ON PEXIDER ADDITIVE FUNCTIONAL EQUATIONS

Tamás Glavosits២

assistant professor, University of Miskolc, Department of Applied Mathematics 3515 Miskolc-Egyetemváros, e-mail: <u>tamas.glavosits@uni-miskolc.hu</u>

Zsolt Karácsony

associate professor, University of Miskolc, Department of Applied Mathematics 3515 Miskolc-Egyetemváros, e-mail: <u>zsolt.karacsony@uni-miskolc.hu</u>

Absztrakt

Legyen Y(+) egy Abel csoport, $D_{\subseteq}Z^2$ (Z(+, \leq) jelöli az egész számok rendezett csoportját). $D_x:=\{u\in Z \mid létezik v \in X; (u,v) \in D\}, D_y:=\{v\in Z \mid létezik u \in X; (u,v) \in D\}, D_{x+y}:=\{z\in Z \mid létezik (u,v) \in D; z=u+v\}.$ A cikk célja megadni azokat a $D_{\subseteq}Z^2$ halmazokat, melyekre az általános megoldása az f(x+y) = g(x) + h(y) ((x,y $\in D$) függvényegyenletnek f: $D_{x+y} \rightarrow Y$, g: $D_x \rightarrow Y$; h: $D_y \rightarrow Y$ ismeretlen függvényekkel $f(u)=a(u)+C_1+C_2$ ($u\in D_{x+y}$), $g(v)=a(v)+C_1$ ($v\in D_x$); $h(z)=a(z)+C_2$ ($z\in D_y$) alakúak, ahol a: Z $\rightarrow Y$ egy additív függvény C_1 , $C_2 \in Y$ konstansokkal).

Kulcsszavak: additív függvények, additív függvényegyenlet, Pexider additív függvényegyenletek, korlátozott Pexdetr additív függvényegyenletek, archimédészien rendezett Abel-csoportok, rendezett sűrű csoportok, függvényegyenletek általános megoldása, diszkrét halmazok

Abstract

Let Y(+) egy Abelian group, $D \subseteq Z^2$ ($Z(+,\leq)$ denotes the ordered group of the integers). $D_x:=\{u\in Z \mid exists v \in X; (u,v) \in D\}, D_y:=\{v\in Z \mid exists u \in X; (u,v) \in D\}, D_{x+y}:=\{z\in Z \mid exists (u,v) \in D; z=u+v\}$. The aim of the article is to find sets $D \subseteq Z^2$ that the general solution of the functional equation f(x+y) = g(x) + h(y) (($x, y \in D$) with unknown functions $f: D_{x+y} \rightarrow Y$, $g: D_x \rightarrow Y$; $h: D_y \rightarrow Y$ is in the form of $f(u)=a(u)+C_1+C_2$ ($u\in D_{x+y}$), $g(v)=a(v)+C_1$ ($v\in D_x$); $h(z)=a(z)+C_2$ ($z\in D_y$) where $a:Z \rightarrow Y$ is an additive function, C_1 , $C_2 \in Y$ are constants).

Keywords: additive functions, additive functional equations, Pexider additive functional equations, restricted Pexider additive functional equations, Archimedean ordered Abelian groups, ordered dense groups, general solution of functional equations, discrete sets

1. Introduction

The main purpose of this article is to find nonempty sets $D \subseteq \mathbb{Z}^2$ such that the general solution of the functional equation

$$f(x+y) = g(x) + h(y) \qquad (x, y \in D)$$
(PexAdd)

with unknown functions $f: D_{x+y} \to Y$, $g: D_x \to Y$, $h: D_y \to Y$, where Y(+) is an Abelian group, the sets D_x, D_y, D_{x+y} are defined by

$$D_x := \{u \in X \mid \exists v \in \mathbb{G} : (u, v) \in D\},\$$

$$D_y := \{v \in Y \mid \exists u \in \mathbb{G} : (u, v) \in D\},\$$

$$D_{x+y} := \{z \in X \mid \exists (u, v) \in D : z = u + v\},\$$

is in the form of

$$\begin{aligned} f(u) &= a(u) + C_1 + C_2 & u \in D_{x+y}, \\ g(v) &= a(v) + C_1 & v \in D_x, \\ h(z) &= a(z) + C_2 & z \in D_y, \end{aligned}$$
 (PexAddMo)

where $a: \mathbb{Z} \to Y$ is an additive function, $C_1, C_2 \in Y$ are constants.

Definition 1.1. The nonempty set $D \subseteq \mathbb{Z}^2$ is said to be suitable if (preserved the notation above) the general solution of functional equation (PexAdd) is in the form of (PexAddMo).

