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Abstract
We study the set ̂𝑀 of framed smoothly slice links
which lie on the boundary of the complement of a
1-handlebody in a closed, simply connected, smooth
4-manifold 𝑀. We show that ̂𝑀 is well defined and
describe how it relates to exotic phenomena in dimen-
sion four. In particular, in the case when 𝑋 is a smooth
4-manifold-with-boundary, with a handle decomposi-
tions with no 1-handles and homeomorphic to but not
smoothly embeddable in 𝐷4, our results tell us that 𝑋
is exotic if and only if there is a link 𝐿 ↪ 𝑆3 which
is smoothly slice in 𝑋, but not in 𝐷4. Furthermore,
we extend the notion of high genus 2-handles attach-
ment, introduced by Hayden and Piccirillo, to prove
that exotic 4-disks that are smoothly embeddable in 𝐷4,
and therefore possible counterexamples to the smooth
4-dimensional Schönflies conjecture, cannot be distin-
guished from 𝐷4 only by comparing the slice genus
functions of links.

MSC 2020
57K40, 57Kxx (primary)

1 INTRODUCTION

The smooth 4-dimensional Poincaré conjecture 4SPC (asserting that any smooth 4-manifold
homeomorphic to the 4-sphere 𝑆4 is diffeomorphic to it) is one of the most important and
well-studied problems in topology. The difficulty of the problem stems from the fact that
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322 CAVALLO and STIPSICZ

currently we do not have smooth invariants directly applicable to 4-manifolds homotopy
equivalent to 𝑆4.
Indeed, the smooth invariants distinguishing exotic structures on closed 4-manifolds seem to

govern the minimal genera of surfaces representing fixed second homology classes; obviously
this distinction can only work if the manifolds at hand have rich second homology. The idea can
be modified to manifolds with boundary: Consider knots (or links) in the boundary 3-manifold
and study their ‘slice’ genera, that is, the genera of smooth surfaces embedded in the 4-manifold
with the fixed knot or link as boundary. This approach can be used even for closed manifolds by
deleting a small open disk neighbourhood of a point and working with the resulting 4-manifold
with 𝑆3 boundary. The first question along these lines is the existence of a knot or link which has
different slice genus for different smooth structures on the 4-manifold. The next question is how
to detect these different genera. In this work we will focus on the first question above, and see
some conditions under which this strategy cannot work, and others where the desired knot or
link does exist. (There are important recent developments regarding invariants of knots and links
in 𝑆3 and in more general 3-manifolds potentially detecting exoticness in this way, see [12], for
example.)
It is known that the existence of an exotic 4-sphere (a counterexample to 4SPC) is equivalent to

the existence of an exotic 4-disk, that is, a smooth 4-manifold with boundary 𝑆3 which is home-
omorphic to the 4-disk 𝐷4, but not diffeomorphic to it. For such 4-manifolds we have the hope
to be able to distinguish them based on the feature that knots (and links) might have different
slice genera in them, see [4, 12, 13]. This observation leads us to the following definition. (We
fix the convention that every manifold is oriented and diffeomorphisms, denoted by ≅, between
manifolds always preserve the given orientations.)

Definition 1.1. Suppose that𝑋 is a compact, simply connected, smooth 4-manifoldwith 𝜕𝑋 = 𝑆3.
Let 𝑋 denote the set of smoothly slice links in𝑋, that is, the set of those links in 𝑆3, which bound
smoothly, disjointly and properly embedded 2-disks in 𝑋.

In trying to understand potential exotic𝐷4s, we can divide them into two groups (as it has been
done for exotic ℝ4s).

Definition 1.2. Suppose that 𝑋 is a possibly exotic 4-disk. 𝑋 is small, if there is a smooth
embedding 𝑓 ∶ 𝑋 ↪ 𝐷4; otherwise 𝑋 is large.

Our first observation shows that small exotic 4-disks cannot be detected using slice links.

Proposition 1.3. Suppose that 𝑋 is a small exotic 4-disk. Then 𝑋 and 𝐷4 are equal.

Remark 1.4. The existence of a small exotic 4-disk is equivalent to the failure of the well-studied
smooth 4-dimensional Schönflies conjecture, asserting that a smoothly embedded 3-sphere in 𝑆4
bounds a smoothly embedded 𝐷4.

Based on the result of Proposition 1.3 one can hope that large exotic 𝐷4s can be detected
by their set of slice links. Indeed, this result applies for a special class of exotic disks. Recall
that a 4-manifold is geometrically simply connected if it admits a handle decomposition without
1-handles. Obviously, geometrically simply connected manifolds are simply connected, but the
converse does not hold. For example, a compact, contractible 4-manifold 𝑋 with boundary
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 323

𝜕𝑋 ≠ 𝑆3 (according to a result of Casson, see [8]) is never geometrically simply connected.
The question whether simple connectivity implies geometrical simple connectivity for closed
4-manifolds is wide open.
Suppose that 𝐿 is an 𝑛-component link. Let 𝑆3

(0,…,0)
(𝐿) denote the 3-manifold we get by perform-

ing 0-surgery on each component of 𝐿. Let 𝑋(𝐿) denote the corresponding surgery trace, that is,
the 4-manifold given by attaching 0-framed 2-handles along the components of 𝐿.
There is a simple way to construct an exotic 4-sphere once two knots 𝐾1 and 𝐾2 with diffeo-

morphic 0-surgery are given, where one of the knots (say 𝐾1) is smoothly slice, while 𝐾2 is not.
Indeed, glue the complement of the slice disk of 𝐾1 to the 0-trace 𝑋(𝐾2); the application of the
trace embedding lemma (cf. Lemma 2.3) shows that the result is exotic. This construction,which is
used in [13], admits a natural generalization to links, where Lemma 2.3 provides the simple exten-
sion of the usual trace embedding lemma to links. As the next results show, this construction is
sufficient to produce all geometrically simply connected, large, exotic 4-disks.

Theorem 1.5. Suppose that 𝐿 ↪ 𝑆3 is an 𝑛-component link such that 𝑆3
(0,…,0)

(𝐿) ≅ #𝑛𝑆1 × 𝑆2 =

𝑌 and consider the smooth 4-manifold given by 𝑆 = 𝑋(𝐿) ∪𝑌 ♮𝑛𝑆1 × 𝐷3. Then 𝑆 is a geometrically
simply connected homotopy 4-sphere. Furthermore, every geometrically simply connected exotic 4-
sphere 𝑆 is constructed in this way and 𝑆 is exotic if and only if 𝑋(𝐿) is not diffeomorphic to ♮𝑛𝑆2 ×
𝐷2.

As it was indicated above, for a geometrically simply connected large exotic 4-disk𝑋 the set 𝑋
is sufficient to verify its exoticness.

Theorem 1.6. A geometrically simply connected 4-disk 𝑋 is small if and only if 𝑋 = 𝐷4 . Conse-
quently, a geometrically simply connected exotic 4-disk𝑋 is large if and only if there is a link 𝐿 ↪ 𝑆3
that is smoothly slice in𝑋, but not in𝐷4. In particular, a large, geometrically simply connected exotic
4-disk 𝑋 (if it exists) can be distinguished from the usual 4-disk 𝐷4 through 𝑋 .

