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We propose a scheme for the remote preparation of entangl#drmmubits in free space. For this purpose, a
setup of two opposing parabolic mirrors is considered, eaehwith a single ion trapped at its focus. To get the
required entanglement in this extreme multimode scenardake advantage of the spontaneous decay, which
is usually considered as an apparent nuisance. Using sesichl methods, we derive an efficient photon-
path representation to deal with this problem. We also pteaghorough examination of the experimental
feasibility of the scheme. The vulnerabilities arisingéalistic implementations reduce the success probability,
but leave the fidelity of the generated state unaltered. @ygsal thus allows for the generation of high-fidelity
entangled matter qubits with high rate.

PACS numbers: 42.50.Pq 03.67.Bg 42.50.Ct 42.50.Ex

I. INTRODUCTION In other multimode scheme's [13] each deviation from the
ideal situation, such as non perfect mode matching, leads to

The distribution of entanglement between macroscopicalljéduction of the fidelity of the generated state. In congadi
separated parties constitutes a key ingredient of quarmum i tinction, our scheme is robust against the vulnerabilities
formation networks/[1,]2]. A quantum network is composed@rise in expgr_lmental |mplemer_1tat!ons: they reduce the suc
of nodes, for processing and storing quantum states, amd chaC€Ss probability, but leave the fidelity unaltered (andpadc
nels linking the nodes. The implementation of quantum node#9ly. it can be very high). As outlined below, this is duefte t
is a major challenge: different approaches are currenttygoe US€ of photons originating from circular-dipole transitip a
pursued, most of them involving single emitters, such as,ion swta_ble choice of _the guantization axis and direct dispers
atoms or nitrogen-vacancy centéris[3-6], even though treey a Probing of the qubit states.
inherently probabilistic. This paper is organized as follows. In Sg¢. Il we advance

Photonic channels are especially advantageous, as optidéle basic ingredients of our scheme, which is fully analyined
photons can carry information over long distances with al-Sec[Tll by resorting to a photon-path representation[E}, 1
most negligible decoherence. In practice, there are twestyp especially germane for a multimode description. To incor-
of these channels: optical fibers and free space. Opticakfibe porate the boundary conditions for the relevant solution of
are capable of transmitting single photons over largeigta  the Helmholtz equation, we apply a semiclassical approxima
with high efficiency while suffering from effects like bire- tion [16,17]. We discuss the results in S&d. IV and theirifeas
fringence or dispersion. The free space channel, howevebjlity in Sec. [M. Finally, our conclusions are briefly summa-
does not suffer from these effects, but photon losses due tized in Sed V.
beam wandering or beam broadening, for example, can play
a prominent role. Thus both types of photonic channels have
their own pros and consl[7] and distribution of entangled-pho
tonic qubits was successfully demonstrated for both of them II. REMOTE ENTANGLEMENT PREPARATION
over a distance of 200 kn[8] using optical fibers and over

144 km [9] in free space. L .
The main issue with a free-space channel is the low photon- Our setup, as roughly schematized in Elg. 1, consists of two

collection efficiency. This can be improved by placing theparabolic mirrors opposing each other, so they direct agg-el

single emitter at the focus of a parabolic mirforl[10], whigh tro_m_agnetic field from one focal point to the other with great
addition enhances the atom-field interaction [11, 12]. efficiency. _ _

Here, we propose to use two opposing parabolic mirrors to We consider a trappetf'Yb* ion at the focus of each
prepare maximally entangled states of two matter qubitseat t Parabolic cavity. This ion has quite a suitable hyperfine-ele
corresponding focal points. Our scheme involves an extremBonic structure due to its nuclear spis: 1/2. We concentrate
multimode scenario ,i.e., the atoms couple to a continuum ofn the level scheme formed by the levekSg, and &P,
modes of the radiations field, due to the fact that the pai@bol Shown in Fig[2. The logical qubit is defined by the levels
mirror is a half-open cavity. Thereby, we deal with intrinsi 16°S/2,F =1,m= —1) and|6°S, »,F = 1,m= 1) (note the
multimode effects like spontaneous decay processes, whidifferent choice in Ref.[[3,18]). The corresponding dipole
are usually considered as sources of undesirable decaigerenMatrix elements are denoted by = (j|d|i), whereli) and
Interestingly enough, we will be able to use these effects afl) are the wave functions of the different states.
tools for entanglement generation, rather than avoidiegith The basic idea is to initially prepare ions 1 and 2 in the
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Vn FIG. 2. (Color online) Hyperfine level scheme ofdYb™ ion: The
states of the logical qubit, depicted with lighter colong defined by
the electronic levelS, ,,F = 1,m= —1) and|6?S, ,,F = 1,m=
1).

