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We propose a scheme for the remote preparation of entangled matter qubits in free space. For this purpose, a
setup of two opposing parabolic mirrors is considered, eachone with a single ion trapped at its focus. To get the
required entanglement in this extreme multimode scenario,we take advantage of the spontaneous decay, which
is usually considered as an apparent nuisance. Using semiclassical methods, we derive an efficient photon-
path representation to deal with this problem. We also present a thorough examination of the experimental
feasibility of the scheme. The vulnerabilities arising in realistic implementations reduce the success probability,
but leave the fidelity of the generated state unaltered. Our proposal thus allows for the generation of high-fidelity
entangled matter qubits with high rate.

PACS numbers: 42.50.Pq 03.67.Bg 42.50.Ct 42.50.Ex

I. INTRODUCTION

The distribution of entanglement between macroscopically
separated parties constitutes a key ingredient of quantum in-
formation networks [1, 2]. A quantum network is composed
of nodes, for processing and storing quantum states, and chan-
nels linking the nodes. The implementation of quantum nodes
is a major challenge: different approaches are currently being
pursued, most of them involving single emitters, such as ions,
atoms or nitrogen-vacancy centers [3–6], even though they are
inherently probabilistic.

Photonic channels are especially advantageous, as optical
photons can carry information over long distances with al-
most negligible decoherence. In practice, there are two types
of these channels: optical fibers and free space. Optical fibers
are capable of transmitting single photons over large distances
with high efficiency while suffering from effects like bire-
fringence or dispersion. The free space channel, however,
does not suffer from these effects, but photon losses due to
beam wandering or beam broadening, for example, can play
a prominent role. Thus both types of photonic channels have
their own pros and cons [7] and distribution of entangled pho-
tonic qubits was successfully demonstrated for both of them,
over a distance of 200 km [8] using optical fibers and over
144 km [9] in free space.

The main issue with a free-space channel is the low photon-
collection efficiency. This can be improved by placing the
single emitter at the focus of a parabolic mirror [10], whichin
addition enhances the atom-field interaction [11, 12].

Here, we propose to use two opposing parabolic mirrors to
prepare maximally entangled states of two matter qubits at the
corresponding focal points. Our scheme involves an extreme
multimode scenario ,i.e., the atoms couple to a continuum of
modes of the radiations field, due to the fact that the parabolic
mirror is a half-open cavity. Thereby, we deal with intrinsic
multimode effects like spontaneous decay processes, which
are usually considered as sources of undesirable decoherence.
Interestingly enough, we will be able to use these effects as
tools for entanglement generation, rather than avoiding them.

In other multimode schemes [13] each deviation from the
ideal situation, such as non perfect mode matching, leads toa
reduction of the fidelity of the generated state. In contradis-
tinction, our scheme is robust against the vulnerabilitiesthat
arise in experimental implementations: they reduce the suc-
cess probability, but leave the fidelity unaltered (and, accord-
ingly, it can be very high). As outlined below, this is due to the
use of photons originating from circular-dipole transitions, a
suitable choice of the quantization axis and direct dispersive
probing of the qubit states.

This paper is organized as follows. In Sec. II we advance
the basic ingredients of our scheme, which is fully analyzedin
Sec. III by resorting to a photon-path representation [14, 15]
especially germane for a multimode description. To incor-
porate the boundary conditions for the relevant solution of
the Helmholtz equation, we apply a semiclassical approxima-
tion [16, 17]. We discuss the results in Sec. IV and their feasi-
bility in Sec. V. Finally, our conclusions are briefly summa-
rized in Sec. VI.

II. REMOTE ENTANGLEMENT PREPARATION

Our setup, as roughly schematized in Fig. 1, consists of two
parabolic mirrors opposing each other, so they direct any elec-
tromagnetic field from one focal point to the other with great
efficiency.

We consider a trapped171Yb+ ion at the focus of each
parabolic cavity. This ion has quite a suitable hyperfine elec-
tronic structure due to its nuclear spinI = 1/2. We concentrate
on the level scheme formed by the levels 62S1/2 and 62P1/2
shown in Fig. 2. The logical qubit is defined by the levels
|62S1/2,F = 1,m= −1〉 and|62S1/2,F = 1,m= 1〉 (note the
different choice in Ref. [3, 18]). The corresponding dipole
matrix elements are denoted bydi j = 〈 j|d̂|i〉, where|i〉 and
| j〉 are the wave functions of the different states.

The basic idea is to initially prepare ions 1 and 2 in the
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FIG. 1. (Color online) Scheme of the setup, including the post se-
lection procedure: Two171Yb+ ions are trapped at the foci of two
parabolic mirrors. Entanglement between the two ions is mediated
by a circularly polarized photon (σ ) emitted by ion 1 and absorbed
by ion 2. Successful entanglement is probed by the dispersive inter-
action of weak linearly polarized coherent states (π) with the ions.
Only if an ion resides in one of the desired entangled states,a phase
shift is imprinted onto the coherent state. Probe pulses arecoupled
into the parabolic mirrors by means of beam splitters. For simplicity,
the coherent pulses used for dispersive state detection areindicated
for only one of the two ions.

states

|ψ(1)(0)〉= |62P1/2,F = 1,m= 0〉 ,

(2.1)

|ψ(2)(0)〉= |62S1/2, F = 1,m= 0〉 ,

and use the time evolution to generate an entangled state. For
that, we notice that ion 1 can decay into three different states:
|62S1/2,F = 1,m= −1〉, emitting a right-circularly polarized
(σ+) photon,|62S1/2,F = 1,m= 1〉, emitting a left-circularly
polarized (σ−) photon, and|62S1/2,F = 0,m= 0〉, emitting a
linearly polarized (Π) photon. Because we do not know which
of the three mentioned processes actually take place, the com-
plete state of the system is a linear superposition of the three
corresponding probability amplitudes. As a consequence, ion
1 and the radiation field get entangled.

