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We determine the magnetization of Quantum Chromodynamics (QCD) for several temperatures
around and above the transition between the hadronic and the quark-gluon phases of strongly
interacting matter. We obtain a paramagnetic response that increases in strength with the tem-
perature. We argue that due to this paramagnetism, chunks of quark-gluon plasma produced in
non-central heavy ion collisions should become elongated along the direction of the magnetic field.
This anisotropy will then contribute to the elliptic flow 𝑣2 observed in such collisions, in addition to
the pressure gradient that is usually taken into account. We present a simple estimate for the mag-
nitude of this new effect and a rough comparison to the effect due to the initial collision geometry.
We conclude that the paramagnetic effect might have a significant impact on the value of 𝑣2.

1. INTRODUCTION

In heavy-ion collisions (HICs) strongly interacting
matter is exposed to extreme conditions to probe the
QCD phase diagram and to reveal properties of the
quark-gluon plasma (QGP). It is however not straight-
forward to relate characteristics of the so produced QCD
medium to experimental signatures. One of the most
prominent experimental observables is the elliptic flow
𝑣2 [1], which marks the onset of hydrodynamic behavior
at very early times (hydroization). Connecting 𝑣2 to the
centrality of HICs in a model-independent way is crucial
to extract the ratio of viscosity to entropy density 𝜂/𝑠 of
the QGP [2].

Another important aspect of the initial phase of HICs
is the generation of extremely strong magnetic fields [3–
6]. We show that these magnetic fields may have an
impact on 𝑣2 and, therefore, should be taken into account
in a quantitative analysis of the elliptic flow. Irrespective
of this observable effect, the response to magnetic fields
is a fundamental property of QCD matter which deserves
to be studied in its own right. Other applications of our
findings include models of neutron stars (magnetars [7])
and primordial magnetic fields in the early universe (see,
e.g., Ref. [8]).

All information about the response of QCD to mag-
netic fields can be deduced from the free energy density
𝑓 = −𝑇/𝑉 · log𝒵, given in terms of the partition func-
tion 𝒵. Applying a constant external magnetic field 𝐵
induces a nonzero magnetization

𝑀 = − 𝜕𝑓

𝜕(𝑒𝐵)
, (1)

which we normalized by the elementary charge (𝑒 > 0).
The sign of 𝑀 determines whether the QCD vacuum as
a medium exhibits a paramagnetic response (𝑀 > 0)
or a diamagnetic one (𝑀 < 0) [9]. In the former case
the magnetization is aligned parallel to the external field,
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FIG. 1: Typical magnetic field profile in the transverse plane
of a non-central heavy-ion collision (darker colors represent
stronger fields). The paramagnetic squeezing exerts the force
indicated by the red arrows. As a result, the QGP is elongated
in the 𝑦-direction.

while in the latter case it is antiparallel. One clue about
the sign of 𝑀 came from a low-energy effective model
of QCD — the hadron resonance gas (HRG) model —
which predicted the magnetization to be positive and
thus the QCD vacuum to be a paramagnet [10]. Sev-
eral methods were since developed to study the problem
on the lattice [11–14]. All of the results agree qualita-
tively, confirming the finding of the HRG model that the
QCD vacuum is paramagnetic.

In the present letter we extend the lattice measure-
ments of Ref. [11] to cover several temperatures in and
above the transition region. We do not yet provide fi-
nal, continuum extrapolated values for the magnetiza-
tion, but instead aim at a first estimate of the effect of
QCD paramagnetism on the phenomenology of heavy ion
collisions. To this end, let us consider a chunk of the QGP
exposed to a non-uniform magnetic field. Owing to the
positivity of 𝑀 , the free energy is minimized when the
medium is located in regions where 𝐵 is maximal. The
minimization of 𝑓 thus results in a net force, which strives
to change the shape of the medium. For a non-central
HIC (with 𝑧 being the direction of the collision axis, 𝑥̂-𝑧
the reaction plane and 𝑦 the direction of the magnetic
field induced by the beams), this force will elongate the
distribution of QCD matter along the 𝑦-direction, see
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Fig. 1. This elongation can affect the azimuthal struc-
ture of the expansion of the system, in addition to the
pressure gradients due to the initial geometry. We call
this effect paramagnetic squeezing.