A condition for the existence of a large exotic𝐷4 is given in terms of sliceness in the 4-manifold
♮𝑘𝑆2 × 𝐷2 (see Theorem 4.4).
The definition of the set𝑋 can be extended to contain links with various framings, and even in

other 3-manifolds (such as #𝑘𝑆1 × 𝑆2) naturally associated to 𝑋, providing the set of framed links
̂𝑋 . We will discuss these extensions (and the precise description of ̂𝑋) in Section 4, leading us
to the following result.

Theorem 1.7. If the smooth 4-dimensional Poincaré conjecture holds then the set ̂𝑋 always
determines the diffeomorphism type of a closed, simply connected, smooth 4-manifold 𝑋.

A further refinement of the set of slice links is to consider a (slice) genus function on the set
of links in the boundary of a 4-manifold. This naturally extends the usual genus function of a
closed 4-manifold to the setting of 4-manifolds with boundary, and this concept can be interesting
even in the case when the manifold at hand has no second homology. This approach requires the
extension of the trace embedding lemma to be relevant in this context; in particular, wewill attach
higher genus handles (as it has been already considered in [7]) along framed knots and links, and
will consider higher order traces (when the core surfaces of the handles have potentially multiple
boundary components).
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324 CAVALLO and STIPSICZ

Equipped with these tools, we can show that even the slice genus g4 and the maximal 4-
dimensional Euler characteristic 𝜒4, the latter defined as the maximum Euler characteristic of
a compact, oriented properly and smoothly embedded surface Σ, such that 𝐿 = 𝜕Σ and every
connected component of Σ has boundary in 𝐿, cannot detect small exotic 4-disks.

Theorem 1.8. If 𝑋 is a small exotic 4-disk and 𝐿 is a link in 𝑆3 then g4(𝐿) = g𝑋4 (𝐿) and 𝜒4(𝐿) =
𝜒𝑋4 (𝐿), where g𝑋4 and 𝜒𝑋4 denote the genus functions in 𝑋, with the convention that for 𝑋 = 𝐷

4 we
omit the superscript.

The paper is composed as follows: In Section 2 we list a few preliminary results, and show
that small exotic 4-disks cannot be detected using sliceness of links. In Section 3 we focus on
geometrically simply connected exotic 4-disks, and in Section 4 we extend the notion of 𝑋 to
framed links and show that (assuming 4SPC) these sets characterize closed, simply connected,
smooth 4-manifolds. Finally, in Section 5 we discuss the genus function, and show that even this
invariant cannot distinguish a small exotic 4-disk from 𝐷4.

2 PRELIMINARIES

It follows from theCerf–Palais lemma [2, 16] that in a closed, connected, smooth (resp. topological)
𝑛-manifold𝑀 all smooth (resp. locally flat) embeddings𝐷𝑛 ↪ 𝑀 are isotopic. This statement then
easily implies that for a smooth embedding 𝜄 ∶ 𝐷4 ↪ 𝑆4wehave𝑆4 ⧵ ̊𝜄(𝐷4) ≅ 𝐷4. This result shows
that for every pair of embedded 𝐷4 in a given homotopy 4-sphere there is a diffeomorphism that
sends one into the other. This observation immediately leads to a relation between exotic 4-disks
and homotopy 4-spheres; here, for an exotic 4-disk 𝑋, we denote 𝑋 the exotic 4-sphere which is
gotten by gluing a 4-handle to 𝑋.

Proposition 2.1. There is a one-to-one correspondence between exotic 4-disks and homotopy 4-
spheres, in the sense that two exotic 4-disks 𝑋1 and 𝑋2 are diffeomorphic if and only if the same is
true for 𝑋1 and 𝑋2.

Proof. If 𝑋1 ≅ 𝑋2 then clearly 𝑋1 ≅ 𝑋2 because there is a unique way to glue a 4-handle to a
manifold with 𝑆3 as boundary. The other implication follows from our observation above. □

In accordance with the identification given in Proposition 2.1, we also say that a homotopy 4-
sphere𝑋 is small or large when the corresponding𝑋 is. If𝑋 ↪ 𝑆4 is a small exotic 4-disk then the
same is true for 𝑆4 ⧵ 𝑋̊. Hence, we can put the structure of an abelian group on the set of small
homotopy 4-spheres up to diffeomorphism, where the group operation is given by the boundary
sum ♮. Very little is known about this group, except that it has at most a countable number of
elements, see [6].
The following is a simple, yet useful generalization of Proposition 2.1.

Lemma 2.2. Suppose that 𝑋1 and 𝑋2 are two compact smooth 4-manifolds with 𝜕𝑋1 ≅ 𝜕𝑋2 ≅
#𝑛𝑆1 × 𝑆2 for some 𝑛; and denote the manifold obtained by gluing ♮𝑛𝑆1 × 𝐷3 to 𝑋𝑖 for 𝑖 = 1, 2 by
𝑀𝑖 . Then, if𝑀𝑖 are simply connected and satisfy𝑀1 ≅ 𝑀2, then 𝑋1 ≅ 𝑋2.
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 325

Proof. The complements of𝑋1 and of𝑋2 in𝑀 = 𝑀1(≅ 𝑀2) are both neighbourhoods of bouquets
of circles (of the samenumber, as this number is equal to𝑛). By an isotopy of𝑀we can arrange that
the two bouquets have the same 0-cell. As𝑀 is simply connected, the circles of the bouquets are
homotopic to each other. In this dimension, however, homotopy implies isotopy [14], ultimately
providing an isotopy from 𝑋1 to 𝑋2, verifying the claim. □

The trace embedding lemma is one of themost crucial connections between sliceness properties
of knots/links and exotic structures. The version of this lemma for knots is ratherwell known; here
we discuss a straightforward extension to links.

Lemma2.3 (Trace embedding lemma for links).A link𝐿 in𝑆3 is smoothly slice in apossibly exotic 4-
disk𝑋 if and only if𝑋(𝐿∗) ↪ 𝑋, where𝑋 is the homotopy 4-sphere obtained by attaching a 4-handle
to 𝑋, 𝐿∗ is the mirror image of 𝐿 and 𝑋(𝐿∗) is the 0-trace of 𝐿∗.

