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We list four types of planar curves such that arrangements 
of their translates are (locally) combinatorially equivalent 
to an arrangement of lines. We find them by characterising 
diffeomorphisms φ : R2 → R2 and continuous curves C ⊂ R2

such that φ
(
t + C

)
is a line for all t ∈ R2. There are exactly 

five maps satisfying (at least locally) this condition. Two of 
them define the same curve, so we have four different curves. 
These can be used to define norms giving constructions with 
Ω(n4/3) unit distances among n points in the plane.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

One of the oldest and best-known problems in combinatorial geometry is Paul Erdős’ 
unit distances problem [5]. What is the maximum number of unit distances among n
points on the plane? Erdős conjectured that the maximum number of unit distances 
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is n1+o(1). (Through the paper we are going to use the Big-O, Little-o, and Omega 
notations. A real function f(x) is o(T (x)) if f(x)/T (x) → 0 as x → ∞. It is O(T (x)) if 
there is a c > 0 such that f(x)/T (x) ≤ c as x → ∞, and it is Ω(T (x)) if there is a c > 0
such that f(x)/T (x) ≥ c as x → ∞.)

The conjecture is still open, the best-known upper bound is O(n4/3). This bound was 
proved by Spencer, Szemerédi, and Trotter [13]. It seems that the exponent 4/3 is the 
limit of the known combinatorial methods, even to prove o(n4/3) is out of range of the 
known techniques.

One reason behind this barrier is that there are norms where one can find n-element 
point-sets with Ω(n4/3) unit distances. The oldest construction providing such a norm 
can probably be derived from Jarník’s construction [6]. Jarník defined a sequence of 
centrally symmetric smooth closed convex curves, Um containing Ω(m2/3) lattice points 
of the m ×m integer grid. Setting such a convex curve as the unit disk, there are Ω(m8/3)
unit distances among the (2m)2 points of the 2m × 2m integer lattice.

For completeness, we include the simple argument. Let’s denote the centre of Um by 
o. Um is centrally symmetric, so (by possibly losing a multiplier of 2) we can assume 
that o ∈ [m] × [m]. The set,

{(Um + o) + (i, j)|i, j ∈ [m]}

has at most (2m)2 points and every translate of o has at least Ω(m2/3) points (the 
corresponding translate of Um) at unit distance. If we set n = m2, there are Ω(n4/3) unit 
distances with this norm.

In this example, the norm changes with n. A nice construction, with a uniform norm, 
was given by Valtr [16] using translates of a parabola and the n ×n2 integer grid. (see the 
description of the construction on page 194 in [2]) On the other hand, it was proved by 
Matousek that most norms, in the sense of Baire category, determine O(n logn log logn)
unit distances among n points [8]. This bound was improved recently to O(n logn) by 
Alon et al. in [1].

For any strictly convex norm, among n points in the plane, there are O(n4/3) unit 
distances. This claim can be proved using the crossing number inequality from [15] in the 
same way as proving the Szemerédi-Trotter theorem. This theorem gives a sharp upper 
bound on the number of incidences, I, between N points and M lines on the real plane, 
R2.

Theorem 1.1 (Szemerédi-Trotter Theorem [12]).

I(N,M) = O
(
N

2
3M

2
3 + N + M

)
.

An elegant proof of the above theorem was given by Székely, who also showed how to 
use his proof method to give the O(n4/3) bound for unit distances [15].
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There are known arrangements of n lines and n points such that

I(n, n) = Ω
(
n

4
3

)
. (1)

Such arrangements were found by Erdős, Elekes [4], Sheffer and Silier [14] using lattice 
points, i.e. a Cartesian product structure. Recently Guth and Silier gave sharp examples 
not based on the integer lattice [11].

If there were maps where the images of lines are translates of a single curve, C, then 
one can map such point-line arrangements to point-curve arrangements. Using part of 
the curve as (part of) the unit circle, with this norm we have Ω(n4/3) unit distances. 
Such a map exists: the map

(x, y) �→ (x, y + x2) (2)

sends the line (t, at + b) to the (t, t2 + at + b) =
(
t, (t + a/2)2 − a2/4 + b

)
curve, which is 

a translate of the parabola y = x2. This map was used over finite fields by Pudlák in [9]. 
Pudlák noticed that this map gives a one-to-one correspondence between point-parabola 
incidences and point-line incidences. He used it to define the colouring of the edges of 
a complete bipartite graph with three colours without creating large monochromatic 
complete subgraphs. If we apply the map in (2) to Elekes’ point-line arrangement in [4]
we get a construction very similar to Valtr’s [16].