The interplay of the geometric pressure gradient and
the paramagnetic squeezing crucially depends both on
the time- and space-dependence of the magnetic field
[15, 16] and on the moment of the onset of early hy-
droization [17]. Both time scales are subjects of ongoing
debate. We also remark that our quantitative results
apply, strictly speaking, to QCD matter in thermal equi-
librium only. Therefore, at present the best we can do is
to estimate whether the impact of the sketched squeez-
ing effect is sizeable. According to our numerical results,
which we detail below, this can be the case for RHIC and
in particular for LHC collisions. This clearly calls for a
quantitative analysis of the dynamics of the decay of the
initial magnetic field and of the on-set of hydroization.

We mention that the paramagnetic squeezing may cor-
relate the recently observed large event-by-event fluctu-
ations in 𝑣2 [18] with fluctuations of the magnetic field.
Furthermore, we note that a similar squeezing effect may
operate in the inner core of magnetars if the magnetic
field there reaches typical QCD scales (𝐵 ∼ 1014−15 T).

2. LATTICE SETUP

We consider a hypercubic lattice of size 𝑁3
𝑠 × 𝑁𝑡 and

spacing 𝑎. The discretization of the QCD action we
choose is the tree-level Symanzik improved gluonic action
and stout smeared staggered quarks for the three light-
est flavors (the detailed simulation setup is described in
Refs. [19, 20]). The quark masses are set to their physical
values along the line of constant physics (for details see
Ref. [21]), 𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠/28.15. The electric charges of
the quarks are 𝑞𝑢/2 = −𝑞𝑑 = −𝑞𝑠 = 𝑒/3. The flux Φ of
the magnetic field on the lattice is quantized,

Φ ≡ (𝑁𝑠𝑎)
2·𝑒𝐵 = 6𝜋𝑁𝑏, 𝑁𝑏 ∈ Z, 0 ≤ 𝑁𝑏 < 𝑁2

𝑠 , (2)

which prohibits the direct evaluation of the magnetiza-
tion, Eq. (1), as a derivative with respect to 𝐵. The
first approach to circumvent this problem was developed
in Ref. [11], where we calculated 𝑀 as the difference of
lattice pressures parallel and perpendicular to 𝐵. Sev-
eral alternatives were also introduced recently to deter-
mine the magnetization. In Refs. [12], the derivative of
𝑓 with respect to 𝐵 is constructed (giving an unphysical
quantity due to flux quantization) and then integrated to
obtain the physical change of the free energy due to 𝐵.
Ref. [13] evades flux quantization altogether by consider-
ing a magnetic field which is positive in one and negative
in the other half of the lattice. Finally, in Ref. [14] we
developed an integral method which is based on the 𝐵-
independence of 𝑓 at asymptotically large quark masses.

Here we follow the approach of Ref. [11]. The main
idea is the following: Flux quantization implies that a

hypothetical compression of the system in the direction
perpendicular to 𝐵 can only proceed keeping Φ fixed –
which automatically implies changing 𝐵. Therefore, one
has to compress the magnetic field lines together with
the system. In Ref. [11] we have shown that this gives a
consistency relation between the response of the system
to a change in 𝐵 – i.e., the magnetization – and the
response to a change in the size of the system in different
directions – i.e. the pressures. This leads to the relation

−𝑀 ·𝑒𝐵 = −(𝜁𝑔+𝜁𝑔)·[𝐴(ℬ)−𝐴(ℰ)]−𝜁𝑓 ·
∑︁
𝑓

𝐴(𝒞𝑓 ), (3)

where 𝐴(ℬ), 𝐴(ℰ) are the anisotropies in the chromo-
magnetic and chromoelectric parts of the gluonic action,
𝐴(𝒞𝑓 ) is the anisotropy in the fermionic action for the
quark flavor 𝑓 (𝑓 = 𝑢, 𝑑, 𝑠), and 𝜁𝑔, 𝜁𝑔 and 𝜁𝑓 are renor-
malization coefficients that may be determined, e.g., by
simulating on anisotropic lattices. To leading order in
perturbation theory, 𝜁𝑔 = 𝜁𝑔 = 𝜁𝑓 = 1. We found the glu-
onic anisotropies to be by factors of 5–10 smaller than the
fermionic anisotropy. This means that the magnetization
is well approximated by 𝑀 · 𝑒𝐵 ≈

