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With increasing beam energies the angular momentum of the fireball in peripheral heavy ion
collisions is increasing, and the proposed Differential Hanbury Brown and Twiss analysis is able to
estimate this angular momentum quantitatively. The method detects specific space-time correlation
patterns, which are connected to rotation.
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I. INTRODUCTION

In high energy peripheral heavy ion collisions the high
angular momentum is realized in rotating flow, large ve-
locity shear, vorticity and circulation. Viscous, explo-
sive expansion leads to the decrease of vorticity and cir-
culation with time, however, with small viscosity the
vorticity remains significant at the final freeze-out (FO)
stages. The proposed Differential Hanbury Brown and
Twiss (HBT) analysis, a combination of standard two
particle correlation functions, is adequate to analyze ro-
tating systems. At the present collision energies the an-
gular momentum and rotation is becoming a dominant
feature of reaction dynamics, and up to now the rotation
of the system was never analysed, neither with the HBT
method nor in any other way. We present and analyse
this method and its results in a high resolution, Particle
In Cell fluid dynamics model. Fluid dynamics is proven
to be the best theoretical method to describe collective
flow phenomena. The same model was used to predict
the rotation in peripheral ultra-relativistic reactions [1],
to point out the possibility of Kelvin Helmholtz Instabil-
ity (KHI) [2], flow vorticity [3] and polarization arising
from local rotation, i.e. vorticity [4]. The model was
also tested for its numerical viscosity and the resulting
entropy production [5]. The formation of KHI was also
observed recently in AdS/CFT holography, where the in-
stability is even more pronounced in peripheral reactions,
although the time scale is sufficiently short only at high
quark chemical potentials as at FAIR, NICA and RHIC-
BES [6].

The total angular momentum of the fireball is maximal
at b = 0.3bmax [7], while the angular momentum per net
baryon charge is maximal around b = (0.5 − 0.8)bmax.
At ultra-peripheral collisions fluctuations dominate col-
lective effects. According to the present analysis the Dif-
ferential HBT method is indicating rotation via particles
at collective momenta, pt ≈ (0.5−2) GeV/c the best, and
the magnitude of the introduced Differential Correlation
Function is monotonically increasing with the angular
momentum.

II. CORRELATION FUNCTION FROM FLUID
DYNAMICS

The pion correlation function is defined as the inclusive
two-particle distribution divided by the product of the
inclusive one-particle distributions, such that [8]:

C(p1, p2) =
P2(p1, p2)

P1(p1)P1(p2)
, (1)

where p1 and p2 are the 4-momenta of pions. We intro-
duce the center-of-mass momentum 1 : k = 1

2 (p1 + p2) ,
and the relative momentum q = p1− p2 , where from the
mass-shell condition [8] q0 = kq/k0. We use a method
for moving sources presented in Ref. [9].

C(k, q) = 1 +
R(k, q)∣∣∫ d4xS(x, k)

∣∣2 , (2)

where

R(k, q) =

∫
d4x1 d

4x2 cos[q(x1 − x2)]×

S(x1, k + q/2)S(x2, k − q/2) .

(3)

Using the emission function S(x, k), discussed in refs.
[10], here R(k, q) can be calculated [9] via the function

J(k, q) =

∫
d4x S(x, k + q/2) exp(iqx) , (4)

and we obtain the R(k, q) function as R(k, q) =
Re [J(k, q) J(k,−q)].

We estimate the local pion density by the specific en-
tropy, σ(x), as nπ(x) ∝ n(x)σ(x), where n(x) is the

1 The vector k is the wavenumber vector, k = p/~ so for numerical
calculations we have to use that ~c = 197.327 MeV fm., The same
applies to q.
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proper net baryon charge density. 2 Thus the local in-
variant pion density is given by the Jüttner distribution
as

fJ(x, p) =
n(x)σ(x)

Cπ
exp

(
−p

µuµ(x)

T (x)

)
, (5)

where Cπ = 4πm2
πTK2(mπ/T ), at temperature T , and

K2 is a modified Bessel function.