Based on the above observations, it is a natural problem characterizing maps of the 
plane sending lines into translates of a single curve. As we will see there are exactly four 
more such maps in addition to Pudlák’s map in (2). The first and the third maps in 
the list below result in the same curve, these are translates of the log (exp) curve as 
the images of lines. The last curve, which is not listed here, is given by the real and 
imaginary parts of the complex logarithm function.
1.

M : (x, y) �→ (x, ln(y)).

For every line y = ax +b with a > 0, the x > − b
a part maps to 

(
x, ln

(
x + b

a

)
+ ln(a)

)
. 

This is a translate of the curve y = ln(x).
2.

M : (x, y) �→
(
ln(x), ln

(y
x

))
.

If we use the notation ln(x) = X, then the image of the line y = ax + b is the
(
X, ln

(
1 + b/a

eX

)
+ ln(a)

)
=

(
X, ln

(
1 + e−(X−ln(b/a))

)
+ ln(a)

)

curve if a > 0 and b > 0. This is the translate of the curve y = ln(1 + e−x).



164 J. Solymosi, E. Szabó / Linear Algebra and its Applications 668 (2023) 161–172
3.

M : (x, y) �→
(
ln(x), y

x

)
.

As in the previous case, if we use the notation ln(x) = X, then the image of the line 
y = ax + b is the

(
X, e−(X−ln(b)) + a

)

curve if a > 0 and b > 0. This is the translate of the curve y = e−x, so it is similar 
to the first, y = ln(x), case.

4. This is probably the most surprising map

M : (x, y) �→ (�(ln(1 − x + iy)),	(ln(1 − x + iy))) .

If a generic line is given by the equations x = t, y = at + b, then its image after the 
map is

x(t) = �
(

ln
(
t− 1 + ib

1 − ia

)
+ ln(ia− 1)

)
,

y(t) = 	
(

ln
(
t− 1 + ib

1 − ia

)
+ ln(ia− 1)

)
,

the real and imaginary parts of a translate of the complex logarithm function.

2. Preliminaries

Notation 2.1. The group of invertible 3 × 3 matrices and the Lie algebra of all 3 × 3
matrices will be denoted by GL(3, R) and gl(3, R) resp. The quotient group of GL(3, R)
by the normal subgroup of scalar matrices is denoted by PGL(3, R), it is the group of 
projective linear transformations of the projective plane. The Lie algebra of PGL(3, R)
is the quotient of gl(3, R) by the ideal of scalar matrices, we denote it with pgl(3, R). It 
is naturally isomorphic to sl(3, R), the Lie algebra of 3 × 3 matrices of trace 0.

Notation 2.2. We denote by Aff(2, R) ≤ GL(3, R) the subgroup of all 3 × 3 matrices of 
the form (

L v
0 1

)

where L is a 2 × 2 invertible matrix (linear transformation), and v is a 2-dimensional 
column vector (translation). We denote by aff(2, R) ≤ gl(3, R) the Lie subalgebra of 
matrices of the form
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(
Λ v
0 0

)

where Λ is a 2 × 2 matrix, and v is a 2-dimensional column vector. The quotient ho-
momorphism GL(3, R) → PGL(3, R) maps Aff(2, R) isomorphically onto its image, and 
similarly, the quotient homomorphism gl(3, R) → pgl(3, R) maps aff(2, R) isomorphi-
cally onto its image. We shall often identify Aff(2, R) and aff(2, R) with these images. 
With this identification Aff(2, R) becomes the group of affine transformations of R2, and 
aff(2, R) becomes its Lie algebra.

The following is well-known.

Fact 2.3. Let ψ0 : R2 → R2 be a diffeomorphism which maps all lines into lines. Then 
ψ0 ∈ Aff(2, R).

We need the following local version of this.

Lemma 2.4. Let ψ : U → V be a diffeomorphism between connected open subsets U, V ⊆
R2 which maps all line segments in U into line segments in V . Then ψ can be uniquely 
extended into a projective linear map ψ̃ ∈ PGL(3, R).

Proof. The standard proof of Fact 2.3 works here if one is careful enough. We recall it 
for the sake of completeness.

Let S ⊂ U be a line segment. We define the following set of real numbers.

CS =
{
λ ∈ R

∣∣∣∣∣ If A,B,C,D∈S with cross-ratio (A,B:C,D)=λ

then
(
ψ(A),ψ(B);ψ(C),ψ(D)

)
=λ.

