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ABSTRACT

Context. Solar wind plasma is supposed to be structured in magnexi¢uhes carried from the solar surface. Tangential velatiggontinuity
near the boundaries of individual tubes may result in KeMaimholtz instability, which may contribute into the solgind turbulence. While
the axial magnetic field may stabilize the instability, a Brivaist in the magnetic field may allow to sub-Alfvénic motis to be unstable.
Aims. We aim to study the Kelvin-Helmholtz instability of twistegagnetic flux tube in the solar wind withfiérent configurations of external
magnetic field.

Methods. We use magnetohydrodynamic equations in the cylindricahggry and derive the dispersion equations governing thamyjcs of
twisted magnetic flux tube moving along its axis in the cagestwisted and twisted external fields. Then we solve thpeaiision equations
analytically and numerically and found thresholds for Kieliielmholtz instability in both cases of external field.

Results. Both analytical and numerical solutions show that the Kelelmholtz instability is suppressed in the twisted tuipeekternal axial
magnetic field for sub-Alfvénic motions. However, even 8riveist in the external magnetic field allows the Kelvin-@holtz instability to be
developed for any sub-Alfvénic motions. The unstable lanics correspond to vortices with high azimuthal mode nus)hehich are carried

by the flow.
Conclusions. Twisted magnetic flux tubes can be unstable to Kelvin-Heltzhostability when they move with small speed relative taim
solar wind stream, then the Kelvin-Helmholtz vortices maygicantly contribute into the solar wind turbulence.

Key words. Sun: Solar wind — Sun: magnetic fields — Physical data ancepeas: Instabilities — Physical data and processes: el

1. Introduction seems to have noffect on the instability (Seh_ 1963, Ferrari
et al[1981, Cohh 1983, Singh and Tahivar 1994), which means
The solar wind plasma is supposed to be composed of ingliat the twisted magnetic tubes may become unstable to KHI
vidual magnetic flux tubes which are carried from the sol@ken with sub-Alfvénic motions.
atmosphere by the wind (Bruno et @l._ 2001, Borovisky 2008).
Tangential velocity discontinuity at the tube surface dughe Solar wind flux tubes probably are “fossil structures” (i.e.
motion of tubes with regards to the solar wind stream malgey are carried from the solar atmosphere), then they may
lead to the Kelvin-Helmholtz instability (KHI), which careb roughly keep the magnetic topology typical for tubes near th
of importance as Kelvin-Helmholtz (KH) vortices may leadolar surface. Complex photospheric motions may stretdh an
to the enhanced magnetohydrodynamic (MHD) turbulendwist anchored magnetic field, which may lead to the conse-
Observations show that the velocityfféirence inside and out-quent changes of topology at higher regions. The observed ro
side the magnetic structures in the solar wind generallyts riation of sunspots (Khutsishvili et al. 1998, Brown ef{al030
large, which means that the relative velocity of the tube andn and QU 2007, Zhang et al. 2007) may lead to the twist-
mean stream is sub-Alfvénic. KHI may develop for small veng of magnetic field above active regions, which can be ob-
locity discontinuities in hydrodynamic flows (Drazin andiéRe served as twisted loops in the corona (Srivastava €t al.)2010
[1981), but a flow-aligned magnetic field stabilises sub-Atfic  Recent observations of magnetic tornados (WedemeyemBoh
flows (Chandrasekhar1961). Therefore KHI will be supprésset al.[2012, Su et al. 2012, Li et al._2012) also strongly sup-
in tubes moving with sub-Alfvénic speeds with regards ® ttport the existence of twisted magnetic flux tubes on the Sun.
solar wind. On the other hand, a transverse magnetic fidlewly emerged magnetic tubes can be also twisted during the
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rising phase through the convection zone (Moreno-Insaniis ing form: B = (0, By(r), BAr)). The unperturbed magnetic field
Emonef’1996, Archontis et al. 2004, Murray and Hood 200&nd pressure satisfy the pressure balance condition
Hood et al”2009). Therefore, solar magnetic tubes showld ha 2 o2 2