∑︀
𝑓 𝐴(𝒞𝑓 ), within a

systematic error of 10–20 %. The fermionic anisotropy
in terms of the parallel and perpendicular components of
the Dirac operator reads

𝐴(𝒞𝑓 ) =
1

2

[︀
Ψ̄𝑓 /𝐷𝑥Ψ𝑓 + Ψ̄𝑓 /𝐷𝑦Ψ𝑓

]︀
− Ψ̄𝑓 /𝐷𝑧Ψ𝑓 , (4)

where /𝐷𝜇 is the component of the Dirac operator pro-
portional to 𝛾𝜇, which is readily accessible on the lattice.

3. RENORMALIZATION

The free energy in the presence of an external mag-
netic field contains a 𝐵-dependent logarithmic diver-
gence. This divergence stems from the coupling of quarks
to 𝐵 through their electric charges and is cancelled by the
renormalization of the electric charge [22]. The fact that

FIG. 2: The divergent 𝒪((𝑒𝐵)2) contribution to the magne-
tization normalized by 2(𝑒𝐵)2, as a function of the logarithm
of the lattice spacing (in units of 𝑎0 = 1.47 GeV−1, our coars-
est lattice). A linear fit with two free parameters (green solid
line) and one with the slope fixed to the leading perturbative
prediction 𝛽QED

1 (see text) is also shown (dashed blue line).
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FIG. 3: Renormalized magnetization of QCD as a function of the magnetic field for various values of temperature. Different
colors encode different lattice spacings: 𝑁𝑡 = 6 (red triangles), 𝑁𝑡 = 8 (green squares) and 𝑁𝑡 = 10 (green circles). The
continuum limit corresponds to 𝑁𝑡 → ∞. Below 𝑇𝑐 we show the HRG model prediction [10] (solid orange line). The dashed
lines represent the linear terms in 𝑀𝑟, which were determined by fitting the magnetization at small magnetic fields, whereas
the dotted curves show the results of cubic fits.

the prefactor of the divergence in question is given by the
lowest-order QED 𝛽-function coefficient 𝛽1 (this contains
perturbative and non-perturbative QCD corrections) fur-
ther illustrates the fundamental relation between the 𝐵-
dependent divergence of 𝑓 and electric charge renormal-
ization. At zero temperature, this divergence constitutes
the only term which is of 𝒪((𝑒𝐵)2):

𝑓(𝐵)− 𝑓(0) = −𝛽1 · (𝑒𝐵)2 · log(𝑎) +𝒪((𝑒𝐵)4). (5)

The magnetization inherits this divergence and –
again, at zero temperature – has the structure

𝑀 · 𝑒𝐵 = 2𝛽1 · (𝑒𝐵)2 · log(𝑎) +𝒪((𝑒𝐵)4). (6)

The renormalization of 𝑀 therefore amounts to sub-
tracting the total 𝒪((𝑒𝐵)2) term at zero temperature
(for a more detailed explanation of this point see, e.g.,
Refs. [10, 23]). This term can be determined by consid-
ering the limit of small magnetic fields. This results in
the renormalization prescription

𝑓𝑟 = (1− 𝒫)[𝑓 ], 𝑀𝑟 · 𝑒𝐵 = (1− 𝒫)[𝑀 · 𝑒𝐵], (7)

where 𝒫 is the operator that projects out the 𝒪((𝑒𝐵)2)
term from an observable 𝑋:

𝒫[𝑋] = (𝑒𝐵)2 · lim
𝑒𝐵→0

𝑋

(𝑒𝐵)2
. (8)

In Fig. 2 we show the coefficient of the divergent term
𝒫[𝑀 ·𝑒𝐵]/2(𝑒𝐵)2 for several lattice spacings at 𝑇 = 0. In
accordance with Eq. (6), the divergent term is found to
be proportional to log(𝑎), with a coefficient of 0.016(4).
The leading order perturbative scaling is given by the
lowest order coefficient of the QED 𝛽-function for three
quark flavors with 𝑁𝑐 = 3 colors, 𝛽QED

1 = 𝑁𝑐/(12𝜋
2) ·∑︀

𝑓=𝑢,𝑑,𝑠(𝑞𝑓/𝑒)
2 ≈ 0.0169: the fitted slope is consistent

with the perturbative prediction, within statistical errors.
Increasing the statistics would be necessary to resolve
QCD corrections to 𝛽1.