The geometry of the setup ensures that the photon wave
packet generated by the spontaneous decay of ion 1 propa-
gates to the focus of the second parabola, where it may ex-
cite ion 2. After the absorption, the second ion is in the state
|62P1/2,F = 1,m= 1〉, if it absorbs aσ+ polarized photon,
and in the state|62P1/2,F = 1,m= −1〉, if it absorbs aσ−

polarized photon. These absorption processes map the field
state onto the state of the second ion and thereby generating
entangled matter states.

The ion 2 being in an excited state (in the 62P1/2, F = 1
manifold), is affected by spontaneous decay. So, we have to
perform a state transfer from the manifold 62P1/2 to the mani-
fold 62S1/2 that is radiatively stable. One might think in using
a singleπ-pulse, but this is not a proper solution because the
photon wave packet radiated by ion 1 has a certain temporal
width, which yields a probabilistic determination for the time
when the photon is absorbed by ion 2. If ion 2 is still in the

FIG. 2. (Color online) Hyperfine level scheme of a171Yb+ ion: The
states of the logical qubit, depicted with lighter colors, are defined by
the electronic levels|62S1/2,F = 1,m=−1〉 and|62S1/2,F = 1,m=

1〉.

ground state when we apply theπ-pulse, the pulse does not
have the desired effect. If we wait a certain time to make sure
that the absorption has already taken place before applyingthe
π-pulse, it is also likely that the spontaneous decay process
back to the 62S1/2 manifold may have already occurred. We
remind that unit excitation probability can only be achieved
with a time-reversed single-photon wave packet [19].

We suggest to use instead the spontaneous decay itself. To
that end, we have to take into account the different decay
channels. For example, consider that ion 2 is in the state
|62P1/2,F = 1,m= 1〉: it can decay into the states|62S1/2,F =

1,m= 0〉, |62S1/2,F = 0,m= 0〉 and|62S1/2,F = 1,m= 1〉.
But only the last process generates entanglement. In a sim-
ilar way, one can treat the case that ion 2 is in the state
|62P1/2,F = 1,m=−1〉.

To discard the undesired decay processes, we have to per-
form a postselection. Since only in case of successful en-
tanglement generation both ions end up in the qubit state, by
probing the occupation of the qubit states we discard the unde-
sired decay processes. This can be performed with negligible
loss of entanglement by using dispersive state detection. It
suffices to couple weak off-resonant coherent pulses to theΠ
transitions fromS1/2,F = 1,m=±1 to P1/2,F = 1,m=±1:
population is then detected by the phase shifts imprinted onto
the coherent states. This procedure allows us to check the pop-
ulation of the qubit states while preserving the possible linear
superpositions and thus does not disturb the entangled state.

Furthermore, this postselection also detects photon losses,
so that the scheme is loss tolerant. This is due to the fact
that upon photon loss ion 2 remains in|S1/2,F = 1,m= 0〉
and post selection is probed onΠ-transitions, which are for
|S1/2,F = 1,m= 0〉 either forbidden or detuned so strongly
that no phase shift of the probe pulse occurs. Of course, losses
reduce the success probability, but the fidelity after a success-
ful postselection is not affected. The low success probability
can be overcome with a high repetition rate.

All the steps for generating entangled states described
above are depicted in Fig. 3.
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FIG. 3. (Color online) Sequence of the processes which are the building blocks for the remote entanglement preparation:The states of the
logical qubit, depicted with lighter colors, are defined by the electronic levels|62S1/2,F = 1,m= −1〉 and |62S1/2,F = 1,m= 1〉. Optical
transitions which are necessary for the entanglement generation are indicated by solid arrows, whereas the undesired transitions are indicated
by dashed arrows. The three columns correspond to three phases. The first column shows the possible decay channels of the first ion’s initially
prepared state|62P1/2,F = 1,m= 0〉; the second column shows the possible excitation procedures of the second ion which was initially

prepared in the state|62S1/2,F = 1,m= 0〉 followed by the spontaneous decay processes used to accomplish the state transfer from the 62P1/2

manifold to the radiatively stable 62S1/2 manifold; the last column shows the optical transitions used to perform the postselection procedure
based on hyperfine splitting and off-resonant matter field interactions.

III. THEORETICAL ANALYSIS

A. System Hamiltonian

In the rotating-wave and dipole approximations, the Hamil-
tonian of the foregoing system can be written as

Ĥ = ĤA+ ĤR+ ĤAR, (3.1)

where

ĤA = ∑
i∈Se∪Sg

∑
j∈Se∪Sg

h̄(ωi +ω j) |i
(1)〉〈i(1)|⊗ | j(2)〉〈 j(2)|,

ĤR = ∑
r

h̄ωr â†
r âr , (3.2)

ĤAR=− ∑
α∈{1,2}

Ê+(xα) · d̂−
α +H.c.