. . . B:+B B
been twisted at photospheric, chromospheric and corowal Ie‘_j LA (1)
els. Helical magnetic flux rope can be also generated duriflfy 8 4nr
the eruption of coronal mass ejections (CME's) and trarteglor

. . . We consider that the tube moves along the axial direction
into the interplanetary space (Lynch efal. 2004). Originad- 9

. . - ith h i ium, h he fl fil
netic flux rope structure is supposed to be deformed duriag ﬁlt regards to the surrounding medium, hence the flow profile

: . side the tube i&) = (0,0, U). In generalJ can be a function
transport through the heliosphere, but the flux rope still Wt r, but we consider the simplest homogeneous case. No mass
keep its tmsted nature (Manchester et[al. 2004). Therefo]rl%w is considered outside the tube, which means that we are in
the solar wind magnetic tubes of all scales generally shoald

twisted. Twisted tic tub table to Kink irikitab the frame co-moving with the solar wind stream.
WISIEC. Twisted magnetic tubes are unstable to kin ".'m As the unperturbed parameters depend orr th@ordinate
when the twist exceeds a critical value. The critical twisgle

. . : . ly, th turbati be Fouri lysed with emfi
is ~70°, which means that the tubes twisted with a larger aony & perturbations can be Fourier analysed wi X

o h Q{z—wt)]. The equations governing the incompressible dynam-

gle are unstable to the kink instability, therefore theyhaioly .
can not reach 1 AU (Zaqarashvili et al. 2013). Twisted mat{f—s of the plasma are (Goossens et al. 1992)
netic tubes can be observed by in situ vector magnetic fiedp, [Cs d (rD\]dp; [Cs d [rC;\ CoCs-— Cf
measurements in the solar wind considering force-free fielgz * [ﬁa (C_g)] a [ﬁa (C_g) + T} P
model (Moldwin et al["2000, Feng et al._2007, Telloni et al.
[2012), or by variation of total (magnetie thermal) pressure =0, (2)
(Zagarashvili et al. 2013). h

Here we study KHI of twisted magnetic flux tubes moviné’;v ere
along t.he-lr axes with regards to the mean solar wind streag._ p(Q? — w2), C,= _2mB¢ (TB¢ + szz),
The twist is assumed to be small enough, therefore the tubes a Ar2 \r
stable against kink instability. On the other hand, the lwarm 2 2B, d (B 4R2
ics with suficiently high azimuthal mode numberare always c, = — (_2 " k§) Cs=D2+D2 - ( ¢) ¢ 2

unstable to the KHI in the twisted magnetic tubes moving in 4m dr \ r Ayt A
nonmagnetic environment (Zaqarashvili efal. 2010). Hawvev kK-B 1 /m

the configuration of external magnetic field, which stab#iz wa = = (— By + kZBZ) 3)
KHI for sub-Alfvénic flows, is very important. If the magnet \/4”_'0 \/‘?P r

tubes move along the Parker spiral, then the external m&gne! ine Alfven frequency,

field is axial and KHI will be suppressed. However, if the tsibe

move with angle to the Parker spiral, then the external mag-= w — kU (4)
netic field will have transverse component, which may allo
KHI for sub-Alfvénic motions. In order to study the influenc magnetic) perturbed pressure. Radial displacemeistex-
of transv_erse component qf the external magnetlc_ fle_ld on K:?ressed through the total pressure as

we consider a small twist in the external magnetic field in the

cylindrical geometry, so that both, tube and external mtgne, _ D dp + Cy 5)
fields are stable for the kink instability. In order to empbase "TCsdr G P

role of transverse component of the external magnetic fiedd, 16 solution to this equation depends on the magnetic field

consider external untwisted and twisted magnetic fieldasegng gensity profiles. Magnetic fields inside and outsideube t

rately and derive KHI thresholds for both cases. _are denoted aB; andB, respectively, while the corresponding
The paper is organized as follows. In Sect. 2 we considgt nsities arg; andpe. To obtain the dispersion relation of os-

the formulation of the problem and derive the solutions gove :jjations we find the solutions inside and outside the tulm a

ing the plasma dynamics inside and outside the twisted tuhgs, nerge the solutions at the tube boundary through bound-
separately for untwisted and twisted external magnetiddiel ary conditions.