- If X(+) and Y(+) are structures, a: X → Y is a function such that a(x + y) = a(x) + a(y) for all x, y ∈ X, the function a is said to be additive function (Aczél et al., 1965), (Aczél, 1966), (Aczél et al., 1989) and (Kuczma, 2009).
- If X(+) = Y(+) = ℝ(+), and function a: ℝ → ℝ is an additive function, then function a is said to be Cauchy additive function (Cauchy, 1821), see also (Legendre, 1791; Gauss, 1809).
- It is worth mentioning that A. L. Cauchy was the first who proved that the continuous additive function a: ℝ → ℝ is in the form a(x) = cx for all x ∈ ℝ where c ∈ ℝ is a constant. It is well-known that if a Cauchy additive function a is not continuous, then the graph of a is dense in ℝ² which can be easily show by Hamel bases.
- If X(+), and Y(+) are structures, D ⊆ X², and the unknown functions f: D_{x+y} → Y, g: D_x → Y,
 h: D_y → Y satisfy the functional equation (PexAdd), then the equation (PexAdd) is said to be restricted Pexider additive functional equation (Kuczma, 2009; Rimán, 1976; Glavosits, 2023).
- The results concerning to the restricted additive (but not Pexider additive) functional equations, where $D \subseteq \mathbb{R}^{2N}$ is a nonempty connected open set, $Y(+) = \mathbb{R}^n(+)$ can be found in the book (Kuczma, 2009). In the paper (Radó et al., 1987) can be found a Pexider additive functional equation with similar settings and similar general solution to the previous one.
- Worth mentioning the articles (Rimán, 1976) which deal with a Pexider-additive functional equation. This equation is fulfilled on a nonempty connected open set $D \subseteq \mathbb{R}^2$, the codomain of the unknown functions are an Abelian group E(+). In (Glavosits, 2023) the author deals with both restricted additive functional equations, and restricted Pexider additive functional equations with more abstract algebraic settings.
- An X(≤) structure is said to be ordered set, if the relation ≤ is reflexive, anti-symmetric, transitive, and linear (i. e. x ≤ y, or y ≤ x is fulfilled for all x, y ∈ X).
- If X(≤) is an ordered set, a, b ∈ X such that a < b, then the set]a, b[: = {x ∈ X | a < x < b} is said to be open interval (in X). (There are no any other sets which is said to be open interval.) Similarly [a, b] : = {x ∈ X | a ≤ x ≤ b}.
- An ordered set $X(\leq)$ is said to be dense (in itself), if $[a, b] \neq \emptyset$ for all $a, b \in X$ with a < b.
- An ordered group $\mathbb{G}(+, \leq)$ is said to be Archimedean ordered, if for all $x, y \in \mathbb{G}_+ := \{x \in \mathbb{G} \mid x > 0\}$ there exists an $n \in \mathbb{Z}_+$ such that $y < nx := x + \dots + x$.

2. Some properties of \mathbb{Z}

Theorem 2.1. If $X(+, \leq)$ is an Archimedean ordered Abelian group which is not dense, then the group *X* is isomorphic to the ordered group $\mathbb{Z}(+)$.

Since the topology on \mathbb{Z} generated by the open intervals results discrete topology thus we have to break with the usual terminology, according to which we interpret the Pexider additive functional equation on well-chained open sets (Glavosits et al., 2023). For this purpose we introduce a new notation

$$[a, b] := \{a, a + 1, \dots, b\}$$

for all $a, b \in \mathbb{Z}$ with $a \le b$, allowing that [a, b] is a singleton whenever a = b.

Proposition 2.1. If $a, b, c, d \in \mathbb{Z}$ with $a \le b$, and $c \le d$, then

$$[a, b] + [c, d] = [a + c, b + d].$$

3. Additive functions on \mathbb{Z}

If Y(+) is an arbitrary group, $\in Y \ x \in \mathbb{Z}$, then the element $cx \in Y$ is defined by

$$cx := \begin{cases} c + \dots + c, & x > 0; \\ 0, & \text{if } x = 0; \\ (-c) + \dots + (-c) & \text{if } x < 0. \end{cases}$$

Theorem 3.1. If Y(+) is an Abelian group, $a: \mathbb{Z} \to Y$ is an additive function, then there exists an element $c \in Y$ such that a(x) = cx for all $x \in \mathbb{Z}$.

Example 3.1. Let $a: \mathbb{Q} \to Y$ be an additive function and let Y(+) be an Abelian group, then by the \mathbb{Q} homogenicity of additive functions (Kuczma, 2009) there exits a constant $c \in Y$ such that

$$a(x) = cx$$
 $(x \in \mathbb{Q})$

where c = a(1).