FIG. 1. (Color online) Scheme of the setup, including thet ses

lection procedure: Twd’lYbt ions are trapped at the foci of two

parabolic mirrors. Entanglement between the two ions isiated

by a circularly polarized photono( emitted by ion 1 and absorbed

by ion 2. Successful entanglement is probed by the disgenster- ~ ground state when we apply thiepulse, the pulse does not
action of weak linearly polarized coherent statap \ith the ions.  have the desired effect. If we wait a certain time to make sure

Only if an ion resides in one of the desired entangled statphase thatthe absorption has already taken place before apglyéng
shift is imprinted onto the coherent state. Probe pulsesaupled  71-pulse, it is also likely that the spontaneous decay process
into the parabolic mirrors by means of beam splitters. Fapicity,  back to the 6S,, manifold may have already occurred. We
the coherent pulses used for dispersive state detectioindiceted  remind that unit excitation probability can only be achigve
for only one of the two ions. with a time-reversed single-photon wave packet [19].

We suggest to use instead the spontaneous decay itself. To
that end, we have to take into account the different decay
1@ (0)) = |62P1/2,F —1,m=0), chzannels. For example, consider that ion 2 is in the state
2.1) 62Py /5, F =1,m=1): it can decay into the stat¢&’S, »,F =
1,m=0), |6°S;/,,F = 0,m=0) and|6°S, ,,F = 1,m=1).
But only the last process generates entanglement. In a sim-
r way, one can treat the case that ion 2 is in the state
62P1/2,F = 1,m: —1>

states

[p?)(0)) =16%S,5, F=1,m=0),

and use the time evolution to generate an entangled state. F
that, we notice that ion 1 can decay into three differenestat

5 - € " . : .
652, F = 1,|;n— 1), emitting & “ght -C|rcularly polanzed To discard the undesired decay processes, we have to per-
(04) photon,|6 Sy2,F = 1’”;: 1), emitting & Ieft-cw.cglarly form a postselection. Since only in case of successful en-
polarized ) photon, and6°S, ,,F = 0,m=0), emittinga  anglement generation both ions end up in the qubit state, by
linearly polarized([T) photon. Because we do not know which yrohing the occupation of the qubit states we discard the-und

of the three mentioned processes actually take place, the co gjreq decay processes. This can be performed with negdigibl
plete state of the system is a linear superposition of theethr o5 of entanglement by using dispersive state detection. |
corresponding probability amplitudes. As a consequence, i gyffices to couple weak off-resonant coherent pulses tlthe

1 and the radiation field get entangled. transitions froms, ,F = 1,m=+1 to P p,F = 1,m=+1:

The geometry of the setup ensures that the photon wav§opylation is then detected by the phase shifts imprintédl on
packet generated by the spontaneous decay of ion 1 propgye coherent states. This procedure allows us to check fie po
gates to the focus of the second parabola, where it may eXgation of the qubit states while preserving the possiliedr
cite ion 2. After the absorption, the second ion is in theestat g perpositions and thus does not disturb the entangles stat
|62P1/2,F =1 m= 1), if it absorbs ao. polarized photon,
and in the staté6”P; ,,F = 1,m = —1), if it absorbs ao Furthermore, this postselection also detects photondpsse
polarized photon. These absorption processes map the fielfh that the scheme is loss tolerant. This is due to the fact
state onto the state of the second ion and thereby generatifigat upon photon loss ion 2 remains|® ,F = 1,m=0)
entangled matter states. and post selection is probed @htransitions, which are for

The ion 2 being in an excited state (in théP§,, F =1 |, F = 1,m= 0) either forbidden or detuned so strongly
manifold), is affected by spontaneous decay. So, we have tthat no phase shift of the probe pulse occurs. Of courseggoss
perform a state transfer from the manifokPg, to the mani-  reduce the success probability, but the fidelity after asssc
fold 6281/2 that is radiatively stable. One might think in using ful postselection is not affected. The low success proligbil
a singlerr-pulse, but this is not a proper solution because thean be overcome with a high repetition rate.
photon wave packet radiated by ion 1 has a certain temporal
width, which yields a probabilistic determination for theé All the steps for generating entangled states described
when the photon is absorbed by ion 2. If ion 2 is still in the above are depicted in Figl 3.
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FIG. 3. (Color online) Sequence of the processes which a®ufiding blocks for the remote entanglement preparafidre states of the
logical qubit, depicted with lighter colors, are defined hg electronic Ievel%zsl/z,F =1m=-1) and|6231/2,F =1,m=1). Optical
transitions which are necessary for the entanglement geoerare indicated by solid arrows, whereas the undesieeditions are indicated
by dashed arrows. The three columns correspond to threeqhgise first column shows the possible decay channels ofséfi’s initially
prepared stat%zPl/z,F = 1,m= 0); the second column shows the possible excitation proceduir¢he second ion which was initially

prepared in the statézsl/z, F =1,m=0) followed by the spontaneous decay processes used to adsbriid state transfer from thélq/z

manifold to the radiatively stable?6; /2 manifold; the last column shows the optical transitionsduseperform the postselection procedure
based on hyperfine splitting and off-resonant matter fietlekactions.