Here,ĤA describes the dynamics of the matter. We indicate
by Se (excited) the set of states in the manifold 62P1/2 and by
Sg (ground) the set of states in the manifold 62S1/2. The vec-

tors |i(1)〉, | j(2)〉 represent states of the ion 1 and ion 2 living
in i, j ∈ Se∪Sg, with energies̄hωi andh̄ω j , respectively.ĤR
gives the dynamics of the field, characterized by the annihi-
lation (âr) and creation ( ˆa†

r ) operators of the modes (of fre-
quencyωr ) that couple to the ions (they depend on the bound-
ary conditions). Finally, the interaction between the ionsand
the field is given byĤAR, wherein H.c. stands for the Hermi-
tian conjugate and

Ê+(r) =−i ∑
r

√
h̄ωr

2ε0
gr(r) â†

r ,

(3.3)

d̂−
α = ∑

i∈Se

∑
j∈Sg

di j | j
(α)〉〈i(α)|,

x1 andx2 being the position of the first and second ion, re-
spectively. The orthonormal mode functionsgr(r) are so-
lutions of the Helmholtz equation with the proper boundary

conditions, fulfilling, in addition, the transversality condition
∇ ·gr(r) = 0.

B. Photon-path-representation

Since only one excitation is available in our initial state,and
the Hamiltonian (3.3) preserves the number of excitations,the
state of the system at timet can be written as

|ψ(t)〉= ∑
i∈Se

∑
j∈Sg

b(1)i j (t) |i(1)〉| j(2)〉|{0}〉

+ ∑
i∈Sg

∑
j∈Se

b(2)ji (t) |i(1)〉| j(2)〉|{0}〉

+ ∑
r

∑
i∈Sg

∑
i∈Sg

f (r)i j (t) |i(1)〉| j(2)〉|1r〉, (3.4)

where|{0}〉 is the vacuum state and|1r〉 = â†
r |{0}〉 a single-

photon state of the radiation field. The amplitudeb(1)i j (t) de-
scribes the evolution when the field is in the vacuum, the first
ion is in one of the excited levelsi ∈ Se and the second ion
is in one of the ground levelsj ∈ Sg and an analogous inter-

pretation forb(2)ji (t). The amplitudef (r)i j (t) is related to the
evolution when there is an excitation in the field moder and
both ions are in one of the ground electronic levelsi, j ∈ Sg.

Now, we can solve the time-dependent Schrödinger equa-
tion, with theansatz(3.4). If we assume that the field is ini-
tially in a vacuum state and we use the Laplace transform, we
get, after eliminating the transforms of the probability ampli-

tudes for photonic excitations̃f (r)i j (s),

sb̃(α)
i j (s)−b(α)

i j (0) =−i(ωi +ω j) b̃(α)
i j (s)

+ ∑
β∈{1,2}

∑
k∈Se

∑
ℓ∈Sg

Tα ;i j
β ;kℓ (s) b̃(β )kℓ (s) , (3.5)
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whereα ∈ {1,2} indexes the ions,i ∈ Se, j ∈ Sg and

Tα ;i j
β ;kℓ (s) =





δ jℓ ∑
m∈Sg

Aβ ;km
α ;im(s+ iωm+ iω j), α = β ,

Aβ ;k j
α ;iℓ (s+ iω j + iωℓ), α 6= β .

(3.6)

The function

Aα ;i j
β ;kℓ(s) = ∑

r

κα ;i j
r

(
κβ ;kℓ

r

)∗

s+ iωr
, (3.7)

with

κα ;i j
r =

√
ωr

2ε0h̄
d†

i j ·gr(xα) , (3.8)

describes all possible photon emission and absorption pro-
cesses and encodes the whole geometry of the setup through
the modesgr(r). Its explicit calculation turns to be a diffi-
cult task, although in Appendix A we sketch a semiclassical
method.

Equation (3.5) can be recast in a suggestive vectorial form

(s+ iω +T) b̃(s) = b(0) , (3.9)

where the functions̃b(a)i j are arranged in a vector̃b andiω is
a diagonal matrix which represents the termi(ω1+ω2). The
contributionT can be split as

T = T0+T1 , (3.10)

whereT0 is equal to3
2Γ, with Γ being the spontaneous decay

rate in free space, andT1 embodies exponentially decaying
terms of the forme−st. In principle, one could try to per-
form an inverse Laplace transform to solve (3.9). However,
this involves finding the poles of the integrand, which is a
formidable task becauseT depends itself ons in a highly non-
trivial way.

To determinẽb(s) we use instead an alternative route based
on the Neumann expansion

(11−K)−1 = 11+K+K2+ · · ·+Kn+ . . . (3.11)

If we takeK :=−T1(s+ iω + 3
2Γ)−1 we get

b̃(s) =
∞

∑
n=0

(s+ iω +3Γ/2)−1Knb(0) , (3.12)

and each term in the series can be immediately Laplace in-
verted. The price we pay is that we have to deal with an infi-
nite series.

In most circumstances, only a few terms contribute to
Eq. (3.12): since each summand is damped by an exponen-
tial of the forme−st, and when applying the inverse Laplace
transform, each term leads to a Heaviside step function, i.e.,
a retardation, shifted into the positive direction by timet. If
we are looking at the evolution in a finite time interval, we
can neglect terms which are so far retarded that they do not
contribute.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. (Color online) Time evolution of the excitation probability
P in the case of ion 1 (dashed line) and of ion 2 (solid line): The
interaction timet is plotted in units of the timeτ = (4 f +d)/c which
a photon needs to travel from the first ion to the second ion.f is the
focal length of the parabolas andd is the distance between the foci.
We set the spontaneous decayΓτ = 3 and the Zeeman splitting was
neglected.