We assume that the single particle distributions,
f(x, p), in the source functions are Jüttner distributions,
which depend on the local velocity, uµ(x), and we use
the notation u1 = u(x1) = uµ(x1).

By using the Cooper-Frye (CF) freeze out description
we can connect the Source function, S, to the phase space
distribution function on the freeze out hypersurface. Let
the space-time points of the hyper-surface be given in
parametric form xFO = xFO(x), which can be given
by the freeze out condition (e.g t =const., τ =const.,
T =const. or other). In the source function formalism
this corresponds to a 4-volume integral∫

d4x S(x, p) =

∫
d4x fJ(x, p) P (x, p) =∫

d4x fJ(x, p) δ(x− xFO) pµσ̂µ ,

where the emission probability is [11] P (x, p) = δ(x −
xFO) pµσ̂µ. This CF freeze out treatment is the most
frequent in fluid dynamical models. This sudden freeze
out assumption can be relaxed by assuming an extended
freeze out layer in the space time via replacing the
Dirac delta function with a freeze out profile function
in P (x, p), e.g.:

P (x, p) = δ(x− xFO) pµσ̂µ −→
1√
∆π

exp

(
− (s− sFO)2

∆

)
pµσ̂µ ,

where s is a local coordinate in the direction of σ̂µ, and
the local width of the freeze out layer is ∆ = ∆(x) (which
should tend to zero to get the Dirac delta function for
the emission probability). This description is then com-
pletely general, with the only assumption that the emis-
sion probability has a Gaussian profile. (This could also
be relaxed.)

If we assume that the two coincident particles origi-
nate from two points, x1 and x2, the expression of the

2 At the latest times presented here, t = 3.56 fm/c, (∼ 8 fm/c
after the initial touch) the net baryon density is sufficiently large
at non-vanishing entropy, so this approximation is satisfactory.
At later times the entropy density becomes dominant, while the
net baryon density decreases”.

correlation function, Eq. (3) will be become [10]

R(k, q) =

∫
d4x1d

4x2 S(x1, k)S(x2, k) cos[q(x1−x2)]×

exp

[
−q

2
·
(
u(x1)

T (x1)
− u(x2)

T (x2)

)]
,

(6)

and the corresponding J(k, q)-function is

J(k, q) =

∫
d4x S(x, k) exp

[
−q · u(x)

2T (x)

]
exp(iqx) , (7)

In Ref. [10] different one, two and four source sys-
tems were tested with and without rotation. Here we
study only the case where the emission is asymmetric
and dominated by the fluid elements facing the detector.

In numerical fluid dynamical studies of symmetric
(A+A) nuclear collision the initial state is symmetric
around the center of mass (c.m.) of the system, and (if
we do not consider random fluctuations) this symmetry
is preserved during the fluid dynamical evolution.

Let us consider the usual conventions, z is the beam
axis, and the positive z-direction is the direction of the
projectile beam. The impact parameter vector points
into the positive x-direction, i.e. towards the projectile.
Finally the y-axis is orthogonal to both.

The fluid dynamical system, without fluctuations can
be considered as a set of symmetric pairs of fluid cells.

The emission probabilities from the two fluid cells of a
source pair are not equal.

If we have several fluid cell sources, s, with Gaussian
space-time (ST) emission profiles, then the source func-
tion in Jüttner approximation is∫

d4xS(x, k) =
∑
s

∫
s

d3xs dts S(xs, k) =

(2πR2)3/2
∑
s

γsns(x) (kµ σ̂
µ
s )

Cs
exp

[
−k · us

Ts

]
,

(8)

where ns = nπ, and the spatial integral over a cell volume
is, Vcell = (2πR2)3/2 while the time integral is normalized
to unity. Similarly the J-function is

J(k, q) =
∑
s

e−
q
2 ·

us
Ts eiqxs

∫
s

d4x Ss(x, k) eiqx . (9)

