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Abstract

The extremal theory of forbidden 0–1 matrices studies the asymptotic growth of the function ExpP, nq,
which is the maximum weight of a matrix A P t0, 1u

nˆn whose submatrices avoid a fixed pattern P P t0, 1u
kˆl.

This theory has been wildly successful at resolving problems in combinatorics [Kla00, MT04, CK12], discrete
and computational geometry [Für90, Agg15, ES96, PS91, Mit92, BG91], structural graph theory [GM14,
BGK`21, BKTW22] and the analysis of data structures [Pet10, KS20], particularly corollaries of the dynamic
optimality conjecture [CGK`15b, CGK`15a, CGJ`23, CPY24].

All these applications use acyclic patterns, meaning that when P is regarded as the adjacency matrix of a
bipartite graph, the graph is acyclic. The biggest open problem in this area is to bound ExpP, nq for acyclic
P . Prior results [Pet11a, PS13] have only ruled out the strict Opn lognq bound conjectured by Füredi and
Hajnal [FH92]. At the two extremes, it is consistent with prior results that @P.ExpP, nq ď n log1`op1q n, and
also consistent that @ϵ ą 0.DP.ExpP, nq ě n2´ϵ.

In this paper we establish a stronger lower bound on the extremal functions of acyclic P . Specifically, for
any t ě 1 we give a new construction of relatively dense 0–1 matrices with Θpnplogn{ log log nq

t
q 1s that avoid

a certain acyclic pattern Xt. Pach and Tardos [PT06] have conjectured that this type of result is the best
possible, i.e., no acyclic P exists for which ExpP, nq ě nplognq

ωp1q.

1 Introduction

The theory of forbidden 0–1 matrices subsumes or generalizes many problems in extremal combinatorics,
such as Davenport-Schinzel sequences [HS86, ASS89, Niv10, Pet15a, WP18] and their generalizations [Pet11b,
Pet15b, FH92], Zarankiewicz’s problem [KST54], and bipartite Turán-type subgraph avoidance. Forbidden 0–
1 matrices have been applied to problems in discrete and computational geometry, the amortized analysis of
data structures, and in other areas of extremal combinatorics. Some highlights in geometry include bounding
the number of unit-distances in a convex point set [Für90, Agg15], the number of critical placements of an
n-gon in a hippodrome [ES96], an analysis of the Bentley-Ottman line sweeping algorithm [PS91], and an
analysis of Mitchel’s algorithm for obstacle-avoiding shortest paths in the plane [Mit92, BG91]. In data
structures, forbidden 0–1 matrices have been used to analyze data structures based on binary search trees
and path-compression [Pet10], and more recently, to several corollaries of Sleator and Tarjan’s [ST85] dynamic
optimality conjecture [CGK`15b, CGK`15a, CGJ`23, KS20, CPY24]. The most well-known application of
forbidden 0–1 matrices is probably Marcus and Tardos’s proof [MT04] of the Stanley-Wilf conjecture, via Klazar’s
reduction [Kla00] to a Füredi-Hajnal conjecture [FH92]. They have also been used to bound Stanley-Wilf
limits [Cib09, Fox13, CK17], and to bound the size of sets of permutations with some fixed VC-dimension [CK12].
Most recently, results on searching for forbidden patterns [GM14] inspired the definition of twin-width for graphs
and other binary structures [BKTW22, BGK`21].

If P P t0, 1ukˆl and A P t0, 1unˆn, we say A contains P , written P ă A, if there are rows r1 ă ¨ ¨ ¨ ă rk and
columns c1 ă ¨ ¨ ¨ ă cl such that P pi, jq “ 1 Ñ Apri, cjq “ 1. If P ć A then A avoids P or is P -free. The basic
extremal function is defined as follows

ExpP, nq “ maxt}A}1 | A P t0, 1unˆn and P ć Au,
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and may be generalized in various ways, e.g., to avoid sets of forbidden patterns [Tar05] or rectangular
A [FH92, Pet11b], or to d-dimensional matrices/patterns [KM06, MP17, Gen19]. Observe that P and A can
be viewed as incidence matrices of bipartite graphs, where the two vertex sets are implicitly ordered ; let GpP q be
the unordered undirected graph corresponding to P .