[ll. THEORETICAL ANALYSIS conditions, fulfilling, in addition, the transversality rdition
O-gr(r)=0
A. System Hamiltonian
In the rotating-wave and dipole approximations, the Hamil- B. Photon-path-representation
tonian of the foregoing system can be written as
H = Ha+ Hr+ Har, (3.1) Since only one excitation is available in our initial stated
the Hamiltonian[(313) preserves the number of excitatitires,
where state of the system at tintecan be written as
= 2. 2 M@t ie)i®) ) "
ie§0s) eSS W) =3 5 by ®)P)i?){0})
=S har afa, (3.2) eele
2 . .
T + bl 111§ ®)1{o})
Har= — Z E*(xq)-dy +H.c. €5y J€
ae{l,2}

N | - 3 O, 64
Here,Ha describes the dynamics of the matter. We indicate T icSic

by S (excited) the set of states in the manifol%P@z and by

S (ground) the set of states in the manifokBg,. The vec-  where|{0}) is the vacuum state arjd) = a/|{0}) a single-

tors [iV)), |j(?)) represent states of the ion 1 and ion 2 living photon state of the radiation field. The amplitmﬁﬁ (t) de-
ini,j € SUS, with energiedicy andhw;, respectively.Hgr scribes the evolution when the field is in the vacuum, the first
gives the dynamics of the field, characterized by the annihiton is in one of the excited levelse S and the second ion
lation (&) and creationd/) operators of the modes (of fre- is in one of the ground levelse § and an analogous inter-
quencyay) that couple to the ions (they depend on the boundpretation forb( 2(t). The amplltudef( )( t) is related to the
ary conditions). Finally, the interaction between the iansl  eyolution wheh there is an excitation in the field modend
the field is given byHagr, Wherein H.c. stands for the Hermi- both ions are in one of the ground electronic levejss ;.
tian conjugate and Now, we can solve the time-dependent Schrodinger equa-
R tion, with theansatz(3.4). If we assume that the field is ini-
)y =i z — g (r)al, tially in a vacuum state and we use the Laplace transform, we
get, after eliminating the transforms of the probabilitypim
G =3 3 dli)
€% €

(3-3)  tudes for photonic excitationgjr) (s)
X1 andxy, being the position of the first and second ion, re- a ”
spectively. The orthonormal mode functioggr) are so- ; Ze Z;'}; ke ) (3.5)
lutions of the Helmholtz equation with the proper boundary Be{l2tkesele

sbi"(s) - b (0) = —im + wan,-‘” (s)



wherea € {1,2} indexes the ions,€ &, j € § and 1-0”\‘
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FIG. 4. (Color online) Time evolution of the excitation pedility

] ) o ) P in the case of ion 1 (dashed line) and of ion 2 (solid line): The
describes all possible photon emission and absorption pranteraction time is plotted in units of the time = (4f +d) /c which

cesses and encodes the whole geometry of the setup througlphoton needs to travel from the first ion to the second fois.the
the modeg, (r). Its explicit calculation turns to be a diffi- focal length of the parabolas ands the distance between the foci.
cult task, although in AppendIx]A we sketch a semiclassicale set the spontaneous deday= 3 and the Zeeman splitting was
method. neglected.
Equation[[3.b) can be recast in a suggestive vectorial form
(s+iw+T)b(s) =b(0), (3.9) The time interval of interest in our setup is of the order of
T = (4f 4+ d)/c, which is the typical travel time of a photon to

where the functions[” are arranged in a vecttrandiwis 90 from the first to the second ion afdeing the focal length
a diagonal matrix which represents the teifw; + w,). The of the mirrors and the separation between foci. In conse-

contributionT can be split as guence, we can neglect all terms>- 1 in the sum; as shown
P in Ref. [14], the higher-order terms are relevant when the fo
T=To+T, (3.10)  callengthis comparable with the wavelength, which is net th

case for our actual mirrors [10f (=2.1 mm and wavelength
whereTy is equal togr, with I being the spontaneous decay A = 369 nm).

rate in free space, anti embodies exponentially decaying

terms of the forme™St. In principle, one could try to per-

form an inverse Laplace transform to solze [3.9). However, IV. RESULTS
this involves finding the poles of the integrand, which is a

formidable task becauSedepends itself osin a highly non- If one uses the method of the preceding section in the time

trivialway. intervalt € [0,21), it turns out that only four of the atomic
To determinéd(s) we use instead an alternative route basedprobability amplitudei;)-(-") (a € {1,2}) are of relevance:
on the Neumann expansion i] ’
- 1
(L-K) '=1 4K+ K24 +K'4+... (3.11) bézzjl/Z’lenbo,stl/z’F:mbo(t)’
If we takeK := —Ti(s+iw+ 3T~ we get béaal/z, Fo1moL62s, ;. Foime1(b); .
@ b ot 1625, F 1t (D) |
b(s) = Z)(s+iw+ 3r/2)7*K"b(0), (3.12) s(zp)l/szl”b 16 Sl/Z’F*]-m:l(t)
n= .