We then assume that the FO layer is relatively narrow
compared to the spatial spread of the fluid cells, so that
the peak emission times, ts, of all fluid cells are the
same. Then the exp(iq0ts) factor drops out from the
J(k, q)J(k,−q) product. 3 This FO simplification is jus-
tified for rapid and simultaneous hadronization and FO

3 If the emission is happening through a layer with time-like nor-
mal, but the peak is not at constant ts, but rather at constant
τs, then we can adapt the coordinate system accordingly, i.e. we
can use the τ, η coordinates instead of t, z, see e.g. [11].
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from the plasma. For dilute and transparent matter the
correlations from the time dependence of FO should be
handled the same way as the spatial dependence.

Due to mirror symmetry with respect to the [x, z], re-
action plane, it is sufficient to describe the cells on the
positive side of the y-axis. The other side is the mirror
image of the positive side. Then we can evaluate the
correlation function the same way as in Ref. [10].

Thus we define the quantities:

Qc =
(
2πR2

)3/2
exp

[
−R

2q2

2

]
,

Ps =
γsns
Cs

exp

[
−k0 u

0
s

Ts

]
,

Q(q)
s = exp

[
−q0 u

0
s

2Ts

]
,

ws = (kµ σ̂
µ
s ) exp

[
−Θ2

s

2
q20

]
,

(10)

where u0s = γs, the local 4-direction normal of the mean
particle emission from an ST point of the flow is σ̂µs (as-
sumed to be time-like), R is the size (radius) of the fluid
cells, and Θs is the path length of the time integral from
the ST point of the source, s, while assuming a Gaussian
emission time profile [10]. The weights, ws arise directly
from the Cooper-Frye formula [11].

We can reassign the summation for pairs, so that s =
{i, j, k} will correspond to a pair of cells: at {i, j, k} and
its reflected pair across the c.m. point at the same time
at {i∗, j∗, k∗}. Then the function S(k, q) becomes∫

d4xS(x, k) =
(
2πR2

)3/2×∑
s

Ps

[
ws exp

(
kus
Ts

)
+ w∗s exp

(
ku∗s
Ts

)]
,

(11)

while, the function J(k, q) becomes

J(k, q) = Qc
∑
s

Ps

[
Q(q)
s ws exp

[(
k+

q

2

)us
Ts

]
eiqxs

+Q(q)
s w∗s exp

[(
k+

q

2

)u∗s
Ts

]
eiqx

∗
s

]
Only the mirror symmetry across the participant c.m.

is assumed, which is always true for globally symmetric,
A+A, heavy ion collisions in a non-fluctuating fluid dy-
namical model calculation. Then the correlation function
can be evaluated using Eqs. (2-4).

By using few fluid cell sources for tests, in Ref. [10]
it was shown that in case of a globally symmetric fluid
dynamical configuration the correlation function only in-
cludes cos(ckus) and cosh(ckus) terms, therefore it will
not depend on the direction of the velocity, only on its
magnitude. The direction dependence becomes apparent
in the correlation function only if we take into account
that due to the radial expansion and the opacity of the

strongly interacting QGP, the emission probability from
the far side of the system is reduced compared to the side
of the system facing the detector.

Based on the few source model results the Differential
HBT method was introduced by evaluating the difference
of two correlation functions measured at two symmet-
ric angles, forward and backward shifted in the reaction
plane in the participant c.m. frame by the same angle,
i.e. at η = ±const., so that the Differential Correlation
Function (DCF) becomes

∆C(k, q) ≡ C(k+, qout)− C(k−, qout). (12)

For the exactly ±x -symmetric spatial configurations (i.e.
k+x = k−x and k+z = −k−z), e.g. central collisions or
spherical expansion, ∆C(k, q) would vanish! It would
become finite if the rotation introduces an asymmetry.