Füredi and Hajnal [FH92] attempted to systematically classify small forbidden patterns by their extremal
functions, and managed to do this for most weight-4 patterns,1 with the last holdouts being classified by
Tardos [Tar05]. For any pattern P , the extremal function ExpP, nq is at least as large as the unordered (Turán)
extremal function for GpP q. A natural question is to determine when they are the same, asymptotically, and the
maximum factor by which they can differ.

Füredi and Hajnal [FH92] concluded their article with several influential conjectures. They first conjectured
that when P is a k ˆ k permutation matrix, that ExpP, nq ď ckn, i.e., it is asymptotically the same as the Turán
number of GpP q. Klazar [Kla00] proved that this conjecture implies the Stanley-Wilf conjecture, and Marcus
and Tardos [MT04] proved both conjectures. See [Gen09, Cib09, CK17, Fox13, KM06] for generalizations and
sharper analyses of the leading constants. Füredi and Hajnal next conjectured that ExpP, nq would never be more
than a log n-factor larger than the (unordered) Turán number of GpP q. Perhaps doubting this conjecture, they
immediately asked whether it held for acyclic patterns P , i.e., if GpP q is a forest, is ExpP, nq “ Opn log nq?

Pach and Tardos [PT06] refuted the second Füredi-Hajnal conjecture, by exhibiting arbitrarily large P for
which GpP q “ C2k is a 2k-cycle but ExpP, nq “ Ωpn4{3q. This implies the gap between the ordered and unordered
extremal functions is n1{3´ϵ, where ϵ “ 1{k can be made arbitrarily small. However, this refutation did not imply
anything about the gap for acyclic matrices. Understanding acyclic patterns is important, as every application
to geometry, data structures, and combinatorics mentioned in the first paragraph uses only acyclic patterns.
Pettie [Pet11a] disproved the last Füredi-Hajnal conjecture by exhibiting a specific acyclic pattern X for which
ExpX,nq “ Ωpn log n log log nq. An unpublished manuscript of Park and Shi [PS13] extended this lower bound to

a set of patterns tXmu for which ExpXm, nq “ Ωpn log n log log n log log log n ¨ ¨ ¨ logpmq nq.
The constructions of [Pet11a, PS13] refuted the letter of Füredi and Hajnal’s conjecture, but certainly not

its spirit. Consider several non-trivial possibilities for the extremal function of an acyclic P .

Absolute Polylogpnq. There is an absolute constant c ě 1 such that for any acyclic P , ExpP, nq ď n logc`op1q n.

Variable Polylogpnq. For any acyclic P , there is a constant c “ cpP q such that ExpP, nq ď n logc n.

Subpolynomial. For every acyclic P , there is some ϵpnq “ op1q depending on P such that ExpP, nq ď n1`ϵpnq.

Polynomial. For some c ă 2, every acyclic P has ExpP, nq ď Opncq.

None of these upper bounds have been established or ruled out. In particular, prior work [Pet11a, PS13] does not
preclude the possibility that Absolute Polylogpnq holds even with c “ 1, and it is also possible the Polynomial
fails, i.e., for every ϵ ą 0, there exists an acyclic P for which ExpP, nq “ Ωpn2´ϵq. Pach and Tardos [PT06]
conjectured broadly that the Variable Polylogpnq upper bound is true, and conjectured more specifically that

ExpP, nq “ Opn log}P }1´3 nq.

The biggest open problem in the theory of forbidden 0–1 matrices is to understand acyclic patterns. On
the upper bound side, we have a perfect classification of all patterns with four 1s [FH92, Tar05], and a good
classification for those with five 1s [PT06], up to a log n factor. For example, ExpR1, nq and ExpR2, nq are known
to be Ωpn log nq and Opn log2 nq [PT06].