4. RESULTS AND DISCUSSION

We can now subtract the divergent part of𝑀 measured
at 𝑇 = 0 to obtain the temperature-dependence of the
renormalized magnetization 𝑀𝑟, as defined in Eq. (7).
The result is shown in Fig. 3, where 𝑀𝑟 is plotted for
𝑒𝐵 < 1.0 GeV2 at three values of the temperature. The
results for all three lattice spacings fall essentially on top
of each other, indicating small lattice artefacts. (Note
that the renormalization at 𝑇 = 300 MeV, where the
lattice spacing is the smallest, requires an extrapolation
of the 𝑇 = 0 contribution of Fig. 2. The systematic error
due to this extrapolation is taken into account here.)

We find 𝑀𝑟 > 0 for all temperatures, which demon-
strates the paramagnetic nature of the thermal QCD vac-
uum. This is in agreement with our earlier results at
𝑇 = 0 [11]. Note that the expansion of 𝑀𝑟 in the mag-
netic field at 𝑇 = 0 starts as (𝑒𝐵)3. As the temperature
increases, thermal contributions induce an additional lin-
ear term in 𝑀𝑟, as is visible in the plots (shown by the
dashed lines). This behavior is also present in the HRG
model prediction, which we include in the figure for the
lowest temperature, where the hadronic description is ex-
pected to be still valid. We find the HRG model to re-
produce the lattice data for small fields 𝑒𝐵 . 0.3 GeV2.

The results are well described by a cubic function
𝑀𝑟 = 𝜒1 ·𝑒𝐵+𝜒3 ·(𝑒𝐵)3/𝑇 4, shown by the dotted lines in
Fig. 3. The linear coefficient is the magnetic susceptibil-
ity, marking the leading response of QCD to the external
field. It is zero at low temperatures and increases drasti-
cally above the transition. On the other hand, the cubic
term is found to decay strongly with temperature, consis-
tent with 𝑇−4 as expected on dimensional grounds. The
fit parameters are listed in Table I. We remark that
for high temperatures we expect 𝜒1 to show a logarith-
mic rise with 𝑇 ; the Stefan-Boltzmann limit of 𝜒1 for
free massive quarks is 2𝛽QED

1 · log(𝑇/𝑚) [24]. (Note that
such an entanglement between ultraviolet and infrared di-
vergences for nonzero magnetic fields is well-known, see,
e.g., Ref. [25].) The high-temperature limit of the next
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𝑇 (MeV) 113 130 142 176 300
𝜒1 · 102 0.2(5) 0.4(7) 1.1(6) 1.6(5) 3.9(6)
𝜒3 · 106 9(5) 8(3) 6(3) 9(5) 7(5)

TABLE I: Temperature-dependence of the coefficients 𝜒1 and
𝜒3. To obtain the (linear) magnetic susceptibility in SI units,
one needs to multiply 𝜒1 by 𝑒2 ≈ 4𝜋/137.

x

y

x

y

FIG. 4: Paramagnetic force profiles for typical central (left
panel) and peripheral (right panel) heavy-ion collisions. The
circles represent the colliding nuclei.

coefficient is 𝜒3 = 31𝑁𝑐 𝜁(5)/(960𝜋
6) ·

∑︀
𝑓=𝑢,𝑑,𝑠(𝑞𝑓/𝑒)

4 ≈
2.32 · 10−5, with a negative 𝑚2/𝑇 2 correction [26]. The
lattice data indeed approaches this limit from below.