III. THE FREEZE-OUT

The HBT method is sensitive to the time development
of particle emission, and well suited to transport mod-
els where emission happens during the ST history of the
collision, although the emission is concentrated at a FO
layer. The fluid dynamical model is also able to describe
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w i t h o u t  r o t a t i o n
 k = 0 . 2  / f m
 k = 5  / f m

  w i t h  r o t a t i o n
 k = 0 . 2  / f m
 k = 5  / f m

C(
k,q

)

q  ( 1 / f m )

t = 3 . 5 6  f m / c

FIG. 1. (color online) The dependence of the standard corre-
lation function in the k+ direction from the collective flow, at
the final time, 3.56 fm/c after reaching local equilibrium and
8.06 fm/c from the first touch, including the initial longitudi-
nal expansion Yang-Mills field dynamics [19].

emission in a ST volume or layer [12, 13], or in hybrid
models where a microscopic transport module is attached
to the fluid dynamics, e.g. [14]. The determination of the
FO surface normal or the emission direction from the ST
FO layer and the emission profile in this layer are the
subjects of present theoretical research, see [7, 15–18].
This complex FO process certainly has an influence on
the HBT analysis, but our present aim is not to repro-
duce exactly a given experiment.

We focus on a single collective effect, the rotation, de-
veloping from the angular momentum during the initial
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stages of the fluid dynamics. Thus we constrain our dis-
cussion to the fluid dynamical stage, and adopt a rela-
tively simple FO description from ref. [11], which can
be implemented in Eq. (10). This provides the emission
weight factors, ws, which depend on the local mean emis-
sion direction σ̂µ, and the flow velocity at the emission
point.

The detector configuration is given by the two particles
reaching a given detector in the direction of k. Thus the
emission weights depend on the normal of the emission

surface and of the emission, i.e. σ̂ and k̂. Most of the
particles FO in a layer along a constant proper time hy-
perbola, with a dominant flow 4-velocity normal to this
hyperbola: σ̂µ ≈ uµ. The origin of the hyperbola is at a
ST point, which may precede the impact of the Lorentz
contracted nuclei [15].

We assume in the actual numerical calculations that in
the expression of the weight, in Eq. (10), is the same for

all surface layer elements: Q
(q)
s = Q(q) and Θs = Θ, so

that ws = (kµ σ̂
µ
s ) exp(−Θ2q20/2) , where σ̂sµ = (σ0

s ,σs),
so that kµ σ̂

µ
s = k0σ0

s + kσs . If the emission path time-
length, Θ, tends to zero, then the time modifying factor
becomes unity. With the choice σ̂µ = uµ, the time-like
FO normal is σ̂sµ = (γs,us). Then (kµσ̂

µ
s ) = γsk0+kus.

So the weight becomes

ws = (γsk0+kus) exp(−Θ2q20/2). (13)

This weight is explicitly different for the mirror im-
age cell at x∗s → −xs, where u∗s → −us and then
w∗s = (γsk0−kus) exp(−Θ2q20/2) .

The weight factors appear both in the nominator and
denominator of the correlator, so its normalization is bal-
anced. On the other hand the role of the different factors
in the weight have an effect to determine, which cells con-
tribute more, which cells contribute less to the integrated
result.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
- 0 . 0 2

0 . 0 0

0 . 0 2

0 . 0 4
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0 . 0 8

0 . 1 0

0 . 1 2
w i t h o u t  r o t a t i o n

 k = 0 . 2  / f m
 k = 5  / f m

 

 

∆C
(k,

q)

q  ( 1 / f m )

w i t h  r o t a t i o n
 k = 0 . 2  / f m
 k = 5  / f m

t = 3 . 5 6  f m / c

FIG. 2. (color online) The Differential Correlation Function,
∆C(k, q), at the final time with and without rotation.

IV. RESULTS

The sensitivity of the standard correlation function on
the fluid cell velocities decreases with decreasing dis-
tances among the cells. So, with a large number of
densely placed fluid cells where all fluid cells contribute
equally to the correlation function, the sensitivity on the
flow velocity becomes negligibly weak.

