
ar
X

iv
:1

40
3.

76
02

v1
  [

m
at

h.
G

R
] 

 2
9 

M
ar

 2
01

4
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Abstract

A finite group G is called Cayley integral if all undirected Cayley graphs over
G are integral, i.e., all eigenvalues of the graphs are integers. The Cayley integral
groups have been determined by Kloster and Sander in the abelian case, and by
Abdollahi and Jazaeri, and independently by Ahmady, Bell and Mohar in the non-
abelian case. In this paper we generalize this class of groups by introducing the
class Gk of finite groups G for which all graphs Cay(G,S) are integral if |S| ≤ k.
It will be proved that Gk consists of the Cayley integral groups if k ≥ 6; and the
classes G4 and G5 are equal, and consist of: (1) the Cayley integral groups, (2) the
generalized dicyclic groups Dic(E3n × Z6), where n ≥ 1.
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1 Introduction

A finite simple graph is called integral if all its eigenvalues are integers. These graphs
were introduced by Harary and Schwenk [7], and have been attracting considerable
attention (see the surveys [3, 5]). In [1], Abdollahi and Vatandoost proposed to consider
those integral graphs which are also Cayley graphs. Recall that, given a finite group
G and a subset S of G with 1 /∈ S and S = S−1 = {s−1 : s ∈ S}, the Cayley graph
Cay(G, S) has vertex set G, and edges in the form {g, sg}, g ∈ G and s ∈ S. Klotz and
Sander [9] called a finite group G Cayley integral if all graphs Cay(G, S) are integral;
furthermore, they determined the abelian Cayley integral groups (see [9, Theorem 13]):
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Republike Slovenija), and the ARRS grant no. P1-0294. The second author was supported by the
ARRS grant no. P1-0285.
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Kovács).
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Theorem 1.1. (Klotz and Sander [9]) The only finite abelian Cayley integral groups
are E2n × E3m and E2n × Zm

4 , where m,n ≥ 0.

The non-abelian Cayley integral groups were found recently by Abdollahi and Jazaeri
(see [2, Theorem 1.1]), and independently by Ahmady et al. (see [4, Theorem 4.2]):

Theorem 1.2. (Abdollahi and Jazaeri [2]; Ahmadi et al. [4]) The only finite non-abelian
Cayley integral groups are D6, Dic12 and Q8 × E2n , where n ≥ 0.

The cyclic, the elementary abelian, and the dihedral group of order n are denoted
by Zn, En and Dn, respectively. Let A be an abelian group having a unique involution
t and of order |A| > 2. The generalized dicyclic group Dic(A) = 〈A, x〉, where x2 = t,
and ax = a−1 for every a ∈ A (see [12, page 252]). In the case when A ∼= Zn it is also
called the dicyclic group of order 2n, denoted by Dic2n; and when A ∼= Z2n it is also
known as the generalized quaternion group of order 2n+1, denoted by Q2n+1 .

In this paper we are going to study groups G for which we require Cay(G, S) to be
integral only when |S| is bounded by a fixed number. Formally, for k ∈ N, we set

Gk =
{

G : Cay(G, S) is integral whenever |S| ≤ k
}

.

It is obvious that G1 is just the class of all finite groups, and in G2 there are exactly
the groups whose non-identity elements are of order 2, 3, 4 or 6.

The class G3 is the most intricate. Regarding p-groups, it is clear that all groups of
exponent 3 are in G3, and we will show that a non-abelian 2-group is in G3 if and only if
it is of exponent 4, and any minimal non-abelian subgroup is isomorphic to Q8, H2 or
H32 (see Proposition 3.5). It is known that there are five minimal non-abelian groups of
exponent 4 (see Corollary 3.2). In [8], Janko described the non-abelian 2-groups all of
whose minimal non-abelian subgroups are either of order 8, or isomorphic to exactly one
of these five groups. In particular, if they all are isomorphic to Q8, then G ∼= Q2m ×E2n ,
where m ≥ 3, n ≥ 0 (see [8, Corollary 2.4]). We will make use of this result when
deriving that Q8 × E2n are the only non-abelian 2-groups in Gk if k ≥ 4.