Proof. Suppose that 𝐿 is smoothly slice in 𝑋, which means that each component 𝐿𝑖 of 𝐿 bounds
a properly embedded disk 𝐷𝑖 in 𝑋 and 𝐷𝑖 ∩ 𝐷𝑗 = ∅ for 𝑖 ≠ 𝑗. Take 𝑋 and one of its handle
decompositions in the way that 𝑋 = 𝐷4 ∪𝑆3 𝑋. Hence, we can view 𝐿∗ in 𝜕𝐷4 = 𝑆3 and then
𝐷4 ∪ 𝜈(𝐷1) ∪ … ∪ 𝜈(𝐷𝑛) ≅ 𝑋(𝐿

∗) ↪ 𝑋. Note that since the 𝐷𝑖s are disjoint, we can assume the
same for the tubular neighbourhoods 𝜈(𝐷𝑖)s.
We now assume that 𝑋(𝐿∗) ↪ 𝑋. We have that 𝑋 ≅ 𝑋(𝐿∗) ∪𝑓 𝑊, where 𝑊 = 𝑋 ⧵ ̊𝑋(𝐿∗) and

𝑓∶ 𝜕𝑋(𝐿∗) → 𝜕𝑋(𝐿∗) is the orientation-reversing diffeomorphism which acts as gluing map.
Moreover, we can consider the handle decomposition on 𝑋(𝐿∗) given by 𝐷4 ∪ {2-handles}, where
the 2-handles are attached along 𝐿∗ with framing 0.
We see that the link 𝐿∗ sits in 𝑆3 = 𝜕𝐷4 and it bounds the cores of the 2-handles inside 𝑋(𝐿∗),

which are embedded disks with boundary on 𝑆3. Since 𝑋 ≅ 𝑋 ⧵ 𝐷̊4, we obtain precisely that 𝐿 =
(𝐿∗)∗ bounds a collection of disjoint properly embedded disks in 𝑋, hence 𝐿 is slice. □

Remark 2.4. There is also a locally flat version of the trace embedding lemma which states that
𝐿 is topologically slice if and only if 𝑋(𝐿) is a locally flat topological submanifold of 𝑆4. Its proof
proceeds in the exact same way as the smooth case.

With these preparations at hand, we are ready to verify that the set of slice links will not help
in detecting small exotic 4-disks.

Proposition 2.5. If two possibly exotic 4-disks are such that 𝑋1 ↪ 𝑋2 then 𝑋1
⊂ 𝑋2

.

Proof. We can apply Proposition 2.1 to restate the trace embedding lemma as 𝐿 is smoothly slice in
𝑋 if and only if 𝑋(𝐿∗) ↪ 𝑋: in fact, since 𝑋(𝐿∗) is not closed it cannot coincide with 𝑋; and then
there is a neighbourhood of a point (a smooth 4-disk) in 𝑋 ⧵ 𝑋(𝐿∗). Therefore, we have 𝑋(𝐿∗) ↪
𝑋1 ↪ 𝑋2 whenever 𝐿 is smoothly slice in 𝑋1. □

Proof of Proposition 1.3. We have 𝐷4 ↪ 𝑋 ↪ 𝐷4, implying 𝐷4 ⊂ 𝑋 ⊂ 𝐷4 , which concludes the
proof. □
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326 CAVALLO and STIPSICZ

3 TRACES OF LINKS ANDHOMOTOPY 4-SPHERES

It is known [14] that every compact, simply connected, smooth 𝑛-manifold with 𝑛 ⩾ 5 is geomet-
rically simply connected; in other words, it admits a handle decomposition where there are no
1-handles. On the other hand, whether the same holds in dimension four is still unknown, even
for homotopy 4-spheres and disks. Next we turn to the proof of our result on geometrically simply
connected possibly exotic 4-disks.

Proof of Theorem 1.5. First, we observe that 𝑆 is necessarily a homotopy 4-sphere. In fact, since it
is closed and simply connected, by Freedman’s classification result [3] we only need to check that
𝐻2(𝑆; ℤ) ≅ {0}, but this follows from the observation that

𝑏2(𝑆) = 𝜒(𝑆) − 2 = #|2-handles| − #|3-handles| = 𝑛 − 𝑛 = 0.

If 𝑆 is exotic and 𝑋(𝐿) ≅ ♮𝑛𝑆2 × 𝐷2 then we have a contradiction because 𝑆 would have a Kirby
presentation consisting of just some (2, 3)-cancelling pairs. Let us assume now that 𝑆 ≅ 𝑆4. Then
we can apply Lemma 2.2 to prove that 𝑋(𝐿) is diffeomorphic to ♮𝑛𝑆2 × 𝐷2 and this shows the
other implication.
Finally, given a geometrically simply connected homotopy 4-sphere, we take 𝐿 as the framed

link which presents its 2-handles. Then 𝐿 has asmany components as there are 3-handles because
of Euler characteristic, and framings zero as𝐻1(𝑌; ℤ) ≅ ℤ|𝐿|. □

This result leads us to examine exoticness on 𝑆2 × 𝐷2 as well.

Theorem 3.1. There is a one-to-one correspondence between exotic 4-spheres and exotic 𝑆2 × 𝐷2s,
up to diffeomorphism. In particular, the smooth 4-dimensional Poincaré conjecture is equivalent to
the existence of an exotic 𝑆2 × 𝐷2.

Proof. Given an exotic 𝑆2 × 𝐷2 (say 𝑋), we obtain a homotopy 4-sphere 𝑆 by gluing 𝑆1 × 𝐷3 to 𝑋;
and 𝑆 is exotic because of Lemma 2.2. If𝑋 ≅ 𝑋′ then obviously 𝑆 ≅ 𝑆′, while the converse is again
true by Lemma 2.2.
To see that this identification is surjective we start by an exotic homotopy 4-sphere 𝑆; then we

consider a handle decomposition of 𝑆 and we take 𝑋 as the manifold obtained by removing one
3-handle and one 4-handle from 𝑆. The fact that such an 𝑋 is homeomorphic to 𝑆2 × 𝐷2 follows
from the argument we used in the previous paragraph. □

Our goal now is to prove the converse of Proposition 2.5 for geometrically simply connected
exotic 4-disks.

Proposition 3.2 (Fake (2, 3)-cancelling pair). Given a compact, simply connected, smooth 4-
manifold 𝑋 with 𝜕𝑋 = 𝑆3, admitting a handle decomposition given by 𝑋 = 𝑊 ∪#𝑘𝑆1×𝑆2 {𝑘 3 −
handles}, we have that 𝑋 ♮𝑘𝑆2 × 𝐷2 is diffeomorphic to𝑊.

Proof. It is a direct application of Lemma 2.2. In fact, both 𝑊 and 𝑋 ♮𝑘𝑆2 × 𝐷2 become
diffeomorphic to the closed and simply connected 4-manifold 𝑋 after attaching ♮𝑘𝑆1 × 𝐷3. □
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 327

F IGURE 1 Since 𝑋1 ♮𝑛𝑆2 × 𝐷2 ≅ 𝑋(𝐿), we can surger 𝑋(𝐿) from 𝑋2 and then glue it back using the
diffeomorphism.

Theorem 3.3. Two possibly exotic geometrically simply connected 4-disks𝑋1, 𝑋2 satisfy𝑋1 ↪ 𝑋2 if
and only if 𝑋1 ⊂ 𝑋2

. In particular, a geometrically simply connected 4-disk 𝑋 is small if and only
if 𝑋 = 𝐷4 .