62P) 5, F=0m=0,62S; /5, F=0 m=0

and each term in the SEeries can be immediately L_aplac_e Nt the hyperfine splitting is large in comparison to the
verted. The price we pay is that we have to deal with an mf"spontaneous decay ratB, as it happens forl’lyb*
nite series. ’

. . in the time window of interest, we can also neglect
In most circumstances, only a few terms contribute to (»

Eq. (3.12): since each summand is damped by an exponeH(s2>F>l/2,F:o m=0,62S 5, F:Om:O(t)'

tial of the forme~St, and when applying the inverse Laplace In Fig.[4 we plot the excitation probabilities of the two ions
transform, each term leads to a Heaviside step function, i.efor vanishing Zeeman splitting. As discussed in $dc. I, the

a retardation, shifted into the positive direction by timdf process generates an entangled state if one uses the states
we are looking at the evolution in a finite time interval, we |62P1/2, F=1m=1) and |62P1/2, F =1m= —1) of the

can neglect terms which are so far retarded that they do natecond ion as qubit. But these states do not form a stable
contribute. gubit; spontaneous decay transfers them to the groundstate
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|6251/27 F=1m=1) and|6251/27 F =1m= —1) by emit- Furthermore, our mirrors are made out of aluminum, which
ting a single photon. By detecting whether or not both ionshas a finite electrical conductivity. The properties of tham
are in one of the state}éZSl/z, F=1m=+1), we checkif terial are well described by introducing a frequency depen-

the entanglement generation was successful. dent dielectric constar#t(w). In our cases(w) = —1874+
The postselection is equivalent to a von Neumann measuré3.37 [20]. Now, we have to split the field in a transverse elec-
ment described by the projection operator tric (TE) and a magnetic (TM) part and apply Fresnel equa-

~ tions to deal with the boundary conditions. But these equa-
P =100) (00 +(01) (01| +|10) (10| +[11) (11|,  (4.2) tions are different for the two basic polarizations and give
angle-dependent phase shifts and reflectivities, whidsléa
where[a:02) (1,02 € {0,1}) correspond to the states of the 4 fyrther reduction of the efficiency for entanglement gener
logical qubit. In addition, we also have to deal with the @it 5tion. One might think that this effect could also reduce the
emitted in the transfer from the excited to the ground states;gelity of the entangled state but this is not the case. Such a
This photon, which carries information about the state ef th reqyction could occur if @. (o) decay of the first ion could

ions, might cause decoherence _and therefore destroy_ the egyive ao_(oy) transition of the second ion, but due to the
tangled state generated by the time evolution. To cert®y th symmetry this does not occur.

this is not the case, we have to trace out the uncontrolled pho " s js obvious from the following reasoning: After colli-
tonic degrees of freedom, which amounts to know mation by the parabolic mirror, the polarization vector fod t
electric field in the exit pupil of the parabolic mirror reg@g]

p(t) = Trr(lw(®) (W(t))). (4.3)
~(r2 _ isino) -
This density matrix is evaluated in Appendix C. In the limit 0 (" — 4)(cospEising) - & (5-2)
I(t—1)— o with T <t < 21, we have that +(r?4+-4)(singFicosyp) - ey
PP(t)P = % |01)(01] + 5+110)(10) with r the distance to the optical axis in units of the mirror’s
3(9+62) 3(9+62) focal length, @ the azimuthal angle, ang ande, the unit
+ 2 101)(10]+ 2 110)(01] vectors in radial and azimuthal direction, respectivelypot
3[—9+8(—9i +20)] 3[—9+ (9 +29)] ’ reflection on the parabolic surface, these vectors corrasimo

(4.4)  TM-and TE-components. The influence of the metallic mirror
can be accounted for by additional complex pre-factors whic
i~ . e depend om only. Itis straightforward to show that the overlap
man splitting of the energy levelsAim is the splitting in - 5, o of this modified fieldd.. with the state of opposite
the 6°-P1/2, F = 1 manifold andA,m the splitting in the helicity vanishes.