In Sect. 3, we derive the dispersion equations of tube dynam-
ics for untwisted and twisted external fields through boupda
conditions at the tube surface. In Sect. 4, we solve the gispd-1. Solutions inside the tube
sion equa.u.ons both, analytically apd numencally, andweer We consider a magnetic flux tube with homogeneous depsity
the instability thresholds for KHI. Discussions of the pierh and uniform twist. i.e.
and conclusion are presented in the last, fifth, section. T
Bi = (0, Ar, By, (6)

¥ the Doppler-shifted frequency ampgdis the total (hydrostatic

2. Formulation of the problem and main solutions whereA is a constant.

We consider a magnetic flux tube with radaiembedded in a Inthis case, EqL{2) reduces to the modified Bessel equation

magnetized environment. We use a cylindrical coordinase syl?p;  1dp, |[n?
tem (, ¢, 2) and assume that the magnetic field has the followgrz * v ar |72 + | py =0, )
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The total pressure perturbation outside the tube is goddipe
U the same Bessel equation as Kq. (7), mfiis replaced by?.
The solution bounded at infinity is

a Pt = aeKm(kr), (12)
whereK,, is the modified Bessel function of orderandae is

a constant.
B Transverse displacement can be written as

_ 2 kor K/ (ko)

r 2_ .2
pe(a) wAe)

V where, as before the prime signmeans a dferentiation by
" a the Bessel function argument and
k;Bez

Wpe = . (14)

N

v

& (13)

B,
Fig. 1. Twisted magnetic tube in two fierent configurations 2-2.2. Solutior? in.the presence of external twisted
of external magnetic field: untwisted field (upper panel) and ~ magnetic field

twisted field (lower panel). The tube moves along its axi:hwili

s ) n this case, we consider the external twisted magnetic éield
constant velocitylJ, in both cases.

the form
a a\2
where Be = (o, By, Bez(;) ) (15)

2 2
”%2 =K|1- & , WA = mA’L—sz'Z (8) and the density with the form = pe(a/r)* so that the Alfvén
Anp; (QZ _ “’ii) VAo frequency

A similar equation has been obtained by Dungey angd _ MBey + kzaBez (16)
Loughhead((1954) and Bennett et al. (1999) in the absence of \Anpea2
flow, i.e., forU = 0.

The solution bounded at the tube axis is is constant, which allows us to find an analytical solution of

governing equation. The total pressure perturbation detsie

pt = alm(mr), (9) tubeis governed by the Bessel-type equation
whereln, is the modified Bessel function of orderanda isa  d?p;,  5dp n2 mé _0 17
constant. Transverse displacement can be written usin@Ed. gr2 * r dr _ \r2 Pe =0 a7
as
where

(92 - w3 ) mrl(mir) = 2mAwn; Im(Mir) \fAmpi )
&r=— 5 . (10) 4n?Bg, 8MBeywac

' pi (QZ _wz_) — AN2w3, /A n* = - 2( )2 — (2 2_ .2 (18)

Al Al Arped (a) —wAe) 47Tpea(w —wAe)
where the prime sigri, means a dierentiation by the Besseland
function argument.
4B2 ()2
2.2. Soluti ide the tub M= |1- —3| (19)
.2. Solutions outside the tube 4ﬂpe(w2—wie) a2

Outside the tube we consider twofférent configurations of
the magnetic field: untwisted (Figl 1, upper panel) and &ust
(Fig.[d, lower panel).