Conversely, if $c \in Y$, and the function $a: \mathbb{Q} \to Y$ is defined by a(x) := cx for all $x \in \mathbb{Q}$, then the function *a* is additive.

This Examples shows an interesting analogy to the Theorem 3.1.

Theorem 3.2. If Y(+) is an Abelian group, $n \in \mathbb{Z}_+$ is a fixed constant, I := [-n, n], the function $f: [-2n, 2n] \to Y$ satisfies the functional equation f(x + y) = f(x) + f(y) for all $x, y \in [-n, n]$, then there exists an additive function $a: \mathbb{Z} \to Y$ such that a(x) = f(x) for all $(x \in I)$ (i.e. there exists an additive extension of the function f from the set I^2 to the set \mathbb{Z}^2).

In the sequel we shall use the well-known concept of neighbourhood.

The numbers $x, y \in \mathbb{Z}$. is said to be neighbour, if |x-y|=1.

Every integers have two neighbours.

Figure 1

Theorem 3.3. If Y(+) is an Abelian group, $a, b \in \mathbb{Z}$ such that $a < b, I := [a, b] \subseteq \mathbb{Z}$, $c_i, C_i \in Y$ (i = 1, 2), and $f: I \to Y$ is a function such that

$$f(x) = c_1 x + C_1 \qquad (x \in I), f(x) = c_2 x + C_2 \qquad (x \in I),$$

then $c_1 = c_2$ *, and* $C_1 = C_2$ *.*

The above Theorem 3.2. and the Theorem 3.3. shows a close analogy to the adequate Theorems in (Glavosits et al., 2023b) concerning Archimedean ordered dense Abelian groups.

4. Some examples

We shall use the following notations in the sequel.

- $B(x_0, n) := [x_0 n, x_n + n]$ for all $x_0 \in \mathbb{Z}$, and $n \in \mathbb{Z}_+ \cup \{0\}$.
- $B((x_0, y_0), n, m) := B(x_0, n) \times B(y_0, m)$, and $B((x_0, y_0), n) := B((x_0, y_0), n, n)$.
- A subset R ⊆ Z² is said to be m × n type rectangular if there exists (x₀, y₀) ∈ Z² such that R := [x₀, x₀ + n] × [y₀, x₀ + m]. (Imagine the points of the rectangular arranged in rows and columns, similarly to matrices.)

If $D := B((x_0, y_0), m, n) \subseteq \mathbb{Z}^2$, then $D_x = B(x_0, m)$, $D_y = B(y_0, n)$, and by Proposition 2.1 $D_{x+y} = D_x + D_y = B(x_0 + y_0, m + n)$.

Theorem 4.1. Let $n \ge 1$, and $D := B((x_0, y_0), n)$. If the functions $f: D_{x+y} \to Y$, $g: D_x \to Y$, $h: D_y \to Y$ satisfy the functional equation (PexAdd) then it is in the form of (PexAddMo) i.e. there exist constants $c, C_1, C_2 \in Y$ such that

$$\begin{array}{ll} f(u) &= cu + C_1 + C_2 & (u \in D_{x+y}), \\ g(v) &= cv + C_1 & (v \in D_x), \\ h(z) &= cz + C_2 & (z \in D_y), \end{array}$$

n other words the 3×3 type rectangles are suitable sets for all $n \ge 3$. **Theorem 4.2.**

1. If the set $D \subseteq \mathbb{Z}^2$ is suitable, then the sets

$$D + (x, y) := \{(u + x, v + y) \mid (u, v) \in D\}$$

are also suitable for all $x, y \in \mathbb{Z}$.

2. If the sets D^1 , $D^2 \subseteq \mathbb{Z}^2$ are suitable, moreover, the set $D^1_{x+y} \cap D^2_{x+y}$ contain two neighbour elements, $D^1_x \cap D^2_x \neq \emptyset$, and $D^1_y \cap D^2_y \neq \emptyset$, then the set $D^1 \cup D^2$ is also suitable.

Theorem 4.3. Let Y = Y(+) be an Abelian group, and the set $D := [a, b] \times [c, d] \subseteq \mathbb{Z}^2$ be an $m \times n$ type rectangular such that $m \ge 1$, and $n \ge 2$. Consider the functional equation (PexAdd) with unknown functions $f: D_{x+y} \to Y$, $g: D_x \to Y$, $h: D_y \to Y$.