6°S1/2, F = 1 manifold. Note that the magnetic field has the  \we can sum all the above effects in a faggowhich has to

The parameterd = (A; — Ay)/I characterizes the Zee-

same orientation and strength for both ions. _ be multiplied with the probability for a successful entangl
For |8] < 1, which is justified in our experimental ment creation to take the more realistic mirrors into actoun
setup[10], we get n = 1 corresponds to perfectly conducting parabolic mirrors

2 that cover the full solid angle. In the specific case treatse h
PP(t)P = 55(102) —[10))((01] - (10)), (4.5)  we haven ~ 0.47.

which corresponds to a maximal entangled state with a suc- . o

cess probability 427~ 15 %. Of course, in a real experiment, B. Free-space versus fiber-based transmission

one has to take additional effects into account. As we egrplor

in the next Section, it should be possible to achieve fresasp Our scheme is designed to be compatible with free-space

communication over several kilometers. communication by photonic qubits, for it does not rely on the
strong coupling regime, but on intrinsic multimode effdits
spontaneous emission.

V. EXPERIMENTAL FEASIBILITY There are other multimode schemes, such as the one in
Ref. [13], which might be adapted to free-space communi-
A. Realistic parabolic mirrors cation, but our proposal offers considerable advantagks. T

scheme in Refl[13] heavily relies on fibers as mode filters to

In a real setup, the parabolic mirror does not cover the fulchieve almost perfect mode matching on a beam splitter and,
solid angle. Actually, in our parabolic mirrdr [10] we have ~ Pesides, the fidelity is mainly limited by the fact that thespo
selection is performed on the radiation field and is sergsitiv
Q=1{(¢,0): ¢ €(0,360°),0 € (20°,135)} , (5.1)  todark counts of the detectors. In contrast, in our proposal
postselection is performed on the ions, which circumveets d
whereby the angle 135gives the front opening of the tector dark counts.
parabola and the angle 28ccounts for the hole on the back-  Of course, we have to take into account experimental im-
side for inserting the ion trap. This has to be taken into acperfections, mainly connected with the free-space trasismi
count in integrations as in EQ.(A7). sion of the one-photon wave packet. This gives rise to beam



wandering and phase-front distortions due to atmospharic t 10t ¢
bulences|[9]. In both cases, the intensity at the focus is re- 102
duced 4], affecting the success probability. Once the L
distance between the two parabolic mirrors becomes large 103 |
enough, beam broadening plays a crucial role, which also re- q_ ;44
sults in a lower success probability. All these effects, sy, i
diminish the success probability but seem to leave the fideli 10° |
rather untouched, which is of big importance for practiqgal a
plications. , | | | | |
On_e could_also thmk abo_ut thg transmission of_the photon 10 o1 0.2 03 04 05 06 07
fromion 1 to ion 2 via an optical fiber. This would circumvent
all problems related to atmospheric transmission, but,tdue
their complex polarization pattern, cf. E§.(5.2), the pimnst
fundamental Gaussian mode with orouiar polarization.dgen 2 COMErent pulse probing fsransiions 1S, (0P poted
. - . . .. over the beam splitter reflectivitg. Solid line: ion 1, dashed line:
the efficiency in coupling these photons to a single-mode fibej, 5 ' hoth cases, the relative detuning respect to thaneexe is
is limited to a maximum of 49 % [21]. Therefore, fiber trans- 1o linewidths, corresponding to a phase shift df4t. The length
mission alone would limit the success probability of our en-of the pulse is 16 upper-state lifetimes or 8fus, respectively. The
tanglement scheme to 24 %. Moreover, the strong attenuaticamplitude of the coherent state incident onto the ion is ehasich
of ultraviolet radiation in standard optical fibers reduties  that the probability to excite the respective upper sta@xsl04,
success probability by orders of magnitude, even for destan as marked by the thin dotted line. The calculation for ion @aats
about 1 km. Finally, fibers are not well suited to perform com-for the threshold reflectivity found for ion 1, which is maddey the
munication via polarization codingl[7], as in our scheme. ~ Crossing of the solid and the dotted line.

106 |

FIG. 5. (Color online) Error probabilit? in determining the phase of

C. Postselection probability. This is motivated by the fact that postseleati
schemes probing tha = 0 states are limited in fidelity to val-

As advanced in SeE]ll, the best way to perform postselect€S= 0-995 by the branching ratio of ti#g , state to thds

tion seems to probe qubit states directly by dispersive skat state of 0.5%. Ke_eping all errors in our postselection sehem
tection. This can be implemented by coupling weak coheren” order of magnitude below this value is reasonable and de-
state pulses to th@ transitions fromS, ,,F = 1,m= +1 to sirable. o . )

Py/2,F = 1,m= £1. Population in thé; ,m= +1 states is _ _The minimum error.probab|llt|e_s as a function of the reﬂgc—
then detected by the phase shifts imprinted onto the coheflvity of the beam splitters coupling the coherent statee in
ent states. The detuning and pulse amplitudes can be ch#l€ parabolic mirrors is plotted in Figl 5. First, we detered
sen such that one is far from saturating the respectiveitransthe reflectivity for the beam splitter in front of ion 1 that-en
tions. For example, choosing an on-resonance saturation paures being below the error threshold for a set of suitable pa
rameter ofs; = 0.01 and a detuning of two linewidths, the rameters, yieldingt; = 0.5. Next, this result was used in the
excitation probability is about 1G, while the phase of the Calculations for ion 2, leading t&, = 0.22. From these re-
coherent pulse is shifted by 25according to the formalism flect|V|t)_/.vaIues one would obtain a reductlon of the success
of Ref. [25]. probability for entanglement generation by 61 %.