A solution to this equation bounded at infinity is

a2
Pt = e K, (mer), (20)

2.2.1. Solution in the presence of external untwisted where
magnetic field

4mPB2
In this case, we consider the homogeneous dengitgnd the = J4 +m - o + BMBescne ,(21)

homogenous external untwisted magnetic field of the form Anped? (w2 - wie) 47rpea(a)2 - a),ie)

e = (U, 0, Ber). andag is a constant.
Be=(0,0,B 11 daei
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Transverse displacement can be written as a’ (a)z - wie) Q,(mea) - G (26)
T 2(0)2 — )2 Al
N G SIS GD) L - H a2 (w2 - 0}.) Q(mea) - 6
r = de
a%pe (w2 - wie)z ~ 4B%,w?/4n where
2 2
meaKy (mea) 2 2 a2 AByw
V(Med) = —— 22 | = @pe(w? - wdy) - :
r 2a(w2 — wie) + 2mBgywae/ \4mpe K.(mer) 22) Q(mea) K, (mea) pe( Ae) Ar
a 2 2_ 2V _aR2 2 ’ ' B2 2 2maB
a%pe|w* — wy 4B, w?/4n _ By A o2 2 2 MaBeswae
( e) ep H—M—I, G—2a ((l) —(/.)Ae) _—

VArpe

3. Dispersion equations
Merging the solutions, i.e., Eq$] (L {1011 2).](1BY)(2hd

@2), at the tube surface,= a, leads to the dispersion equalispersion equations (5) and [26) govern the dynamics of
tions governing the dynamics of magnetic tube. In the followisted tubes moving in external untwisted and twisted mag-
ing we always consider positig. The boundary conditions atnetic fields, respectively. If the frequeney, is complex value,
the tube surface are the continuity of Lagrangian displasemthen it indicates an instability process in the system; peat

and total Lagrangian pressure (Dungey and Loughhead 198responds to the oscillation and imaginary part corredpo

4. Instability criteria

Bennett et al, 1999), i.e., to the growth rate of instability. Two types of instabilityam
develop in moving twisted tubes: kink instability due to the
[&la=0 (23) twist and KHI due to the tangential discontinuity of flow
at the tube surface. However, only KHI remains for weakly
and twisted tubes. Therefore, the condition of complex freqyen
B2 in Egs. [25) and (26) determines the criterion of KHI in weakl
P — lgr} = 0. (24) twisted tubes.
4ra Equations[(Zb) and(26) are transcendental equations with

essel functions of complex argument and complex order (for
q.[28). We first solve the dispersion equations analyticet
Ing long wavelength approximation and obtain correspamdin
analytical instability criteria, then we solve the dispensequa-
tions numerically.

Using these conditions we can derive the dispersion eq
tions governing the oscillations of moving twisted magoet
tube in both, untwisted and twisted external magnetic fields

3.1. Dispersion equation for the external untwisted

magnetic field 4.1. Instability criterion of twisted magnetic tubes

Using Egs. [(P)-£(T0) and Eq$.(12)={13) the following disper  embedded in untwisted external magnetic field

sion refation is obtained The long wave length approximatidga < 1, yieldsma < 1,

([w - kU]? - w2, )Fm(ma) — 2mAwa / [Arp; therefore we have
pilw — kU2 - w2,)2 - 4A%02, [4n Fr(ma) = malp(ma) m
Im(ma)
Pm(k-a) (25) and

"~ pe(w? — w2,) + A2Pr(k.a)/4n’ kaKn(ka)

Pm(ka) = ~ —|m.
where Kin(kz2)
Then Eq. ives the polynomial dispersion relation
Fo(ma) = mal/,(ma) Po(ked) = kaK! (k.a) ngUZE)g | poly | p
" mma) ~ T T Kn(ka) PP P eye P p P 2
. . . . Pi + Pe Pi t Pe Pi + Pe Pi + Pe
This equation is the same as Eqg. (13) in Zhelyazkov and
Zagqarashvili[(2012) with dierent notations. _ Am N 2Awni \Ampi _ 0 27)
An(pi + pe) An(pi + pe)
3.2. Dispersion equation for the external twisted We consider perturbations with wave vector nearly perpen-
magnetic field dicular to the magnetic field, i.ek - B = 0, which seem to