The time interval of interest in our setup is of the order of
τ = (4 f +d)/c, which is the typical travel time of a photon to
go from the first to the second ion andf being the focal length
of the mirrors andd the separation between foci. In conse-
quence, we can neglect all termsn> 1 in the sum; as shown
in Ref. [14], the higher-order terms are relevant when the fo-
cal length is comparable with the wavelength, which is not the
case for our actual mirrors [10] (f =2.1 mm and wavelength
λ = 369 nm).

IV. RESULTS

If one uses the method of the preceding section in the time
interval t ∈ [0,2τ), it turns out that only four of the atomic

probability amplitudesb(α)
i j (α ∈ {1,2}) are of relevance:

b(1)
62P1/2, F=1 m=0,62S1/2, F=1 m=0

(t),

b(2)
62P1/2, F=1 m=1,62S1/2, F=1 m=−1

(t),

b(2)
62P1/2, F=1 m=−1,62S1/2, F=1 m=1

(t),

b(2)
62P1/2, F=0 m=0,62S1/2, F=0 m=0

(t).

(4.1)

If the hyperfine splitting is large in comparison to the
spontaneous decay rateΓ, as it happens for171Yb+

in the time window of interest, we can also neglect

b(2)
62P1/2, F=0 m=0,62S1/2, F=0 m=0

(t).

In Fig. 4 we plot the excitation probabilities of the two ions
for vanishing Zeeman splitting. As discussed in Sec. II, the
process generates an entangled state if one uses the states
|62P1/2, F = 1 m= 1〉 and |62P1/2, F = 1 m= −1〉 of the
second ion as qubit. But these states do not form a stable
qubit; spontaneous decay transfers them to the ground states
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|62S1/2, F = 1 m= 1〉 and|62S1/2, F = 1 m= −1〉 by emit-
ting a single photon. By detecting whether or not both ions
are in one of the states|62S1/2, F = 1 m= ±1〉 , we check if
the entanglement generation was successful.

The postselection is equivalent to a von Neumann measure-
ment described by the projection operator

P̂= |00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11| , (4.2)

where|q1q2〉 (q1,q2 ∈ {0,1}) correspond to the states of the
logical qubit. In addition, we also have to deal with the photon
emitted in the transfer from the excited to the ground states.
This photon, which carries information about the state of the
ions, might cause decoherence and therefore destroy the en-
tangled state generated by the time evolution. To certify that
this is not the case, we have to trace out the uncontrolled pho-
tonic degrees of freedom, which amounts to know

ρ̂(t) = TrR(|ψ(t)〉〈ψ(t)|) . (4.3)

This density matrix is evaluated in Appendix C. In the limit
Γ(t − τ)→ ∞ with τ < t < 2τ, we have that

P̂ρ̂(t)P̂=
2

3(9+δ 2)
|01〉〈01|+

2

3
(
9+δ 2

) |10〉〈10|

+
2

3[−9+δ (−9i+2δ )]
|01〉〈10|+

2
3[−9+δ (9i+2δ )]

|10〉〈01| .

(4.4)

The parameterδ = (∆1 − ∆2)/Γ characterizes the Zee-
man splitting of the energy levels:∆1m is the splitting in
the 62P1/2, F = 1 manifold and∆2m the splitting in the
62S1/2, F = 1 manifold. Note that the magnetic field has the
same orientation and strength for both ions.

For |δ | ≪ 1, which is justified in our experimental
setup [10], we get

P̂ρ̂(t)P̂=
2
27

(|01〉− |10〉)(〈01|− 〈10|) , (4.5)

which corresponds to a maximal entangled state with a suc-
cess probability 4/27≈ 15 %. Of course, in a real experiment,
one has to take additional effects into account. As we explore
in the next Section, it should be possible to achieve free-space
communication over several kilometers.

V. EXPERIMENTAL FEASIBILITY

A. Realistic parabolic mirrors

In a real setup, the parabolic mirror does not cover the full
solid angle. Actually, in our parabolic mirror [10] we have

Ω = {(ϕ ,θ ) : ϕ ∈ (0,360◦),θ ∈ (20◦,135◦)} , (5.1)

whereby the angle 135◦ gives the front opening of the
parabola and the angle 20◦ accounts for the hole on the back-
side for inserting the ion trap. This has to be taken into ac-
count in integrations as in Eq. (A7).

Furthermore, our mirrors are made out of aluminum, which
has a finite electrical conductivity. The properties of the ma-
terial are well described by introducing a frequency depen-
dent dielectric constantε(ω). In our caseε(ω) = −18.74+
i3.37 [20]. Now, we have to split the field in a transverse elec-
tric (TE) and a magnetic (TM) part and apply Fresnel equa-
tions to deal with the boundary conditions. But these equa-
tions are different for the two basic polarizations and give
angle-dependent phase shifts and reflectivities, which leads to
a further reduction of the efficiency for entanglement gener-
ation. One might think that this effect could also reduce the
fidelity of the entangled state but this is not the case. Such a
reduction could occur if aσ+(σ−) decay of the first ion could
drive a σ−(σ+) transition of the second ion, but due to the
symmetry this does not occur.