One has to balance the amplitude and the detuning of the in- In practice the Helstrom bound will not be reached entirely,
cident coherent state carefully. Larger amplitudes andlema Wwith the actually obtainable error probability depending o
detunings result in lower error probabilities for detegtthe ~ the method employed for measuring the phase of the probe
phase of the coherent state, but also enforce a stronger exgiulse. Nevertheless the error threshold marked in[Hig. 5 can
tation of the ion. The latter might lead to transferring the i  be reached. This may be achieved at the cost of using beam
out of them = +1 state during state detection, hindering thesplitters with larger reflectivities and thus acceptingdosuc-
phase shift of the coherent state and hence resulting in err6ess probabilities.
neous postselection. Furthermore, the reflectivity of thenb To guarantee that the entangled state is not destroyed, we
splitters in front of the parabolic mirrors not only affett®  have to ensure that no information about the state of the qubi
success probability of our entangling scheme, but also-influis extracted by our postselection. The latter conditioruls f
ences the error in measuring the phase of the coherent statefilled if the magnetic field fixing the quantization axis is fsuf

We compute the corresponding error probabilities accordeiently small (,i.e., the frequency shifts caused by thenZae
ing to the Helstrom bound [26]. The priori probabilities  effect are small compared to the spontaneous decay rate), so
in this calculation are obtained from all relevant branghin that the phase shift imprinted by an ion in the= —1 Zee-
ratios, excitation probabilities, and reflectivities. Tampli-  man state will be practically the same as for the other ion in
tude of the coherent state is chosen such that the prolyabilithe m= +1 state. Therefore, probing the qubit dispersively
to excite the ions with the probe pulse <304 We also  will not project the ions into one of these states and entan-
choose this value as an upper bound for the acceptable errglement is preserved. The parameter set in[Hig. 5 yields a fi-



delity of 0.998 when postselecting. Even higher fidelitiaa ¢  success probability and inter-ion distance.
be reached by larger beam splitter reflectivities (accongobn

by decreasing success probabilities), lower pulse ant@gu

or longer pulse lengths. A lower pulse amplitude has to be VI. CONCLUDING REMARKS
compensated for by larger beam splitter reflectivities ngker

pulse lengths. The latter in turn affects the repetitior.rat | .
n summary, we have presented a scheme for preparing

maximally entangled states of two matter qubits with high fi-
N delity by using a free-space channel. The qubits are encoded
D.  Repetition rate in the level structure of two distahfYb™ ions located at the
foci of two parabolic mirrors. The theoretical descriptioh
We finally estimate the achievable repetition rate. Typi-the setup involves an extreme multimode scenario to model
cally, an experimental cycle starts with Doppler cooling th the radiation field and a level structure far more complidate
ion, which takes about 200s for the ions treated here [27]. than a simple two level atom.
For the trap frequencies inherent to the parabolic mirwep,tr We have used a semiclassical photon-path representation to
500kHz in radial direction and 1 MHz along the optical axis, deal with the boundary conditions at the two parabolic mir-
the average number of motional quanta according to theors, which leads to a intuitive representation of the quamt
Doppler limit is 20 and 10, respectively. This corresporals t dynamics of the two ions and the radiation field.
widths of the ion wave function in position space about 0.13 To obtain a more realistic description, we have focused
and 0.07 wavelengths. With these numbers we estimate thah the experimental details in Ref. [10] and on more real-
the ions experience 78 % of the focal intensity obtained byistic boundary conditions. Our results confirm the feasibil
diffraction limited focusing. Applying only Doppler cool ity of the scheme to achieve reasonable success probegjiliti
the success probability of our entanglement scheme would bghich in combination with a relatively high repetition rate
reduced accordingly. One could additionally apply restlve |eads to a proper rate for preparing entangled matter qubits
side-band cooling, but the increase of the success rate-is olhdeed, we expect an entanglement rate of 54 per second un-
viously accompanied by a lower repetition rate due to theder diffraction-limited focusing.
elongated cooling procedure. Furthermore, as soon as thereQne of the main issues is the fidelity of these states. Our
is a broadened focus due to incompletely compensated atmgcheme is robust against imperfections arising in the éxper
spheric aberrations etc. the above spread of the ion’s waviental implementation. All these effects reduce the sicces