R1 “

¨

˝

‚ ‚

‚

‚ ‚

˛

‚ R2 “

ˆ

‚ ‚ ‚

‚ ‚

˙

Korándi, Tardos, Tomon, and Weidert [KTTW19] defined a pattern P to be class-s degenerate if it can be written

P “

ˆ

P 1

P 2

˙

, where at most one column has a non-zero intersection with both P 1 and P 2, and P 1, P 2 are class-

ps ´ 1q degenerate. (In the diagrams of S1, S2, a valid row partition cuts at most one edge.) Any P with a single

1The weight of A is }A}1, i.e., the number of 1s in A.
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row is class-0 degenerate. They proved that every class-s degenerate P has

ExpP, nq ď n ¨ 2Oplog
1´ 1

s`1 nq “ n1`op1q.

For example, ExpS1, nq,ExpS2, nq ď n ¨ 2Oplog2{3 nq as S1, S2 are class-2 degenerate.

S1 “

¨

˝

‚ ‚

‚ ‚

‚ ‚

˛

‚ S2 “

¨

˝

‚ ‚

‚ ‚

‚ ‚

˛

‚

Clearly, a pattern and its transpose have the same extremal function. The smallest non-degenerate acyclic pattern
whose transpose is also non-degenerate is the “pretzel” T ; we have no non-trivial upper bounds on ExpT, nq.

T “

¨

˚

˚

˝

‚ ‚

‚

‚ ‚

‚ ‚

˛

‹

‹

‚

1.1 New Result Our main result is a proper refutation of the Füredi-Hajnal conjecture for acyclic matrices
that rules out the Absolute Polylogpnq world. For any t ě 2, we give a new construction of 0–1 matrices
containing Ωpnplog n{ log log nqtq 1s, and prove that they avoid a particular 2t ˆ p2t ` 1q acyclic pattern Xt with
4t 1s.

Xt “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚ ‚ ¨ ¨ ¨ ‚ ‚ ‚

‚

‚

‚

‚
...

... ‚

‚

‚ ‚ ¨ ¨ ¨ ‚ ‚ ‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Theorem 1.1. For every t ě 2, there exists a 2t ˆ p2t ` 1q acyclic pattern Xt such that

ExpXt, nq “

"

Ωpnplog n{ log lognqtq,

Opn log4t´3 nq.

1.2 Organization Section 2 presents the construction of 0–1 matrices and some of its properties unrelated to
forbidden substructures. Section 3 analyzes the forbidden substructures, culminating in a proof of Theorem 1.1.
We conclude in Section 4 with a concise survey of open problems in 0–1 matrices and related problems in ordered
graphs.

2 A Construction of 0–1 Matrices

For any positive integer k, let rks “ t1, . . . , ku. Fix a constant integer t ě 2. The rows and columns of At are
indexed by length-ptkq strings in the set

I “ rktstk.

An element of I is partitioned into t blocks, each of length k. If a P I, let appq P rktsk be its pth block, and
app, qq P rkts be the qth coordinate in block p. We use angular brackets to denote any injective mapping from
rksr to rkrs, e.g., ⟨j1, j2, j3⟩ “ pj1 ´ 1qk2 ` pj2 ´ 1qk ` j3. For pj1, . . . , jtq P rkst, define v “ vrj1, . . . , jts P I to be
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the vector that is 0 in all coordinates except:

vp1, j1q “ ⟨ ⟩ “ 1,

vp2, j2q “ ⟨j1⟩ “ j1,

¨ ¨ ¨

vpr, jrq “ ⟨j1, . . . , jr´1⟩
¨ ¨ ¨

vpt, jtq “ ⟨j1, . . . , jt´1⟩ .

Define S to be the set of eligible vectors,

S “ tvrj1, . . . , jts | pj1, . . . , jtq P rkstu.