This is obvious from the following reasoning: After colli-
mation by the parabolic mirror, the polarization vector of the
electric field in the exit pupil of the parabolic mirror reads[21]

σ± ≃(r2−4)(cosφ ± i sinφ) ·er (5.2)

+(r2+4)(sinφ ∓ i cosφ) ·eφ

with r the distance to the optical axis in units of the mirror’s
focal length,φ the azimuthal angle, ander and eφ the unit
vectors in radial and azimuthal direction, respectively. Upon
reflection on the parabolic surface, these vectors correspond to
TM- and TE-components. The influence of the metallic mirror
can be accounted for by additional complex pre-factors which
depend onr only. It is straightforward to show that the overlap∫

σ̃± ·σ⋆
∓ of this modified fieldσ̃± with the state of opposite

helicity vanishes.
We can sum all the above effects in a factorη which has to

be multiplied with the probability for a successful entangle-
ment creation to take the more realistic mirrors into account:
η = 1 corresponds to perfectly conducting parabolic mirrors
that cover the full solid angle. In the specific case treated here,
we haveη ≈ 0.47.

B. Free-space versus fiber-based transmission

Our scheme is designed to be compatible with free-space
communication by photonic qubits, for it does not rely on the
strong coupling regime, but on intrinsic multimode effectslike
spontaneous emission.

There are other multimode schemes, such as the one in
Ref. [13], which might be adapted to free-space communi-
cation, but our proposal offers considerable advantages. The
scheme in Ref. [13] heavily relies on fibers as mode filters to
achieve almost perfect mode matching on a beam splitter and,
besides, the fidelity is mainly limited by the fact that the post-
selection is performed on the radiation field and is sensitive
to dark counts of the detectors. In contrast, in our proposal,
postselection is performed on the ions, which circumvents de-
tector dark counts.

Of course, we have to take into account experimental im-
perfections, mainly connected with the free-space transmis-
sion of the one-photon wave packet. This gives rise to beam
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wandering and phase-front distortions due to atmospheric tur-
bulences [9]. In both cases, the intensity at the focus is re-
duced [22–24], affecting the success probability. Once the
distance between the two parabolic mirrors becomes large
enough, beam broadening plays a crucial role, which also re-
sults in a lower success probability. All these effects, however,
diminish the success probability but seem to leave the fidelity
rather untouched, which is of big importance for practical ap-
plications.

One could also think about the transmission of the photon
from ion 1 to ion 2 via an optical fiber. This would circumvent
all problems related to atmospheric transmission, but, dueto
their complex polarization pattern, cf. Eq. (5.2), the photons
collimated by the parabolic mirror have subunit overlap with a
fundamental Gaussian mode with circular polarization. Hence
the efficiency in coupling these photons to a single-mode fiber
is limited to a maximum of 49 % [21]. Therefore, fiber trans-
mission alone would limit the success probability of our en-
tanglement scheme to 24 %. Moreover, the strong attenuation
of ultraviolet radiation in standard optical fibers reducesthe
success probability by orders of magnitude, even for distances
about 1 km. Finally, fibers are not well suited to perform com-
munication via polarization coding [7], as in our scheme.

C. Postselection

As advanced in Sec. II, the best way to perform postselec-
tion seems to probe qubit states directly by dispersive state de-
tection. This can be implemented by coupling weak coherent-
state pulses to theΠ transitions fromS1/2,F = 1,m= ±1 to
P1/2,F = 1,m=±1. Population in theS1/2,m= ±1 states is
then detected by the phase shifts imprinted onto the coher-
ent states. The detuning and pulse amplitudes can be cho-
sen such that one is far from saturating the respective transi-
tions. For example, choosing an on-resonance saturation pa-
rameter ofs0 = 0.01 and a detuning of two linewidths, the
excitation probability is about 10−5, while the phase of the
coherent pulse is shifted by 25◦, according to the formalism
of Ref. [25].

One has to balance the amplitude and the detuning of the in-
cident coherent state carefully. Larger amplitudes and smaller
detunings result in lower error probabilities for detecting the
phase of the coherent state, but also enforce a stronger exci-
tation of the ion. The latter might lead to transferring the ion
out of them= ±1 state during state detection, hindering the
phase shift of the coherent state and hence resulting in erro-
neous postselection. Furthermore, the reflectivity of the beam
splitters in front of the parabolic mirrors not only affectsthe
success probability of our entangling scheme, but also influ-
ences the error in measuring the phase of the coherent state.

We compute the corresponding error probabilities accord-
ing to the Helstrom bound [26]. Thea priori probabilities
in this calculation are obtained from all relevant branching
ratios, excitation probabilities, and reflectivities. Theampli-
tude of the coherent state is chosen such that the probability
to excite the ions with the probe pulse is 5× 10−4. We also
choose this value as an upper bound for the acceptable error
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FIG. 5. (Color online) Error probabilityP in determining the phase of
a coherent pulse probing theΠ-transitions fromS1/2 to P1/2 plotted
over the beam splitter reflectivityR. Solid line: ion 1, dashed line:
ion 2. In both cases, the relative detuning respect to the resonance is
two linewidths, corresponding to a phase shift of 0.14π. The length
of the pulse is 104 upper-state lifetimes or 81µs, respectively. The
amplitude of the coherent state incident onto the ion is chosen such
that the probability to excite the respective upper state is5×10−4,
as marked by the thin dotted line. The calculation for ion 2 accounts
for the threshold reflectivity found for ion 1, which is marked by the
crossing of the solid and the dotted line.

probability. This is motivated by the fact that postselection
schemes probing them= 0 states are limited in fidelity to val-
ues≤ 0.995 by the branching ratio of theP1/2 state to theD3/2
state of 0.5%. Keeping all errors in our postselection scheme
an order of magnitude below this value is reasonable and de-
sirable.