Proof. We only need to prove the ‘if’ implication because of Proposition 2.5. Let us consider an
𝑛-component link 𝐿 which presents the 2-handles of 𝑋1; since 𝑋(𝐿) ↪ 𝑋1 one has that 𝐿∗ is
smoothly slice in 𝑋1, and by assumption, also in 𝑋2. Using the trace embedding lemma again,
we then obtain that 𝑋(𝐿) ↪ 𝑋2.
We saw that𝑋2 = 𝑋(𝐿) ∪#𝑛𝑆1×𝑆2 𝑍, where 𝑍 = 𝑋2 ⧵ ̊𝑋(𝐿). We recall that Proposition 2.1 assures

us that we can take 𝑋(𝐿) ∩ 𝜈(𝜕𝑋2) = ∅. Now we use Proposition 3.2 to claim that 𝑋1 ♮𝑛𝑆2 × 𝐷2 ≅
𝑋(𝐿); hence, we have 𝑋2 = (𝑋1 ♮𝑛𝑆2 × 𝐷2) ∪#𝑛𝑆1×𝑆2 𝑍 which means 𝑋1 ↪ 𝑋2. See Figure 1. □

A few observations are in place. The first is that the latter statement necessarily requires links:
In fact, in the proof we use the fact that a geometrically simply connected exotic 4-disk has a Kirby
presentation which consists of a 0-framed link 𝐿. Such an 𝐿 cannot be a knot because by Gabai’s
theorem [5] it would be the unknot. The second observation is that, in the proof of Theorem3.3, we
did not actually use that every link in 𝑋1

is contained in 𝑋2
, but just that a link which presents

the 2-handles of 𝑋1 is. This is useful to prove the following corollary.

Corollary 3.4. Every geometrically simply connected large exotic 4-disk𝑋 is obtained by attaching 𝑛
3-handles on 𝑋(𝐽) for some 𝑛-component link 𝐽, not smoothly slice in 𝐷4 and such that 𝑆3

(0,…,0)
(𝐽) ≅

#𝑛𝑆1 × 𝑆2.

Proof. We use the previous observation in the following way: Assume the link 𝐽 is also smoothly
slice in 𝐷4, then we can mimic the proof of Theorem 3.3 to show that 𝑋 ↪ 𝐷4. This is a
contradiction because 𝑋 is large. □

We finally show an even deeper relation between exotic 4-disks and exotic boundary sums
of 𝑆2 × 𝐷2s. First, we fix the notation that two such manifolds 𝑋1 and 𝑋2 are called stably
diffeomorphic if 𝑋2 ≅ 𝑋1 ♮𝑛𝑆2 × 𝐷2 for some 𝑛.

Theorem 3.5. The number of geometrically simply connected exotic 4-spheres, up to diffeomor-
phism, coincides with the number of exotic ♮𝑖𝑆2 × 𝐷2 for any possible 𝑖 ⩾ 1 which arise as 0-traces of
links in 𝑆3, up to stable diffeomorphism. Equivalently, this is the number of diffeomorphism types of
𝑆2 × 𝐷2s which are stably diffeomorphic to 0-traces of links in 𝑆3.
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328 CAVALLO and STIPSICZ

F IGURE 2 The 4-manifold 𝑆 as in the proof of Lemma 3.6.

In contrast, by Wall’s theorem [17] (see also [6] for more details), for every homotopy 4-sphere
𝑆 there is an 𝑁 ⩾ 0 such that

𝑆 #𝑁(𝑆2 × 𝑆2) ≅ #𝑁(𝑆2 × 𝑆2).

The proof of Theorem 3.5 requires a preliminary lemma.

Lemma 3.6. Every exotic ♮𝑛+1𝑆2 × 𝐷2 for some 𝑛 ⩾ 1 is stably diffeomorphic to an exotic 𝑆2 × 𝐷2.

Proof. Let 𝑋 denote our exotic ♮𝑛+1𝑆2 × 𝐷2. We construct a manifold𝑊 by attaching ♮𝑛+1𝑆1 × 𝐷3
to 𝑋, obtaining a homotopy 4-sphere 𝑆, and then removing 𝑆1 × 𝐷3. By Lemma 2.2 there is a
unique way to do this. Moreover, we call 𝐷 the homotopy 4-disk 𝑆 ⧵ {4 − handle} (well defined
from Proposition 2.1).
Observing that 𝐷 is obtained from 𝑋 (resp. 𝑊) by attaching 𝑛 + 1 (resp. one) 3-handles

(Figure 2) and applying Proposition 3.2 twice, we have that

𝑋 ≅ 𝐷 ♮𝑛+1𝑆2 × 𝐷2 and 𝑊 ≅ 𝐷 ♮𝑆2 × 𝐷2 .

Hence,we conclude that𝑋 ≅ 𝑊 ♮𝑛𝑆2 × 𝐷2 and𝑊 is an exotic 𝑆2 × 𝐷2 because (by our hypothesis)
𝑋 was exotic. □

We can now move to the proof of Theorem 3.5.

Proof of Theorem 3.5. Theorems 1.5 and 3.1 provide the identification between stable dif-
feomorphism types of exotic boundary sums of 𝑆2 × 𝐷2, arising from 0-traces of links, and
diffeomorphism types of geometrically simply connected exotic 4-spheres. The fact that this cor-
respondence is well defined, and follows from Kirby calculus; moreover, we see that injectivity is
a consequence of Lemma 2.2 while surjectivity follows from Theorem 1.5. To conclude, the last
statement follows directly from Theorem 3.1 and Lemma 3.6. □

We obtain the following corollary.

Corollary 3.7. Suppose that𝑋 is a possibly exotic 𝑆2 × 𝐷2. Then𝑋 is geometrically simply connected
if and only if it is stably diffeomorphic to the 0-trace of a link in 𝑆3.
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 329

Proof. We apply Theorem 3.5. If𝑋 is geometrically simply connected, then the same is true for the
homotopy 4-sphere 𝑆 obtained by gluing 𝑆1 × 𝐷3 on 𝜕𝑋. Conversely, if 𝑆 is geometrically simply
connected then there is an 𝑖 such that 𝑋 ♮𝑖𝑆2 × 𝐷2 is diffeomorphic to the 0-trace of a link. We
saw in the proof of Lemma 3.6 that then 𝑋 has a handle decomposition without 1-handles. □

Note that no exotic 𝑆2 × 𝐷2 can be the 0-trace of a knot, but some stabilize to the 0-trace of a
link in the case a geometrically simply connected exotic 4-disk exists.

4 EMBEDDINGS OF SIMPLY CONNECTED 4-MANIFOLDS

If a smooth 4-manifold 𝑋 does not admit a handle decomposition without 1-handles, then it does
not seem sufficient to consider the set 𝑋 of links smoothly slice in 𝑋 in order to characterize 𝑋.
We proceed in a more general way: First, given a closed, simply connected, smooth 4-manifold
𝑀, by Lemma 2.2 we have that the submanifold𝑀𝑘 = 𝑀 ⧵ ̊(♮𝑘𝑆1 × 𝐷3) is well defined for every
𝑘 ⩾ 0. Therefore, we can define the set ̂𝑀𝑘 of smoothly slice framed links in𝑀𝑘 for every 𝑘. The
elements of this set are 𝑁-component links 𝐿⃗ ↪ #𝑘𝑆1 × 𝑆2, equipped with a framing 𝑡𝑖 for each
component, such that the corresponding slice disk 𝐷𝑖 in 𝑀𝑘 has tubular neighbourhood whose
relative Euler number agrees with 𝑡𝑖 for 𝑖 = 1, … ,𝑁. Note that𝑀𝑘 ≅ 𝑀0 ♮𝑘𝑆2 × 𝐷2 for every 𝑘 ⩾ 0.
We then consider ̂𝑀 =

⋃
𝑘⩾0 ̂𝑀𝑘

for every closed, simply connected, smooth 4-manifold𝑀.