Letting n “ |I|, At is an n ˆ n 0–1 matrix whose row and column sets are both indexed by I, ordered
lexicographically. It is defined as follows:

Atpa, bq “

"

1 if b ´ a P S,
0 otherwise.

Lemma 2.1. }At}1 “ Θpnplog n{ log log nqtq.

Proof. At is an n ˆ n 0–1 matrix, where n “ kt
2k “ |I|. Pick a uniformly random row a P I, and a uniformly

random vector v “ vri1, . . . , its P S. The probability that a ` v P I is legal is the probability that for all r P rts,
apr, irq ` ⟨i1, . . . , ir´1⟩ ď kt, which is at least 1 ´ k´t`pr´1q since ⟨i1, . . . , ir´1⟩ ď kr´1. We have

Prpa ` v P Iq ě

t
ź

r“1

p1 ´ k´t`pr´1qq ě 1 ´

t
ÿ

r“1

k´r ą 1 ´ pk ´ 1q´1.

Therefore the number of 1s in At is at least p1 ´ pk ´ 1q´1qnkt “ Θpnplog n{ log log nqtq.

3 Forbidden Substructures

If a, b P I are distinct vectors, their type is the first block where they differ, i.e.,

typepa, bq “ mintr | aprq ‰ bprqu.

Lemma 3.1. 1. For a ă b ă c, a, b, c P I, typepa, cq ď typepb, cq.

2. Suppose Atpa, cq “ Atpb, cq “ 1, with a ă b. Let c ´ a “ vri1, . . . , its and c ´ b “ vrj1, . . . , jts. If
typepa, bq “ r, then iq “ jq for q ă r, ir ă jr, and the first coordinate where a and b differ is pr, irq.

a
b

ˆ

c
‚

‚

˙

3. Suppose Atpa, cq “ Atpa, dq “ 1, with c ă d. Let c ´ a “ vri1, . . . , its and d ´ a “ vrj1, . . . , jts. If
typepc, dq “ r, then iq “ jq for q ă r, ir ą jr, and the first coordinate where c and d differ is pr, jrq.

a
`

c
‚

d
‚

˘

4. Suppose Atpb, c1q “ Atpa, c2q “ Atpb, dq “ Atpa, dq “ 1, where a ă b and c1 ă c2 ă d. Then it is not possible
that typepa, bq “ typepc1, dq “ typepc2, dq.

a
b

ˆ

c1 c2
‚

d
‚

‚ ‚

˙
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5. Suppose Atpa, c0q “ Atpb, c1q “ Atpa, c2q “ Atpb, dq “ Atpa, dq “ 1, where a ă b and c0 ă c1 ă c2 ă d. If
typepa, bq ď typepc0, dq, then typepc0, dq ă typepc2, dq.

a
b

ˆ

c0
‚

c1 c2
‚

d
‚

‚ ‚

˙

Proof. Part 1 holds because I is ordered lexicographically.
Part 2. Let s be the first index where is ‰ js. Clearly, the first two coordinates where vri1, . . . , its and

vrj1, . . . , jts differ is ps, isq and ps, jsq. This makes a “ c ´ vri1, . . . , its and b “ c ´ vrj1, . . . , jts also differ first
at the same two coordinates, making typepa, bq “ s, so we have r “ s. At coordinate ps, jsq, vrj1, . . . , jts is
xj1, . . . , js´1y ą 0 but vri1, . . . , its is zero there, so we have aps, jsq ą bps, jsq. As a ă b, ps, jsq cannot be the first
coordinate where a and b differ, so we conclude that is ă js and ps, isq “ pr, irq is the coordinate of first difference
between a and b.

Part 3 can be proved the same way as Part 2.
Part 4. Suppose, for the purpose of obtaining a contradiction, that typepa, bq “ typepc1, dq “ typepc2, dq “ r.

Both vectors d ´ a and d ´ b are in S, so let

d ´ a “ vri1, . . . , its,

d ´ b “ vrj1, . . . , jts.