Our goal in this paper is to determine the classes Gk when k ≥ 4. Our main result
is the following theorem:

Theorem 1.3. Every class Gk consists of the Cayley integral groups if k ≥ 6. Further-
more, G4 and G5 are equal, and consist of the following groups:

(1) the Cayley integral groups,

(2) the generalized dicyclic groups Dic(En
3 × Z6), where n ≥ 1.

In Section 2 we prove some useful properties of the groups in Gk. Theorem 1.3 will
be derived in Section 3.
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2 Some properties of the groups in Gk

All groups in this paper will be finite. Our notation and terminology for finite groups
follow [12].

Case (i) in our first lemma is essentially [9, Lemma 11], cases (ii) and (iii) can be
deduced from [4, Lemma 4.3].

Lemma 2.1. The following hold for every G ∈ Gk if k ≥ 2.

(i) For every x ∈ G, the order of x is in {1, 2, 3, 4, 6}.

(ii) For every subgroup H ≤ G, H ∈ Gk.

(iii) For every N EG such that |N | | k, G/N ∈ Gl, where l = k/|N |.

In contrast to the class of Cayley integral groups, the class Gk is not closed under
forming factor groups for every k. For example, consider the non-trivial semidirect
product Z4⋊Z4. It is easy to see that this group is in G2, and that it has a factor group
isomorphic to D8. The group D8 is clearly not in G2. Below we prove a weaker property.

Lemma 2.2. Let G ∈ Gk, and N EG, N is abelian and |N | is odd. Then G/N ∈ Gk.

Before we prove the lemma, we need to recall a result in [10] about eigenvalues of
graphs which admit an abelian semiregular automorphism group.

Let Γ be a graph, and H be an abelian semiregular group of automorphisms of Γ
with m orbits on the vertex set. Fix m vertices v1, . . . , vm of Γ such that no two are
from the same H-orbit. The symbol of Γ relative to H and the m-tuple (v1, . . . , vm) is
the m×m array S of subsets of H, written as S = (Sij)i,j∈{1,...,m}, where

Sij = {x ∈ H : vi ∼ vxj in Γ}. (1)

Here and in what follows, vi ∼ vxj means that the vertices vi and vxj are adjacent in Γ.
For an irreducible character χ of H, let χ(S) be the m×m complex matrix defined by

(χ(S))ij =

{

∑

s∈Sij
χ(s) if Sij 6= ∅

0 otherwise,
i, j ∈ {1, . . . , m}. (2)

Note that, since H is abelian, the irreducible characters are just the homomorphisms
from H to the multiplicative group of complex numbers.

Theorem 2.3. (Kovács et al. [10]) With notation as above, the eigenvalues of Γ are the
union of eigenvalues of the matrices χ(S), where χ runs over the set of all irreducible
characters of H.

Proof of Lemma 2.2. Let ΓG/N = Cay(G/N,R), and R be writen as R = {Nr : r ∈ R}
for some R ⊂ G. It is clear that N ∩ R = ∅, in particular, 1 /∈ R. Observe that
Nr−1 = (Nr)−1 ∈ R. Therefore, if (Nr)−1 6= Nr, then we may assume that both r and
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r−1 are in R. Let Nr = (Nr)−1. Then r2 ∈ N, hence |〈N, r〉| = 2|N |. This together
with 2 ∤ |N | imply that r can be chosen to be an involution in 〈N, r〉, and so r−1 ∈ R.
Therefore, we may choose R so that 1 /∈ R and R−1 = R, and thus we have the Cayley
graph ΓG = Cay(G,R).

Let m = |G : N |, the index of N in G, and T = {t1, . . . , tm} be a complete set of
N -coset representatives in G such that R ⊆ T . From now on every x ∈ N will stand
also for the permutation of G acting as gx = gx, g ∈ G, and N will stand for the group
of all such permutations. Clearly, N is a semiregular group of automorphisms of ΓG

with m orbits; and as vertices of ΓG, t1, . . . , tm represent all N -orbits.
Let R = (Rij) be the symbol of ΓG relative to N and the m-tuple (t1, . . . , tm). By

Theorem 2.3, the eigenvalues of ΓG are equal to the eigenvalues of χ(R), where χ runs
over the set of all irreducible characters of N . Therefore, it is sufficient to show that the
spectrum of χ(R) is equal to the spectrum of ΓG/N , where χ is the trivial character of
H (i.e., χ(x) = 1 for every x ∈ H). Since χ(R)ij = |Rij|, see (2), the latter statement
follows from the following equivalence:

∀i, j ∈ {1, . . . , m} : |Rij| ≤ 1, and |Rij | = 1 ⇐⇒ Nti ∼ Ntj in ΓG/N . (3)

We may write, see (1),

Rij = {x ∈ N : ti ∼ tjx in ΓG} = {x ∈ N : tjxt
−1

i ∈ R}| = N ∩ t−1

j Rti. (4)

Using that N E G, this gives that |Rij | = |N ∩ t−1

j Rti| = |Ntjt
−1

i ∩ R|. As R ⊆ T,

|Ntjt
−1

i ∩ R| ≤ 1. Furhermore, |Ntjt
−1

i ∩ R| = 1 if and only if Ntjt
−1

i = Nr for some
r ∈ R, or equivalently, Ntj(Nti)

−1 = Ntjti ∈ R holds in G/N, or equivalently, Ntj and
Nti are adjacent in ΓG/N . This completes the proof of (3). �

It is well-known that the eigenvalues of a Cayley graph over an arbitrary group G
can be computed using the irreducible representations of G (see [6]). In this paper we
will rather use Theorem 2.3, and hence avoid the representation theory of non-abelian
groups.

In what follows, we write yx = x−1yx for x, y ∈ G, and [x, y] will denote the com-
mutator element, i.e., [x, y] = x−1y−1xy.

Lemma 2.4. The group Dic(E3n × Z6) is in G5 for every n ≥ 0.

Proof. Let G = Dic(E3n × Z6) and S ⊆ G of size |S| ≤ 5. We have to show that
Cay(G, S) is integral. This is clear if |S| ≤ 2.

Let |S| = 3. Let us write G = P ⋊ 〈x〉, where P ∼= E3n+1 , x is of order 4, and
ux = u−1 for every u ∈ P . Notice that x2 is the unique involution of G which is in
Z(G). Therefore, x2 ∈ S and 〈S〉 is abelian. This implies that Cay(G, S) is integral.

Let |S| = 4. Let H = 〈P, x2〉 ∼= E3n+1 × Z2. If S ⊆ H, then 〈S〉 ≤ H, and hence
Cay(G, S) is integral. Thus we may assume that S contains two elements in the form xu
and (xu)−1 = x−1u for some u ∈ H . Let us consider the symbol S = (Sij) of Cay(G, S)
relative to H and the pair (1, x).
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Let S ∩ H = ∅. Then S = {xu, x−1u, xv, x−1v}, where u, v ∈ H and u 6= v.
According to (4), the subsets Sij are computed as: S11 = H ∩S = ∅, S12 = H ∩ x−1S =
{u, x2u, v, x2v}, S21 = H ∩ Sx = {x2u−1, u−1, x2v−1, v−1}, and S22 = H ∩ x−1Sx = ∅,
i.e.,

S =

(

∅ {u, x2u, v, x2v}
{x2u−1, u−1, x2v−1, v−1} ∅

)

.

For an irreducible character χ of H, χ(S) has eigenvalues ±(1 + χ(x2))|χ(u) + χ(v)|.
This is equal to 0 if χ(x2) = −1. Otherwise, χ(x2) = 1, and both χ(u) and χ(v) are
complex 3rd roots of unities, showing that the eigenvalues are also integers in this case.

Let S ∩H = {v, v−1}. Then

S =

(

{v, v−1} {u, x2u}
{u−1, x2u−1} {v, v−1}

)

.

The two eigenvalues of χ(S) are χ(v) + χ(v−1) ± (1 + χ(x2)). These are also integers,
and this completes the proof of the case when |S| = 4.

Let |S| = 5. In this case S must contain the unique involution x2. Repeating the
above analysis with the set S\{x2}, one can deduce that Cay(G, S) is always integral.

3 The classes Gk, k ≥ 4

A finite group G is said to be minimal non-abelian if all proper subgroups of G are
abelian. The following result is due to Rédei [11]:

Theorem 3.1. (Rédei [11]) Let G be a minimal non-abelian p-group. Then G is one of
the following groups:

(i) Q8;

(ii)
〈

a, b | apm = bp
n

= 1, ab = a1+pm−1
〉

, where m ≥ 2 (metacyclic);

(iii)
〈

a, b, c | apm = bp
n

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1
〉

, where m+ n ≥ 3 if p = 2
(non-metacyclic).