) _ _ be most unstable ones (Pataraya and Zaqarashvill 199%eThe
Using Egs. [(P)}H10) and Eq$. (20}X22) the following dispefqdes are pure vortices in the incompressible limit, theeef

sion relation is obtained they have strongest growth rate due to KHI. In cylindrical co
([w — U2 - 02 ) Fn(Ma) — 2mAwn; /A ordinates, this condition is expressed inside the tube as
Ai

2 kzBiz
Oi ([a) - kU]? - ‘”ii) — APN2w3. /A m~-—x (28)
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0.16 . . . . . . . principle, sub-Alfvénic flows can be also unstable in theeca
of weak external magnetic field. F&, = 0 Eq. [30) is trans-
014 1 i formed into the criterion of KHI in the twisted magnetic tube
012 | i with nonmagnetic environment (Eq. (28) in Zagarashvililet a
—~ [2010). But, if the internal and external magnetic fields have
2“ o1r 1  similar strengths then KHI only starts for super-Alfvénio-
5 oost 4 tions.
)
g 006r iy e : .
= 4.2. Instability criterion of twisted magnetic tubes
0.04 1 i embedded in twisted external magnetic field
0.02 i The long wave length approximatidga < 1, yieldsma < 1
0 L andmea < 1, therefore we have
0045 005 0055 006 0065 007 0075 008 0.085 I (ma)
k,a maly(ma
z Fn(ma) = ———— ~ |m|
m(ma) Im(mia)
0612 T T T T T T T and
061F m=-3 £€=0.02 A meaK/(mea)
1.52 — v ~
i i L,(Med) = —————2 ~ —|y.
0.608 Q,(mea) K, (mea)
;:T: 0-606 1 151 i We assume that the ratio of azimuthal components of external
< 0604 - - 8 and internal magnetic field is small, i.8¢,/(aA) < 1 (this
= 0.602 - i yields|v| ~ |m|) and consider the perturbations wkh B¢ =~ 0.
E:; 15 Then Eq.[[2b) gives the polynomial dispersion relation
06 - i
m) 2Awnj
0.598 |- 1 1+ m_pe w? = 2kUw + kU2 — w2 + A
1.491 2+1m pi 4rpi
0.596 |- - .
594 I I I I I I I Azm
0.045 0.05 0055 0.06 0065 007 0075 008 008 ——— =0. (32)
kza 4npi

Fig. 2. The real (lower panel) and imaginary (upper panel) parts We can further simplify Eq{32) considerirg- B; ~ 0,
of normalized phase speeg,/vai = w/(k.Vai), vs normalized which gives

wave numbek,a of m = -3 unstable harmonics for external m pe A2m

untwisted magnetic field (after numerical solution of dispe gl o f)wz - 2k Uw + KEU? - e 0. (33)

sion equation[{25)). Red, green, blue, and magenta lines cor Pi P

respond to Alfvén Mach numbeid, = 1.491, 15,151, and Then the instability criterion is

1.52, respectively. Here we assume the following parameters: 2+ m o

pilpe = 0.67,& = Bjy/Bj; = Aa/Bj; = 0.02, andB;,/Be, = 1. ImM3 > 1+ m %. (34)
e

Eq. (33) shows that the harmonics withfistiently highm
are unstable for any value &fl5. The threshold of KHI de-
creases for highen. For example, the threshold Mach number
for m = —1 harmonics isMp ~ 1.73, while form = -4 har-
monics it is reduced tdlp ~ 0.707 (pi/pe = 0.67 is assumed
during the estimation). Therefore, the motion of the tubtiwi
the speed of J1v,; leads to the instability of harmonics with

5 oi BZ, azimuthal mode numbefsi > 4. The tubes with lower speed
MMz > (1 + —) [Imlg + 1], (30)  will be unstable to highenharmonics. The criterion of Kelvin-
pe iz Helmholtz instability Eq.[{34) is similar to the case of tteid
where magnetic tube in nonmagnetic environment (Zagarashli.et
U [2010).