Applying Part 3 to row b, we know c1 and d first differ at coordinate pr, jrq, and applying Part 3 to row a, we
know c2 and d first differ at coordinate pr, irq. Applying Part 2 to column d, we have ir ă jr. However, since
c2 ă d we have

c1pr, irq “ dpr, irq ą c2pr, irq,

implying c1 ą c2, contradicting the originally defined order c1 ă c2.
Part 5. We have typepc0, dq ď typepc2, dq by Part 1. Suppose, for the purpose of obtaining a contradiction,

that typepc0, dq “ typepc2, dq “ r, which implies, again by Part 1, that typepc1, dq “ r as well. We have assumed
typepa, bq ď r and typepa, bq “ r would contradict Part 4, so we have typepa, bq ă r. With the notation introduced
in Part 4, both pairs pc0, dq and pc2, dq first differ at coordinate pr, irq, while pc1, dq first differ at coordinate pr, jrq.
We have c0 ă c1 ă c2 ă d lexicographically, so we must also have ir “ jr. We further know that

dpr, irq ´ c0pr, irq “ dpr, irq ´ c2pr, irq “ vri1, . . . , itspr, irq “ xi1, . . . , ir´1y,

dpr, jrq ´ c1pr, jrq “ vrj1, . . . , jtspr, jrq “ xj1, . . . , jr´1y.

This implies

c0pr, irq “ c2pr, irq ‰ c1pr, irq

since Part 2 and typepa, bq ă r implies that xi1, . . . , ir´1y ‰ xj1, . . . , jr´1y. Now pr, irq is the first coordinate where
c1 differs from either c0 or c2, but c0 and c2 agree on this coordinate, which contradicts the ordering c0 ă c1 ă c2.
The confirms Part 5 of the lemma.

Define the alternating patterns Pt and Qt, where Qt is a reflection of Pt across the minor diagonal.

Pt “

ˆ

2t ´ 1 alternating 1s
hkkkkkkkkkkkkkkikkkkkkkkkkkkkkj

‚ ‚ ‚ ‚

‚
¨ ¨ ¨

‚ ‚

˙

Qt “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚ ‚

‚

‚

...
‚

‚

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

When t ě 2, Pt and Qt appear in At, and in fact Pt1 , Qt1 appear in At for every constant t1 ě t. Lemmas 3.2
and 3.3 give useful constraints on how Pt, Qt can be embedded in At.
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Lemma 3.2. Consider an occurrence of Pt in At, where a, b P I are the indices of the two rows and c, d P I are
the indices of the first and last columns.

a
b

ˆ
c
‚ ‚ ‚

d
‚

‚
¨ ¨ ¨

‚ ‚

˙

If typepa, bq ď typepc, dq, then typepa, bq “ typepc, dq “ 1.

Proof. For i P rts, let ci P I be the index of the p2i ´ 1qth column in this occurrence of At, so c “ c1 ă c2 ă ¨ ¨ ¨ ă

ct ă d. We have typepa, bq ď typepc1, dq ď ¨ ¨ ¨ ď typepct, dq, where the first inequality is assumed and rest follow
from Lemma 3.1(1). Part 5 of Lemma 3.1 applies and implies that these latter inequalities are strict, i.e.,

typepa, bq ď typepc1, dq ă typepc2, dq ă ¨ ¨ ¨ ă typepct, dq.

All types are from rts, therefore both typepa, bq and typepc, dq “ typepc1, dq must be 1.

Lemma 3.3. Consider an occurrence of Qt in At, where a, b P I are the indices of the first and last rows and
c, d P I are the indices of the two columns. If typepa, bq ě typepc, dq, then typepa, bq “ typepc, dq “ 1.

Proof. First one has to establish the analogues of Lemma 3.1(4,5) for patterns that are reflected across the minor
diagonal, depicted below, then follow the proof of Lemma 3.2.

¨

˝

‚ ‚

‚

‚

˛

‚

¨

˚

˚

˝

‚ ‚

‚

‚

‚

˛

‹

‹

‚

For both parts, the original proofs work mutatis mutandis.