Corollary 3.2. The minimal non-abelian groups of exponent at most 4 are the following:

(i) Q8;

(ii) D8 =
〈

a, b | a4 = b2 = 1, ab = a−1
〉

,
H2 =

〈

a, b | a4 = b4 = 1, ab = a−1
〉

(metacyclic);

(iii) H16 =
〈

a, b, c | a4 = b2 = c2 = 1, [a, b] = c, [c, a] = [c, b] = 1
〉

,
H32 =

〈

a, b, c | a4 = b4 = c2 = 1, [a, b] = c, [c, a] = [c, b] = 1
〉

,
H27 =

〈

a, b, c | a3 = b3 = c3 = 1, [a, b] = c, [c, a] = [c, b] = 1
〉

(non-metacyclic).

Lemma 3.3. Every p-group in Gk is Cayley integral if k ≥ 4.
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Proof. Fix a number k ≥ 4 and let G ∈ Gk be a p-group. Lemma 2.1.(i) gives that p = 2
or 3, and the lemma follows at once when G is abelian. Assume that G is non-abelian.
We have to prove that G ∼= E2n ×Q8 for some n ≥ 0. In view of [8, Corollary 2.4] (see
the introduction), it is sufficient to show that every minimal non-abelian subgroup of G
is isomorphic to Q8.

Let N be a minimal non-abelian subgroup of G. Note that, N ∈ Gk because of
Lemma 2.1.(ii). If p = 3, then N ∼= H27, see Corollary 3.2. We exclude this possibility
by showing that the graph Γ = Cay(H27, {a, a−1, b, b−1}) is non-integral. Let H =
〈a, c〉 ∼= E9, and S = (Sij) be the symbol of Γ relative to H and the triple (1, b, b−1).
Then compute that

S11 = {a, a−1}, S22 = {ac, (ac)−1}, S33 = {ac−1, a−1c},

and Sij = {1} if i 6= j. Let χ be the irreducible character of H defined by χ(a) = 1 and
χ(c) = e2πi/3. Then

χ(S) =





2 1 1
1 −1 1
1 1 −1



 .

The eigenvalues of χ(S) are −2 and 1±
√
3, and as these are also eigenvalues of Γ, see

Theorem 2.3, Γ is indeed non-integral.
Thus p = 2, and N is isomorphic to one of the following groups:

Q8, D8, H2, H16 and H32.

We complete the proof by excluding the last four groups.

• D8 : Let D8 = 〈a, b | a4 = b2 = 1, bab = a−1〉. It is easy to see that Cay(H, {ab, b})
is isomorphic to an 8-cycle, which is not integral. We actually obtained that D8 /∈ G2.

• H2 : Notice that 〈b2〉 E H2, and H2/〈b2〉 ∼= D8. As D8 /∈ G2, this and Lemma
2.1.(iii) yield that H2 /∈ Gk.

• H16 : In fact, we show that H16 /∈ G3. Consider the graph Cay(H16, {ba, ba−1c, b}).
Compute its symbol S relative to H = 〈a, c〉 ∼= Z4 × Z2 and the pair (1, b) :

S =

(

∅ {a, a−1c, 1}
{ac, a−1, 1} ∅

)

and χ(S) =

(

0 2i+ 1
−2i+ 1 0

)

,

where χ is defined by χ(a) = i (the complex imaginary unit), and χ(c) = −1. The
eigenvalues of χ(S) are ±

√
5, and so H16 /∈ Gk if k ≥ 3.

• H32 : Consider the graph Cay(H32, {ba, b−1a−1c, b, b−1}). Compute its symbol S
relative to H = 〈a, b2, c〉 ∼= Z4 ×E4 and the pair (1, b) :

S =

(

∅ {a, b2a−1c, 1, b2}
{b2ac, a−1, b2, 1} ∅

)

and χ(S) =

(

0 2i+ 2
−2i+ 2 0

)

,

where χ is defined by χ(a) = i (the complex imaginary unit), χ(b2) = 1 and χ(c) = −1.
The eigenvalues of χ(S) are ±2

√
2, and so H16 /∈ Gk if k ≥ 4.
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Corollary 3.4. Every nilpotent group in Gk is Cayley integral if k ≥ 4.