}

We make several observations.

1. If λ ∈ CS then 1 − λ ∈ CS .
Indeed, (A, B : C, D) = 1 − (A, C : B, D).

2. If λ < 0 < μ and λ, μ ∈ CS then μλ ∈ CS .
Indeed, let (A, B : C, D) = μ

λ . Since this is negative, one of C and D lies inside AB, 
the other lies outside. If C ∈ AB then we relabel A, B, C, D to B, A, D, C, this does 
not change their cross-ratio. So we can assume that C /∈ AB. Then there is a unique 
E ∈ AB with (A, B : E, C)) = λ, and an easy calculation shows that (A, B : E, D) =
μ. This implies that 

(
ψ(A), ψ(B); ψ(E), ψ(C)

)
= λ and 

(
ψ(A), ψ(B); ψ(E), ψ(D)

)
=

μ, hence 
(
ψ(A), ψ(B); ψ(C), ψ(D)

)
= μ

λ .
3. 0, 1 ∈ CS .

Indeed, if (A, B : C, D) = 0 then either A = C or D = B. This implies that either 
ψ(A) = ψ(C) or ψ(D) = ψ(B), hence 

(
ψ(A), ψ(B); ψ(C), ψ(D)

)
= 0. Therefore 

0 ∈ CS , and then (1) implies 1 ∈ CS .
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4. −1 ∈ CS .
Indeed, let W ⊆ U be a convex neighbourhood of S. If (A, B : C, D) = −1 then 
there is a complete quadrangle in W which justifies this, i.e. A and C are the 
intersection points of the opposite sides, and the diagonals intersect the AB line 
at C and D. Then ψ maps this quadrangle to a quadrangle in V justifying that (
ψ(A), ψ(B); ψ(C), ψ(D)

)
= λ.

5. Z ⊆ CS .
Indeed, starting with −1 ∈ CS , and applying (1) and (2) alternately, we obtain that 
2, −2, 3, −3, 4, −4, · · · ∈ CS .

6. Q ⊆ CS .
Indeed, negative rational numbers are in CS by (5) and (2). Then by (1), the non-
negative rational numbers also belong to CS.

7. CS = R.
Indeed, by the continuity of the cross-ratio, CS is a closed set.

Now let W ⊆ U be a convex open subset. The above observations imply that ψ preserves 
all cross-ratios in W , hence there is a unique projective linear map ψW ∈ PGL(3, R)
which agrees with ψ on W . For overlapping convex open sets, the corresponding projec-
tive linear maps must be equal. Since U is connected, all these ψW must be equal. This 
proves the lemma. �
Lemma 2.5. Let A, B ∈ gl(3, R) be matrices whose images A, B ∈ pgl(3, R) commute. 
Then, after a suitable base change, A, B ∈ aff(2, R).

Proof. Commutators have trace zero. So [A, B] is a scalar matrix with trace 0, hence A
and B commute in gl(3, R). We distinguish three cases.

• If A has one real and two conjugate complex eigenvalues, then let V be the real 
part of the linear span of the complex eigenspaces corresponding to the non-real 
eigenvalues of A.

• If A has three different real eigenvalues, then let V be the linear span of any two of 
the corresponding eigenspaces.

• If A has only two different real eigenvalues, then let V be the eigenspace correspond-
ing to the eigenvalue with multiplicity two.

• Otherwise, A has a single real eigenvalue of multiplicity three, hence A is a scalar 
matrix. In this case, we switch the role of A and B, and go through this list again. 
If B is not a scalar matrix then we obtain our V .

• Finally, if both A and B are scalar matrices, then let V be an arbitrary plane in R3.

In all cases, V is a plane in R3 invariant under both A and B. After an appropriate base 
change, V will be the hyperplane of vectors whose last coordinate is zero. Matrices that 
map this V into itself are of the form
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(∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

)

where elements marked with ∗ are arbitrary, and the quotient homomorphism gl(3, R) →
pgl(3, R) maps such matrices into aff(2, R). Hence, after this base change, A, B ∈
aff(2, R). �
3. Affine structures

Notation 3.1. For a plane curve C ⊂ R2 and a vector t ∈ R2 we denote by t + C the 
translate of C with t.

Problem 3.2. Characterise diffeomorphisms φ0 : R2 → R2 and continuous curves C ⊂ R2

such that φ0
(
t + C

)
is a line for all t ∈ R2.