The minimum error probabilities as a function of the reflec-
tivity of the beam splitters coupling the coherent states into
the parabolic mirrors is plotted in Fig. 5. First, we determined
the reflectivity for the beam splitter in front of ion 1 that en-
sures being below the error threshold for a set of suitable pa-
rameters, yieldingR1 = 0.5. Next, this result was used in the
calculations for ion 2, leading toR2 = 0.22. From these re-
flectivity values one would obtain a reduction of the success
probability for entanglement generation by 61 %.

In practice the Helstrom bound will not be reached entirely,
with the actually obtainable error probability depending on
the method employed for measuring the phase of the probe
pulse. Nevertheless the error threshold marked in Fig. 5 can
be reached. This may be achieved at the cost of using beam
splitters with larger reflectivities and thus accepting lower suc-
cess probabilities.

To guarantee that the entangled state is not destroyed, we
have to ensure that no information about the state of the qubit
is extracted by our postselection. The latter condition is ful-
filled if the magnetic field fixing the quantization axis is suffi-
ciently small (,i.e., the frequency shifts caused by the Zeeman
effect are small compared to the spontaneous decay rate), so
that the phase shift imprinted by an ion in them= −1 Zee-
man state will be practically the same as for the other ion in
the m= +1 state. Therefore, probing the qubit dispersively
will not project the ions into one of these states and entan-
glement is preserved. The parameter set in Fig. 5 yields a fi-
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delity of 0.998 when postselecting. Even higher fidelities can
be reached by larger beam splitter reflectivities (accompanied
by decreasing success probabilities), lower pulse amplitudes
or longer pulse lengths. A lower pulse amplitude has to be
compensated for by larger beam splitter reflectivities or longer
pulse lengths. The latter in turn affects the repetition rate.

D. Repetition rate

We finally estimate the achievable repetition rate. Typi-
cally, an experimental cycle starts with Doppler cooling the
ion, which takes about 200µs for the ions treated here [27].
For the trap frequencies inherent to the parabolic mirror trap,
500 kHz in radial direction and 1 MHz along the optical axis,
the average number of motional quanta according to the
Doppler limit is 20 and 10, respectively. This corresponds to
widths of the ion wave function in position space about 0.13
and 0.07 wavelengths. With these numbers we estimate that
the ions experience 78 % of the focal intensity obtained by
diffraction limited focusing. Applying only Doppler cooling
the success probability of our entanglement scheme would be
reduced accordingly. One could additionally apply resolved
side-band cooling, but the increase of the success rate is ob-
viously accompanied by a lower repetition rate due to the
elongated cooling procedure. Furthermore, as soon as there
is a broadened focus due to incompletely compensated atmo-
spheric aberrations etc. the above spread of the ion’s wave
function is negligible.

After cooling, both ions have to be prepared in the state
S1/2,F = 0 which takes less than 1µs [18]. Additionally,
ion 2 has to be flipped to the stateS1/2,F = 1,m= 0. This can
be accomplished in 6µs using microwaves [18] or in 100 ps
applying Raman transitions [28]. Likewise, ion 1 is brought
to theP1/2,F = 1,m= 0 state by an opticalπ-pulse on a time
scale smaller than a nanosecond. The postselection requires
around 80µs, as it was outlined in Sec. V C. The photon trav-
eling time from ion 1 to ion 2 is of the order of 10µs for
distances of a few kilometers. At least, the same time has to
be spent in communicating the postselection via a classical
communication channel. Thus, the time spent for state prepa-
ration, attempting entanglement of the ions and postselection
is on the order of 100µs.

From the numbers given above, one would estimate a repe-
tition rate of 3.3 kHz if Doppler cooling is applied after each
entanglement attempt. One could increase the repetition rate
if Doppler cooling is performed regularly after a certain num-
ber of entanglement trials. Since one entanglement trial takes
about 100µs, a repetition rate in excess of 10 kHz is not feasi-
ble, unless one accepts a reduced fidelity and/or success prob-
ability. Assuming a realistic heating rate of 10 quanta per
ms [29], the spread of the ion wave function would roughly
double in radial direction within 8 ms. Accepting the accom-
panying, continuously increasing loss of success probability,
one could enhance the repetition rate towards 9.8 kHz, which
is close to the inverse of the duration of one entanglement
trial. Anyhow, in every experimental realization, the repeti-
tion rate is dictated by the specific requirements on fidelity,

success probability and inter-ion distance.

VI. CONCLUDING REMARKS

In summary, we have presented a scheme for preparing
maximally entangled states of two matter qubits with high fi-
delity by using a free-space channel. The qubits are encoded
in the level structure of two distant171Yb+ ions located at the
foci of two parabolic mirrors. The theoretical descriptionof
the setup involves an extreme multimode scenario to model
the radiation field and a level structure far more complicated
than a simple two level atom.