My = 2 31
o (31)

Then, Eq.[(2I7) is simplified and we have
WP — 2Piszw + pikU? B Pelie _ A m
pitpe  pitpe pi+tpe Ao+ pe)

Kelvin-Helmholtz instability yields the complex frequenc
w, therefore Eq[(29) gives the instability criterion as

0. (29)

. ) . . 5. Numerical solutions of dispersion equations
is the Alfvén Mach number angyi = Bj;/+/4np; is the Alfvén P q

speed inside the tube. In order to check the analytical solutions, we solved thpelis
This criterion means that only super-Alfvénic flows are ursion equationd(25) and (26) numerically. Numerical soluti
stable to KHI in the case of external axial magnetic field. lof dispersion Eq.[{25) shows that all harmonics are stahle fo
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04 . . . . : : : . On the other hand, the numerical solution to EQs] (26) con-
firms that there are unstable harmonics witlffisiently high

035 azimuthal mode numben for any value of Alfvén Mach num-

£=002

03 N ber in the case of twisted tube with twisted external magneti
field. Fig.[3 shows the unstable harmonics foffetient val-
025 1 ues of My (after solution of dispersion equation E@._(26)).

Alfvén Mach numbemM, = 0.7 yields the lowest azimuthal
wave number of the unstable harmonicsnas= -2 and the
0.15 7 longitudinal wave numbek.a is located in the interval of
0.04—-Q08. Therefore, harmonics wilim > 2 are unstable for
Ma = 0.7. Alfvén Mach numbeM, = 0.5 yields the lowest
0.05 -4 azimuthal wave number as = —3 and the longitudinal wave
numbers lay inside the interval of@5—Q1. In the same way,
004 005 006 007 008 009 01 011 o012 Alfvéen Mach numbeM, = 0.3 yields the lowest azimuthal
k,a wave number and the longitudinal wave number interval as
m = —4 and 008—-Q12, respectively. Hence, higherharmon-
. . . . . . . . . ics yield lower Alfvén Mach number in order to become un-
| stable. Numerically estimated thresholds yield lower geds
compared to the analytical instability criterion Hq.l(Fr ex-
ample, the harmonics witln = —3 yield the instability thresh-
old of Ma ~ 0.8 from Eq. [3%4), while the numerically obtained
threshold isMa ~ 0.5. Numerical solutions again confirm that
05 L 1 the unstable harmonics correspond to the condiioB; ~ 0.
m=-3 Ma =05 We found that the unstable harmonics with= —3 start to be
unstable forg; = 0.02 whenk,a = 0.06 as it is expected (see
04 r 1 Fig.3).
Note that the harmonics with negative and positiveg;
03| m=-4 Ma =03 have identical properties to the harmonics with positivand
, , , , , , , , , negatives;. Fig.[2 and Fig[13 show that the phase speed of un-
0.04 005 006 007 008 009 01 o011 o012 stable harmonicscorrespondsto the flow sgdedhich isthe
kza speed of magnetic tube with regards to the solar wind. It is an

Fig. 3. The real (lower panel) and imaginary (upper panel) par‘fé(peCted result ak - B; ~ O condition corresponds to pure

of normalized phase speeg/Vai = w/(kvai), vs normalized vortex solutions. Then the vortices are carried by the flod an
I - Z 1/ .
wave numbek,a of unstable harmonics for fierent values of consequently the phase speed of perturbations equals e flo

Alfvén Mach number (after numerical solution of dispersioSpeed'
equation Eq[{26)). Red, green, and blue lines indicatehbs®
speeds and the growth ratesrof= —2 harmonics for Alfvén 6. Discussion

Mach numbeiMa = 0.7, m = —3 harmonics for Alfvén Mach b . ¢ . . | .
numberM, = 0.5 andm = —4 harmonics for Alfven Mach Recent observations of KH vortices in solar prominences