It is worth to derive the following characterization of non-abelian 2-groups in G3.

Proposition 3.5. Let G be a non-abelian 2-group of exponent 4. Then G ∈ G3 if and
only if every minimal normal subgroup of G is isomorphic to Q8, H2 or H32.

Proof. As none of D8 and H16 is in G3 (see the above proof), the “only if” part follows
immediately from this and Lemma 2.1.(ii).

For the “if” part, assume that no subgroup of G is isomorphic to D8 or H16. It is
sufficient to prove that every involution of G is in the center Z(G). It is easy to deduce
from this that 〈S〉 is abelian for every inverse-closed subset S ⊂ G with 1 /∈ S and
|S| ≤ 3, and hence that G ∈ G3.

Assume, towards a contradiction, that [t, x] 6= 1 for some involution t and element x
in G, and let H = 〈t, x〉. Clearly, t /∈ Z(H). Since H 6∼= D8, x must be of order 4. Also,
x2 ∈ Z(H), hence H/〈x2〉 is generated by two involutions. It follows that |H| = 8 or
16. In the first case, since H is non-abelian, H ∼= Q8. This contradicts that t /∈ Z(H).
Therefore, |H| = 16. If H is minimal non-abelian, then H ∼= H2 or H16. Both cases
are impossible, every involution of H2 in is Z(H2), while the involution t /∈ Z(H), and
H 6∼= H16 because of one of the initial assumptions. Thus H contains a non-abelian
subgroup of order 8, say Q. Then Q ∼= Q8, and since t /∈ Z(H), t /∈ Q, and H = Q⋊ 〈t〉
is a non-trivial semidirect product. There is an element y ∈ Q such that yt 6= y. Clearly,
y is of order 4. If yt = y−1, then 〈y, t〉 ∼= D8, a contradiction. If yt 6= y−1, then putting
z = yyt, we find that z is of order 4, and zt = (yyt)t = yty = z−1. Thus 〈z, t〉 ∼= D8, a
contradiction. This completes the proof of the proposition.

Now, we return to the classes Gk, k ≥ 4.

Lemma 3.6. Suppose that G ∈ Gk, k ≥ 4, and 3 | |G|. Then G has a normal Sylow
3-subgroup.

Proof. We proceed by induction on the order of G. There is nothing to prove if G is a
3-group, hence we may assume that 2 and 3 are the prime divisors of |G|, see Lemma
2.1.(i). Burnside’s “pq” Theorem gives that G is solvable. Let K be a minimal normal
subgroup of G. It is well-known that K is elementray abelian, and hence K < G. Let
M be a maximal normal subgroup of G which contains K. Then G/M is simple and
solvable (see [12, 2.5.2 and 2.6.1]), which imply that G/M is of prime order (see [12,
Exerxice 2.6.6]). Therefore, |G : M | = 2 or 3. Also note that, M ∈ Gk because of
Lemma 2.1.(ii).

If |G : M | = 2, then the induction hypothesis gives that M has a normal Sylow
3-subgroup, which is clearly also a normal Sylow 3-subgroup of G.

Let |G : M | = 3, and suppose that 3 | |M |. Then the the induction hypothesis gives
that M has a normal Sylow 3-subgroup, say N . By Lemma 2.2, G/N ∈ Gk, hence G/N
has a normal Sylow 3-subgroup, say L (L ∼= Z3). Then the pre-image η−1(L), where
η : G → G/N is the natural projection, is a normal Sylow 3-subgroup in G.
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We are left with that case that 9 ∤ |G|, and G has a normal sylow 2-subgroup. Thus
G = P ⋊ 〈x〉, where P is a 2-group and x is of order 3. We complete the proof by
showing that x centralizes P, and thus G is abelian.

Assume, towards a contradiction, that [u, x] 6= 1 for some u ∈ P . Let U = 〈u, ux, ux2〉
and V = 〈u, x〉. Clearly, U E V and V ∼= U ⋊ Z3.