We have used a semiclassical photon-path representation to
deal with the boundary conditions at the two parabolic mir-
rors, which leads to a intuitive representation of the quantum
dynamics of the two ions and the radiation field.

To obtain a more realistic description, we have focused
on the experimental details in Ref. [10] and on more real-
istic boundary conditions. Our results confirm the feasibil-
ity of the scheme to achieve reasonable success probabilities,
which in combination with a relatively high repetition rate
leads to a proper rate for preparing entangled matter qubits.
Indeed, we expect an entanglement rate of 54 per second un-
der diffraction-limited focusing.

One of the main issues is the fidelity of these states. Our
scheme is robust against imperfections arising in the experi-
mental implementation. All these effects reduce the success
probability of entanglement generation, but leave the fidelity
untouched.

We hope that our work is a step towards an experimental
realization of remote entangled matter qubits in free space,
which is a key building block for future quantum technologies.
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Appendix A: Determination of the functions Aα ;i j
β ;kℓ

We describe here how to evaluate the functionsAα ;i j
β ;kℓ(s).

The main idea is to relate these functions with the Laplace
transform of the retarded Green’s functions of the vectorial
d’Alembert operator, which can be determined by using the
multidimensional JWKB approximation. This is valid when
the typical wavelengthλ is much smaller compared to the fo-
cal length of the cavitiesf . Besides, this will enable us to
clarify the retardation effects inAα ;i j

β ;kℓ(s) due to the propaga-
tion of a photon wave packet.
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Let us introduce the functions

Bα ;i j
β ;kℓ(s) =−

i
ε0h̄

d†
i j L [∇×∇×G(xα,xβ , t)]dkℓ (A1)

whereL denotes the Laplace transform andG is the Green’s
function of the vectorial d’Alembert operator satisfying the
appropriate boundary conditions. We recall thatG can be ex-
panded in terms of the mode functions as

G(x,x′, t) = c2∑
r

gr(x)⊗gr(x′)
sin(ωr t)

ωr
Θ(t) , (A2)

where⊗ is the dyadic product andΘ(t) the Heaviside step
function. We can immediately show that

Bα ;i j
β ;kℓ(s) =

1
2ε0h̄ ∑

r
d†

i j gr(xα)⊗gr(xβ )dkℓ

×

(
ωr

s+ iωr
−

ωr

s− iωr

)
. (A3)

If we compare with our definition ofAα ;i j
β ;kℓ(s), viz

Aα ;i j
β ;kℓ(s) =

1
2ε0h̄ ∑

r

ωr

s+ iωr
d†

i j gr(xα)⊗gr(xβ )dkℓ , (A4)

we see that the two expressions just differ by

Aα ;i j
β ;kℓ(s)−Bα ;i j

β ;kℓ(s) =
1

2ε0h̄ ∑
r

ωr

s− iωr
d†

i j gr(xα)⊗gr(xβ )dkℓ .

(A5)
This term can be neglected by using the same argument em-
ployed to justify the rotating-wave approximation and, there-
fore, to a good approximation, we can identifyAα ;i j

β ;kℓ(s) with

Bα ;i j
β ;kℓ(s).
Our next step is to get a manageable expression for these

functions. To achieve this we divide our cavity in three re-
gions:

1. A sphere of radiusRcentered around the first ion.Rhas
to be chosen such thatR≫ λ , but small when compared
with f andd.

2. The whole volume, except the spheres centered around
the ions.

3. A sphere of radiusR centered around the second ion.

In regions 1 and 3, we use the free-space propagator, while
in region 2 we use a JWKB approximation for the Green’s
function (which is presented in Appendix B). After matching
the resulting expressions, we obtain

A1;i j
1;kℓ(s) = A2:i j

2;kℓ(s) =
1
2

d†
i j dkℓ

ω3

3πc3ε0h̄
,

(A6)

A1;i j
2;kℓ(s) = A2:i j

1;kℓ(s) =−d†
i j Γreldkl

ω3

3πc3ε0h̄
e−τs,

where

Γrel =
3

8π

∫

Ω
sinθ P⊥er2

dθ2dϕ2 ,

(A7)

P⊥er2
= 11−er2 ⊗er2 ,

Ω denotes the solid angle around the ions covered by the
parabolic mirrors andω denotes the transition frequency of
the corresponding optical transitions.

Appendix B: The multidimensional JWKB method

As heralded in appendix A, we derive here semiclassical
approximations for the functionsAα ;i j

β ;kℓ by using multidimen-
sional JWKB method [17]. In region 1, we use the free-space
Green’s function

Gfree(x,x′, t) =
1

4π |x− x′|
δ (t −|x− x′|/c) , (B1)

and, sinceλ ≪ R, we can use the approximation

∇×∇×Gfree(x,x′, t)≃−
δ ′′(t −|x− x′|/c)

4πc2|x− x′|

×

(
11−

x− x′

|x− x′|
⊗

x− x′

|x− x′|

)
. (B2)

If we introduce for each focus a system of spherical coordi-
nates, with the focus lying at the origin, we can represent this
Green’s function in region 1 as

∇×∇×Gfree(x1, r1,θ1,ϕ1, t) =−
δ ′′(t − r1/c)

4πc2r1
P⊥er1

, (B3)

whereP⊥er1
has been defined in Eq. (A7).

