (1.1.1) is sign correct with the L1 version of L .
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This fact has further consequences for the singular Seifert surface formula (A.2.3) as
explained in the next paragraph.

A.3 Remarks on sign and orientation

This paragraph is a brief summary of the issues related to the signs in the Smale
invariant formulas. We unravel an imprecision in [4] and [20]: although the linking
invariant L is defined in these articles using the construction denoted by L2 in Sect. 3.1,
the Smale invariant formula (A.2.3) is satisfied by using L = L1.

The Smale invariant does not have a canonical sign, since by default it is an element
of the group π3(SO(5)) ∼= (Z,+). To identify this group with Z, one has to fix a
generator inπ3(SO(5)) and declare it to be+1. That was done in [17], and the formula
(A.2.4) is sign-correct with that fixed generator. In other words it is proved that the
Smale invariant of the immersion associated with the complex Whitney umbrella is
−1 times the fixed generator.

The formula (A.2.3) is proved in [4] without considering the sign of the Smale
invariant. More precisely, they proved that the right hand side of the formula is a
complete regular homotopy invariant, therefore it must agree with the Smale invariant
up to sign. Nevertheless it is shown in [17] that the foruma (A.2.3) is correct with the
fixed generator of π3(SO(5)).

However the sign of L is not specified directly in [17, 19]. It is chosen to satisfy the
Ekholm–Szűcs formula (A.2.3) with this choice. For example, the invariant L(�|S)

of the complex Whitney umbrella �(s, t) = (s2, st, t) is computed in [17, 10.1.] up
to sign by using the ‘L2’ construction (see also [19, 3.7.1]), resulting L(�|S) = ±1.
Using the sign convention adapted to the formula (A.2.3), L(�|S) of the complex
Whitney umbrella is declared to be +1, and L = C − 3T is concluded with this sign
convention.

Now, from the proof of Lemma 4.1.4 it is clear that L1(�|S) = +1 for theWhitney
umbrella, hence L2(�|S) = −1 by part (c) of Proposition 3.1.5. Therefore to make
the Ekholm–Szűcs Smale invariant formula (A.2.3) correct, L has to defined to be L1,
in contrast to the definitions given in [4] and [20]. Note that by changing the sign of L
in the formula not only the sign of the right hand side changes, but the absolute value
changes as well.

On the other hand, in the calculation of L2(�|S) of the complexWhitney umbrella
in [17, 10.1.] the sign of the intersection point can be determined directly. Both
membranes (�(B) and H in [17] and [19]) has complex (but not holomorphic)
parametrization. These parametrizations induce the correct orientations in the sense
that the induced orientation on the boundary agrees with the original orientation of
the boundary. A direct calculation of the determinant shows that the intersection point
has negative sign. Hence L2(�|S) = −1 can be discovered directly, which is equal
to −L1(�|S) according to Proposition 3.1.5.

Remark A.3.1 By default, the orientation induced on the boundary of an oriented man-
ifold depends on a choice of a convention, called ‘boundary convention’, for example
‘outward normal first’. Although, at first sight, the boundary convention seems to play
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a key role in the identification of the signs of the Smale invariant formulas and L , this
is not the case.

The correct sign of the formulas (A.2.3) and (A.2.4) are independent of the choice
of the boundary convention. Briefly speaking its reason is that in the construction of the
Smale invariant S3 is considered as the boundary of the 4-ball in R

4. By changing the
boundary convention, the orientation of the boundary of the singular Seifert surface
changes, as well as the orientation of S3 = ∂B4 in the construction of the Smale
invariant, but the value of the Smale invariant and the right hand side of the formulas
remain the same. See [17] or [19, Ch.3] for details.

The invariant L of finitely determined holomorphic germs � is also independent of
the choice of the boundary convention.Recall that L(�|S) is defined as the intersection
number of two oriented ‘membranes’ in B6 whose boundaries are�(S) and ϒ̃ = ∂�̃

respectively. Although�(S) and ϒ̃ = ∂�̃ are originally oriented as the boundaries of
�(B) and �̃ after choosing a boundary convention, all in all, the correct orientations
of the membranes do not depend on the choice of the boundary convention. Indeed,
the correct orientation means that the membrane induces the same orientation on the
boundary as the original membrane, whichever boundary convention is used. Cf. [17,
19].
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