Remark 4.1. Note that the set 𝑋 , introduced earlier, coincides with ̂𝑀0
= ̂𝑋 where 𝑋 is a

possibly exotic 𝐷4 and𝑀 the homotopy 4-sphere obtained by gluing a 4-handle to 𝑋.

We use a similar construction to extend the notion of the trace of a framed link 𝐿⃗ in#𝑘𝑆1 × 𝑆2: In
fact, since we can view 𝐿⃗ as embedded in 𝜕(♮𝑘𝑆1 × 𝐷3), we define𝑋(𝐿⃗) as the 4-manifold obtained
by attaching 2-handles along 𝐿⃗, with the given framing. The notion of the trace of a framed link
is well-defined, as diffeomorphic framed links in #𝑘𝑆1 × 𝑆2 possess diffeomorphic traces. This
follows from a result of Laudenbach and Poénaru in [11] telling us that every self-diffeomorphism
of #𝑘𝑆1 × 𝑆2 extends to ♮𝑘𝑆1 × 𝐷3.
We recall that the mirror image 𝐿⃗∗ of a framed link 𝐿⃗ is the mirror image of 𝐿, equipped with

the framings of 𝐿⃗, after reversing their signs. We then have the following version of the trace
embedding lemma.

Lemma 4.2 (Trace embedding lemma for framed links). Let us assume that𝑀𝑘 is obtained from a
4-manifold𝑀 as explained before. Then a framed link 𝐿⃗ ↪ #𝑘𝑆1 × 𝑆2 is smoothly slice (as a framed
link) in𝑀𝑘 if and only if 𝑋(𝐿⃗∗) ↪ 𝑀.

Proof. The proof proceeds in the same way as the one of Lemma 2.3. Suppose that 𝐿⃗ is smoothly
slice in 𝑀𝑘 for some 𝑘 ⩾ 0, with slice disks 𝐷1,… , 𝐷𝑛. Take a handle decomposition of 𝑀 such
that 𝑀 = ♮𝑘𝑆1 × 𝐷3 ∪#𝑘𝑆1×𝑆2 𝑀𝑘. Thus we can view 𝐿∗ as a link in 𝜕(♮𝑘𝑆1 × 𝐷3) = #𝑘𝑆1 × 𝑆2.
The manifold ♮𝑘𝑆1 × 𝐷3 ∪ 𝜈(𝐷1) ∪ … ∪ 𝜈(𝐷𝑛) is diffeomorphic to 𝑋(𝐿⃗∗), since each 𝜈(𝐷𝑖) can be
seen as a 2-handles attached to ♮𝑘𝑆1 × 𝐷3 with framing reversed with respect to the one of 𝐿⃗.
We now assume that 𝑋(𝐿⃗∗) ↪ 𝑀. Considering the 4-manifold upside down we obtain that

𝐿 bounds a collection of mutually disjoint embedded disks in 𝑀𝑘; moreover, the tubular
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330 CAVALLO and STIPSICZ

neighbourhoods of these disks have relative Euler numbers which coincide with the framings
of 𝐿⃗, because they equal the attaching framings of the 2-handles in𝑋(𝐿⃗∗)with reversed signs. □

We can then prove the following generalization of Theorem 3.3.

Theorem 4.3. Let us consider two closed, simply connected, smooth 4-manifolds𝑀 and𝑁. Then𝑁
splits as a connected sum𝑀#𝑀′ for some𝑀′ if and only if ̂𝑀 ⊂ ̂𝑁 . In particular, one has ̂𝑆 = ̂𝑆4

if and only if 𝑆 is a small homotopy 4-sphere.

Proof. If 𝐿⃗ ∈ ̂𝑀 then by the trace embedding lemma we have 𝑋(𝐿⃗∗) ↪ 𝑀 ⧵ 𝐷̊4 ↪ 𝑁, implying
𝐿⃗ ∈ ̂𝑁 .
Assume now ̂𝑀 ⊂ ̂𝑁 . If we call 𝐿⃗ the framed link which presents the 2-handles in a Kirby

diagramof𝑀 then 𝐿⃗ ↪ ♮𝑘𝑆1 × 𝐷3 and𝑀 = 𝑋(𝐿⃗) ∪ ♮𝑡𝑆1 × 𝐷3; thus 𝐿⃗∗ ∈ ̂𝑀 ⊂ ̂𝑁 . Since the trace
embedding lemma implies 𝑋(𝐿⃗) ↪ 𝑁, we conclude as in the proof of Theorem 3.3. ̂𝑆 = ̂𝑆4 then
implies that 𝑆0 ⊂ 𝑆4, therefore 𝑆 is a small homotopy 4-sphere. □

A corollary of this result is that the smooth 4-dimensional Schönflies theorem is equivalent to
claim that 𝑆4 is determined by its set of framed smoothly slice links. In addition, we can rewrite
the smooth 4-dimensional Poincaré conjecture as follows.

Theorem 4.4. There are no exotic 4-spheres if and only if for every 𝑛-component framed link
𝐿⃗ ↪ #𝑘𝑆1 × 𝑆2 with 𝑛 ⩾ 2𝑘, such that 𝑆3(𝐿⃗) ≅ #𝑛−𝑘𝑆1 × 𝑆2 and 𝑋(𝐿⃗) is simply connected, one has
𝑋(𝐿⃗) ≅ ♮𝑛−𝑘𝑆2 × 𝐷2.
Furthermore, there exists a large exotic 𝐷4 if and only if we can find an 𝐿⃗ as before which is not

smoothly slice in ♮𝑘𝑆2 × 𝐷2.

Proof. Every homotopy 4-sphere has a handle decomposition with 𝑘 1-handles, 𝑛 2-handles and
𝑛 − 𝑘 3-handles. By possibly multiplying the corresponding Morse function with (−1), we can
assume that 𝑛 − 𝑘 ⩾ 𝑘.
The fact that all exotic spheres are diffeomorphic to 𝑆4 is equivalent to claim that the 4-manifold

given by𝐷4 ∪ {1-handles} ∪ {2-handles} is always diffeomorphic to ♮𝑛−𝑘𝑆2 × 𝐷2, from Lemma 2.2.
It is then immediate to see that the trace of every framed link 𝐿⃗ ↪ #𝑘𝑆1 × 𝑆2, satisfying the
hypothesis, always gives rise to such a manifold.
The second statement is then a consequence of the first one, Theorem 4.3 and its proof. □

If 𝑀 has a Kirby presentation with exactly 𝑘 1-handles, we do not actually need to check the
entire ̂𝑀 .