Define Xt to be the following 2t ˆ p2t ` 1q pattern.

Xt “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚ ‚ ¨ ¨ ¨ ‚ ‚ ‚

‚

‚

‚

‚
...

... ‚

‚

‚ ‚ ¨ ¨ ¨ ‚ ‚ ‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Alternatively, Xt is defined to be the 0–1 matrix whose first and last rows with the first column removed
form Pt, while its second and last column form Qt and has a single 1 entry outside these submatrices in the first
column and last row.

Lemma 3.4. At avoids Xt.

Proof. Suppose there is an occurrence of Xt in At. Let a, b P I be the indices of the first and last rows of the Xt

instance, and let c1, c, d P I be the indices of its first, second and last columns. We either have typepa, bq ď typepc, dq

or typepa, bq ě typepc, dq. We must have typepa, bq “ typepc, dq “ 1 in both cases by Lemmas 3.2 and 3.3,
respectively. But then typepc1, dq is also 1 by Lemma 3.1(1) and then the rows a, b and columns c1, c, d contradict
Lemma 3.1(4). The contradiction proves our lemma.

Lemma 3.4 lets us obtain a lower bound on ExpXt, nq. We use a Lemma of Pach and Tardos [PT06] to get a
nearly matching upper bound.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited1171

D
ow

nl
oa

de
d 

04
/0

5/
24

 to
 1

93
.2

24
.7

9.
24

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Lemma 3.5. (Lemmas 3 of [PT06]) Let P be a 0–1 pattern with rows i0, i1 and a column j such that P pi0, jq “

1 is the only 1 in column j, and P pi0, j ` 1q “ P pi1, j ´ 1q “ P pi1, j ` 1q “ 1.

P “
i0

i1

¨

˚

˚

˚

˚

˝

j ´ 1 j

‚

j ` 1

‚

‚ ‚

˛

‹

‹

‹

‹

‚

Let P 1 be P with column j removed. Then ExpP, nq “ OpExpP 1, nq ¨ log nq.

Since the extremal function of a pattern is invariant under rotations and reflections, Lemma 3.5 also applies
with the roles of rows and columns reversed, and the the roles of j ´ 1 and j ` 1 reversed.

Proof. [Proof of Theorem 1.1] By Lemmas 2.1 and 3.4, At has weight Θpnplog n{ log log nqtq and avoids Xt, giving
the lower bound. For the upper bound, we can apply Lemma 3.5 iteratively to remove rows 2, 3, . . . , 2t´1 followed
by columns 2t, 2t ´ 1, . . . , 2, leaving a linear pattern with three 1s. Each application of Lemma 3.5 introduces a
log n factor, so ExpXt, nq “ Opn log}Xt}1´3 nq “ Opn log4t´3 nq.

4 Conclusion and Open Problems

The following broad classification of 0–1 patterns comes out of the last 30+ years of forbidden 0–1 matrix
theory [BG91, FH92, Kla92, KV94, MT04, Tar05, PT06, Kes09, Ful09, Gen09, Pet11a, Pet11b, Pet11c, Tim12,
Fox13, Pet15b, CK17, WP18, GKM`18, KTTW19, FKMV20, MT22, GMN`23, KT23a, KT23b, CPY24].

Linear Patterns. Let Plin be the set of all P such that ExpP, nq “ Opnq. Plin contains several well-
structured classes of patterns such as permutations [MT04], “double” permutations [Gen09], and monotone
patterns [Pet11c, Kes09, KV94]. Examples of the last two classes are

¨

˚

˚

˝

‚ ‚

‚ ‚

‚ ‚

‚ ‚

˛

‹

‹

‚

¨

˚

˚

˝

‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

˛

‹

‹

‚

There are only a handful of known linear patterns outside these classes. The first two examples below are
proved via ad hoc arguments [Ful09, Pet11b], and the last is an example of the “grafting” operation [Pet11c]
applied to a linear pattern [Tar05].