We use the multidimensional JWKB method to propagate
this expression to the second focus; that is, in region 2. There-
fore, we construct the rays from geometrical optics. The result
reads

∇×∇×G(x1, r2,θ2,ϕ2, t) =−
δ ′′(t − τ + r2/c)

4πc2r2
P⊥er2

×

{
1 (θ2,ϕ2) ∈ Ω,

0, (θ2,ϕ2) /∈ Ω.
(B4)

We have introduced the typical timeτ = (4 f + d)/c and we
have neglected contributions that are small whenf ,d ≫ λ .
Of course, in Eq. (B4) we have taken into account that the
parabola covers only a finite solid angleΩ.

Next, we have to take care of region 3. Here, we use
the free-space propagator, because the JWKB method would
cause a singularity at the second focus. The mentioned prop-
agator for the electric field, which can be derived by using
Gfree, is given by

D(x2, t) =
1

4π

∫ π

0

∫ 2π

0
sinθ2

(
d

dr2
+

1
c

d
dt

)
P⊥er2

× [r2D(r2,θ2,ϕ2, t −∆t)]dθ2dϕ2 , (B5)
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where∆t = r2/c. If we apply this expression to our problem
with the dyadic Green’s function we finally obtain

∇×∇×G(x1,x2, t) =−
1

3c3π
δ ′′′(t − τ)Γrel . (B6)

In the limiting case that the mirrors cover the full solid angle,
we obtainΓrel = 11 .

So far, we have neglected the fact that we could also con-
tinue the described geometrical rays, which would add further
terms to our expression for the dyadic Green’s function. But
as long we are only interested in time intervalst ∈ [0,2τ) we
can neglected this continuation of the rays. Of course, the
relation

∇×∇×G(x2,x1, t) = ∇×∇×G(x1,x2, t) (B7)

holds true.
We have to calculate also∇×∇×G(x1,x1, t) and∇×∇×

G(x2,x2, t). We are retaining only the dominant contribution,
which is associated to the free-space part of the Green’s func-
tion. The problem is that this part leads to a divergent expres-
sion that needs to be regularized. For simplicity, we only take
care of the problem∇×∇×Gfree(x1, r1,θ1,ϕ1, t)ez, because
the symmetry of the problem leads to the general solution. So,
we get

∇×∇×Gfree(x1, r1,θ1,ϕ1, t)ez = ∇×∇×

[
δ (t − r1/c)

4πr1

]
ez .

(B8)
In this expression terms of the formδ (n)(t − r1/c)/rm

1 appear.
By applying a formal Taylor expansion, we get

δ (n)(t − r1/c)
rm
1

=
∞

∑
k=0

δ (n+k)(t)
k!

rk−m
1 (−c)−k

−−−→
r1→0

δ (n+m)(t)
m!

(−c)−m+
m−1

∑
k=0

δ (n+k)(t)
k!

rk−m
1 (−c)−k .

(B9)

As one can see the sum in the second line contains singular
terms, which lead to the divergent Lamb-shift appearing after

the dipole approximation. If we neglect those terms, we get

∇×∇×Gfree(x1,x1, t)ez =
δ ′′′(t)
6πc3 ez , (B10)

which, given the symmetry of the problem, gives the general
solution

∇×∇×Gfree(x1,x1, t) =
δ ′′′(t)
6πc3 . (B11)

From here, we immediately get

Bα ;i j
α ;kℓ(s) =

−is3

6πc3ε0h̄
d†

i j dkℓ , (B12)

for α ∈ {1,2}. Since the time evolution of the different prob-
ability amplitudes is dominated by rapid oscillations of the
form e−iωt , one can replace eachs by −iω and we thus get
directly the result in Eq. (A6).

Appendix C: Tracing out the photonic degrees of freedom

To calculate the fidelity of the entangled state generated by
our scheme, we have to trace out the uncontrolled photonic
degrees of freedom, which in general cause decoherence and
destroy entanglement. Our goal is to determine the reduced
density matrix

ρ̂(t) = TrR(|ψ(t)〉〈ψ(t)|) = 〈{0}|ψ(t)〉〈ψ(t)|{0}〉

+ ∑
r
〈1r |ψ(t)〉〈ψ(t)|1r〉 . (C1)

The second line of this equation, which denoteρ̂ground(t) is
of main interest, because the ions are affected by spontaneous
emission and both of them will be in the ground state after a
short while. To obtain an expression forρ̂ground(t) we have to
evaluate an infinite sum. It is possible to rewrite this sum to
a finite sum by using the functionsAα ;i, j

β ,k,l (s). The result is the
following expression

〈
i(1)1

∣∣∣
〈

i(2)2

∣∣∣ ρ̂ground(t)
∣∣∣ j(1)1

〉∣∣∣ j(2)2

〉
=

t∫

0
e−i(t−t′)(ωi1+ωi2−ω j1−ω j2)

(
∑

k,l∈Se

∑
α∈{1,2}

∑
β∈{1,2}

L −1
[
Aα ;kiα

β ;l jβ
(s+ iωi1 + iωi2)b̃

(α)
ki3−α

(s)
]
(t ′)b(β )l j3−β

[t ′]∗

+ ∑
k,l∈Se

∑
α∈{1,2}

∑
β∈{1,2}

L −1
[
A

β ;l jβ
α ;kiα

(s+ iω j1 + iω j2)b̃
(β )
l j3−β

(s)
]
[t ′]∗ b(α)

ki3−α
[t ′]

)
dt′ .

(C2)
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