We are now in the position to discuss the implications
of our results on HIC phenomenology. For a non-uniform
magnetic field, the paramagnetic squeezing is manifested
by a force density 𝐹 ps, which arises as the system strives
to minimize its free energy,

𝐹 ps = −∇𝑓𝑟 = − 𝜕𝑓𝑟

𝜕(𝑒𝐵)
· ∇(𝑒𝐵) = 𝑀𝑟 · ∇|𝑒𝐵|. (9)

Note that the free energy density – being a Lorentz-scalar
– is only sensitive to the magnitude of the field, which
allowed us to replace 𝑒𝐵 by |𝑒𝐵| above. Motivated by
model descriptions of the magnetic field profile [5, 6], we
consider a simple two-dimensional Gaussian distribution
of the magnetic field (with widths 𝜎𝑥 = 𝜎𝑦 for a central
collision and 𝜎𝑥 = 𝜎𝑦/2 for a peripheral collision). The
so obtained force profiles are depicted in Fig. 4. While
isotropic for central collisions, this inward-pointing force
becomes anisotropic for the peripheral case, squeezing
and hence elongating the medium distribution.

At high temperatures the magnetization is linear in
𝑒𝐵 (see the right panel of Fig. 3), and the gradient also
contains a factor of 𝑒𝐵, making 𝐹 ps proportional to the
square of the magnetic field. Accordingly, the effect is
very sensitive to the spatial profile of the magnetic field
generated in the collision. Furthermore, this profile de-

pends strongly on the time elapsed since the moment of
the collision [15], giving rise to a complex behavior of the
squeezing effect as a function of space and time.

We now make a first attempt to estimate the strength
of the paramagnetic squeezing effect based on very sim-
plistic assumptions, and quantify it in terms of the differ-
ence between the magnitudes of the force densities acting
at (𝜎𝑥, 0) and at (0, 𝜎𝑦). This is equivalent to a difference
Δ𝑝ps of pressure gradients. From our results for the mag-
netization at 𝑇 = 300 MeV and the magnetic field pro-
files of Refs. [5, 6], we obtain |Δ𝑝ps| ≈ 0.007 GeV/fm4 for
magnetic fields of the order of 5𝑚2

𝜋 (the typical value ob-
tained in model calculations for RHIC energies [5, 6, 27]).
Using the magnetic field 50𝑚2

𝜋 corresponding to LHC
energies [6] amounts to |Δ𝑝ps| ≈ 0.7 GeV/fm4. Sim-
ilar estimates for the early-time pressure gradients 𝑝g

resulting from the geometric effect give differences of
|Δ𝑝g| ≈ 0.1 GeV/fm4 for RHIC and |Δ𝑝g| ≈ 1 GeV/fm4

for LHC energies [28], see also Refs. [29]. The estimates
for the paramagnetic squeezing are subject to large sys-
tematic errors originating, for example, from the uncer-
tainty of the QGP electric conductivity [15, 16]. More-
over, due to the complex space- and time-dependence of
both mechanisms, a comparison based only on the magni-
tude of 𝐹 ps at two spatial points is clearly too simplistic.
Instead, one should consider a model for the early stage
(𝑡 . 1 fm/𝑐) of the collision, and take the paramagnetic
squeezing effect into account from the beginning. This is
outside the scope of the present letter.

To summarize: we have studied the magnetic response
of the quark-gluon plasma by means of lattice simulations
at physical quark masses. The response is paramagnetic
and the magnetization at different temperatures is plot-
ted in Fig. 3 and parameterized in Table I. Based on
these equilibrium results we estimated the paramagnetic
squeezing effect on chunks of quark-gluon plasma pro-
duced in heavy ion collisions. We compared its magni-
tude to pressure gradients arising from geometrical ef-
fects. The energy-dependence of the two mechanisms is
quite different. For typical HICs at RHIC we found the
paramagnetic squeezing to give a 10% correction to the
geometric effect, while for LHC collisions they are similar
in size. Our estimates should be improved by more in-
volved model calculations of the elliptic flow, taking into
account the paramagnetic squeezing in the evolution of
the fireball. As both the onset of hydroization and the
magnetic field dynamics are still subject of debates, this
calls for a dedicated large scale effort.
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