Suppose for the moment that u is of order 2. The group P is Cayley integral, see
Lemma 3.3, in particular, all involutions of P are in the center Z(P ). This implies that
U ∼= E4 or E8. If U ∼= E4, then V = E4 ⋊ Z3

∼= A4. If U ∼= E8, then consider the
group 〈uux, uux2

, x〉. As this is isomorphic to A4, we see that in either case, V contains
a subgroup isomorphic to A4. We show next that this is impossible by proving that
A4 6∈ Gk. Write A4 = 〈(1, 3)(2, 4), (1, 2, 3)〉, and let Γ = Cay(A4, {a, b, c, c−1}), where
a = (1, 2)(3, 4), b = (1, 3)(2, 4) and c = (1, 2, 3). Let S be the symbol of Γ relative to
H = 〈a, b〉 and the triple (1, c, c−1), and let χ be the irreducible character of H defined
by χ(a) = 1 and χ(b) = −1. Then

S =





{a, b} {1} {1}
{1} {ab, a} {1}
{1} {1} {b, ab}



 and χ(S) =





0 1 1
1 0 1
1 1 −2



 .

The eigenvalues of χ(S) are −1 and 1

2
(−1 ±

√
17), hence A4 /∈ Gk. We conclude that x

centralizes all involutions of P .
Let u be of order 4, and W = 〈u〉. Since [u, x] 6= 1, W x 6= W, and thus W,W x

and W x2

are three distinct subgroups of order 4 contained in U . Since x centralizes all
involutions of P, it follows that

W ∩W x ∩W x2

= 〈u2〉. (5)

Suppose that P is abelian. Then P ∼= E2m × Zn
4 for some m ≥ 0, n ≥ 1. Using

that U/〈u2〉 is elementary abelian of order 4 or 8, we deduce that U ∼= Z2 × Z4 or
U ∼= E4×Z4. The first case cannot occur, U has three distinct subgroups of order 4. In
the second case there are four subgroups in U of order 4 containing u2, and thus must
be one normalized by x. This, however, gives rise to an element in G of order 12, and
this is impossible.

Let P be non-abelian. Then P ∼= E2m ×Q8. All subgroups of P of order 4 intersect
at the same subgroup, the Frattini subgroup Φ(P ). Thus (5) gives that Φ(P ) = 〈u2〉,
U/〈u2〉 ∼= E4 or E8, and U ∼= Q8 or U ∼= Z2 × Q8 respectively. If U ∼= Q8, then
V ∼= Q8⋊Z3. Let U ∼= Q8 ×Z2. Then U contains exactly four subgroups isomorphic to
Q8. Thus one of them must be normalized by x, but not centralized, hence we see that
V always contains a subgroup isomorphic to Q8 ⋊ Z3. We finish the proof by showing
that Q8 ⋊ Z3 6∈ Gk. Write Q8 = {±1,±i,±j,±k} (the usual quaternion group) and
Q8 ⋊ Z3 = Q8 ⋊ 〈σ〉, where σ3 = 1, [−1, σ] = 1, iσ = j, jσ = k, and kσ = i. Let
Γ = Cay(Q8⋊Z3, {i,−i, σ, σ−1}), and S be the symbol of Γ relative to H = 〈−1, σ〉 and
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the quadruple (1, i, j, k). Let χ be the trivial character of H . Then

S =









{σ, σ−1} {1,−1} ∅ ∅
{1,−1} ∅ {σ−1} {σ}

∅ {σ} ∅ {1,−1, σ−1}
∅ {σ−1} {1,−1, σ} ∅









and χ(S) =









2 2 0 0
2 0 1 1
0 1 0 3
0 1 3 0









.

The eigenvalues of χ(S) are 4, −3, and 1

2
(1±

√
17), hence Q8⋊Z3 /∈ Gk, as claimed.

Lemma 3.7. Suppose that G ∈ Gk, k ≥ 4, and G is not nilpotent. Then G ∼= D6 or
Dic(En

3 × Z6) for some n ≥ 0.

Proof. By Lemma 3.6, G contains a normal Sylow 3-subgroup, say P . Since G is non-
abelian, there is an element x of order 2 or 4 such that x /∈ CG(P ).