Problem 3.3. Characterize continuous curves C ⊂ R2 and diffeomorphisms φ : U → V

between connected, open subsets U, V ⊆ R2 such that φ
(
(t + C) ∩ U

)
is contained in a 

line for all t ∈ R2.

By composing φ0 on the left with an appropriate translation, one can reduce Prob-
lem 3.2 to the case when φ0(0, 0) = (0, 0). Similarly, by composing φ on both sides with 
appropriate translations one can reduce Problem 3.3 to the case when (0, 0) ∈ U and 
φ(0, 0) = (0, 0).

Let T ∼= R2 denote the group of translations of R2. If we conjugate T with any of 
these φ0 then by Fact 2.3 we arrive at a subgroup of Aff(2, R). Since T is connected, 
these subgroups are uniquely determined by their Lie algebras, which are 2-dimensional 
commutative subalgebras of aff(2, R).

In the more general setup, if we conjugate a small neighbourhood of the identity in T
with any of these φ then by Lemma 2.4 we arrive at a small neighbourhood of the identity 
in a connected subgroup of PGL(2, R). Again, these subgroups are uniquely determined 
by their Lie algebras, which are, in this case, 2-dimensional commutative subalgebras of 
pgl(2, R). By Lemma 2.5 these subalgebras, after a base change, become subalgebras of 
aff(2, R).

So in both problems, we need to classify 2-dimensional commutative subalgebras of 
aff(2, R), and analyze whether the corresponding connected subgroups are isomorphic 
to T or not.

The embedding of a Lie algebra g into aff(2, R) is also called an affine structure on g. 
Such an embedding gives rise to an affine action on R2 of the simply connected Lie group 
with Lie algebra g, which we call the corresponding action. In particular, a 2-dimensional 
abelian subalgebra of aff(2, R) is called an affine structure on the 2-dimensional abelian 
Lie algebra, and the corresponding action is an affine action of T on R2.

Affine structures on the 2-dimensional abelian Lie algebra were analyzed in the work 
of Rem and Goze [10] where they proved that there are six affinely non-equivalent affine 



168 J. Solymosi, E. Szabó / Linear Algebra and its Applications 668 (2023) 161–172
structures. They listed the affine structures on the 2-dimensional Lie algebra and the 
corresponding action. Based on their list, there are six actions we have to check for a 
potential φ or φ0.

3.1. The six affine actions

In what follows, we are checking the affine actions listed in [10] whether they give rise 
to a solution of Problem 3.2 or Problem 3.3. By definition, these affine actions are homo-
morphisms from the group of translations T ∼= R2 into Aff(2, R). Let A(s, t) ∈ Aff(2, R)
denote the homomorphic image of the element (s, t) ∈ T . Recall from Notation 2.2 that 
A(s, t) is a 3 × 3 matrix of certain special form.

For every affine action, we are looking for a diffeomorphism φ : U → V between 
connected open neighbourhoods U, V of the origin in R2 such that φ(0, 0) = (0, 0) and

φ−1(φ(x, y) + (s, t)) = A∗(s, t) · [x, y, 1]T , (3)

where A∗(s, t) is the 2 × 3 submatrix of A(s, t) containing the first two rows. We will 
not specify U and V , only their existence is important to us. However, by studying the 
formulas we have for φ the reader can easily find appropriate U and V .

Let us denote the translation by (s, t) as T (s, t) : R2 → R2 and let a(s, t) : R2 → R2

denote the affine transformation as defined above with the A(s, t) matrix. With this 
notation equation (3) becomes

φ−1 ◦ T (s, t) ◦ φ = a(s, t)

where ◦ denotes the function composition. After rearranging it, we have

φ−1 ◦ T (s, t) = a(s, t) ◦ φ−1.

Applying both sides to (x, y) = (0, 0) we obtain

φ−1(s, t) = a(s, t)(0, 0) = A∗(s, t) · [0, 0, 1]T ,

so we can recover φ from the first two entries in the last column of A(s, t).
In the first two cases our φ is actually an R2 → R2 diffeomorphism, in the last four 

cases, we get local maps giving solutions in the selected range.