function is negligible. probability of entanglement generation, but leave the ifiglel
After cooling, both ions have to be prepared in the stateyntouched.
S1/2,F =0 which takes less than fis [18]. Additionally, We hope that our work is a step towards an experimental

ion 2 has to be flipped to the steig,,F = 1.m=0. Thiscan  realization of remote entangled matter qubits in free space
be accomplished in fis using microwaves [18] or in 100 ps which is a key building block for future quantum technolagie
applying Raman transitions [28]. Likewise, ion 1 is brought

to thePy ,, F = 1,m= O state by an opticat-pulse on a time

scale smaller than a nanosecond. The postselection require ACKNOWLEDGMENTS
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tition rate of 3.3 kHz if Doppler cooling is applied after &éac
entanglement attempt. One could increase the repetitien ra
if Doppler cooling is performed regularly after a certaimmu Appendix A: Determination of the functions Ag;.'ﬁ,
ber of entanglement trials. Since one entanglement tikaista
about 10Qus, a repetition rate in excess of 10 kHz is not feasi- . g
ble, unles?; one agcepts a reduced fidelity and/or succelss pro We d?39f'be .here how to evaluate t.he fun.ctmgﬁjf(s).
ability. Assuming a realistic heating rate of 10 quanta perThe main idea is to relate these func'uo_ns with the Lapla_ce
ms ], the spread of the ion wave function would rOugmytransform of the retarde_d Green'’s functlon_s of the ve_ctona
double in radial direction within 8 ms. Accepting the accom-d"Alembert operator, which can be determined by using the
panying, continuously increasing loss of success proiabil mult|d|men3|onal JWKB approximation. This is valid when
one could enhance the repetition rate towards 9.8 kHz, whicke typical wavelengti is much smaller compared to the fo-
is close to the inverse of the duration of one entanglemerft@l length of the cavities. Besides, this will enable us to
trial. Anyhow, in every experimental realization, the riégpe  Clarify the retardation effects iAg;’LJg(S) due to the propaga-
tion rate is dictated by the specific requirements on fidelitytion of a photon wave packet.



Let us introduce the functions where
i 3
i _ 3 .
Bg;’LJg(S) = —ﬁda ZOxOx G(XQ,XB,'[)] die (A1) Frel = 87.[/QSIn6PLer2d62d¢2 )
(AT)
where.Z denotes the Laplace transform a@ds the Green'’s Pe =1l-6,6,,
function of the vectorial d’Alembert operator satisfyinget 2
appropriate boundary conditions. We recall tBatan be ex- Q denotes the solid angle around the ions covered by the
panded in terms of the mode functions as parabolic mirrors ando denotes the transition frequency of
the corresponding optical transitions.
/ 2 , Sin(axt)
G(x,x',t) =¢" gr(X) ® gr (X') o o), (A2
' Appendix B: The multidimensional JWKB method
where® is the dyadic product an@(t) the Heaviside step
function. We can immediately show that As heralded in append[x]A, we derive here semiclassical
) 1 approximations for the functions, by using multidimen-
Bgf;je(s) = ﬁz diTj O (Xa) ® 9r(Xg)dir sional JWKB method [17]. In region 1, we use the free-space
’ € 4 Green’s function
W W
— — —— . A3 1
) (S+ i s— Iwr) (A3) Giree(X,X',t) = mé(t —[x=X|/c), (B1)
If we compare with our definition o}/ (s), viz and, sincel < R, we can use the approximation
U !/
1 A r oy 9 (t=Ix=X]/c)
A58 = 5o . iy O (%) OO (Xp) e (A%) X e X = = )
x—=x"  x-=x
we see that the two expressions just differ by X (1_ X —X/| ® X — x’|) : (B2)

aij aiij 1 Wt If we introduce for each focus a system of spherical coordi-
Agiki(S) —Bpiu(s) = Zeoﬁz S_ ioor_d“' 9r(Xa) @Gr(Xg)die - nates, with the focus lying at the origin, we can represéat th
' (A5)  Green'sfunctionin region 1 as
This term can be neglected by using the same argument em- 5t —
ployed to justify the rotating-wave approximation andréhe 0 x 0 X Gyree(X1,r1, 61, ¢1,1) = —
fore, to a good approximation, we can idem]—tg;;;jz(s) with
Bl (s). whereP, ¢ has been defined in EG_A7).

Pkt We use the multidimensional JWKB method to propagate

Our next step is to get a manageable expression for theSﬁ, ) ) o :
functions. To achieve this we divide our cavity in three re- S €xpression to the second focus; that is, in region 2réhe

gions: fore, we construct the rays from geometrical optics. Thaltes

471C2r,

reads
1. A sphere of radiuR centered around the firstioRhas 0" (t—T1+r2/C)
to be chosen such thRts> A, but small when compared Ox Ox G(Xy,r2,62,¢2,t) = a2, e,
with f andd. 2
% 1 (927¢2) € Q7 (B4)
2. The whole volume, except the spheres centered around 0, (62,¢2) ¢ Q.

the ions.
_ _ We have introduced the typical tinle= (4f +d)/c and we
3. A sphere of radiuR centered around the second ion.  have neglected contributions that are small wlieg > A.