We consider first the case when x is of order 2. Suppose that wx /∈ 〈w〉 for some
w ∈ P . Let u = wxw, v = wxw−1 and U = 〈u, v〉. Then U ∼= E9, u

x = u and vx = v−1.
Thus V = 〈U, x〉 ∼= D6 × Z3. We exclude this possibility by showing that V /∈ Gk. Let
Γ = Cay(V, {xu, xu−1, xv}), S be the symbol of Γ relative to U and the pair (1, x), and
let χ be the irreducible character of U defined by χ(u) = 1 and χ(v) = ξ = e2iπ/3. Then

S =

(

∅ {u, u−1, v}
{u, u−1, v−1} ∅

)

and χ(S) =

(

0 2 + ξ
2 + ξ−1 0

)

.

The eigenvalues of χ(S) are ±
√
3, hence V /∈ Gk. We are left with the case that x

inverts all elements of P . Assume that |P | > 3. Then let U = 〈u, v〉 ∼= E9, and V =
〈U, x〉 ∼= E9 ⋊ Z2. Copying above argument for the graph Γ = Cay(V, {xu, xu−1, xv}),
we find again that ±

√
3 are eigenvalues of Γ, a contradiction. Therefore, |P | = 3. Let

N = CG(P ), the centralizer of P in G. Notice that, N is an abelian normal subgroup of
G, and by the N/C Theorem (see [12, Theorem 3.2.3]), G/N is isomorphic to a subgroup
of Aut(P ) ∼= Z2. Since G is non-abelian, G 6= N, and thus |G : N | = 2. If N 6= P, then
take an involution y ∈ N . Then y ∈ Z(G), hence 〈x, y, P 〉 = 〈x, u〉 × 〈y〉 ∼= D6 × Z2

∼=
D12, a contradiction. Therefore, N = P, and G ∼= D6.

To sum up, we may assume that G 6∼= D6 and all involutions of G are in CG(P ).
Let x ∈ G \ CG(P ), and let Q be a Sylow 2-subgroup such that x ∈ Q. Suppose that
ux /∈ 〈u〉 for some u ∈ P . Then using that [x2, u] = 1, we can prove, as above, that
vx = v for some v ∈ P, hence vx is of order 12, a contradiction. Therefore, ux = u−1

for every u ∈ P . Let y be an involution of Q such that y 6= x2, and let V = 〈x, y, u〉,
where u ∈ P, u 6= 1. Then y ∈ Z(G), hence V = 〈x, u〉 × 〈y〉 ∼= Dic12 × Z2. Then
〈x2〉E V, and V/〈x2〉 ∼= D6 × Z2

∼= D12. This and Lemma 2.1.(iii) yield that V /∈ Gk, a
contradiction. Thus Q has a unique involution, and hence Q ∼= Z4 or Q8 (recall that Q
is Cayley integral). Let Q ∼= Q8 and K = 〈u,Q〉 for some u ∈ P, u 6= 1. Then 〈u〉EK,
|K| = 24, and the centralizer CK(u) is of order at least 12. This shows that CK(u)
contains an element of order 4, and so K contains element of order 12, a contradiction.
Therefore, Q ∼= Z4, and G ∼= Dic(E3n × Z6), where n ≥ 0. This completes the proof of
the lemma.
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Everything is prepared to derive the main theorem.

Proof of Theorem 1.3. Fix a number k ≥ 4, and let G ∈ Gk be a group which is
not Cayley integral. By Corollary 3.4, G is not nilpotent, hence by Lemma 3.7, G ∼=
Dic(E3n × Z6) for some n ≥ 1 (here we use that Dic(Z6) ∼= Dic12, which is Cayley
integral). By Lemma 2.4, these groups are also in G4 and G5, and this settles the the
second part of the theorem.

It remains to prove that Dic(E3n × Z6) /∈ Gk if n ≥ 1 and k ≥ 6. Observe that, all
these groups contain a subgroup isomorphic to Dic(Z3×Z6). Therefore, it is sufficient to
show thatDic(Z3×Z6) /∈ Gk if k ≥ 6 (see Lemma 2.1.(ii)). WriteDic(Z3×Z6) = E⋊〈x〉,
where E ∼= E9, x is of order 4, and x inverts every element in E. Then 〈x2〉 is normal
in E ⋊ 〈x〉, and (E ⋊ 〈x〉)/〈x2〉 ∼= E9 ⋊ Z2. However, the latter group is not in G3 (see
the proof of Lemma 3.6). This and Lemma 2.1.(iii) yield that E ⋊ 〈x〉 /∈ Gk if k ≥ 6.
This completes the proof of the theorem. �
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