1. Identity (case A5 in [10])

A(s, t) =
(1 0 s

0 1 t
0 0 1

)

Here φ is the identity map, it won’t define the translates of a single curve.
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2. Parabola (case A4 in [10])

A(s, t) =

⎛
⎝1 0 s

s 1 t + s2

2
0 0 1

⎞
⎠

Here φ : (x, y) �→
(
x, y + x2

2

)
. Every line (x, ax +b) maps to a translate of a parabola 

y = x2

2 . Its image is 
(
x, (x+a)2

2 + a2

2 + b
)
. This is Pudlák’s map in [9] we mentioned 

in the introduction.
3. Log curve (case A6 in [10])

A(s, t) =
(
es 0 es − 1
0 1 t
0 0 1

)

Here φ : (x, y) �→ (ln(x + 1), y). It is more convenient to work with the map φ′ :
(x, y) �→ (x, ln(y)), giving the same family of curves. For every line y = ax + b with 
a > 0, the part x > b

a maps to a translate of a log curve, y = ln(x). Its image is (
x, ln

(
x + b

a

)
+ ln(a)

)
.

4. (case A1 in [10])

A(s, t) =
(

es 0 es − 1
es(et − 1) eset es(et − 1)

0 0 1

)

Here φ : (x, y) �→
(
ln(x + 1), ln

(
1 + y

x+1

))
.

The image of the part x > max
(
− b+1

a+1 ,−1
)

of the (x, ax +b) line is a curve. However, 
different lines map into different types of curves. Lines of the form y = c(x + 1) map 
to a horizontal line y = ln(1 + c). This is still an interesting map. Let us consider a 
line y = ax + b where a �= −1 and b−a

1+a > 0. If we set ln(x + 1) = X, then the image 
curve is

(
X, ln

(
1 + a + (b− a)e−X

))
=

(
X, ln

(
1 + e

−
(
X−ln

(
b−a
1+a

)))
+ ln(1 + a)

)
,

which is a translate of the curve y = ln(1 + e−x).
5. (case A2 in [10])

A(s, t) =
(

es 0 es − 1
est es est
0 0 1

)

Here φ : (x, y) �→
(
ln(x + 1), y

)
.
x+1
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As in the previous case, lines of the form y = c(x + 1) map to a horizontal line. But 
if we consider lines ax + b, where b > a �= 0, and set ln(x + 1) = X, then the image 
curve is

(
X, a + b− a

eX

)
=

(
X, e−(X−ln(b−a)) + a

)
,

which is a translate of the curve y = e−x.
6. Rotations (case A3 in [10])

A(s, t) =
(
es cos t −es sin t 1 − es cos t
es sin t es cos t es sin t

0 0 1

)

Images of translations with (s, t + 2kπ) would give the same line for any integer k. 
Also, lines of the form y = c(x + 1) map to a horizontal line.
In this last case, the map is given by

φ : (x, y) �→
(

ln((1 − x)2 + y2)
2 , arctan

(
y

1 − x

))
,

or, equivalently by

φ : (x, y) �→ (�(ln(1 − x + iy)),	(ln(1 − x + iy))) .

If a line is given by the x = t, y = at + b equations then its image after the map is

x(t) = �
(

ln
(
t− 1 + ib

1 − ia

)
+ ln(ia− 1)

)
,

y(t) = 	
(

ln
(
t− 1 + ib

1 − ia

)
+ ln(ia− 1)

)
,

which is the real and the imaginary part of a translate of the complex logarithm 
function (Fig. 1).
From the six affine actions, we found four different curves such that arrangements of 
their translates are (locally) combinatorically equivalent to arrangements of lines.

4. Concluding remarks and open problems

• One can ask the same problem in higher dimensions. What are the surfaces such that 
any finite arrangement of hyperplanes is combinatorically equivalent to translates of 
the surface? Remm and Goze classified the three-dimensional commutative, associa-
tive real algebras in [10], so based on their work, one can characterize such surfaces 
in three-space. One of these (an extension of Pudlák’s map [9]) was used by Zahl in 
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Fig. 1. Part of the curve from Case 6.

[17] to construct a norm determining Ω(n3/2) unit distances among n points. In the 
same paper, Zahl was able to break the n3/2 barrier, showing that for the Euclidean 
norm, the number of unit distances determined by n points is O(n3/2−c) for some 
c > 0. In dimension four and higher there are n-element pointsets with Ω(n2) unit 
distances (see more about such constructions in [7]).

• It follows from Székely’s proof of the Szemerédi-Trotter theorem in [15] that m
translates of a convex curve and n points determine O(n2/3m2/3 +n +m) incidences 
(see also in [3]). In this paper, we listed four curves where the above incidence bound 
is sharp, i.e. for each curve, there are arrangements of m translates of the curve and 
n points with Ω(n2/3m2/3 + n + m) incidences for arbitrarily large n and m. Are 
there such planar curves significantly different from the ones listed above?
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