Proposition 4.5. Let us assume that𝑀 is a 4-manifold as before and 𝑘 is the minimum number of
1-handles in a Kirby diagram for𝑀. Then we have that ̂𝑀 is determined by ̂𝑀𝑘 , in the sense that
if there is another manifold𝑁 with ̂𝑀𝑘 ⊂ ̂𝑁𝑘

then ̂𝑀 ⊂ ̂𝑁 .

Proof. Take a framed link in #𝑘𝑆1 × 𝑆2 that presents the 2-handles in a Kirby diagram for 𝑀.
Applying the same argument in the proof of Theorem 4.3 yields 𝑀0 = 𝑀 ⧵ 𝐷̊4 ↪ 𝑁, but then
Theorem 4.3 also leads to ̂𝑀 ⊂ ̂𝑁 . □
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 331

F IGURE 3 The 0-trace of the knot 𝐾𝐿, the knotification of 𝐿, seen on the boundary of ♮𝓁−1𝑆1 × 𝐷3 (left) and
an equivalent Kirby diagram of it (right).

When 𝑀 and 𝑁 are such that ̂𝑀 = ̂𝑁 , from Theorem 4.3 we have 𝑁 ≅ 𝑀#𝑆, where 𝑆 is a
homotopy 4-sphere. Hence, we obtain Theorem 1.7.

Proof of Theorem 1.7. If𝑀 ≅ 𝑁 then obviously one has ̂𝑀 = ̂𝑁 . Conversely, because of the obser-
vation above, when ̂𝑀 = ̂𝑁 we have 𝑁 ≅ 𝑀#𝑆, but the manifold 𝑆 has to be diffeomorphic to
𝑆4, since we are assuming that 4SPC holds. □

5 HIGH-ORDER TRACES AND APPLICATIONS

Inspired by the higher genus traces defined by Hayden and Piccirillo in [7], we generalize this
concept to the link setting in the way that it can be applied to give an alternative characterization
of the slice genus. We start by describing the two main constructions, leaving the general case for
later: The first 4-manifold, which here we denote with 𝑋g ,1(𝐾), is the genus g 2-handles attached
along the knot𝐾 in 𝑆3 (with framing 0) appearing in [7]; while the second one consists of attaching
a planar (genus zero) 2-handles with 𝓁 boundary component along an 𝓁-component link in 𝑆3,
and we call it 𝑋0,𝓁(𝐿).
We recall that the knotification of an 𝓁-component link 𝐿with 𝓁 > 1 is the knot𝐾𝐿 ↪ #𝓁−1𝑆1 ×

𝑆2, which is shown on the left in Figure 3, obtained by adding 𝓁 − 1 oriented bands between the
components of 𝐿, realizing 𝓁 − 1 merge moves; and then doing the same number of 0-surgeries
along the boundaries of small disks, eachwith a unique ribbon intersectionwith one of the bands.
Note that 𝐾𝐿 is null-homologous by construction.
Ozsváth and Szabó proved in [15] that this operation is well defined; in other words, the diffeo-

morphism type of the knot 𝐾𝐿 is independent of the choice of the bands we use to perform the
merge moves. For more details about knotification of links see also [10].

High genus 2-handles
We recall that𝑋g ,1(𝐾) is gotten by gluing 𝐹g × 𝐷

2, where 𝐹g = (#
g𝑇2) ⧵ 𝐷̊2 is the punctured con-

nected sum of g tori, together with an identification 𝑓 ∶ 𝜈(𝐾) → 𝜕𝐹g × 𝐷
2 where 𝐾 ↪ 𝑆3 = 𝜕𝐷4

is a knot. Obviously, in order to specify the diffeomorphism 𝑓 we also need to fix a framing: We
take the latter to be zero. The resulting 4-manifold has a Kirby diagram as in Figure 4.

Planar 2-handles
We now describe the construction of 𝑋0,𝓁(𝐿) and we show that it is closely related to the concept
of knotification of a link 𝐿. We again start from 𝐷4 and we want to glue 𝐺𝓁 × 𝐷2, where 𝐺𝓁 =
𝑆2 ⧵ {𝓁 disks} is a 2-sphere with 𝓁 punctures, along 𝐿, an 𝓁-component link in 𝜕𝐷4. The attaching
region of the handle 𝐺𝓁 × 𝐷2 is 𝜕𝐺𝓁 × 𝐷2 ≅ 𝐴1 ⊔ … ⊔ 𝐴𝓁 where 𝐴𝑖 ≅ 𝑆1 × 𝐷2 for each 𝑖; hence,
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332 CAVALLO and STIPSICZ

F IGURE 4 A Kirby diagram of 𝑋g ,1(𝐾). The picture is taken from [7].

F IGURE 5 Attaching a planar 2-handles along an 𝓁-component link 𝐿. The surface 𝐺𝓁 is 𝐺𝓁 without the
grey bands.

this time we need 𝓁 gluing maps 𝑓𝑖 ∶ 𝜈(𝐿𝑖) → 𝐴𝑖 with framings 𝑡1, … , 𝑡𝓁 such that

𝑡1 +⋯ + 𝑡𝓁 = −2 ⋅ 𝓁 k(𝐿) ,

where here we take 𝓁 k(𝐿) =
∑
𝑖<𝑗 𝓁 k(𝐿𝑖, 𝐿𝑗).

It is important to observe that the core of the handle (the surface 𝐺𝓁 × {0}) comes with an ori-
entation that induces coherent orientations on each attaching sphere: Such orientations have to
agree with the ones of the components of 𝐿; this means that the manifold 𝑋0,𝓁(𝐿) depends on the
relative orientation of 𝐿. Note that 𝑋0,1(𝐾) is the 0-trace of the knot 𝐾.

Proposition 5.1. The 4-manifold 𝑋0,𝓁(𝐿) for 𝓁 > 1 is diffeomorphic to 𝑋(𝐾𝐿), the trace of the 0-
framed knot 𝐾𝐿 ↪ #𝓁−1𝑆1 × 𝑆2.

Proof. We split the handle attachment in two parts.We start by attaching the grey band in Figure 5,
which means gluing 𝐼 × 𝐼 × 𝐷2 along 𝜕𝐼 × 𝐼 × 𝐷2 with framings zero; this procedure needs to be
repeated 𝓁 − 1 times. This requires the choice of 𝓁 − 1 pairs of oriented arcs 𝛼𝑖 and 𝛽𝑖 inside the
two components of 𝐿 where we are performing the 𝓁 − 1 merge moves; one has 𝜈(𝛼𝑖) ≅ 𝜈(𝛽𝑖) ≅
𝐼 × 𝐷2 as attaching regions. As explained before, the orientations need to agree accordingly.
The 4-manifold obtained by this bridge construction is exactly ♮𝓁−1𝑆1 × 𝐷3; and in order to

complete the original handle attachment we glue a standard 4-dimensional 2-handles 𝐺𝓁 × 𝐷
2

along a framed knot 𝐽 in #𝓁−1𝑆1 × 𝑆2 = 𝜕(♮𝓁−1𝑆1 × 𝐷3). The knot 𝐽 consists of the arcs 𝐿 ⧵ (𝛼1 ∪
… ∪ 𝛼𝓁−1 ∪ 𝛽1 ∪ …∪𝓁−1) joined by the 𝓁 − 1 pairs of arcs 𝑎𝑖 and 𝑏𝑖 , corresponding to 𝐼 × 𝜕𝐼 × 𝐷2;
hence, we have that 𝐽 is the knotification of 𝐿 since its construction matches the one of 𝐾𝐿 in [15].
In addition, its framing 𝑡 is determined as follows:

𝑡 = 𝑒𝐽(𝐺𝓁) = 𝑒𝐿(𝐺𝓁) = 𝑡1 +⋯ + 𝑡𝓁 + 2 ⋅ 𝓁 k(𝐿) = 0 ,

where 𝑒 is the relative normal Euler number. □
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 333

High-order 2-handles
Mixing the constructions explained in the previous two paragraphs gives rise to what we are going
to call high-order traces of a link. Let us start from a partition of an 𝓁-component link 𝐿 in 𝑆3 into
sublinks:  = {𝑃1, … , 𝑃𝑘}. We say that  is a weighted partition of 𝐿 if each sublink 𝑃𝑖 ∈  ,
whose number of components is 𝓁𝑖 , has a non-negative integer g𝑖 associated to it.
We denote by high-order 0-trace of 𝐿 with partition  the 4-manifold 𝑋 (𝐿) obtained in

the following way: We begin the attachment of 0-framed planar 2-handles along each sublink 𝑃𝑖 ,
obtaining a 0-framed link with components𝐾𝑃1, … , 𝐾𝑃𝑘 on the boundary of ♮

𝓁−𝑘𝑆1 × 𝐷3; then we
attach a 0-framed genus g𝑖 2-handles along 𝐾𝑃𝑖 for 𝑖 = 1, … , 𝑘. The resulting 4-manifold is well
defined because the ordering of the gluings is unimportant; moreover, in the case when 𝑘 = 1we
just denote the tracewith𝑋g ,𝓁(𝐿). AKirby diagram for𝑋 (𝐿) can be easily produced by combining
the ones in Figures 4 and 3.

Trace embedding lemma
In accordance with other results in the previous section, here we prove a third version of the
trace embedding lemma. We recall that if 𝑋 is a compact smooth 4-manifold and 𝜕𝑋 = 𝑆3 then
𝑋 = 𝑋 ∪ {4 − handle}; in addition, when 𝐿 bounds a compact oriented surface Σ, such that all the
connected components of Σ have boundary in 𝐿, we say that Σ is the weighted partition on 𝐿
induced by Σ in the natural way.

Lemma 5.2 (Trace embedding lemma for high-order traces). A link 𝐿 in 𝑆3 bounds a compact,
oriented, smooth surface Σ, properly embedded in a possibly exotic 4-disk 𝑋, if and only if 𝑋Σ(𝐿∗)
is smoothly embedded in 𝑋.

Proof. For the first implication we assume that 𝑋Σ(𝐿∗) ↪ 𝑋. Hence, we proceed as in other
versions of the lemma and we write 𝑋 = 𝐷4 ∪𝑆3 𝑋 with 𝐿∗ ↪ 𝑆3 = 𝜕𝐷4 and the high-order 2-
handles inside 𝑋. On each sublink 𝑃∗1 , … , 𝑃

∗
𝑘
of 𝐿∗ in the weighted partition Σ, the core of the

corresponding high-order 2-handles, whose attaching sphere is precisely 𝑃∗
𝑖
, is diffeomorophic to

the surface Σ𝑖 = 𝐹g𝑖
#𝐺𝓁𝑖−1. Since all the high-order 2-handles we attached are disjoint, we have

that Σ = Σ1 ∪ … ∪ Σ𝑘 ↪ 𝑋 and its boundary is the link (𝐿∗)∗ = 𝐿.
We now prove the converse. Let us consider 𝑋 = 𝐷4 ∪𝑆3 𝑋 and take 𝐿∗ ↪ 𝑆3 = 𝜕𝐷4. We have

that each sublink 𝑃∗
𝑖
of 𝐿∗ bounds a connected component Σ𝑖 of Σ, with genus g𝑖 and 𝓁𝑖 boundary

components according to Σ, for 𝑖 = 1, … , 𝑘. Since we know that 𝐻2(𝑋, 𝜕𝑋; ℤ) ≅ {0}, we obtain
that each Σ𝑖 bounds an embedded 3-homology class in 𝑋; thus showing that the relative Euler
number 𝑒 of 𝜈(Σ𝑖) is zero. We can then conclude that

𝑡1 +⋯ + 𝑡𝓁𝑖 + 2 ⋅ 𝓁 k(𝑃𝑖) = 𝑒𝑃𝑖 (Σ𝑖) = 0

and then Σ𝑖 is glued with framing −2 ⋅ 𝓁 k(𝑃𝑖) to 𝐷4 for any 𝑖.
We have proved that (𝐷4 ∪ 𝜈(Σ𝑖)) ≅ 𝑋g𝑖 ,𝓁𝑖 (𝑃∗

𝑖
) for every 𝑖 = 1, … , 𝑘. Hence, since the 4-manifold

𝑋Σ(𝐿∗) is constructed by performing 𝑘 consecutive high-order 2-handles attachments along the
𝑃∗
𝑖
s, the latter just appears to be diffeomorphic to 𝐷4 ∪ 𝜈(Σ) which is embedded in 𝑋. □

Remark 5.3. As for Lemma 2.3, the same proof also shows that 𝐿 bounds a compact oriented Σ,
properly locally flat embedded in 𝐷4, if and only if 𝑋Σ(𝐿) is a locally flat submanifold of 𝑆4.
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334 CAVALLO and STIPSICZ

5.1 Slice genera of links in homotopy 4-spheres

The slice genus g4 for a knot 𝐾 has a unique natural definition: The minimal genus of a compact,
oriented, connected surface 𝐹, properly and smoothly embedded in 𝐷4, such that 𝐾 = 𝜕𝐹. This
is not the case for links; there are many versions of slice genera of a link 𝐿. In this paper we are
going to recall the most important ones, but focusing only on the two that are studied more often.
We also recall that a knot𝐾 is𝐻-slice, in a compact 4-manifold𝑊 with boundary, when𝐾 bounds
a null-homologous properly embedded disk in𝑊.
Consider an 𝓁-component link. We denote by g4(𝐿) what it is usually called the slice genus

of 𝐿, which has exactly the same definition of g4 for knots. Moreover, we define g𝑋4 (𝐿) the same
invariant, but where surfaces are taken in an exotic 4-disk 𝑋 instead of𝐷4. We recall that 𝐿 is said
to bound a planar smooth surface in 𝑋 when g𝑋4 (𝐿) = 0.
In addition, it follows from standard results that every null-homologous knot 𝐽 in #𝑛𝑆1 × 𝑆2

bounds a null-homologous properly embedded surface in ♮𝑛𝑆2 × 𝐷2, for every smooth structure
and 𝑛 ⩾ 0. Hence, the knot 𝐽 is smoothly slice, in a possibly exotic ♮𝑛𝑆2 × 𝐷2, if and only if it is
𝐻-slice; and in this case the only possible value for the framing is zero.