numberMa = 0.3, respectively. Here we assume the foIIowinéBe_rg_er et al[ 2010, Ryutova et al._2010) and at boundaries
parametersyi /pe = 0.67,& = Biy/Biz = Aa/Bi = 0.02, &0 = f rlsmg“CMEs (Foullon et al_2011, Ofman and Thompson
Bos/Bez = 0.01,Biy/Be = 1. Im Mostl et al[2013) increased the interest towards KHI
in magnetic flux tubes. KHI has been studied in the presence
of kink oscillations in coronal loops (Terradas et [al._2008,
sub-Alfvénic flows,Ma < 1. Therefore, only super-Alfvénic Soler et al_2010), in twisted magnetic flux tubes with nonmag
flows, Ma > 1, are unstable in the case of external untwistatetic environment (Zagarashvili et al. 2010), magneticetub
magnetic field. Figld2 shows = —3 unstable harmonics for with partially ionized plasmas (Soler et al. 2012), in sjesu
different values oM, after solution of Eq.[(25). It is seen that(Zhelyazkov 2012a) and soft X-ray jets (Zhelyazkov 2012b),
the critical Alfvén Mach number equals to4D1 form = —3  as well as in photospheric tubes (Zhelyazkov and Zagartashvi
harmonics. Analytically estimated critical Mach numbeo@h [2012).
Eg. (30)) isMa ~ 1.4907 form = -3 harmonics. Hence there  KH vortices can be considered as one of important sources
is a very good agreement between analytical and numerital iar MHD turbulence in the solar wind. KHI can be developed
ues. Normalized wave number of unstable harmonics is aroundvelocity discontinuity at boundaries of magnetic fluxegb
k:a ~ 0.06 in Fig.[2, which confirms that the unstable hamwing to the relative motion of the tubes with regards to the s
monics correspond to the conditidm B; ~ 0, which implies lar wind or neighboring tubes. However, flow-aligned magnet
k:a ~ —me;, whereg; = Bj,/Bj; = Aa/Bj;. Both, numerical field may suppress KHI for typical velocity jump at boundarie
and analytical solutions to Eq._(25) agree with the wellskno of observed magnetic structures in the solar wind, whicleis g
result that the flow-aligned magnetic field stabilizes KHI.  erally sub-Alfvénic. KHI can be still survived in the twest

IM(Von/Vai)

=2 My = 0.7 g =0.02

Re(Vpp/Va))
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tubes in nonmagnetic environment as the harmonics with skl has a real physical ground as they do not stretch signifi-
ficiently largem are unstable for any sub-Alfvénic flow alongcantly magnetic field lines.
the tubes (Zagarashvili et al. 2010). Thus the analytical and numerical analyzes showed that the
Magnetic structures observed in the solar wind (Bruno et alvisted tubes are always unstable to the KHI when they move
[2001, Borovsky 2008), which are believed to be magnetic flixexternal twisted magnetic field. This means that the mégne
tubes transported from the solar surface, may retain ‘fossiubes in the solar wind may excite Kelvin-Helmholtz vortice
properties typical to near-Sun conditions. Magnetic tutegr near boundaries. These vortices may be responsible falinit
the solar photosphere, chromosphere and corona can bedwisnergy in nonlinear cascade leading to MHD turbulence in the
due to various reasons: during raising phase along the convalar wind.
tion zone (Moreno-Insertis and Emonet 1096, Archontis et al
[2004, Murray and Hodd 2008, Hood etlal. 2009), by sunspot 9 Sonclusions
tations (Khutsishvili et al. 1998, Brown et . 2003, Yan &u "
2007, Zhang et al. 2007), aful by magnetic tornadoes in theTwisted magnetic flux tubes can be unstable to KHI when
chromosphere and the corona (Wedemeyer-Bohm 20thdy move with regards to the solar wind stream. External ax-
Su et al[ 2012, Li et al. 2012). Solar prominences are alse sil magnetic field stabilizes KHI, therefore, the tubes mayi
posed to be formed in a twisted magnetic field (Priest et along Parker spiral are unstable only for super-Alfvéniz-m
[1989). Therefore, magnetic flux tubes in the solar wind sthoujons. The instability criterion is
be also twisted, which can be detected in situ observati®as a )
variation of the total pressure (Zagarashvili efal. 2013). (ngM,i . (1 . &) (|m|B_ez N 1).
However, only the twist inside the magnetic tube is not 2
sufficient for KHI of sub-Alfvénic motions as external flow-
aligned magnetic field may stabilizes KHI when the vorticddowever, even a slight twist in the external magnetic fietdike
start to stretch the magnetic field lines outside the tube.sth t0 KHI for any sub-Alfvénic motion. Instability criterioim this
lar wind magnetic field is generally directed along the Parkease IS
spiral, but individual magnetic tubes may move with an atgle ) 2 +|ml pj
the spiral. So that the external magnetic field is not necﬂeﬁsa'”“MA >1+ Im p_e
directed along the motion of tube. Therefore, the configomat
of external magnetic field with regards to the tube motion ci¥hich shows that the modes withfBaiently largem are al-
be extremely important for the KHI. ways unstable for any value of the Alfvén Mach number. The
Here we studied KHI instability of twisted magnetic fluxinstable harmonics satisfy the relationB ~ 0, which corre-
tube moving along its axis in the case of twdfeient configu- SPonds to pure vortices in the incompressible MHD. Theggfor
rations of the external magnetic field. First we assumedtieat the twisted magnetic tubes moving with an angle to the Parker
external magnetic field is directed along the tube axis, ab ti$Piral may excite Kelvin-Helmholtz vortices, which may sig
it is flow-aligned. Then we assumed that the external magnétificantly contribute into the solar wind turbulence.
field has a small twist, so that the external field has a small an ,
gle with the direction of the tube motion. Both, tube and ext cknowledgements. The work was supported by EU collaborative