1. If m = 1, then the general solution of equation (PexAdd) is in the form

$$f(x_k + y_1) = \alpha_k + \beta_k$$

$$g(x_k) = \alpha_k$$

$$h(y_1) = \beta_k;$$

$$(k = 1, 2, ..., m),$$

where (α_k) , and (β_k) are arbitrary sequences, thus the set **D** is not suitable.

2. If $m \ge 2$, then the general solution of equation (PexAdd) is in the form of (PexAddMo), where c, $C_1, C_2 \in Y$ are constants, i. e. D is suitable.

(The case $m \leq n$ can be discussed in an analogous way.)

5. Additional examples

Example 5.1. Let $D^1 := \{0,1,2\}^2$, $D^2 := \{-2, -1,0\}^2$, $D := D^1 \cup D^2$.

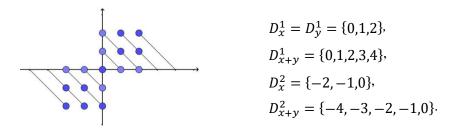


Figure 2

It is easy to see that the set *D* is not suitable.

Example 5.2. Let $D^1 := \{-2, -1, 0\} \times \{0, 1, 2\}, D^2 := \{0, 1, 2\} \times \{-2, -1, 0\}, \text{ and } D := D^1 \cup D^2.$

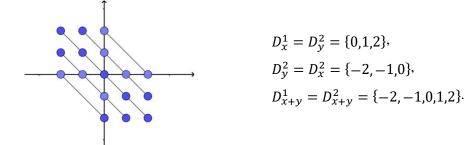


Figure 3

It is easy to see that the set *D* is suitable.

6. Summary. Define the family $\mathcal{D} \subseteq \mathbb{Z}^2$ by

- 1. The 2×2 type rectangles are elements of the family \mathcal{D} ;
- 2. If $\mathbf{D} \in \mathcal{D}$, and $(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^2$, then $\mathbf{D} + (\mathbf{x}, \mathbf{y}) \in \mathcal{D}$.
- 3. If \mathbf{D}^1 , $\mathbf{D}^2 \in \mathcal{D}$, $\mathbf{D}^1_{\mathbf{x}+\mathbf{y}} \cap \mathbf{D}^2_{\mathbf{x}+\mathbf{y}}$ contains two neighbour elements, $\mathbf{D}^1_{\mathbf{x}} \cap \mathbf{D}^2_{\mathbf{x}} \neq \emptyset$, and $\mathbf{D}^1_{\mathbf{y}} \cap \mathbf{D}^2_{\mathbf{y}} \neq \emptyset$, then the set $\mathbf{D}^1 \cup \mathbf{D}^2$ is also element of the family \mathcal{D} .

It is clear that the set family D does not contain all suitable sets.

References

- [1] Aczél, J. (1966). *Lectures on functional equations and their applications*. New York–London: Academic Press. Mathematics in Science and Engineering, Vol. 19.
- [2] Aczél, J., Dhombres, J. (1989). Functional equations in several variables. Cambridge University Press. https://doi.org/10.1017/CBO9781139086578
- [3] Aczél, J., Erdős, P. (1965). The non-existence of a Hamel-basis and the general solution of Cauchyś functional equation for nonnegative numbers. *Publ. Math. Debrecen*, 12, pp. 259–263. https://doi.org/10.5486/PMD.1965.12.1-4.25
- [4] Cauchy, A. L. (1821). *Cours d'analyse de l'École Royale Polytechnique*. Pemiére Parite, Analyse algébrique, Paris. [Oeuvres (2)3, Paris, (1897)].
- [5] Gauss, C. F. (1809). Theoria motus corporum coelestium. Hamburg. (Werke VII, Leipzig, 1906.)
- [6] Glavosits, T. (2023). Short remark to the Rimán's theorem. In preparation.
- [7] Glavosits, T., Karácsony, Zs. (2023). Existence and uniqueness theorems for functional equations. *Comm. in Math.*, 32 (1), pp. 93–102. https://doi.org/10.46298/cm.10830
- [8] Kuczma, M. (2009). An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. First edition: Uniwersytet Slaski w Katowicach (1985). Second edition: Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8749-5
- [9] Legendre, A. M. (1791). *Elements de géometric*. Paris, Note II.
- [10] Radó, F., Baker, J. A. (1987). Pexider's equation and aggregation of allocations. *Aequationes Math.*, 32, pp. 227–239. https://doi.org/10.1007/BF02311311
- [11] Rimán, J. (1976). On an extension of Pexider equation. *Zbornik Radova Math. Inst. Beograd N. S.*, 1 (9), pp. 65–72.