Proposition 5.4. An 𝓁-component link 𝐿 in 𝑆3 bounds a planar smooth surface in 𝑋 if and only if
its knotification 𝐾𝐿 is smoothly𝐻-slice in 𝑋 ♮𝓁𝑆2 × 𝐷2.

Proof. Using the trace embedding lemma for high-order traces, we have that 𝐿 bounds a pla-
nar smooth surface in 𝑋 if and only if 𝑋0,𝓁(𝐿) ↪ 𝑋. According to Proposition 5.1, one also has
𝑋0,𝓁(𝐿) ≅ 𝑋(𝐾𝐿) and, since𝐾𝐿 is null-homologous, according to what we said before we just need
to apply the trace embedding lemma for framed links. □

The proof of the ‘only if’ implication in the latter proposition already appeared in [10]. We now
recall the definition of the maximal 4-dimensional Euler characteristic of 𝐿 as the maximum of
𝜒(Σ), whereΣ is a compact oriented surface, properly and smoothly embedded in𝑋, such that 𝐿 =
𝜕Σ and every connected component of Σ has boundary in 𝐿. We denote this invariant with 𝜒𝑋4 (𝐿);
note that the difference between the surfaces 𝐹 and Σ is that the second one is not necessarily
connected. 𝜒𝑋4 (𝐿) takes integer values which can be at most 𝓁, with equality if and only if 𝐿 is
smoothly slice in 𝑋.

Remark 5.5. Another version of the slice genus which sometimes appears in the literature is g∗4 ,
which is defined as the minimal genus of Σ as before, but together with the condition that each
connected component of Σ has exactly one boundary component. The invariant g∗4 is less used
because it can only be defined for links with zero linking matrix, nonetheless Theorem 1.8 holds
for it too.
Furthermore, we also mention the fact that some authors prefer to renormalize 𝜒4(𝐿) as

follows:

2𝐺4(𝐿) − 𝓁 = −𝜒4(𝐿) ,

because in this way one has 𝐺4(𝐿) ⩾ 0 as for g4(𝐿). With the latter convention, we have 𝐺4(𝐿) = 0
if and only if 𝐿 is smoothly slice.
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TRACES OF LINKS AND SIMPLY CONNECTED 4-MANIFOLDS 335

F IGURE 6 A diagram for the Borromean link 𝐵 (left) and the Whitehead link𝑊 (right). An untwisted band
is highlighted: This represents a merge move connecting 𝐵 to𝑊.

In Proposition 1.3 we showed that if 𝑋 is a small exotic 4-disk then 𝑋 = 𝐷4 , in other words
the sets of slice links in 𝑋 and 𝐷4 coincide. Now we prove that the same is true for the slice genus
and the maximal 4-dimensional Euler characteristic.

Proof of Theorem 1.8. The strategy of the proof is to argue that if 𝑋1 and 𝑋2 are two possibly
exotic 4-disks such that𝑋1 ↪ 𝑋2 and𝑋Σ(𝐿) ↪ 𝑋1 then obviously one has𝑋Σ(𝐿) ↪ 𝑋2 for every
weighted partition of 𝐿. Since by assumption we have 𝐷4 ↪ 𝑋 ↪ 𝐷4, it follows that 𝑋Σ(𝐿) ↪ 𝑋
if and only if 𝑋Σ(𝐿) ↪ 𝐷4; hence, by applying the trace embedding lemma for high-order traces
we obtain that 𝐿 bounds a surface Σ in 𝑋 if and only if the same happens in 𝐷4. □

5.2 Examples of non-slice null-homologous knots in 𝑺𝟏 × 𝑺𝟐

In the last subsection of the paper we want to apply Proposition 5.4 to give an example of an
infinite family of null-homologous knots in 𝑆1 × 𝑆2 which are not smoothly slice in 𝑆2 × 𝐷2.
As already observed by Kuzbary in [10], to obstruct that a knot 𝐾 in 𝑆1 × 𝑆2 is not smoothly
slice in 𝑆2 × 𝐷2 is not enough to show that 𝐾 is not concordant to the unknot; in fact, the
knot 𝐾𝐿1 in Figure 8 is 𝐻-slice in 𝑆2 × 𝐷2, because it is the knotification of the Hopf link
which bounds a smooth annulus in 𝑆3, but in [10] it is proved to not be concordant to the
unknot.
We start by a special case which involves two of the most studied links in 𝑆3: the Borromean

link 𝐵 and the Whitehead link𝑊; a diagram for these links appears in Figure 6. It follows from a
result of Klug in [9] that g4(𝐵) = 1with every relative orientation; this also shows that g4(𝑊) = 1:
in fact, in the case𝑊was the boundary of a smooth annulus in𝐷4, we could build a planar smooth
surface bounded by 𝐵 using the merge move pictured in Figure 6. Proposition 5.1 gives that the
corresponding knotifications 𝐾𝐵 and 𝐾𝑊 = 𝐾𝐿2 are not smoothly slice in #

2𝑆2 × 𝐷2 and 𝑆2 × 𝐷2,
respectively; such knots appear in Figures 7 and 8.

Proposition 5.6. The knots 𝐾𝐿𝑛 in Figure 8 for 𝑛 ⩽ 0 form an infinite family of null-homologous
knots in 𝑆1 × 𝑆2 which are not smoothly slice in 𝑆2 × 𝐷2.
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336 CAVALLO and STIPSICZ

F IGURE 7 The 0-trace of 𝐾𝐵 ↪ #2𝑆2 × 𝐷2, the knotification of the Borromean link, with one of the possible
relative orientations.

F IGURE 8 The link 𝐿𝑛 (right) and the 0-trace of its knotification 𝐾𝐿𝑛 (left). Here 𝑛 is the number of full
twists in the corresponding tangle.

Proof. By construction the knot𝐾𝐿𝑛 is the knotification of the link 𝐿𝑛 which is shown on the right
of Figure 8. When 𝑛 ⩽ 0we see that 𝐿𝑛 is a non-split, alternating, 2-component link: We can then
easily compute the 𝜏-invariant, as in [1], from the signature; and we get 𝜏(𝐿𝑛) = 2 for every 𝑛 ⩽ 0.
Therefore, the slice genus bound from [1] yields

2 = 𝜏(𝐿𝑛) ⩽ g4(𝐿𝑛) + 𝓁 − 1 = g4(𝐿𝑛) + 1

which means g4(𝐿𝑛) ⩾ 1. Since 𝐿𝑛 never bounds a planar smooth surface in 𝐷4 for 𝑛 ⩽ 0, we can
apply Proposition 5.1 to argue that 𝐾𝐿𝑛 is not smoothly slice in 𝑆

2 × 𝐷2. □

It is actually possible to prove that g4(𝐿𝑛) = 1 for each 𝑛 ⩽ 0, because 𝐿𝑛 can be turned into a
positive trefoil after a merge move, and this, in light of the trace embedding lemma for high-order
traces, tells us that 𝐾𝐿𝑛 bounds a null-homologous smooth torus in 𝑆

2 × 𝐷2.
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