, _Of course, in Eq.[{B4) we have taken into account that the
In regions 1 and 3, we use the free-space propagator, Wh"ﬁarabola covers only a finite solid angde

in region 2 we use a JWKB approximation for the Green's’ Nyt we have to take care of region 3. Here, we use
function (which is presented in AppendiX B). After matching the free-space propagator, because the JWKB method would
the resulting expressions, we obtain cause a singularity at the second focus. The mentioned prop-

1 WP agator for the electric field, which can be derived by using
Atlkje(s) = Ag;lkjé(s) = édiTj dkz{m, Gtree, is given by
(A6) =i/7M' d,1d
) D(x2,t) artJo o sin6, an + T Plerz

—TS

1iij A2ij ot w
Aowr(®) = Ar(s) = —djTreid 35 p€ ™, % [r2D(r2, 85, $2,t — At)] dBod by, (B5)
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whereAt = ry/c. If we apply this expression to our problem the dipole approximation. If we neglect those terms, we get
with the dyadic Green’s function we finally obtain

6///(t)

Ox 0Ox G(xl’)(z’t) = _3_35///(t . _[) Mol (BG) Ox Ox Gfree(X:L,Xl,t)ez = —67'[03 €, (BlO)
In the limiting case that the mirrors cover the full solid &g ~ Which, given the symmetry of the problem, gives the general
we obtainl g =1 . solution

So far, we have neglected the fact that we could also con- ”
tinue the described g_eometrical rays,_which would ad_d arrth 0% 0 x Grrea(X1, X1,t) = 0 (t3) _ (B11)
terms to our expression for the dyadic Green’s function. But 6rC
as long we are only interested in time intervais [0, 2T) we _ _
can neglected this continuation of the rays. Of course, th&rom here, we immediately get
relation
aiij —is® t
0 x 0% G(xg,x1,t) = O x Ox G(x1,X2,t)  (B7) Baike(S) = 6, ﬁd.,dw, (B12)

holds true.

for a € {1,2}. Since the time evolution of the different prob-
ability amplitudes is dominated by rapid oscillations oé th
form e'®, one can replace eachby —iw and we thus get
directly the result in Eq[{AS6).

Appendix C: Tracing out the photonic degrees of freedom

We have to calculate aldo x 0 x G(x1,X3,t) andD x O x
G(x2,X2,t). We are retaining only the dominant contribution,
which is associated to the free-space part of the Greenés fun
tion. The problem is that this part leads to a divergent expre
sion that needs to be regularized. For simplicity, we orkgta
care of the problem x 0 x Gyree(X1,r1, 61, $1,1)€,, because
the symmetry of the problem leads to the general solution. So To calculate the fidelity of the entangled state generated by
we get our scheme, we have to trace out the uncontrolled photonic

degrees of freedom, which in general cause decoherence and
0 % 0 x Grree(X1, 1, 01, @1, 1), = 0 x [ {5('[4— rl/c)} e destroy entanglement. Our goal is to determine the reduced

i density matrix
S0 (B8)
In this expression terms of the fordW" (t —ry/c)/r" appear. Ay _
By Aoa & formel Taytor exparsion. we et A1) = Tra(lw®) WV = ({0} ) (W(n){0})
+Z L) (t)[L). (C1)
W(t—ri/e) 2 3MMEM) o ok
D
1 k= ' The second line of this equation, which denpgundt) is
smmty o et (t) dem_ ok of main interest, because the ions are affected by spontaneo
rlj’ T(_C) + Tk 1 (=¢) emission and both of them will be in the ground state after a
k=0 (B9) short while. To obtain an expression faoundt) we have to
evaluate an infinite sum. It is possible to rewrite this sum to

As one can see the sum in the second line contains singul&finite sum by using the funcUon{% . The result is the
terms, which lead to the divergent Lamb-shift appearingraft following expression

(] (2 | Byt [ 1012 = jt‘efi(tft’)(aqlJrquwjl,wjz)

“1 A% (s ey i, )BY ()] @)bP) )¢
(k,léseae{ilz}ﬁe{il,ﬁ [ Pille (S 1ea, i) Ko a ()}( : “H[ | (€2)

Bilj . s Ak(B) Nx K@) 14 /
+ glA.»B s+iwj, +iw;, )b S)| |t b, : t dt’.
k,I%Seae{zl,Z}Be{zl,Z} { a’kla( " 2 IJ3’B( )}[ ] k|3,a[ ]>
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