- . . project STORM - 313038. The work of TZ was also supported by
nal magnetic fields are only slightly twisted, thereforettee rpg peqp £.2010-IRSES-269299 project- SOLSPANET, bytsho
stable against the kink instability. We solved the incorspre

: ] : ora _ T Rustaveli National Science Foundation grantlidi6-31012 and by
ible MHD equations in cylindrical coordinates inside and-oUthe Austrian Fonds zur Férderung der wissenschaftlichasdhung
side the tube and obtained the transcendental dispersia@ e@inder projects P25640-N27 and P26181-N27. The work of ZV
tions through boundary conditions at the tube surface. Ween was also supported by the Austrian Fonds zur Forderung ier w
solved the dispersion equations analytically in thin fluk€u senschaftlichen Forschung under project P24740-N27. Tdré wof
approximation and obtained the instability criteria fotthban- 1Zh was supported by the Bulgarian Science Fund under projec
twisted and twisted external fields (Eds.](30) dnd (34),eesp CSTGINDIA 05/7.

tively). We also solved the dispersion equations numéyical

and found the conditions for KHI. Both, analytical and nuimer,
cal solutions show that the KHI is suppressed for sub-Alfeé
motions when the twisted tubes moves along the Parker spifdgrhontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, &
i.e., the external magnetic field is parallel to tube axis tied  ©O'Shea, E. 2004, A&A, 426, 1047

direction of motion. So our results agree with already knovgfnnett K., Roberts, B., & Narain, U. 1999, Sol. Phys., 185,
scenario that the flow-aligned magnetic field stabilizes KHpPE'9e": T- E., Slater, G., Hurlburt, N., etal. 2010, ApJ, 71288
However, if the external magnetic field has even very sm rovsky, J. E. 2008, J. Geophys. Res., 113, A08110 .

. . L rown, D. S., Nightingale, R. W., Alexander, D., Schrijvel, J.,
twist, then the S|tu§t|o_n is completgly changed. We fourad th Metcalf, T. R.. Shine, R. A., Title, A. M., & Wolfson, C. J. 280
the harmonics satisfying the relatidn B ~ O are unstable Sol. Phys., 216, 79
for any value of the flow. The harmonics with higherare gyyno, R., Carbone, V., Veltri, P., Pietropaolo, E., & Baso, B.
unstable for sub-Alfvénic motions. The harmonics with @av 2001, Planet. Space Sci., 49, 1201
vectors perpendicular to the magnetic field are in fact pare v Chandrasekhar, S. 1961, Hydrodynamic and HydromagnestuilBy
tices in the incompressible limit. Therefore, their inglibto (Oxford: Clarendon Press)
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