Thus, the emission probability from different ST re-
gions of the system is essential in the evaluation. This
emission asymmetry due to the local flow velocity occurs
also when the FO surface or layer is isochronous or if it
happens at constant proper time.

We studied the fluid dynamical patterns of the calcula-
tions published in Ref. [2], where the appearance of the
KHI is discussed under different conditions. We chose
the configuration, where both the rotation [1], and the
KHI occurred, at b = 0.7bmax with high cell resolution
and low numerical viscosity at LHC energies, where the
angular momentum is large, L ≈ 106~ [7].

In spatially symmetric few source configurations [10],
the standard correlation function did not show any dif-
ference if it is measured at two symmetric k and q-
out angles, e.g. in the reaction, [x-z] plane at k+ =
(kx, 0,+kz), q+ = (qx, 0,+qz) and k− = (kx, 0,−kz),
q− = (qx, 0,+q−), i.e. ∆C(k, q) vanished. Here we have
chosen two directions at η = ±0.76, that is at polar an-
gles of 90 ± 40 degrees. These are measurable with the
ALICE TPC and at the ATLAS and CMS also.

The standard correlation function is both influenced
by the ST shape of the emitting source as well as its
velocity distribution. The correlation function becomes
narrower in q with increasing time primarily due to the
rapid expansion of the system. At the initial configura-
tion the increase of |k| leads to a small increase of the
width of the correlation function.

Nevertheless, in theoretical models we can switch off
the rotation component of the flow, and analyse how the
rotation influences the correlation function and especially
the DCF, ∆C(k, q).

Fig. 1 compares the standard correlation functions
with and without the rotation component of the flow at
the final time moment. Here we see that the rotation
leads to a small increase of the width in q for the dis-
tribution at high values of |k|, while at low momentum
there is no visible difference.

In Fig. 2 ∆C(k, q) is shown for the configuration with
and without rotation. For k = 5/fm the rotation in-
creases both the amplitude and the width of ∆C. The
dependence on |k| is especially large at the final time.

In the original K frame defined by the beam direction
and the impact parameter, we can describe the vector k

with coordinates, k =

{
kx
kz

}
. In the K ′ frame the same

vector is then

k′(α) =

{
kx′
kz′

}
=

{
kx cosα− kz sinα
kz cosα+ kx sinα

}
. (14)
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ΔC=0, by Def.

Symmetry axis α = 0

non-tilted
non-rotating

(a)
kx

kz

ΔC ≠ 0

non-tilted
rotating

(b)

kz

kx

α Δ C≠ 0  
Δ Cα= 0

(c)
kx

kz

kx’

kz’rotating
tilted

Symmetry axis α ≠ 0

tilted
rotating

(d)
α

kz

kx

kz’

kx’ Δ C≠ 0  
Δ Cα≠ 0

FIG. 3. (Color online) Sketch of the configuration in different
reference frames, with and without rotation of the flow. The
non-rotating configurations have may have radial flow velocity
components only. The DCF, ∆Cα(k, q) is evaluated in a K′

reference frame rotated by and angle α in the x, z, reaction
plane. We search for the angle α, where the non-rotataing
configuration is ”symmetric”, so that it has a ”minimal” DCF
as shown in Fig. 4.

Then one can define the DCF,

∆Cα(k′, q′) , (15)

which depends on the angle α. We have to find the proper
symmetry axes of the emission ellipsoid. The conven-
tional way would be the standard azimuthal HBT, how-
ever, we can exploit the features of the DCF. As the
analytic examples [10] show if (i) the shape is symmetric
around the x′ axis, and (ii) there is no rotation in the
flow, then

∆Cα
(
k′, q′

)
= 0 . (16)

Thus we can use the DFC to find the angle, α′, of the
proper frame K ′ also. For a given |k| (e.g. |k| = 5/fm),
we search for the minimum of the norm of the DCF as a
function of α.

This procedure is performed and the result is shown in
Fig. 4 We separated the effect of the rotation by finding
the symmetry angle where the rotation-less configuration
yields vanishing or minimal ∆C for a given transverse
momentum k.