¨

˚

˚

˝

‚

‚ ‚

‚ ‚ ‚

‚

˛

‹

‹

‚

¨

˝

‚

‚ ‚

‚ ‚ ‚

˛

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

‚

‚

‚

‚

‚ ‚ ‚ ‚

‚

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

A difficult open problem is to characterize the class Plin. It is known that there are infinitely many minimal2

nonlinear patterns [Kes09, Gen09, Pet11a]. On the other hand, every known P for which P R Plin is witnessed
by one of two constructions [HS86, FH92] with weight Θpnαpnqq and Θpn log nq (where αpnq is the inverse-
Ackermann function), and every P with ExpP, nq “ Ωpn log nq is witnessed by one of two closely related
constructions [FH92, Tar05]. It may be that a finite number of witness constructions characterize the set
of patterns outside of Plin.

Although characterizing linear patterns seems to be beyond reach, a nice and simple characterization of
linear connected patterns is given in [FKMV20]. Here we call P connected if the corresponding bipartite
graph GpP q is connected.

Quasilinear Patterns. Let Pqlin be the set of all P for which ExpP, nq ď n2pαpnqq
Op1q

, where αpnq is the inverse-
Ackermann function. Functions of this type are called quasilinear and show up in the analysis of (generalized)
Davenport-Schinzel sequences [HS86, ASS89, Kla92, Niv10, Pet15a, Pet11b, Pet15b] and other combinatorial

2with respect to ă containment
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problems [AKN`08]. A pattern is light if it contains exactly one 1 per column. All light patterns are in
Pqlin [Kla92, Niv10, Pet15b] and all patterns known to be in PqlinzPlin are either light, or composed of
light or linear patterns via Keszegh’s [Kes09] joining operation.3 It is an open question whether there
are infinitely many minimal non-linear patterns in Pqlin. It is consistent with known results that if P is
light, then P P Plin iff it avoids the following patterns (or their reflections), which correspond to order-3
Davenport-Schinzel sequences.

¨

˝

‚

‚

‚ ‚

˛

‚

ˆ

‚ ‚

‚ ‚

˙

It would also be of interest to characterize, for each t ě 1, (light) patterns P P Pqlin for which

ExpP, nq ě n2Ωpαt
pnqq.

Acyclic Patterns. All acyclic P for which the bound ExpP, nq ď nplog nqOp1q is known can be proved via the
Pach-Tardos reductions [PT06, Lemmas 2, 3, and 4] (see Lemma 3.5 for one), together with Keszegh’s [Kes09]
joining operation.4 If P is degenerate then ExpP, nq ď n1`op1q [KTTW19]. Upper bounding ExpP, nq by
nplog nqOP p1q, n1`op1q, or even n2´ϵ for all acyclic patterns P is the main open problem in this area. A
more subtle problem is to determine which extremal functions are possible. Tardos [Tar05] gave examples
of pairs of patterns with ExptP, P 1u, nq “ Θpn log log nq and ExptP 2, P3u, nq “ Θpn log n{ log log nq, but it
is unknown whether these extremal functions can be achieved by a single forbidden pattern.

Arbitrary Patterns. The Kővári-Sós-Turán theorem [KST54] implies that if P P t0, 1ukˆl, then ExpP, nq “

O
´

n2´ 1
mintk,lu

¯

. Pach and Tardos [PT06] constructed Θpn4{3q-weight matrices that avoid some arbitrarily

long ordered cycles. See Timmons [Tim12] and Győri et al. [GKM`18] for more results on ordered cycles.
Methuku and Tomon [MT22] defined a matrix P to be row t-partite if it can be cut along rows into t light
matrices, and t ˆ t-partite if both P and PT are row t-partite. They proved that if P is row t-partite and
t ˆ t-partite, that ExpP, nq is at most n2´1{t`1{t2`op1q and n2´1{t`op1q, respectively.

A 0–1 matrix can be viewed as an ordered bipartite graph, where the two parts of the bipartition are given
independent linear orders. Forbidden 0–1 matrix theory has been extended to other types of ordered subgraph
containment.