The figure shows the result where the rotation com-
ponent of the velocity field is removed. The DCF shows
a minimum in its integrated value over q, for α = −11
degrees. The shape of the DCF changes characteristi-
cally with the angle α. Unfortunately this is not possi-
ble experimentally, so the direction of the symmetry axes

should be found with other methods, like global flow anal-
ysis and/or azimuthal HBT analysis. To study the de-
pendence on the angular momentum the same study was
for lower angular momentum also, i.e. for a lower (RHIC)
energy Au+Au collisions at the same impact parameter
and time. We identified the angle where the rotation-less
DCF was minimal, which was α = −8 degrees, less than
the deflection at higher angular momentum.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0

- 0 . 1 0

- 0 . 0 5

0 . 0 0

0 . 0 5

0 . 1 0

 

 

∆C
α(k

,q)

q  ( 1 / f m )

α (d e g r e e )
 - 2 0
 - 1 1 . 5
 - 1 1
 - 1 0
 0
 1 0
 2 0

w i t h o u t  r o t a t i o n
k = 5  / f m
t = 3 . 5 6  f m / c

FIG. 4. (Color online) The DCF at average pion wavenum-
ber, k = 5/fm and fluid dynamical evolution time, t =
3.56fm/c, as a function of the functions of momentum dif-
ference in the ”out” direction q (in units of 1/fm). The DCF
is evaluated in a frame rotated in the reaction plane, in the
c.m. system by angle α.

We did this for two different energies, Pb+Pb /
Au+Au at

√
sNN = 2.36/0.2 TeV respectively, while all

other parameters of the collision were the same. The de-
flection angle of the symmetry axis was α = −11/ − 8
degrees4 respectively. In these deflected frames we evalu-
ated ∆C for the original, rotating configurations, which
are shown in Fig. 5. This provides an excellent measure
of the rotation.

On the other hand the rotation-less configuration can-
not be generated from experimental data in an easy way.
Other methods like the Global Flow Tensor analysis, or
the azimuthal HBT analysis [20] can provide an estimate
for finding the deflection angle α.

V. CONCLUSION

The analysed model calculations show that the Differ-
ential HBT analysis can give a good quantitative measure
of the rotation in the reaction plane of a heavy ion col-
lision. These studies show that this measure is propor-
tional to the beam energy or total angular momentum

4 The negative angles are arising from the fact that our model
calculations predict rotation, with a peak rotated forward [1].
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0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
- 0 . 1 0

- 0 . 0 8

- 0 . 0 6

- 0 . 0 4

- 0 . 0 2

0 . 0 0
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 k = 5  / f m
 t = 3 . 5 6  f m / c

 

 

∆C
(k,

q)

q  ( 1 / f m )

P b + P b @ 2 . 7 6  T e V
    α= - 1 1  d e g r e e s  

 w i t h  r o t a t i o n  
 w i t h o u t  r o t a t i o n  

A u + A u @ 2 0 0  G e V
   α= - 8  d e g r e e s  

 w i t h  r o t a t i o n
 w i t h o u t  r o t a t i o n  

FIG. 5. (color online) The DCF with and without rotation
in the reference frames, deflected by the angle α, where the
rotation-less DCF is vanishing or minimal. In this frame the
DCF of the original, rotating configuration indicates the effect
of the rotation only. The amplitude of the DCF of the original
rotating configuration doubles for the higher energy (higher
angular momentum) collision.

(while the polarization [4] is not). It shows the best sen-
sitivity at higher collective transverse momenta.

To perform the analysis in the rotation-less symmetry
frame one can find the symmetry axis the best with the
azimuthal HBT method, which provides even the trans-
verse momentum dependence of this axis [20].

It is also important to determine the precise Event by
Event c.m. position of the participants [21], and min-
imize the effect of fluctuations to be able to measure
accurately the emission angles, which are crucial in the
present ∆C(k, q) studies.
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