Vertex-ordered graphs It is natural to drop the requirement that the forbidden graph and host graph be
bipartite and just consider the extremal theory of arbitrary vertex-ordered graphs: these are simple graphs
with a linear order on their vertices. Containment between vertex-ordered graphs must preserve the ordering.
The extremal function of such a (forbidden) graph H was introduced in [PT06]: ExpH,nq is the maximum
number of edges of an n-vertex vertex-ordered graph that does not contain H. The connection to the
extremal theory is 0–1 patterns is very close. A vertex-ordered graphs H is called ordered bipartite (or
of interval chromatic number 2) if it is a bipartite graph with one partite class of vertices preceding the
other in the vertex-order. If H is not ordered bipartite, then ExpH,nq “ Θpn2q. If H is ordered bipartite,

3Keszegh [Kes09] observed that if A has a 1 in its southeast corner and B has a 1 in its notherwest corner, that by joining them

at their corners, the resulting pattern A ‘ B has extremal function ExpA ‘ B,nq ď ExpA,nq ` ExpB,nq.

A ‘ B “

¨

˚

˚

˚

˚

˝

A
‚

B

˛

‹

‹

‹

‹

‚

If A is light, and B is the transpose of a light pattern, then A ‘ B P Pqlin, but neither it nor its transpose is light.
4For example, the following pattern has extremal function Opn log3 nq, but it is not subject to any of the Pach-Tardos reductions.

It must first be decomposed into two patterns via Keszegh [Kes09], each of which has extremal function Opn log3 nq by [PT06].
¨

˚

˚

˚

˚

˚

˚

˝

‚ ‚

‚ ‚

‚

‚ ‚

‚ ‚

‚ ‚

˛

‹

‹

‹

‹

‹

‹

‚
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let P pHq be its bipartite 0–1 adjacency matrix (ordering the rows and columns consistent with the given
vertex-order) and we have

ExpP pHq, n{2q ď ExpH,nq “ OpExpP pHq, nq ¨ log nq.

This implies that the vertex-ordered graph H for which P pHq “ Xt is an example of an ordered bipartite
tree whose extremal function is Ωpnplog n{ log log nqtq. Previously no ordered bipartite tree was known

whose extremal function was not n log1`op1q n.

Although the connection between the 0–1 matrices and vertex-ordered graphs is not close enough to directly
translate questions about the the linearity of extremal functions, the situation was similar in the two theories:
although characterization of forbidden vertex-ordered graphs H with ExpH,nq “ Opnq is currently beyond
reach, the paper [FKMV20] provides such a characterization for connected H.

Edge-ordered graphs Rather than extend Turán-type extremal graph theory by adding a total order on
vertices, we could instead add a total order on edges. This yields the extremal theory of edge-ordered
graphs as introduced by [GMN`23]. A rich theory starts to form but it is not as closely related to the
extremal theory of 0–1 patterns as the vertex-ordered variant is. Nevertheless, many results and problems
have analogues in the two theories. The analogue of the interval chromatic number is the order chromatic
number : an edge-ordered graph has order chromatic number 2 if it is contained in the lexicographically
ordered complete bipartite graph. The extremal function of an edge-ordered graph is Θpn2q if and only if
its order chromatic number is not 2. While the characterization of edge-ordered graphs with linear extremal
functions seems to also be beyond reach in general, such a characterization is given for connected edge-
ordered graphs [KT23b]. The extremal function of acyclic edge-ordered graphs of order-chromatic number
2 was conjectured to be n1`op1q in [GMN`23] and this has recently been established in [KT23a], where
the stronger (and still open) conjecture was formulated that these extremal functions are all of the form
Opn logc nq, where c may depend on the forbidden edge-ordered graph. In contrast to the main result of
this paper, it is still possible that the above bound holds with c “ 1 for all acyclic edge-ordered graphs of
order chromatic number 2.
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